The Second Generation Hypernuclear Spectroscopy at JLab Hall C (E01-011 experiment)

A. Matsumura (Tohoku Univ.) for the E01-011 collaboration

PANIC08 Eilat, ISRAEL 11 Nov. 2008

Motivation

Investigate the fine structure of various Λ hypernuclei by the (e,e'K⁺) reaction

•¹²C(e,e'K⁺)¹²_ΛB

Fine structure of p-shell hypernucleus

•Mirror-symmetric hypernucleus (vs. ${}^{12}_{\Lambda}C @ (\pi^+, K^+))$

- •⁷Li(e,e'K⁺)⁷_ΛHe
 - Neutron rich hypernucleus
 - ΛN - ΣN coupling
- •²⁸Si(e,e'K⁺)²⁸^A
 - Single-particle potential
 - •First challenge to study beyond the p-shell region

\rightarrow New information on ΛN interaction

Second generation hypernuclear spectroscopy @ JLab Hall C (E01-011)

Upgrade of first generation experiment @JLab (E89-009, 2000)

- High-resolution Kaon Spectrometer (<u>HKS</u>)
 - Specialized for hypernuclear spectroscopy
 - Large acceptance
 - Short orbit

→ < 0.5 MeV energy resolution w/ high quality primary electron beam from CEBAF@JLab</p>

- [Tilt method] for scattered electron
 - Optimization of detection angle of e'
 - Suppress a huge background from Bremsstraglung and Møller scattering
 - e' spectrometer vertically tilted by 8 degree
- → Higher Luminosity w/ better S/N ratio

Estimation of systematic errors depend on the tuning procedure

- >Blind analysis with simulation data
 - CH₂ data : well-known mass
 - ¹²C data : binding energies and cross sections were arbitrarily changed and hidden from analyzers
 - Reasonable S/N and statistics
 - Full simulation by GEANT
 - TOSCA field map
 - two-arm coincidence
 - Detector resolution
 - Raster effect
 - Sieve slit data for angle tuning

Blind analysis result

Blind analysis result			Assumed in simulation		
Binding energy	Yield	Contamination	Binding energy	Yield	S/N
[MeV]	[counts]	[%]	[MeV]	[counts]	
11.43 (g.s.)	~491	4.4	11.37 (g.s.)	600	1.45
16.70	~191	83.6	16.31	30	0.09
20.35	~142	42.4	20.31	100	0.27
23.32	~407	1.5	23.37	550	1.28

Systematic error for major peak (S/N > 1), Accuracy of binding energy ~ 100 keV cross section ~ 5% for core excited states(S/N <1), Accuracy of binding energy ~ 400 keV cross section ~ 90 %

Efficiencies for cross section estimation

Cross section of the (γ^* , K⁺):

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{1}{N_T} \frac{1}{N_\gamma} \sum_{i=1}^{N_K} \frac{1}{\varepsilon_{total}} d\Omega$$

N_T : # of target N_γ: # of V.P.

 $d\Omega$: solid angle acceptance of HKS

 N_{K} : yield of Λ , Σ^{0} , or hypernuclear state

$$\begin{aligned} \boldsymbol{\varepsilon}_{total} &= \boldsymbol{\varepsilon}_{htrk} \cdot \boldsymbol{\varepsilon}_{AC} \cdot \boldsymbol{\varepsilon}_{WC} \cdot \boldsymbol{\varepsilon}_{bk} \\ \cdot \boldsymbol{f}_{abs} \cdot \boldsymbol{f}_{decay} \cdot \boldsymbol{\varepsilon}_{etrk} \cdot \boldsymbol{f}_{comp} \end{aligned}$$

ε_htrk: ~ 0.96

HKS tracking efficiency ε AC: ~0.96 AC cut efficiency ε WC: ~0.95 WC cut efficiency ε bk: ~0.98 beta cut efficiency ε etrk: ~0.88 **ENGE** tracking efficiency fabs: ~0.82 Kaon absorption factor f decay: ~0.35 Kaon decay factor *f* comp: ~0.97 Computer dead time factor

	Target	Thickness	Νγ	dΩ	€ _{total}	Tune (S/N>1)	Total
Systematic error	7Li	5					23
[70]	12C	2	22	1	3	5	22
	28Si	5					23

Background estimation by mixed event analysis

Background : accidental coincidence between e' and K⁺
Mixed background → random combination of real data (off gate)

⁷Li(e,e'K⁺)⁷ He (preliminary)

Emulsion data of ⁷_AHe M.Jurič et al., Nucl. Phs. B52(1973) 1

Data taking : ~30 hours w/ 30 μ A First observation of $^{7}_{\Lambda}$ He w/ sufficient statistics

²⁸Si(e,e'K⁺)²⁸^AI (preliminary)

Data taking : ~140 hours w/ 30 μ A Ground State : δ ~ 470 keV (FWHM)

Ground state : $\delta \sim 2200 \text{ keV}$ (FWHM)

Summary

- The second generation A hypernuclear spectroscopy by (e,e'K⁺) reaction has been carried out successfully at JLab in 2005
- New configurations, <u>HKS</u> and <u>Tilt method</u>, significantly improved both energy resolution and statistics
- Systematic error depend on tuning procedure was estimated by the blind analysis
- > Analysis is in the final stage
- Third generation experiment (JLab E05-115) will be performed in the summer of 2009 w/ new e' spectrometer (HES)

To be done

•Further tuning of the spectrometer optics

•More detailed estimation of systematic error by blind analysis

E01-011 Collaboration

Tohoku Univ.

O. Hashimoto (Spokesperson), S. N. Nakamura (Spokesperson), Y. Fujii, M. Kaneta,

H. Tamura, K. Maeda, H. Kanda, M. Sumihama, T. Watanabe, Y. Okayasu, K. Tsukada,

H. Nomura, A. Matsumura, D. Honda, A. Ohtani, F. Kato, K. Nonaka, D. Kawama, N. Maruyama

> Yamagata Univ.

S. Kato

> KEK

T. Takahashi, Y. Sato, H. Noumi

> Osaka EC Univ.

T. Motoba

> Hampton Univ.

L. Tang (Spokesperson), O. K. Baker, M. Christy, L. Cole, P. Gueye, C. Keppel, A. Uzzle, L. Yuan

F.I.U.

J. Reinhold (Spokesperson), P. Markowitz, B. Beckford, M. Carl, S. Gullon, C. Vega, P. Baturin

> Univ. of Houston

Ed. V. Hungerford, T. Miyoshi, K. Lan, N. Elhayari, N. Klantrains, Y. Li, M. Buhkari, S. Radeniya, V.M. Rodriguez

TJNAF(JLAB)

R. Carlini, R. Ent, H. Fenker, D. Mack, G. Smith, W. Vulcan, S. Wood, C. Yan

Yerevan Physics Institute, Lanzhou Univ., Univ. of Zagreb, North Carolina A&T State Univ., Louisiana Tech Univ., James Madison Univ., Univ. of North Carolina at Wilmington, Duke Univ., Univ. of Maryland, Southern Univ. at New Orleans, California State Univ.

Λ hypernuclear spectroscopy by the (e,e'K⁺) reaction

Large momentum transfer

→ various deeply bound states

Electromagnetic interaction

→ excite both spin-flip and spin-non-flip state

Convert proton into Λ

→ neutron rich hypernuclei, mirror hypernuclei

Primary electron beam

(smaller emittance than secondary meson beam)
→ better resolution

Experimental difficulty

Huge electron backgroundSmaller cross section

Tilt method Background electrons Sremsstrahlung very forward peaked Møller scattering scattering angle and momentum are correlated

to avoid them

Tilt Enge spectrometer by 8 degree (optimization of detection angle)

Trigger singles rate

Trigger rate

Target	Beam current	HKS single	Enge single	Coin.
	[uA]	[kHz]	[kHz]	[kHz]
¹² C(100mg/cm ²)	30	14.8	1300	0.74
²⁸ Si(65mg/cm ²)	18	15.3	1600	0.91

c.f. E89-009 : ¹²C 22mg/cm², 0.66uA => 200000 kHz (Enge single)

Luminosity : 200 times higher Enge singles rate :**100 times lower** Tilt method worked well

Kinematics comparison

item	E89-009	E01-011	E94-107
	(Hall C,2000)	(Hall C,2005)	(Hall A,2004)
Beam energy [GeV]	1.8	1.8	4.0
Virtual photon energy [GeV]	1.5	1.5	2.2
e' momentum acceptance [GeV/c]	$0.3 \pm 30\%$	0.3±30%	1.8 ± 5 %
e' detection angle [degree]	0	4.5	6
e' acceptance [msr]	1.6	~2	4.5
K ⁺ momentum acceptance [GeV/c]	1.2 ±20 %	1.2 ±12.5 %	1.96 ±5 %
K ⁺ detection angle [degree]	0	7	6
K ⁺ acceptance [msr]	4	16	4.5
K ⁺ survival probability [%]	37	33	18

Kinematical condition 1

$$E_{HY} = E_e + M_{tar} - E_{e'} - E_{K+}$$
$$P_{HY} = P_e - P_{e'} - P_{K+}$$

 $E_{\gamma} = E_e - E_{e'} \sim 1.5 \text{ GeV}$ Large cross section $E_{e'} = 0.3 \text{ GeV}$ ENGE Spectrometer

R. Bradford *et al.*, Phy. Rev. C. **73**, 035202(2006)

Hall C & Hall A

¹²C(e,e'K⁺)¹²_AB (preliminary)

Data taking : ~90 hours w/ 30 μ A Ground State (1⁻/2⁻) : δ ~ 470 keV (FWHM)

	Re	sult	
	ID	Ex [Me\/]	Cross section [nb/sr]
ł	#1		89±7 (stat.)
)relim	±19 (sys.)
	#2	11.2±0.1 (<i>stat.</i>)	98±7 (stat.)
		±0.1 (sys.)	\pm 22 (sys.)

Theory by Sotona et. al.

 $(1.3 < E_{\gamma} < 1.6 \text{ GeV}, 1 < \theta_{\kappa} < 13 \text{ deg.})$

Jπ	Ex	Cross section [nb/sr]			
	[MeV]	SLA	C4	KMAID	
1-	0	19.7	22.8	20.7	
2-	0.14	65.7	82.0	43.0	
2+	10.99	48.3	56.9	38.0	
3+	11.06	75.3	107.3	68.5	

²⁸Si(e,e'K⁺)²⁸^AI (preliminary)

Result					
ID	Ex	Cross section			
	[MeV]	[nb/sr]			
#1	0	51±10 (stat.)			
		±12 (<i>sy</i> s.)			
#2	11.0±0.1 (<i>stat.</i>)	78±13 (stat.)			
	±0.1 (<i>sys.</i>)	± 18 (sys.)			
#3	19.3±0.1 (<i>stat.</i>)	33±7 (stat.)			
	±0.1 (<i>sy</i> s.)	± 8 (sys.)			

Theory by Sotona *et. al.* (1.3 < $E\gamma$ < 1.6 GeV, 1 < θ_K < 13 deg.)

Jπ	Ex	Cross section [nb/sr]			
	[MeV]	SLA	C4	KMAID	
2+,3+	0	92.1	112.7	71.76	
4-	9.42	134.9	167.7	117.5	
3⁻	9.67	91.3	109.1	58.5	
4+	17.6	148.4	184.7	135.1	
5 ⁺	17.9	139.1	167.1	89.9	

Aerogel Cerenkov For π^+ rejection

 Image: Advantage of the second sec

First (e,e'K⁺) hypernuclear spectroscopy JLAB E89-009(2000)

 detected e' by ENGE and K⁺ by SOS at forward angle

SOS(JLAB Hall C equipment) limited resolution and acceptance
Large amounts of Background

by Bremsstrahlung

T. Miyoshi et al., Phy. Rev. Lett. 90, 232502(2003)

