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Hadrons in Terms of Quarks and Gluons
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Regge
behavior

How to relate hadronic states |p, s)
to quark and gluon fields ¢(z1) , q(z2), ... ?

Standard way: use matrix elements
(0]da(21) qs(z2) | M(p),s) , (0|qa(z1) qa(22) gy(23)| B(p),s)

Meson—quark matrix element Baryon—quark matrix element

@ Can be interpreted as hadronic wave functions



Phenomenological Functions
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“Old” functions:

@ Form Factors
@ Usual Parton Densities
@ Distribution Amplitudes

Generalized
Parton Distributions
(GPDs)

GPDs = Hybrids of

Form Factors, Parton Densities and
Distribution Amplitudes

“Old” functions
are limiting cases of “new” functions




Form Factors

GPDs &
omaer | Form factors are defined through matrix elements
of electromagnetic and weak currents between hadronic states

Nucleon EM form factors:

(0, 8| T40) b, ) = (e, ) [PEL(E) + 302 Fo(t)] . 5)
(A=p-p,t=A2%

@ Electromagnetic current
TH(2) = 3 pravor €0s(2)7"0 4 (2)
@ Helicity non-flip form factor
Fi(t) = Xp esFug(t)
@ Helicity flip form factor
Fy(t) =3 epFos(t)



Usual Parton Densities
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Parton Densities are defined through

forward matrix elements

of quark/gluon fields separated by
lightlike distances

Unpolarized quarks case:

(p]%a(=2/2)7"a(2/2) | D)) 2
= 2ph fol [e=®2) f,(z) — (2 f; ()] dx

Momentum space

interpretation fa(a) () is
probability

to find a (@) quark
with momentum zp

= sum rule
Jo lfa(@) = fa(@) dz = N,
for valence quark
numbers
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Distribution Amplitudes

-9 .
xp

Baryon DA q(xx,x ) ~ MesonDA ¢(xx)

DAs may be interpreted as
@ LC wave functions integrated over transverse momentum
@ Matrix elements (0|O|p) of LC operators

For pion (7 T):
(0] Pa(—2/2)957"bu(2/2) |75 ()] .o_,

1
:ip“fw/ e*ia(l’z)/2<p,r(a) dov
-1

witha =21 —zg0rz; = (1+a)/2, 22 = (1 —a)/2




Generalized Parton Distributions

C;Pez;e& Momentum fractions taken wrt average momentum P = (p + p’)/2
behavior

(x+8) P (-g) P 4 functions of z, ¢, t:
H,E,H,E
) . wrt hadron/parton helicity flip
(1+5)P (1-gPp A =4 A= =/=

@ Skeweness ¢ = AT/2PTis ¢ = xp;/(2 — zB;))
@ 3regions:

E<x<1 ~ quark distribution
—1<ax<—€¢ ~ antiquark distribution
<<€ ~ distribution amplitude for N — ggN’

(x+g)P/ /(E—x)P

(I+g)P (I-g)P



Definition of GPDs
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@ In scalar case, define GPD by
(P+71/2[¢(=2/2)9(2/2)|P —1/2)| 2,
1
:/ e P H (5, ¢t) da
—1
@ Invariant momentum transfer ¢t = 12

@ Skeweness ¢ =t /2P
@ r = 0 = usual (forward) distribution

f(z) = H(z,§ = 0;t = 0)



Double Distributions
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Regge

behavior o +
perposition” of P

Like distribution function

mentum fluxes

+ -+
(L+ayrti2 ~(1-a)ri2
{.\
ri2 -2

Like distribution amplitude

Connection with GPDs

@y P P2 PP R
a+e)rt -8t Prarn Pt
GPD bp
H(xE;0) S(ap;y

Basic relation
between fractions




Parton distributions and matrix elements

GPDs & .
Regge @ For a scalar target, one may write

behavior
(P+7/21(0){u, --- Ou, }1(0)|P —1/2)
=Ano{Pu, - - Pu } + Apn{rpy - Tun }

n—1

+ Z Anl{PHl cee Pun—zrﬂn—z+1 . 'Tﬂn}
=1

@ r = 0 = usual (forward) distribution f(3) related to { = 0 moments
1
[ #6157 45 = 00 (1)
-1

@ P = 0= D-term D(«) related to | = n moments

1

/ D(a)(/2)" dav = Apn )

-1

@ D comes with r,, factors: it is invisible in DIS (then r = 0)



Definition of DDs

Reage @ Define Double Distribution (DD)

behavior

G (B8l dda = A

@ Support region Q is given by rhombus |o| + |8] < 1
@ “DD parameterization” of the matrix element

(P=t|oz2uG2|P+ L), = /QF(ﬁ,a) ¢~HOPD—iatA/2 4g g,

Getting PDF and D-term o
e D10 @ Usual (forward) distribution




Isolating D-term

GPDs & . .
Reg;e @ Using e~ PP2) — [eilE(Pz) —1]+1

behavior

@ split DD-integral into “plus” part
/[F(ﬁ,a)]+ e_ifB(Pz)—ia(rz)/2 dﬁ da
Q
@ and D-term part
1 .
/ D(a)e /2 da
-1

@ with
1—|«|
FE.l = FE.0-00) [ Faab
—1+|a|
@ “Plus” “+” D representation:

F(B,a) = [F (B, )]+ +6(8)D()



Getting GPDs from DDs
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DDs live on rhombus
lal+ 18] <1

Integration line for

/£(B,0)~£(B)

e Hz,€) = /Q F(B,a)8(x — B — £a) dB da

fa(ﬁ:a;t) = fa(/Bv _avt)

Converting DDs into GPDs

Integration line
/x=B+Ea.
/ producing H(xfg )

GPDs H(z, &) are obtained

from DDs f(8, )

by scanning DDs
at ¢-dependent angles

= DD-tomography




[llustration of DD—GPD conversion

GPDs & .
Regge Factorized model for DDs:

behavior
(~ usual parton density in g-direction) ®
(~ distribution amplitude in a-direction)

Toy model for double distribution GPD H (z, ¢) resulting from toy DD

F(B,0) =3[ = BD? = a?]0(Jal + 18] < 1)

Models

@ For & = 0 reduces to usual parton density

o Corresponds to toy “forward” distribution @ For ¢ = 1 has shape like meson distribution
£8) =@ -18)° amplitude

4 v




“DD plus D” Model for GPDs

GPDs &

Regge @ Factorized Ansatz for DDs:
F(B,a) = f(B)ha(B, )

Guarantees forward limit

behavior

Normalization

1
/_ da f(B.0) = £(8)

Models

@ DD modeling misses terms invisible in the forward limit:

e Meson exchange contributions
e D-term, which can be interpreted as o exchange

@ Inclusion of D-term induces contribution confined to |z| < £ region

Hp(a,€) = E1| D(x/¢)



Model for GPDs based on DDs

eps @ DD+D Ansatz: F(B,a) = f(B)ha(B, ) + 5(8)D(a)

behavior @ General form of model profile

__TE+20) [1-18)° —a®)
h(B,a) = 226+172(1+b) (1 —|B])2e+t

@ Power b is parameter of the model
@ b= oo gives h(f, o) = 6(er) and H(z, &) = f(x) + D(x/€)/[¢]

DD + D-term model

Models
Meson and D-term terms
(x+g)P ,T’Efnf’ wryp ] Ven
.<— Meson DA )
Cxp < Generalized DA

Wt
’

PITS .
POENG L/ R e N AN

Meson exchange contribution Structure of D~term contribution




Model with Regge behavior of f(73)

GPDs & @ PDFs f(3) are known to b=1 DD with Regge PDFs

Regge be singular for small 5

behavior hx, &)
@ f(B)~pB(1-p)?° 2
@ o =(z+6)/(1+¢) lf
® u =(-8/(1-¢ os [N
@ ~ |z — &> “+const i
behavior 02 04 06 08 1

for @ ~ & £=0.2,0.3,0.5,0.7,0.9

Models

@ Model H(x,&) = [, dB f(8) ho(B, ) 6(x — B — £a) with b = 1

H(@, Eljalze = 513 (1 - 1) {[(2 —a){(1 - x)(wi_a + xQ__“)
- <f - Wi ‘- w"i*“ﬂ 0(z) - (= — —)}

- (m—)—x)}



Spin-1/2 quarks: two-DD representation

C;Pez;f @ For a (pseudo)scalar target

e (P = r/20(=2/2m b (/2) P + 7/2) ewioe—2
=2P,f((P2),(rz),2°) + rug((Pz), (r2), 2%)
@ Two-DD parametrization
(P —1/21(=2/2) 7 (2/2)|P +7/2)| _,
= /Q e PRI alrz)/2 [2(Pz)F(B, a) + (rz)G(B,a)} dp da
- %/ﬂe—wwz)—m(m)/z {3%% @) 3ng: a)} 48 do
@ Not unique: invariant under transformation
F(B,0) = F(B,a) + 0x(B, ) /0,
G(B,0) = G(B,a) — Ox(B,) /0B ,
@ “DD+D” form corresponds to “gauge” in which one has
2(Pz)Fp (B, @) + (r2)6(8)D(a)

Models




Spin-1/2 quarks: one-DD representation

GPDs &
. . T b hug . .
L Note: in local twist-2 operators P {y. d,, - .- 9, }1 index y is
symmetrized with y; indices that produce 8P, + ar,, /2

@ =, also produces SP, + ar, /2, i.e.
2(P2)F(B,a) + (rz)G(B, o) = [2B(Pz) 4+ a(r2)| f(8, @)

@ Or F(B,a) = Bf(B,a) and G(B, ) = af (B, @)
@ GPD in two-DD parametrization

Pin GPDs H(z.6) = [ [F(8.0) +€6(8,0)] 8z ~ 5~ €a) db da
@ GPD in one-DD formulation
H(z,&) = [ (5+¢0)(5.0)d(z 5~ €a) dBda
= x/ﬂf(ma)é(w ~ 8- ¢a)dBda




One-DD formulation

GPDs & .
Regge @ D-term in the one-DD case

behavior

@ Separating D-term

£(68,0) = [£(8,a0) +5(5) L) @

@ Forward distribution

1—|z|

Pion GPDs fla) = /17|Z| F(z,a)da = x/ f(z,a)do

—1+|z| —1+|z|
@ Suggests factorized model

5(6.0) = T0n(5,a)
@ = Reconstructing DDs/GPDs from f(z)/x:

very singular ~ =%~ for small z !



GPDs in one-DD representation
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@ “DD.+ D” separation corresponds to the representation
H(z,§) = Hy(z,8) + sgn(§) D(z/£)
@ “Plus” part of GPD

i(e.6) = [ (8+€0)f(8.0) [3(o = 8 = €0) = 8(o — €0 a5 do-
@ Using f(8,a) = F(B8,«)/B we may rewrite

H, (2.6) = /Q F(B,a)8(z — § — £a) df da

Pion GPDs

aF(Ba)re o
+§/ﬂ 5 [5(x B —¢&a)—d(x fa)] dB da
@ GPD constructed from DD F(3, «) by “classic” formula
Fon(e,§) = [ F(B.a)0a — 5 - ¢a) dfda
Q
@ GPD built from the “plus” part of the DD o F (8, o) /8 = G(8, a).

Fwo= [ (% F(8, a))+ 5z — f — £a) df da



Pion GPDs for n = 1 profile ~ (1 — 5)? — o

e GPD Fpp(,¢) for € = 0.3 Pion GPD H_(z, €) for £ = 0.3

behavior

Pion GPDs




Definitions of Nucleon DDs and GPDs

GPDs & . .
Fize @ In nucleon case for unpolarized target, one can parametrize
behavior

¥ [0 (=2/2)2 9 (2/2) |p)lewist—2

_/Qefw(mym(m)/z [ﬂ(p')¢U(p)a(5,a)
* %iv(p) [28(P=) + a(r2)]b(8,)] dB da

@ DDs a,bcorrespondto A= H + E and B= —F ofusual H and £
@ Ais given by simple “classic” DD representation

e AGw,€) = [ a(8,0)8(a ~ 5~ ¢a) dB da @)
GPDs Q
@ B is given by one-DD representation
B(a.€) = [ b(5.0)3(e — p — o) dfda. ©)

@ Since H = A + B, itis given by combination of both types of
DD-representation



Modeling a and b

GPDs & -
Regge @ In the forward limit, we have for A

behavior
A(z,0) = H(z,0) + E(z,0) = f(z) + e(x)
@ and for B
B(z,0) = —E(z,0) = —e(z)
@ Suggest model representation for a
a(B,a) = f(B,a) + e(B,a)
@ and for b

Nucleon e
GPDs b(B, ) = —

(8, )
g

@ Possible singularity of e(8, «)/8 at 8 = 0, demands “DD4. + D”

b(30) = = (452 a0 2

@ Here D(«) is the D-term



Start modeling £ and H

e @ For H GPD:

e H(z,€) = A, €) + B(x,€)
- / [£(B,0) + e(8, )] 6(z — f — £a) dB do

e(8, ) D(e)
_ x/n [(6>+ - 5(5)a:| 0(x — B — &) dB da

= Fpp(z,§) + Epp(z,§) — Ex(z, &) +sgn(§) D(z/€) ,
@ Terms constructed using the simplest DD formula

Lz Fpp(z,§) =/Qf(ﬂ,06)5(90 — B —¢&a)dfda

Epp(r,€) = / e(B,0)8(z — f — £a) dB da

@ “Plus” part of £/z GPD:

E.(x,) :/Q e(B, @) (6~ €a) ~ 3(x — €a)] dB da

x B



Continue modeling £ and H

e @ Function E (z,£) is similar to H (z, £) of pion case

behavior
Ey(x,6) = / (55’ ) (84 €) [8(x — B — £a) — 6(x — £0)] dBda

= [ e(p.0) 8@~ 5 o) dpdo
+§/,e(/@7 §(x— B —€a)—d(z — £)] dB da
_ Bon(a,6) +£/< ﬁ,a)) 5(z — B — £a) df da

Nucleon = EDD(L&) + €E+( :5)

GPDs .
@ Important function

Ei(x,f)f/g(%e(ﬂ,a)>+ 5(z — B — £a) df da

@ Modifies “DD+D” construction to

H(x,€) = Fpp(z,€) — £E4 (,€) + sgn(€) D(z/€)



Nucleon GPDs for n = 1 profile ~ (1 — §)? — o?

e GPD Fpp(x,£) for € = 0.3

behavior

Nucleon
GPDs




What is added on top of D term

GPDs &
Regge
behavior

Nucleon
GPDs

“DD plus D” model is substituted by
‘DD —¢E1 (2,€) + sgn(€) D(z/€)”
@ Important differences between E1 (x, &) and D(x/€):
@ Support region of EL (z,¢) is not restricted to |z| < ¢
@ FEi(z,¢&) does not vanish at border points |z| = £



Conclusions
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Singular Regge behavior of usual PDFs implies singular structure
of double distributions generating GPDs

@ DD for E GPD reduces to e(z)/x in forward limit — very strong
singularity

@ Formal expression for D-term diverges: need for renormalization

@ OId “DD plus D” construction for GPD H is modified by extra

non-monotonic term related to GPD E
Nucleon

GPDs @ New term does not vanish at border point z = ¢
@ New phenomenology for GPD modeling



Summary
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behavior 0 Form Factors

e Usual Parton Densities
e Distribution Amplitudes
e Generalized Parton Distributions

e Double Distributions

Nucleon

GPDs @ Models

@ Pion GPDs
© Nucleon GPDs
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