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1. Introduction 

The overall objective of this research was to contribute data and 

methods to support the future development of new emissions scenarios for 

integrated assessment of climate change. The most recent set of emissions 

scenarios produced by the Intergovernmental Panel on Climate Change 

(IPCC) in their Special Report on Emissions Scenarios (SRES) 

(Nakicenovic, 2000) has provided a common set of projections for use in 

assessment models. However, one major shortcoming with the scenarios is 

the lack of an explicit probabilistic design. In order to support climate 

change research and decision making, future scenario sets should be 

designed that explicitly represent uncertainty in future emissions, and that 

do so efficiently within a relatively small set of scenarios. The U.S. 

Climate Change Science Program’s (CCSP) strategic plan (Mahoney et al., 

2003) includes the updating of greenhouse gas emissions scenarios 

(synthesis and assessment product 2.11). While the current effort is focused 

on concentration stabilization scenarios, future efforts will surely need to 

revisit the range of uncertainty in scenarios, which will be informed by this 

research. 

                                                 
1 http://www.climatescience.gov/Library/sap/sap-summary.htm 



 

There are a number of issues that must be resolved for the 

development of probabilistic emissions projections and the design of 

scenarios. One of these issues is the estimation of the uncertainty in key 

economic and technological drivers that determine emissions. While future 

economic outcomes may not be the same as the past, historical data on the 

variability can inform expert judgments about future uncertainty and 

mitigate against cognitive biases. Previous and ongoing work, described 

below, has analyzed data on historical variability in economic growth and 

changes in energy efficiency for this purpose. However, this work has 

identified a second obstacle: that estimates of historical data may not be 

directly consistent with the representation of parameters in integrated 

assessment models, which have different structures. Thus, if probability 

density functions (PDFs) derived from data are used without alteration as 

input for model parameters, the resulting projections may not be consistent 

or meaningful. Furthermore, different models have different 

parameterizations. They aggregate national economies into different 

groupings, aggregate economic sectors differently, and represent the 

production within a sector differently. Understanding how national 

reported data maps into different representations of economies in current 



 

integrated assessment models is crucial to the development of improved 

emissions scenarios for use in a wide range of models. 

Another major issue that has yet to be addressed is the efficient 

design of multi-gas emissions scenarios. The study of climate change 

requires an understanding of numerous emissions beyond carbon dioxide: 

methane, nitrous oxide, and other greenhouse gases, sulfate aerosols, black 

carbon aerosols, organic carbonaceous aerosols, tropospheric ozone and its 

precursors, and others. The combined and interactive effects of these 

species on radiative forcing, both directly and indirectly through effects on 

cloud processes, are critical to assessing climate impacts. These emissions 

all are uncertain, and will not be perfectly correlated with each other, nor 

will they be completely independent. Because the purpose of standard 

scenarios for climate assessment is to provide common inputs to modeling 

studies, including full three-dimensional atmosphere-ocean global 

circulation models (AOGCMs) which have significant computational costs, 

a set of scenarios needs to span the range of joint uncertainty in emissions 

efficiently and with a minimal number of scenarios. Work is needed to 

develop methods for designing such a set of scenarios that isolate the key 

combinations of emissions and account for the correlation in their 



 

production. This issue was not addressed adequately in the IPCC Third 

Assessment Report (TAR) (Reilly et al., 2001), and will not be addressed 

in the ongoing Fourth Assessment (AR4), but future assessments will need 

to revise scenarios to describe uncertainty, and this issue will be revisited. 

Specifically, this research had two main objectives: 

1. Use historical data on economic growth and energy efficiency 

changes, and develop PDFs for the appropriate parameters for two 

or three commonly used integrated assessment models. From this 

work across different models, some general rules and methods will 

be developed to guide other modelers who in the future undertake 

similar explorations of uncertainty in their models. 

a. As a part of objective #1, and an important extension of 

previous work, we will perform similar explorations of 

estimates of elasticities of substitution based on historical 

data. The research into historical energy efficiency trends to 

inform the autonomous energy efficiency improvement 

(AEEI) parameter in models has shown that the estimated 

value is dependent on the assumed elasticities of 

substitution in production. Therefore, significant effort to 



 

estimate elasticities for different countries and different 

sectors or sectoral aggregations is crucial to be able to 

represent uncertainty in future technical progress and to 

map correctly into a given model structure. 

b. With analysis of the uncertainty in substitution possibilities, 

and data on historical variability in energy efficiency and 

productivity growth, the project will then develop 

distributions for model parameters that would give 

projections consistent with the observed variability for 

several models. This will produce background information 

that can be used in expert elicitation exercises, and will also 

provide guidance to development of consistent scenarios for 

other models with different structures. 

2. Using the parameter distributions developed through the first task 

and previous work, we will develop methods of designing multi-

gas emission scenarios that usefully span the joint uncertainty 

space in a small number of scenarios. Alternative designs will be 

explored by propagating uncertainty in emissions through a 

climate-chemistry model, and testing various criteria for selecting a 



 

small number of emissions scenarios. This task will result in the 

development of improved scenario design methods and an 

illustrative set of scenarios. 

Section 2 of this report summarizes results on AEEI. Section 3 

describes an uncertainty analysis of elasticities of substitution. Section 4 

presents the probabilistic emissions scenario approach. 

 
 

2. Autonomous efficiency improvement or income elasticity of energy 

demand: Does it matter? 

2.1 Introduction 

Analysis of climate policy choices requires projections of 

future emissions of greenhouse gases and other substances, and 

of the costs of restricting these emissions through a policy 

constraint. Future emissions and costs depend on projections of 

economic growth, energy use, and the fuel composition in energy 

production. Any conclusions drawn about climate policy depend 

critically upon assumptions that drive projections of energy use, 

and its responsiveness to policy instruments such as a carbon cap 

or tax. 



 

One important observation that applies to most developed 

countries is that over long periods of time they exhibit a decrease 

in the energy input (measured in physical units) per unit of total 

output (measured in monetary units) at the aggregate level. This 

is often referred to as declining energy intensity of GDP. 

Declining energy intensity is not easily explained as a purely 

energy price response because over much of the period where 

decreasing intensity has been observed, real energy prices 

declined and if energy price was the main driver of this change one 

should expect rising rather than declining energy intensity. 

Drivers of changes in energy intensity can be grouped into three 

generic categories: (1) a price response, where higher energy 

prices lead to substitution of other inputs for energy, toward less 

energy-intensive goods and services, or spur technical innovation; 

(2) reduced energy use per unit of output in specific processes and 

sectors due to technical change unrelated to energy prices (e.g., 

technical change that saves on materials and labor might also be 

energy saving); or (3) an income elasticity of less than unity, 

reflecting preferences for less energy-intensive products and 



 

resulting in less than proportional increase for energy and 

energy-intensive or energy-using products as income rises. 

Historical observations are typically underdetermined, making it 

impossible to definitively ascertain the relative contribution of the 

latter two causes. Attempts to model the relationship of 

economic activity to make projections that are consistent with 

observations about declining energy intensity include a 

relationship to the scale of economy which often implies an 

income elasticity of 1.0, and an Autonomous Energy Efficiency 

(AEEI) parameter that then allows intensity to decline even if 

energy prices are stable or falling. Table 1 lists assumptions in 

several integrated assessment models in the literature that 

directly determine AEEI and energy demand elasticities with 

respect to income and price. In addition, many of these models 

have additional structural features that indirectly induce a 

relationship between income and energy intensity, such as the 

dependence of AEEI on income in MERGE (Manne et al., 1995) 

and a dependence on income of changes in sectoral shares in 

consumption and elasticities of substitution in consumption in 



 

EPPA (Paltsev et al., 2005). 

Does it matter, or for what purposes does it matter, if the energy 

intensity relationship we observe is either an exogenous 

technological trend or some endogenous function of income? In 

this paper, we explore the implications of the choice between 

representing non-price driven changes in energy efficiency in 

energy-economic models, using the MIT Emissions Projection and 

Policy Analysis (EPPA) model (Paltsev et al., 2005). We show that 

the choice of representing non-price technical change as an 

income response implies a higher cost for CO2 reduction policies. 

As a motivation, we present the historical experience of the U.S. 

economy from 1970 to 2000 in Section 2. In Section 3, we briefly 

review the EPPA model, which in the standard version assumes an 

energy demand elasticity with respect to income equal to 1.0, and 

we describe an alternative version allowing the income elasticity 

of energy demand to vary from 1.0. We present results in Section 4, 

and a discussion of the implications in Section 5. 

 
 
 

 



 

 
 

Table 1 -1: Parameter values in several integrated assessment 
models 

 
 

 
 

Fig. 1-1. GDP, energy consumption, and energy prices in U.S. 
1970–2000. 

 
 
 
2.2 Evidence for and use of non-price drivers of energy intensity 

change 

 

We begin by presenting historical observations from the U.S. 



 

economy from 1970 to 2000, to illustrate the ambiguous nature of 

energy intensity changes. We use U.S. GDP data from the Penn 

World Tables (PWT), version 6.1 (Heston et al., 2002), energy 

consumption data in physical units from the Energy Information 

Administration (EIA, 2003), and energy price data from the 

International Energy Agency (IEA, 

2004). Energy price data are only available from 1970 onward, 

limiting our investigation to the period 

1970–2000. The data include prices for crude oil, natural gas, coal, 

and electricity. We combine these series into a divisia price index 

by weighting each fuel by its value share of total energy.1 

Quantities of each fuel used for non-electric and electric are also 

obtained from EIA (2003). 

Fig. 1 shows the paths of GDP, energy consumption, and energy 

prices since 1970 (each series is indexed so that 1970 = 1.0). In 

general, the trends are (1) rising GDP over this period, (2) a steep 

rise in the aggregate energy price from 1970 to 1982 followed by a 

gradual fall through 2000, and (3) nearly flat energy consumption 

until 1985 and then rising but at a rate slower than GDP. A simple 



 

calculation of the long-term average residual from this aggregate 

data yields an estimate of approximately 2.5% per year for the U.S. 

decrease in energy/GDP over this period. The focus of this paper is 

the trend from 1982 to 2000: why during a period of falling 

energy prices and rising GDP does energy demand grow at a 

slower rate than GDP? 

To further motivate the modeling study presented in later 

sections, we estimate an aggregate model similar to those widely 

used in demand modeling (e.g., Schmalensee et al., 1993; Bohi, 

1981) where the main explanatory factors are the good's own-

price and income and we allow for an additional time trend 

effect—the residual AEEI: 

 

lnEt ¼ a þ blnPt-1 þ hlnGDPt-1 þ gt þ e ð1Þ 

 

where Et is aggregate energy use, Pt − 1 is the aggregate energy 

price, GDPt − 1 is the Gross Domestic Product, α, β, θ, and γ are 

estimated parameters, ε is the error term, and “ln” is the natural 

logarithm. In this logged form parameters are directly 



 

interpretable as elasticities. All price effects (reduced use within a 

sector and 

shifts among sectors) should be captured by the price variable 

eliminating the problem in highly disaggregated models that 

some of the shift may result from changing prices of the sectoral 

output resulting from the changing energy input price. If a 

growing economy exhibits constant returns to scale (no income 

effect), we would expect θ = 1. To the extent that structural change 

or some other income response that shifts the economy toward 

rising or falling energy intensity occurs as a response to growth in 

GDP, that will be captured by θ N or b 1. 

Eq. (1) results in an estimate of the price elasticity of energy 

demand (β) that is statistically significant and robust across the 

specifications, ranging from − 0.22 to − 0.24 (Table 2), which is 

consistent with estimates of the aggregate economy's short-run 

price elasticity (see, for example, Table 3-1 in Bohi, 1981). The 

estimated income elasticity is 0.3 and the AEEI time trend is 

negligible but slightly increasing. Neither of these terms is 

statistically significant, suggesting collinearity. Dropping the time 



 

trend (specification 2 in Table 2) results in a statistically 

significant income elasticity estimate of 0.34. Restricting the 

coefficient of the income variable to 1.0 (specification 3), 

representing the Constant Returns to Scale (CRS) assumptions 

common in many models, gives an estimated time trend of 2% 

per year. Restricting the coefficient of the income elasticity to 0.5 

(specification 4) as in Edmonds and Reilly (1985) gives an 

estimated time trend of 

0.5% per year. 

More complex ways to formulate the data and the econometric 

problem can reveal interesting relationships that are potentially 

behind the apparent aggregate response, and there is a variety of 

literature which attempts to do just that (e.g., Hogan and 

Jorgenson, 1991; Kaumann, 2004; Sue Wing and Eckaus, 2007). 

The point of this example is not to provide econometric 

estimates, but rather to illustrate that non-price driven energy 

efficiency improvements can be represented in models either by 

an autonomous time trend with an AEEI parameter or as a 

response to rising income levels with an income elasticity 



 

parameter. Because of collinearity (GDP growth is fairly smooth 

over time and thus collinear with the time trend), the data cannot 

tell us how much of the change in energy intensity is related to the 

gradual long-term trend of increasing income or the marching 

forward of technology. We next turn to a numerical model to 

explore whether this choice has implications for future 

projections. 

2.3. The MIT emissions prediction and policy analysis model 

The Emissions Prediction and Policy Analysis Model (EPPA) is a 

recursive-dynamic general equilibrium model of the world 

economy developed by the MIT Joint Program on the Science and 

Policy of Global Change (Paltsev et al., 2005). The EPPA model is 

built on the GTAP dataset (Hertel, 1997; Dimaranan and McDougall, 

2002), which accommodates a consistent representation of energy 

markets in physical units as well as detailed data on regional 

production and bilateral trade flows. Besides the GTAP dataset, 

EPPA uses additional data for greenhouse gases (carbon dioxide, 

CO2; methane, CH4; nitrous oxide, N2O; hydrofluorocarbons, 

HFCs; perfluorocarbons, PFCs; and sulphur hexafluoride, SF6) 



 

and air pollutants (sulphur dioxide, SO2; nitrogen oxides, NOx; 

black carbon, BC; organic carbon, OC; ammonia, NH3; carbon 

monoxide, CO; and non-methane volatile organic compounds, 

VOC) emissions based on United States Environmental 

Protection Agency inventory data. For use in EPPA, the GTAP 

dataset is aggregated into 16 regions and 24 sectors with several 

advanced technology sectors that are not explicitly represented in 

GTAP (the regions and sectors are shown in Table 3). 

Much of the sectoral detail is focused on energy production to 

better represent different technological alternatives in electric 

generation. The base year of the EPPA model is 1997. From 2000 it 

is solved recursively at 5-year intervals. The EPPA model 

production and consumption sectors are represented by nested 

Constant Elasticity of Substitution (CES) production functions (or 

the Cobb–Douglas and Leontief special cases of the CES). The 

model is written in the GAMS software system and solved using 

MPSGE modeling language (Rutherford, 1995). The EPPA has been 

used in a wide variety of policy applications (e.g., Jacoby et al., 

1997; Reilly et al., 1999; Babiker, Metcalf, and Reilly, 2003; Reilly  



 

Table 1 -2: Energy consumption as function of price, income, 
and time effects 

 
 
 
Table 1 -3: Countries, regions, and sectors in the EPPA model 

 
 

and Paltsev, 2006; Clarke et al., 2007; Paltsev et al., 2007). 

Because of the focus on climate and energy policy, the model 

further disaggregates the GTAP data for transportation and 



 

existing energy supply technologies and includes a number of 

alternative energy supply technologies that were not in 

widespread use in 1997 but could take market share in the future 

under changed energy price or climate policy conditions. 

Bottom–up engineering details are incorporated in EPPA in the 

representation of these alternative energy supply technologies. 

Advanced technologies endogenously enter only when they 

become economically competitive with existing technologies. 

Competitiveness of different technologies depends on the 

endogenously determined prices for all inputs, as those prices 

depend on depletion of resources, economic policy, and other 

forces driving economic growth such as savings, investment, 

energy efficiency improvements, and productivity of labor. 

Additional information on the model's structure can be found in 

Paltsev et al. (2005). 

2.3.1. AEEI in EPPA 

In EPPA, we implement the conventional approach for taking 

non-price induced technological change into account as it affects 

energy efficiency in long-term energy projections by using an 



 

exogenous factor referred to as the Autonomous Energy 

Efficiency Improvement (AEEI). The AEEI reduces the energy 

required in each sector to produce the same amount of output, 

assuming other variables such as energy prices are unchanged. 

In an actual forward simulation of the model, other variables 

such as energy prices change endogenously, and these changes 

also affect energy efficiency. The actual energy efficiency of 

production of each sector in forward simulations is thus a 

combination of the exogenous AEEI factor, and endogenous effects 

through changes in fuel and other prices. The AEEI can thus be 

seen as a reduced-form parameterization of the evolution of non-

price induced changes in energy demand. Often it is assumed 

that AEEI represents technical change, but it should be seen as 

broadly representing other processes such as changes in the 

structure of production within the relatively highly aggregated 

sectors (Paltsev et al., 2005). 

The EPPA4 model differentiates the rate of AEEI among regions 

and between non-energy and energy sectors of the economy. The 

EPPA assumptions for AEEI among the Annex B countries are based 



 

on Edmonds and Reilly (1985) and Azar and Dowlatabadi (1999). 

They imply an energy efficiency improvement in the electric sector 

of 0.40% to 0.45% per year while non-electric sectors increase in 

energy efficiency by 1.2% to 1.3% per year. This pattern is different 

for developing countries, which have shown little reduction in 

energy intensity or even increases. To follow the historic pattern 

for developing economies we assume a gradual decrease in AEEI – 

i.e. worsening rather than improving energy efficiency – through 

the next few decades and energy efficiency improvement later in 

the century. The evolution of the AEEI for the non-energy sectors of 

the economy by region is shown in Fig. 2. We assume no AEEI 

trend in coal, gas, crude oil, and refined oil production sectors. 

2.3.2. Income elasticity of energy demand 

The reference version of EPPA does not represent an income 

elasticity of energy demand that can be easily adjusted. A value of 

1.0 is implied by the use of constant-return-to-scale CES 

productions functions throughout the model. For the purposes of 

this study, we have constructed an alternative version of EPPA 

which makes energy intensity explicitly depend on income, a 



 

relationship consistent with economic theory. There are several 

ways in which income elasticity could be implemented. Both GDP 

and GDP per capita are possible measures of income. We use GDP 

per capita because using GDP would imply a decrease in energy 

intensity from an increase in population with all else constant. 

Alternative measures such as consumption or investment would 

only capture part of the income, and would be less consistent with 

theory. The elasticity could be represented with in the consumer's 

utility function, but this would only 

 
 
 

 
 

Fig. 1-2. Exogenous AEEI trends in EPPA4. 



 

 

 
 

Fig. 1-3. Scaling factor for energy input into 
production (λ) for standard EPPA with AEEI and 
several alternative values for the income elasticity of 
demand. 

 
 
 
affect the final household demand for energy, and not the 

broader changes in energy intensity that occur where 

energy is an intermediate input to production. Thus, our 

representation of the income elasticity will scale the 

energy inputs into production as a function of the change 

in GDP per capita. 

To implement this, we employ the same AEEI demand 

reduction factors that scale production sectors' use of 



 

energy per unit of output that are normally an exogenous 

time trend but here the AEEI is an endogenous function 

of the realized GDP per capita growth from one period to 

the next. Thus the energy demand reduction factor λt is 

determined as: 

 
 

where α determines the relationship between income 

growth and the efficiency factor and %ΔGDPpc is the 

percentage change in GDP per capita from the previous 

period. We choose values for the parameter α such that the 

resulting percent change in energy demand divided by 

the percentage change in GDP per capita over the period 

2005–2030 (i.e., the elasticity of demand with respect to 

income) is equal to a desired value. As noted above, there 

are additional feedbacks in EPPA that change the 

consumption shares and the elasticities of substitution in 

consumption with income, based on studies of shifting 

sectoral shares with time/income (e.g., Kydes, 1999; 



 

Howarth et al., 1993; Howarth and Schipper, 1991). These 

parameters are held constant across the two versions of 

EPPA in this study, and generally have a weak effect. 

2.4. Results: AEEI vs. income elasticity of energy demand 

For this study, we focus exclusively on the behavior of the 

USA region in EPPA under the alternative assumptions. 

The impacts on other regions are qualitatively the same; 

only the numbers differ. We begin by showing the effects of 

different assumed values of the income elasticity 

parameter. Then we show that although an income 

elasticity of 0.4 produces equivalent behavior for 

projections over 2005–2050 as the standard AEEI version, 

the projections diverge over longer time horizons. We also 

show that the uncertainty in future emissions and policy 

costs have less variability under an income elasticity than 

under an exogenous time trend, because of the GDP 

feedbacks to energy intensity. 

 
 



 

 
 

Fig. 1-4. Projected CO2 emissions from US to 2100 (in 
the absence of any climate policy) under AEEI and 
three alternative values for income elasticity. 
 

 
 

 
 
Fig. 1-5. Change in energy intensity of the US, 
calculated in annual percentage terms. 



 

 
2.4.1. Calibration and near-term projections 

In both versions of the EPPA model, the AEEI version 

and the income elasticity version, the same parameter k is 

set as exogenously dependent on time or endogenously 

dependent on income, respectively. This parameter is used 

to scale the physical energy inputs required for 

production; the energy demand for production is divided 

by λ to determine the physical quantity of energy units 

needed in production processes and in final consumption. 

Fig. 3 shows the trend for the scaling factor k for the USA 

under the standard AEEI approach and three different 

values for income elasticity, ranging from 0.3 to 0.5. An 

income elasticity of 0.4 produces a trend for k that is 

nearly indistinguishable from the AEEI version up to 2050, 

after which they diverge. This highlights the fact that just as 

one can explain historical data essentially equally well as 

either driven by income or as an exogenous process, so too 

can one generate a very similar projection assuming this 

parameter is either exogenous or income driven. The two 



 

diverge in the long-run EPPA forecast because eventually 

GDP growth slows in the forecast, but the march of time is 

unaltered. 

The resulting projections of CO2 emissions (Fig. 4) and 

rates of energy intensity reductions (Fig. 5) under AEEI and 

under an income elasticity of 0.4 also match closely up to 

2060, because the underlying trend in k is the same. The 

CO2 emissions from the version with an income elasticity 

of 0.4 are similar to those from the version with AEEI up 

until 2060. From 2060 to 2100, the emissions diverge 

between these two cases (Fig. 4), with the income 

elasticity version projecting higher emissions. The cause of 

this divergence is the decrease towards the end of the 

century in productivity and GDP growth rates. In EPPA, we 

assume that by the year 2100 the labor productivity growth 

rates fall to 0.8%/yr for developed countries (e.g., USA) 

and 1.4%/yr for developing countries (e.g., China). This 

assumption of decelerating growth is common among 

models used for emissions projections (e.g., Nordhaus and 



 

Boyer, 2000), and if anything the EPPA model has growth 

falling off less than other models (Clarke et al., 2007). 

2.4.2. Sensitivity to uncertainty in GDP growth 

Given the many large uncertainties in future economic 

and energy projections, treatment of these uncertainties 

is critical in any analysis of climate policies. One of the most 

influential of these uncertainties is in future economic 

growth, and its underlying drivers (Webster et al., 2002; 

Scott et al., 1999). One important difference between 

modeling non-price technical change as an autonomous 

time trend and as an income response is the resulting 

interaction between GDP growth and energy intensity. 

To demonstrate this interaction, we simulate two 

sensitivity cases, one with 50% higher labor productivity 

growth rates and one with 50% lower labor productivity 

growth rates, using both versions of EPPA, the AEEI 

version and the version with an income elasticity of 0.4. 

Fig. 6 shows the resulting GDP growth rates for the US for 

the reference, low, and high growth cases. For the sensitivity 



 

analyses in this section, we calibrate the AEEI (exogenous 

time-dependent) version of EPPA by imposing the 

identical time series for k over time as in the income 

dependent version under reference GDP growth rates. In 

this way, the two versions are identical under the reference 

growth assumption, but will differ in important ways 

under the high and low growth assumptions. 

 

 

 
 
Fig. 1-6. Reference, low, and high GDP growth rates for 
USA used in sensitivity testing. 

 
 



 

 
Fig. 1-7. USA no policy CO2 emissions. Solid lines show 
emissions for reference GDP growth rates, dashed 
lines for low growth, and dotted lines for high growth 
rates. 

 
Fig. 1-8. Energy intensity in USA relative to 1997 level. 
Solid lines show emissions for reference GDP growth 
rates, dashed lines for low growth, and dotted lines for 
high growth rates. 



 

 

 
 

Fig. 1-9. USA CO2 emissions under no policy and under 
hypothetical carbon constraint. 

 
The resulting CO2 emissions from the AEEI version are 

higher (lower) than the income elasticity version 

assuming higher (lower) productivity growth rates (Fig. 

7). In other words, the variance in emissions as a result of 

GDP growth is greater in the exogenous AEEI version than 

it is in the endogenous income elasticity version. The 

reason for this is that the change over time in energy 

intensity, and therefore in emissions, is endogenous and 

dependent on GDP growth. Thus the resulting energy 

intensity decreases faster (slower) when GDP grows 



 

faster (slower) than in the AEEI version (Fig. 8). The effect 

of the endogeneity assumption in the income elasticity 

version is that the energy impacts of faster or slower 

economic growth are dampened. 

An important consequence of the exaggerated effect of 

growth on energy intensity in the exogenous AEEI version 

is that the uncertainty in costs of an emissions reduction 

policy will also have lower variance in the presence of 

economic growth uncertainty. We demonstrate this effect 

with a sample emissions cap, imposed in the USA without 

international emissions trading (Fig. 9). As with 

emissions in the absence of policy, the costs of the 

emissions cap, as measured by welfare loss and by carbon 

prices, are virtually identical under a reference GDP 

growth assumption. However, the welfare losses under the 

high growth assumption (dotted lines in Fig. 10) are 

significantly different between the two versions, with 

the exogenous AEEI version exhibiting much greater 

welfare losses. The costs under a low growth assumption  



 

 
 
Fig. 1-10. Welfare losses to USA under carbon 
constraint. Solid lines show emissions for reference 
GDP growth rates, dashed lines for low growth, and 
dotted lines for high growth rates. 

 
 

Fig. 1-11. Carbon prices in USA under carbon constraint. 
Solid lines show emissions for reference GDP growth 
rates, dashed for low, and dotted for high growth. 

 



 

 
also differ, but the effect on welfare loss (Fig. 10) is much 

smaller than the effect on carbon prices (Fig. 11), because 

the magnitudes of the welfare losses under low growth are 

so small. 

The differences in costs under high GDP growth 

assumptions are even more apparent under a more 

stringent global policy with international emissions 

trading. We simulate two additional policy cases, the 

550 ppm and 750 ppm stabilization cases from the U.S. 

Climate Change Science Program Synthesis and 

Assessment product 2.1a (Clarke et al., 2007). The welfare 

losses under high GDP growth differ significantly between 

the AEEI and the income elasticity version for both the 550 

ppm (dashed lines in Fig. 12) and the 750 ppm case (solid 

lines in Fig. 12). The same is true for carbon prices (Fig. 13). 

 
 
 



 

 
 

Fig. 1-12. Welfare losses in USA under CCSP 550 ppm 
and 750 ppm stabilization policies in high GDP 
growth cases. Solid lines show welfare losses under 
750 ppm stabilization and dashed under 550 ppm. 



 

 

 
 

Fig. 1-13. Carbon prices in USA under CCSP 550 ppm and 750 ppm stabilization 
policies in high GDP growth cases. Solid lines show carbon prices under 750 
ppm stabilization and dashed lines under 550 ppm stabilization. 

 
 

 
3. Relative Importance of Uncertainties in Elasticities of Substitution 

 
3.1 Introduction 
 

Recent legislative proposals in the U.S. Congress have sought to limit emissions of 

greenhouse gases (GHGs) through an economy-wide emission target which would take effect in 

the coming decade.2 The macroeconomic costs of such policies are fundamentally uncertain. 

This is due on one hand to the unavoidable imprecision in forecasts of the economy’s baseline 

no-policy emissions in the future period in which quantitative limits or taxes on emissions are 

expected to bind, and on the other to our imperfect understanding of the ease with which 

producers and consumers are able to adjust to such policies. In this paper we study the 

                                                 
2 The McCain-Lieberman Climate Stewardship and Innovation Act of 2007 would set caps on GHG emissions at 
year-2004 levels by 2012 and 1990 levels by 2020. The Bingaman-Domenici Climate and Economy Insurance Act 
(an amendment to H.R.6, the Energy Policy Act of 2005) seeks to set annual emission limits sufficient to reduce the 
U.S. economy’s emission intensity of GDP by 2.4 percent per year from 2010-2019, with a “safety-valve” provision 
whereby the government would issue emission permits to keep the marginal cost of abatement below $7/ton of 
carbon-dioxide equivalents. 



 

implications of both kinds of uncertainty for the costs of climate change policies within the 

context of a simulation model of the U.S. economy. 

As a first step it is instructive to consider the precursors of uncertainty in baseline 

emissions. Future growth of the economy exerts a first-order influence on the demand for energy 

in general and fossil fuels in particular, whose combustion generates atmospheric emissions of 

carbon dioxide (CO2), the chief greenhouse gas. Mitigating this increase is a second set of factors, 

principally shifts in the sectoral composition of the economy toward less energy-intensive 

services and increases in the efficiency of energy use within industries, which in the past have 

led to declines in the intensity of energy use per unit of economic output (see, e.g. Sue Wing and 

Eckaus, 2004). Both of these forces tend to be represented in economic simulations using secular 

trends—the first as an expansion in the quantities of primary factors with which the economy is 

endowed, and the second as decline in the coefficients on inputs of energy commodities in firms’ 

cost functions and households’ expenditure functions. 

Uncertainty in the economy’s response to an emission reduction policy may be 

conceptualized differently depending on the instrument by which it is implemented. A quantity 

instrument (i.e., a mandate to cut emissions by a given amount relative to the economy’s no-

policy baseline) results in uncertain marginal abatement cost (MAC), while the consequences of 

a price instrument (i.e., an emission tax, which increases the marginal costs of fossil fuel 

commodities by different amounts, depending on their carbon contents) is uncertainty in the 

levels of emissions and abatement. 

Substitution is the key driving force behind these uncertainties (Jorgenson et al., 2000). 

Both instruments increase the costs of production in polluting firms, reducing their demands for 

labor and capital, which in turn depresses income and welfare as the prices of labor and capital 



 

fall to clear primary factor markets. The ease with which producers are able to switch from 

carbon rich fuels such as coal to low-carbon fuels such as natural gas, or replace fossil fuels with 

non-energy inputs, determines the abundance of cheap abatement opportunities which can 

mitigate the rise in their production costs. Symmetrically, as increases in the production costs of 

fossil fuels and their derivative commodities are passed on to downstream users, consumers’ 

ability to shift their expenditure to relatively lower-priced substitutes moderates the erosion of 

their consumption in real terms. The elasticity of substitution is the economic parameter which 

determines these possibilities. Indeed, in simulation models, their efficacy in moderating primary 

abatement costs is governed by the values of the substitution elasticities in firms’ cost functions 

and households’ expenditure functions. 

Over the last decade, the uphill battle faced by proposals to regulate CO2 emissions is 

indicative of concern among policy makers that the continued growth of the economy, 

pervasiveness of energy as an input to economic activity and scarcity of substitutes for fossil 

fuels will amount to such regulations having unacceptably high economic costs. 

Our approach to investigating these phenomena is to construct a computable general 

equilibrium (CGE) model which simulates the U.S. economy in the year 2015, which we use as a 

test bed to analyze the impact of baseline and adjustment uncertainty on the costs of emission 

reduction policies. We survey the empirical economic literature to develop a range of estimates 

of the elasticities of substitution among various commodities and inputs to production. We use 

these to construct probability distributions of the various elasticity parameters within the model. 

 

 

 



 

3.2 The CGE model 
 

The test-bed for our investigation is a static CGE model of the U.S. The model treats 

households as an aggregate representative agent with constant elasticity of substitution (CES) 

preferences. Industries are consolidated into the 11 sectoral groupings shown in Table 3, and are 

treated as representative firms with nested CES production technology. For this purpose we 

adapt Bovenberg and Goulder’s (1996) KLEM production technology and parameterization, as 

shown in Figure 1 and Table 4.  

The model’s algebraic structure is numerically calibrated using U.S. data on inter-

industry economic flows, primary factor demands, commodity uses and emissions in the year 

2000. We simulate prices, economic quantities, and emissions of CO2 in the year 2015 by scaling 

both the economy’s aggregate factor endowment and the coefficients on energy within 

industries’ cost functions and the representative agent’s expenditure function. The probability 

distributions of these scaling factors, when propagated through the model, give rise to probability 

distributions for the future value of baseline national income, energy use and emissions. 

The parameters which govern the malleability of production are the elasticities of 

substitution between composites of primary factors (KL) and intermediate inputs (EM), which we 

denote σKLEM; between inputs of capital (K) and labor (L), denoted by σKL; between energy (E) and 

materials (M), indicated by σEM; and among different intermediate energy and material 

commodities (e and m), denoted by σE and σM, respectively. In natural resource-dependent sectors 

(e.g., production of primary fuels such as coal) the resource is modeled as a fixed factor which 

enters at the top of the production hierarchy, governed by the elasticity σR. The electric power 

sector encompasses two nested production structures, one for primary electricity generated from 

fixed factors (e.g., nuclear, hydro and wind) which exhibits features of resource-dependent  



 

Figure 3-1. The Structure of Production in the CGE Model 
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Table 3-1. Sectors in the CGE Model 

CGE model sectors Constituent industries (approximate 2-digit SIC) 
Agriculture Agriculture 
Coal Coal mining 
Crude oil & gas Crude oil & gas 
Natural gas Natural gas 
Petroleum Petroleum 
Electricity  Electricity 
Energy-intensive industries Paper and allied; Chemicals; Rubber & plastics; Stone, clay & Glass; Primary metals 
Manufacturing Food & allied; Tobacco; Textile mill products; Apparel; Lumber & wood; Furniture 

& fixtures; Printing, publishing & allied; Leather; Fabricated metal; Non-electrical 
machinery; Electrical machinery; Motor vehicles; Transportation equipment & 
ordnance; Instruments; Misc. manufacturing 

Transportation Transportation 
Services Communications; Trade; Finance, insurance & real estate; Government enterprises 
Rest of economy Metal mining; Non-metal mining; Construction 

 

sectors, and another representing fossil fuel generation which exhibits features of non-resource 

sectors. The ability for the outputs of these subsectors to substitute for each other is governed by 

the elasticity σF-NF. Probability distributions for these eight parameters, when propagated through 

the model, generate probability distributions for the changes in income and emissions from their 

baseline levels in response to climate policy. 

3.2.1 Model Structure 

The model is a simplified version of that developed by Sue Wing (2006a,b). It represents 

the U.S. in the small open economy format of Harrison et al (1997). Imports and exports are 

linked by a balance-of-payments constraint, commodity inputs to production or final uses are 

modeled as Armington (1969) CES composites of imported and domestically-produced varieties, 

and industries’ production for export and the domestic market are modeled according to constant 

elasticity of transformation (CET) functions of their output. 

Commodities (indexed by i) are of two types, energy goods (coal, oil, natural gas and 

electricity, denoted ie ⊂ ) and non-energy goods (denoted im ⊂ ). Each good is produced by a 



 

single industry (indexed by j), which is modeled as a representative firm that generates output (Y) 

from inputs of primary factors (v) and intermediate uses of Armington commodities (x). 

Households are modeled as a representative agent who is endowed with three factors of 

production, labor (L), capital (K) and industry-specific natural resources (R), indexed by f = {L, 

K, R}. The supply of capital is assumed to be perfectly inelastic. The endowments of the 

different natural resources increase with the prices of domestic output in the industries to which 

these resources correspond, according to sector-specific supply elasticities, ηR. Income from the 

agent’s rental of these factors to the firms finances her consumption of commodities, 

consumption of a government good, and savings. 

The representative agent’s preferences are modeled according to a CES expenditure 

function. The agent is assumed to exhibit constant marginal propsenity to save, so that savings 

make up a constant fraction of aggregate expenditure. The government sector is modeled as a 

passive entity which demands commodities and transforms them into a government good, which 

in turn serves as an input to both consumption and investment. Aggregate investment and 

government output are produced according to CES transformation functions of the goods 

produced by the industries in the economy. The demand for investment goods is specified 

according to a balanced growth path rule: 

Production in industries is represented by the multi-level CES cost functions shown 

schematically in Figure 1, which are adaptations of Bovenberg and Goulder’s (1996) structure. 

Each node of the tree in the diagram represents the output of an individual CES function, and the 

branches denote its inputs. Thus, in the non-resource based production sectors shown in panel A, 

output (Yj) is a CES function of a composite of labor and capital inputs (KLj) and a composite of 

energy and material inputs (EMj). KLj represents the value added by primary factors’ 



 

contribution to production, and is a CES function of inputs of labor, vLj, and capital, vKj. EMj 

represents the value of intermediate inputs’ contribution to production, and is a CES function of 

two further composites: Ej, which is itself a CES function of energy inputs, xej, and Mj, which is a 

CES function of non-energy material inputs, xmj. 

The production structure of resource-based industries is shown in panel B. In line with its 

importance to production in these industries, the natural resource is modeled as a sector-specific 

fixed factor whose input enters at the top level of the hierarchical production function. Output is 

thus a CES function of the resource input, vRj, and the composite of the inputs of capital, labor, 

energy and materials (KLEMj) to that sector. In both resource-based and non-resource-based 

industries, input substitutability at the various levels of the nesting structure is controlled by the 

values of the corresponding elasticities: σKLEM, σKL, σEM, σE, σM and σR. 

The production function for electric power embodies characteristics of both primary and 

non-primary sectors described above. The top-down model therefore represents the electricity 

sector as an amlgam of the production functions in panels A and B. Conventional fossil 

electricity production combines labor, capital and materials with inputs of coal, oil and natural 

gas according to the production structure in panel A. Nuclear and renewable electricity are 

generated by combining labor, capital and intermediate materials with a composite of non-fossil 

fixed-factor energy resources such as uranium deposits, wind energy and hydrostatic head using 

a production function similar to that in panel B, but without the fossil fuel composite, E. The 

resulting production structure is shown in panel C, where total output is a CES function of the 

outputs of the fossil (F) and non-fossil (NF) electricity production sub-sectors. The elasticity of 

substitution between yF and yNF is σF-NF >> 1, reflecting the fact that they are near-perfect 

substitutes. 



 

3.2.2 Model Formulation, Numerical Calibration and Solution 

The economy is formulated in the complementarity format of general equilibrium (Scarf 

1973; Mathiesen 1985a, b). Profit maximization by industries and utility maximization by the 

representative agent give rise to vectors of demands for commodities and factors. These demands 

are functions of goods and factor prices, industries’ activity levels and the income level of the 

representative agent. Combining the demands with the general equilibrium conditions of market 

clearance, zero-profit and income balance yields a square system of nonlinear inequalities that 

forms the aggregate excess demand correspondence of the economy (Sue Wing 2004). The CGE 

model solves this system as a mixed complementarity problem (MCP) using numerical 

techniques. 

The mathematical relations which define the excess demand correspondence are 

numerically calibrated on a social accounting matrix (SAM) for U.S. economy in the year 2000, 

using values for the elasticities of substitution (based on Bovenberg and Goulder 1996) and 

factor supply summarized in Table 2. The basic SAM is constructed using data from BEA for 

1999 on input-output transactions and the components of GDP by industry. The resulting 

benchmark table was then scaled to approximate the U.S. economy in the year 2000 using the 

growth rate of real GDP, deflated to year 2000 prices, and aggregated according to the industry 

groupings. 

The economic accounts do not record the contributions to the various sectors of the 

economy of key natural resources that are germane to the climate problem. Sue Wing (2001) 

employs information from a range of additional sources to approximate these values as shares of 

the input of capital to the agriculture, oil and gas, mining, coal, and electric power, and rest-of-

economy industries. Applying these shares allows the value of natural resource inputs to be  



 

Table 3-2. Substitution and Supply Elasticities 

Sector σKL
 a σE

 b σA
 c σR

 d ηR
 e χE

 f χC
 g  All Sectors 

Agriculture 0.68 1.45 2.31 0.4 0.5 – –   σKLEM
 h 0.7 

Crude Oil & Gas 0.68 1.45 5.00 0.4 1.0 – –  σEM
 i 0.7 

Coal 0.80 1.08 1.14 0.4 2.0 1.0956 0.0969  σM
 j 0.6 

Refined Oil 0.74 1.04 2.21 – – 0.2173 0.0131  σT
 k 1.0 

Natural Gas 0.96 1.04 1.00 – – 0.2355 0.0116    

Electricity 0.81 0.97 1.00 0.4 0.5 0.2381 –  Electricity 
Energy Intensive Mfg. 0.94 1.08 2.74 – – – –  σF-NF

 l
 8 

Transportation 0.80 1.04 1.00 – – – –    
Manufacturing 0.94 1.08 2.74 – – – –    
Services 0.80 1.81 1.00 – – – –    
Rest of the Economy 0.98 1.07 1.00 0.4 1.0 – –    

 
a Elasticity of substitution between capital and labor; b Inter-fuel elasticity of substitution; c Armington elasticity of 

substitution; d Elasticity of substitution between KLEM composite and natural resources; e Elasticity of natural 

resource supply with respect to output price; f Energy-output factor (GJ/$); g CO2 emission factor (Tons/$); h 

Elasticity of substitution between value added and energy-materials composite; i Elasticity of substitution between 

energy and material composites; j Elasticity of substitution among intermediate materials; k Elasticity of output 

transformation between domestic and exported commodity types; l Elasticity of substitution between fossil and non-

fossil electric output. 

 

disaggregated from the factor supply matrix, with the value of capital being decremented 

accordingly. 

The electric power sector in the SAM is disaggregated into fossil and non-fossil 

electricity production (yF and yNF, respectively) using the share of primary electricity (i.e., 

nuclear and renewables) in total net generation for the year 2000, given in DOE/EIA (2004). The 

corresponding share of the electric sector’s labor, capital and non-fuel intermediate inputs is 

allocated to the between non-fossil sub-sector, as is the entire endowment of the electric sector’s 

natural resource. The remainder of the labor, capital and intermediate materials, along with all of 

the fuel inputs to electricity, are allocated to the fossil sub-sector. 



 

The final SAM, shown in Figure A-2, along with the parameters in Table A-1, specify the 

numerical calibration point for the static sub-model. The latter is formulated as an MCP and 

numerically calibrated using the MPSGE subsystem (Rutherford 1999) for GAMS (Brooke et al 

1998) before being solved using the PATH solver (Dirkse and Ferris 1995). 

3.3.3 Dynamic Projections and Policy Analysis 

Projections of future output energy use and emissions of CO2 are constructed by 

simulating the growth of the economy in 2015. To do this we update the economy’s endowments 

of labor and capital and its supply of net imports, and the growth of energy-saving technical 

progress. 

To keep the analysis simple we assume that the model’s base-year endowments of labor, 

capital and sector-specific natural resources grow at a common, exogenous rate. This is 

implemented by means of a scaling parameter whose value is specified to increase from unity in 

the base year at a rate equal to the long-run average annual growth of GDP, about 3.5 percent. 

Single-region open-economy simulations require the modeler to make assumptions about 

the characteristics of international trade and the current account over the simulation horizon. 

Since trade is not our primary focus, we simply reduce the economy’s base-year current account 

deficit from the benchmark level at the constant rate of one percent per year. 

We project energy use and emissions by scaling the exajoules of energy used and 

megatons of CO2 emitted in the base year according to the growth in the corresponding quantity 

indices of Armington energy demand. We do this by constructing energy-output factors (χE) and 

emissions-output factors (χC), each of which assumes a fixed relationship between the 

benchmark values of the coal, refined oil and natural gas use in the SAM and the delivered 



 

energy and the carbon emission content of these goods in the benchmark year.3 The resulting 

coefficients are applied to the quantities of the corresponding Armington energy goods solved 

for by the model at each time-step. 

3.3 Sensitivity Analyses 
 

Sensitivity analysis of both emissions and equivalent variation outcomes was conducted 

for a sample policy of a carbon tax of $50/ton. We investigated the effects on emissions and 

equivalent variation of halving and doubling each of the eight substitution elasticities in the 

model while holding all of the remaining parameters at their reference levels. The results are 

shown in Figures 2 and 3. We also checked the robustness of these results by looking for 

synergistic interactions in the influence of these parameters. To do this we simultaneously varied  

 

                                                 
3 Fossil-fuel energy supply and carbon emissions in the base year were divided by commodity use in the SAM, 
which we calculated as gross output – net exports. In the year 2000, U.S. primary energy demands for coal, 
petroleum and natural gas and electricity were 23.9, 40.5, 25.2, and 14.8 exajoules, respectively (DOE/EIA 2004). 
The corresponding benchmark emissions of CO2 from the first three fossil fuels were 2112, 2439 and 1244 MT, 
respectively (DOE/EIA 2003). Aggregate uses of these energy commodities in the SAM are 21.8, 185.6, 107.1 and 
6.21 billion dollars. 



 

Figure 3-2.  Sensitivity of Emissions to a Separate Doubling and Halving of Individual 
Elasticities of Substitution, Pcarbon = $50/ton.   
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Figure 3-3.  Sensitivity of Percent Change in Equivalent Variation to Separate Doubling 
and Halving of Individual Elasticities of Substitution, Pcarbon = $50/ton.   
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two elasticities in pairwise fashion, examining all permutations of doubling and halving. The 

results of this exercise are shown in Figures 4 and 5. 

The largest influences on emissions and income can be traced to the elasticities of 

substitution between intermediate and factor inputs, capital and labor, energy and materials, 

inter-fuels, and resource (q, kl, em, e, and f, respectively). Varying the materials substitution 

elasticity (m), the output transformation elasticity between production for domestic and export 

markets (t), and the armington substitution elasticity between domestic and imported varieties of 

goods (a), all have much weaker effects. Thus, in further looking at how substitution elasticity 

uncertainty affects both emissions and changes in equivalent variation, we focus on constructing 

probability distribution functions for q, kl, em, e, and f. 

3.4 Probability Distributions for Key Uncertain Model Parameters 
 
3.4.1 Economic Growth and Energy Efficiency 

We assume that the uncertainty in the growth of the simulated economy’s primary factor 

endowments may be adequately captured by the variability of GDP growth. Accordingly, BEA 

data on the annual rates of growth of real GDP from 1930-2006 were used to estimate a mean 

annual growth rate of 3.53 percent, with a standard error of 0.58 percent. 

3.4.2 The Elasticity of Substitution 

The elasticity of substitution measures the curvature of a producer’s isoquant or a 

consumer’s iso-utility contour. It is defined as the fractional change in the relative proportions of 

inputs to production or consumption in response to a fractional change in the marginal rate of 

substitution—or relative prices in competitive equilibrium. Several multi-input forms of the 

elasticity of substitution have been proposed (Allen, 1937; Morishima, 1967; Blackorby and 



 

Figure 3-4.  Sensitivity of Emissions to Paired Doubling and Halving of Individual 
Elasticities of Substitution, Pcarbon = $50/ton.   
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Figure 3-5.  Sensitivity of Percent Change in Equivalent Variation to Paired Doubling and 
Halving of Individual Elasticities of Substitution, Pcarbon = $50/ton.   
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Russell 1975), but the Allen form is most commonly used.4 Empirical work tends to employ the 

two-input Allen partial elasticity, whose estimation was greatly facilitated by the development of 

the pairwise-flexible Translog specification for production and utility functions (Lau 1973; see 

also Chung 1994). 

                                                 
4 Blackorby and Russell (1989) criticize the Allen elasticity for failing to correctly measure the curvature of an 
isoquant or indifference curve, not utilizing information about the comparative statics of income shares, and 
exhibiting symmetry only in the case of two inputs. By contrast, despite the superior theoretical properties of the 
Morishima elasticity, its appeal is diminished by its non-symmetric character, even in the two-input case. 



 

A common fallacy is that the probability distribution function (PDF) of a particular 

variable may be constructed by gathering empirical estimates of that variable from different 

sources, treating each point estimate as a random observation, and then calculating the frequency 

with which these data points fall into different ranges of the variable’s magnitude. There are two 

key problems with this procedure. First, the different estimates are not random observations, so 

at best the result is a PDF of the variable’s mean, not the value itself. Secondly, because each 

estimate is potentially generated using different data, statistical techniques, or even different 

definitions of the variable itself, to the extent that the input points are not strictly comparable, 

their frequency distribution is not meaningful. 

In conducting meta-analysis, the empirically valid measure of uncertainty is the standard 

error of each point estimate. The range of standard errors across several different studies gives a 

robust description of the uncertainty of the variable in question. However, because of the 

underlying studies’ lack of comparability, or the fact that reported point estimates may vary 

widely in magnitude, the information on variability must be extracted in a way that controls for 

idiosyncratic factors. 

Based on these considerations we constructed PDFs for each elasticity of substitution 

parameter according to the following algorithm: 

1. Point estimates and standard errors were collected from a literature survey. 

2. The coefficient of variation (the ratio of the standard deviation to the mean) was computed 

for each of the estimates in step 1. 

3. The coefficients of variation were averaged across estimates.  

4. The PDF was defined as a normal distribution with a unit mean and a standard deviation 

equal to the average coefficient of variation from step 3. 



 

5. Random draws from the distribution were multiplied by the reference value for the 

corresponding elasticity in Table XX to obtain the sample values for use in Monte Carlo 

simulations of the model.5 

We surveyed the empirical economics literature over the last three decades to obtain 

estimates of key elasticities of substitution for U.S. industrial sectors. These data were used as 

the basis for constructing probability distribution function (PDFs); accordingly, we used only 

those studies that reported the standard errors of their estimates.6 

Berndt (1976) combined six different functional forms with five alternative data 

construction procedures to estimate the capital-labor substitution elasticity for U.S. 

manufacturing. In a reanalysis of these data over a longer period, Antràs (2004) found 

significantly lower estimates after allowing for biased technical change. Early studies by 

Özatalay et al. (1979) and Pindyck (1979) estimate Allen partial elasticities of substitution by 

applying a Translog cost function to cross-national time-series data. Atkinson and Halvorsen 

(1976) apply a Translog normalized restricted profit function to data for U.S. steam electric 

generating plants to estimate paired interfuel elasticities of substitution among coal, oil, and 

natural gas.7 McKibbin and Wilcoxen (1998) estimate elasticities for twelve aggregated industry 

sectors using input-demand data for the U.S. developed by Dale Jorgenson and collaborators 

supplemented by official price series. 

A number of issues arise in the use of such information for uncertainty analysis. First, 

there is a mismatch between functional forms employed by econometric studies (either the 

Translog or the logit) and simulation models (either Cobb-Douglas or nested CES functions), 

                                                 
5 Negative values were rejected as not meaningful and were resampled. 
6 The majority of studies did not report standard errors for their estimated substitution elasticities. We argue below 
that this is crucial piece of information, without which there is no basis for determining uncertainty. 
7 These estimates are analogous but not identical to Allen elasticities. We employ Atkinson and Halvorsen’s overall 
results as opposed to aggregating their detailed estimates across power plants. 



 

which suggests that the foregoing pairwise elasticity estimates cannot be directly inserted into 

our model.8 A second issue pertains to the fact that elasticities are often estimated using 

sectorally disaggregate data, while simulation models typically resolve only a few, highly 

aggregated industry groupings. Because at the more disaggregate level price-induced 

adjustments in input and output quantities will be spread over a smaller number of firms, the 

latter representation of production is likely to exhibit a greater degree of reversiblity, along with 

correspondingly larger elasticity values. 

Finally, statistical estimation procedures do not generate information on correlations 

among the standard errors with respect to different pairs of inputs to production and consumption 

or different sectors for a given pair. For proper stochastic simulation, these correlations are 

critically important for estimating the uncertainty in costs to the aggregate economy. In the 

absence of such information, we make a reference assumption that the same elasticity across 

industrial sectors are perfectly correlated, and that elasticities between different factor pairs are 

probabilistically independent. Since these assumptions may not be accurate, we will also present 

results below for alternative assumptions about correlation.  

We show (Figure 6) the sampling distributions for each of the five elasticity parameters 

in terms of their values for the “energy-intensive” sector (since the actual values vary by sector). 

For kl and e, there is a significant likelihood that the elasticity could be greater than unity, for em 

and q there is a small likelihood that the elasticity could exceed unity, and the fixed factor f only 

samples elasticity values below 1.0. 

                                                 
8 The former are advantageous in empirical applications because of their linearity, which makes them easy to 
estimate, and their flexibility, which allows them to locally approximate arbitrarily shaped isoquants or indifference 
curves in an efficient manner. The latter are globally regular, in that they are guaranteed to result in strictly positive 
values for output prices, quantities and cost shares (Perroni and Rutherford 1994). 



 

Figure 3-6.  Probability Density Functions for Uncertain Elasticity Parameters.  
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3.5 Results 
 

3.5.1 Abatement 

Figure 7 shows the marginal cost of abatement under uncertainty.  In the range of interest, a 

$23 tax results in 1100mmt and 3050mmt of abatement in 90% of cases, while abatement of 

2050mmt (the mean amount required by a 5000mmt cap) costs between $8 and $42 per ton CO2 

in 90% of cases.   

Under a tax, the marginal cost of abatement is fixed, but the total amount of abatement is 

uncertain.  Possible abatement under a $23/ton tax, as well as the relative contribution of each 

uncertain parameter, is shown in Figure 3.  Uncertainty in the elasticities of substitution is the 

largest contributor to uncertainty in abatement, as the effectiveness of the tax largely depends on  
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Figure 3-7: Uncertainty in marginal abatement costs in computable general equilibrium 

model as a result of uncertainty in GDP growth, AEEI, and elasticities of substitution. 

 

whether it exceeds the cost switching to less carbon-intensive energy sources.  If elasticities of 

substitution are not uncertain, a given tax will always produce the same fractional reduction from 

reference emissions.  Thus, GDP growth, as the second-largest contributor to uncertainty in 

abatement, varies positively with baseline emissions and hence abatement.  The opposite is true 

for AEEI; autonomous improvements in efficiency reduce baseline emissions as well as 

abatement.  Given the 5-95% range of possible abatement when all parameters are uncertain, 

uncertainty in elasticities of substitution only varies abatement by 81% of this range.  GDP 

uncertainty varies abatement by 50% of the all-uncertain range and AEEI uncertainty by 27%.   

The contribution of each uncertainty under a 5000mmt cap is shown in Figure 8.  Under a 

cap, the amount of abatement is always determined by the difference between the cap and no- 
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Figure 3-8:  PDF of abatement under a cap, and the relative contribution of each uncertain 
parameter 

 

policy emissions.  Thus, uncertain parameters influence the amount of abatement to the same 

extent that they influence no-policy emissions (Figure 9).  GDP is the largest contributor (93% of 

the all-uncertain range), as a larger economy produces more emissions in the absence of policy.  

AEEI uncertainty is the next-largest contributor (47% of the all-uncertain range), as 

improvements in efficiency reduce the amount of no-policy emissions.  Uncertainty in elasticities 

of substitution is almost negligible (6% of the all-uncertain range), as these parameters have little 

effect on no-policy emissions.   

Possible abatement for all four policies with all parameters uncertain is shown in Figure 7.  

As shown in the previous figures, a tax allows for a more limited range of possible abatement 

than does a cap.  If base emissions are higher than expected in the “no uncertainty” case, a cap 

will abate more than a tax; if emissions are lower than expected the tax will require more 

abatement.  Abatement under the intensity target is roughly equivalent to a tax: if base emissions 

are higher than expected the intensity target allows for less abatement than a cap, and requires  
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Figure 3-9:  PDF of BAU Emissions, and the relative contribution of each 
uncertain parameter 

 

more abatement than a cap if base emissions are lower.  A safety valve requires the least amount 

of abatement of the four policies, as it combines the “easiest” options of the cap and tax.  Where 

the cap requires little abatement (and hence is low-cost), the quantity instrument (cap) applies; 

where the cap requires a lot of abatement (and is high-cost) the price instrument (tax) applies.   

3.5.2 Carbon Price 
 
Possible carbon prices for the four policies, with all parameters uncertain, are show in in 

Figure 10.  The tax holds the carbon price constant at $23/ton, while the cap requires a tax 

ranging from less than $5/ton to over $80/ton.  The safety valve is a hybrid of these policies; if 

the market price under a cap is less than $23/ton then that cost applies.  If the market price under 

the cap is more then $23/ton, the safety valve is “triggered” and a $23/ton tax applies.  Since the 

cap and tax used to design the safety valve are equivalent in the no-uncertainty case, the safety 

valve is expected to behave like a tax with approximately 50% probability.  Lowering the trigger 

price  
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Figure 3-10:  PDF of abatement under a tax, and relative contribution of each uncertain 
parameter 

 

or making the cap more stringent will increase the probability that the safety valve behaves like a 

price instrument. 

 The carbon price under an intensity target behaves similar to a cap, but has a narrower 

range.  If base emissions are low, the intensity target requires more abatement than a cap, and 

thus imposes a higher carbon price.  If base emissions are high, the intensity target allows a more 

relaxed target than a cap, and thus a relatively lower carbon price.  It is important to note that an 

intensity target behaves more like a tax in terms of abatement, and more like a cap in terms of 

carbon price.  The intensity target “chooses” the quantity to abate by maintaining a constant 

emissions/GDP ratio, which substantially narrows the range of abatement to more closely mirror 

a tax.  However, as under a cap, elasticities of substitution have little influence in determining 

the amount of abatement required, but are the most important factor in determining how much 



 

that abatement will cost.  This effect causes carbon prices under both the cap and intensity target 

to be highly variable. 

 
3.5.3 Welfare Loss 
 

Welfare loss, or percent change in equivalent variation, is shown for each policy in Figure 9.  

The safety valve causes the smallest change in welfare, but also requires the least abatement (and 

lowest carbon prices) of the four policies.  Welfare loss varies only slightly under a tax, and 

more considerably under a cap and intensity target (Figure 9).  The reason for this large variation 

in welfare loss under a cap and intensity target is the same as for carbon price; the amount to 

abate is chosen with little regard to elasticities of substitution.  Under a cap, welfare loss will be 

small if base emissions are low, and large if base emissions (and hence abatement) are high.  

Under an intensity target, welfare loss will be small if both AEEI and substitution elasticities are 

favorable (as abatement is chosen only with respect to GDP), and more substantial if they are not.   

 
3.5.4 Net Benefits 

 
A cubic marginal cost curve was fit to each of the 1000 scenarios, and integrated to 

determine the total cost of abatement.  Marginal benefits of abatement were set at the reference 

tax, $23/ton.  Net benefits were calculated by subtracting total costs from total benefits.  Because 

the tax always abates to $23/ton, i.e. the point where marginal cost equals marginal benefit, the 

tax is by definition optimal in terms of net benefits.  This result is shown in Figure 10, as is the 

result that both the safety valve and intensity target are always preferable to a pure cap in terms 

of net benefits.  This relationship has also been demonstrated analytically.  The distinction 

between the safety valve and intensity target is less clear from the graph; the curves for these 



 

“second-best” policies cross each other, indicating that one is not stochastically preferable to the 

other.   

Whether a safety valve or intensity target yields higher net benefits is determined by the 

relative carbon prices under the policy, as is seen in  Figure 11.  These carbon prices, by 

definition, represent the marginal cost of abatement in each scenario.  When the safety valve 

behaves as a price instrument, and thus imposes a tax equal to the marginal benefits, it is always 

optimal to the intensity target.  When neither policy abates to the point where marginal cost 

equals marginal benefit, the policy which abates closer to this point is preferred.  For example, if 

the carbon price under the intensity target is $15, and under the safety valve the price is $10, the 

intensity target is preferred because $15 is closer to $23 (the optimal price).  Similarly, if the 

carbon price under the intensity target is $40, and under the safety valve the price is $10, the 

safety valve is preferred because $10 is closer to $23.  In terms of expected net benefits, the 

intensity target performs slightly better than the safety valve Table 3, indicating that is preferred 

under uncertainty. 

The above findings apply only when these “second-best” policies are designed based on the 

reference “no-uncertainty” case.  In practice, the design of these policies is likely to be somewhat 

arbitrary, and thus the rest of this paper is devoted to exploring the relative advantage of these 

policies when these assumptions are relaxed. 

 Using the probability distributions for the elasticity parameters described above, we 

perform Monte Carlo simulations with a sample size of 1,000. We calculate the resulting 

uncertainty in carbon emissions and welfare loss from the parametric uncertainty for both price 

and quantity instruments, focusing on a reference policy of $50/ton carbon tax.  



 

Under reference elasticity values, this level of carbon tax results in 1785 MMT of carbon 

reduced, a 37% reduction in emissions. Under uncertainty, we impose a price instrument of 

$50/ton and a quantity restriction of 1785 MMT reduction. 

As first explained by Weitzman (1974), the carbon price results in uncertain levels of 

emissions abatement, and the emissions target results in uncertainty in the carbon price (Figure 

6). The tax of $50/ton yields a 95% probability range of abatement of 1300 to 2180 MMT C, or 

25% to 50% reduction in carbon emissions. The emissions target gives carbon prices with a 95% 

range of $35 to $80/ton to achieve the required abatement. The effect of the two policy 

instruments varies in their welfare effects as well. The welfare loss pdf’s from the carbon tax, 

measured as equivalent variation, has a 95% range of 0.14% to 0.27% relative to the no policy 

case (Figure 7). In contrast, the emissions target exhibits greater variability in its welfare impacts, 

with a 95% range of 0.15% to 0.40%.  

 We can illustrate the relative uncertainty in price and quantity instruments more generally 

by performing Monte Carlo simulations for a range of carbon prices, and graphing the resulting 

percentiles of abatement vs. carbon price (Figure 8). The abatement uncertainty from carbon tax 

can be seen in the horizontal distance between the 95% bounds for a given tax level, and the 

marginal cost uncertainty in an emissions target can be seen in the vertical distance between the 

bounds for a given level of abatement. One of the benefits of general equilibrium analysis is the 

ability to estimate the ultimate economic impacts on consumer welfare of policies that affect 

some sectors of the economy more than others. Although the “costs” of a climate policy are often 

described in terms of the carbon price, this is the marginal cost of the policy, not the actual 

welfare loss. For a range of carbon prices up to $200/ton, we compute the uncertainty in the 

projected welfare losses for the U.S. economy in 2010. 



 

 As noted above, the results of a stochastic simulation depend on the assumptions about 

the correlation structure across the uncertain parameters. As a reference assumption, the results 

to this point are obtained assuming that there is no correlation (i.e., probabilistic independence) 

between different elasticities. In other words, the sample value for the capital-labor elasticity of 

substitution contains no information about the corresponding sample for the inter-fuel 

substitution elasticity. For the different industrial sectors, we assume perfect correlation (ρ = 

1.0); i.e., the sample value for the substitution elasticity between capital-labor is the same for all 

sectors in that simulation. We now test the sensitivity of these assumptions by assuming different 

correlation structures and comparing the results to the standard base case shown above. We 

restrict the sensitivity tests to a single policy case, the carbon tax of $50/ton. 

 We test three additional cases, one where the different substitution elasticities are all 

positively correlated with each other with a correlation coefficient of 0.5, one where the different 

elasticities are correlated with each other with a coefficient of 0.9, and one where the elasticities 

for each production sector are probabilistically independent from all other sectors. The effects of 

increasing the correlation between elasticities is a slight increase in the variance of emissions; the 

standard deviations are 226, 268, and 263, respectively for the standard, correlation of 0.5, and 

correlation of 0.9 (Figure 11). But the larger effect is a decrease in the mean emissions as the 

strength of correlation increases. The effect of correlation between elasticities on the uncertainty 

in welfare loss is similar, with a slight increase in variance and an increase in the mean welfare 

loss (Figure 12). 

 The effect of imposing zero correlation across sectors is more pronounced than that of 

varying correlation across elasticities (Figures 11 & 12). For both emissions and welfare losses, 



 

the impact is significant reduction in variance, but no appreciable difference in the mean 

outcome. 

 

Figure 3-11.  Emissions Uncertainty over Four Scenarios, Pcarbon = $50/ton.   
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Figure 3-12.  Welfare Loss Uncertainty over Four Scenarios, Pcarbon = $50/ton.   
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3.6 Discussion 
 

In this study, we have used a CGE model of the US to show the uncertainty in impacts 

from various carbon reduction policies. The uncertainty in impacts shown here is the result of 

uncertainty in the elasticities of substitution between production factors. As potential policy  

responses are considered by lawmakers, the cost impact of any policy is a critical piece of 

information. Because costs cannot be known in advance with certainty, the most useful form this 

information is the description of the uncertainty in the costs. Thus, uncertainty studies of the type 

presented here form part of the necessary background for a public debate on potential policy 

responses. 

 For any given policy constraint, the uncertainty in costs, as well as in resulting emissions, 

depends on the economy’s ability to respond and adjust to the new constraints. For near-term 



 

policies focused on the next decade or so, we are mainly interested in the ability of existing 

production processes to adjust. Over the longer term, other uncertainties become more critical, 

such as how investment in research and development of new technologies responds to the new 

incentives, and on how likely new technology developments are as a result of increased 

investment and effort.  

In this paper, we have summarized an extensive survey of the estimation literature to find 

what is known about elasticities of substitution between production factors. One finding is that 

there are numerous gaps in the available information that would be needed to conduct an 

uncertainty analysis with more confidence. One such gap is the difference in the functional forms 

used in most estimation studies as compared with the functional forms used in CGE models. 

Another is the relative dearth of information on some of the most influential elasticities, in 

particular the substitution between sector-specific fixed factors and other production factors, and 

between nested bundles of capital-labor for bundles of energy-materials. Many studies in the 

literature do not report standard errors of their estimations, providing no information at all about 

the uncertainty. Finally, traditional statistical methods yield no information on correlation across 

factors and across sectors, which also significantly determines the uncertainty in outcomes. 

Future contributions to any of these gaps would greatly improve our ability to estimate the 

uncertainty in policy costs.  

 
4. Probabilistic Scenarios 
 

4.1. Background 
 

The problem of designing effective and appropriate policy to address global climate 

change is one of reducing and managing the risks of severe climate impacts in the future.  

Therefore, scientific guidance for climate policy should characterize the uncertainties and risks 



 

for decision makers.  Among the most useful contributions that scientific assessment can make to 

the policy process are to 1) help to frame the debate between policy options; and 2) provide 

intuition about the tradeoffs between alternatives.  These contributions are more important than 

precise predictions of outcomes.  For a decision under risk, this means providing information 

about the range of possible outcomes, their relative likelihood, and how the risks of undesirable 

outcomes are altered by the policy alternatives. 

One very useful tool for structuring and communicating assessments is a set of scenarios.  

A set of scenarios are sketched of future conditions (or alternative sets of future conditions), used 

as inputs to exercises of analysis or planning.  There are several objectives for designing 

scenarios for assessments.  First and foremost, they provide a set of common assumptions to a 

group or community of scientists jointly contributing to an assessment exercise.  Second, a set of 

scenarios reduces the number of cases to study from the infinite continuum of possible futures to 

a manageable set, making detailed analysis of each alternative future feasible.  This leads to the 

third objective, which is to span a useful range of the uncertainty.  Scenarios are especially useful 

for problems of decision under uncertainty, since they can provide a way to test the robustness of 

a policy against possible “worse case” outcomes.  This creates a tension between designing one 

or more scenarios that describe extreme enough outcomes to be a useful test of robustness, while 

on the other hand, scenarios should have enough likelihood of being realized to be worth the 

time and effort to consider.  A fourth objective for designing scenarios is to enhance 

communication with decision makers and the public by providing a detailed storyline that 

describes each possible future.  Finally, a more subtle but critical objective in designing 

scenarios is the frame the overall debate over options.  A scenario set that reflects a narrower 

range of uncertainty may lead to different decisions than one with a wider range of uncertainty.  



 

This effect is often implicit and unintentional, but can have a powerful effect and should 

therefore be considered carefully by scenario designers. 

Previous scenarios designed for exercises such the Intergovernmental Panel on Climate 

Change (IPCC) assessments, the U.S. National Climate Impacts Assessment, and others have 

generated several debates over the most useful methods to design and construct scenarios.  One 

of these debates is whether explicit probabilistic approaches should be used in the design process 

and whether probabilities or likelihoods can be associated with scenarios.  This paper addresses 

the controversy over probabilistic approaches to scenario design.  Often, this debate is framed as 

a choice between storyline approaches and purely probabilistic approaches.  We use probabilistic 

methods to design two alternative sets of emissions scenarios for use in climate change 

assessment.  We argue that storylines and probabilities are not mutually exclusive but rather 

complement each other in the design process. 

 
4.2. Probabilistic vs. Storyline Approaches 

 
We begin by exploring the current arguments within the climate science community over 

whether to use probabilistically based scenario designs or to use a storyline approach to scenario 

design.  The best example of the storyline approach is the IPCC Special Report on Emissions 

Scenarios (SRES) (Nakicenovic et al, 2000).  The SRES authors developed this set of scenarios, 

“to represent the range of driving forces and emissions in the scenario literature so as to reflect 

current understanding and knowledge about underlying uncertainties,” (Nakicenovic et al, 2000).  

They developed four different narrative storylines to “describe consistently the relationships 

between emission driving forces and their evolution,” each of which represents a different 

complete picture of how the world might develop socially, economically, and technologically 

over the next century.  Six different integrated assessment models were then used in conjunction 



 

with the four narratives to develop a total of 40 scenarios.  Out of these 40, six were selected as 

“marker scenarios” to provide common assumptions for modelling efforts in the wider climate 

change community. 

 The advantages of the SRES approach are that it provided a small set of common 

scenarios that have been used extensively in the climate research community, and that the 

intuition for the scenario assumptions is enhanced by the storyline.  One criticism of the SRES, 

however, is that no statement as to the relative likelihood was attached to the scenarios (Reilly et 

al., 2001).  In fact, the authors explicitly avoided any statement of probabilities, and instead 

defined all scenarios as equally plausible. 

 The probabilistic approach to scenario design is grounded in the practice of using 

probability distributions to formally characterize and communicate the uncertainty in a particular 

outcome variable (e.g., global mean temperature change in a given decade).  The advantages of 

this approach are that it organizes our current knowledge about possible outcomes and their 

relative likelihood, and that it allows for the explicit exploration of risk-reducing strategies 

through policy (Webster 2003).  Critiques of this approach are that communication is limited by 

the less intuitive nature of probability distributions, the difficulty in linking the results from one 

set of possible assumptions across multiple outputs, the reliance on expert judgment for socio-

economic future trends, and the false sense of accuracy that may be accorded to numerical 

probabilities. 

 The perspective of the authors is that these two approaches are not necessarily mutually 

exclusive.  We propose, and illustrate with an example below, that storyline scenarios can be 

constructed based on the results of a probabilistic uncertainty analysis, after which the discrete 

scenarios can be communicated and used as common assumptions.   



 

 

4.3. Simple Example of a Probabilistic Scenario Design 

The example here builds upon the uncertainty analysis in Webster et al (2002), and uses it 

to design small sets of emissions scenarios as an illustration of the proposed approach. 

The Method 

The steps in designing a set of probabilistic scenarios are: 

1. Conduct sensitivity analysis of parameters, 

2. Construct probability distributions for key parameters, 

3. Perform uncertainty propagation (Monte Carlo), 

4. Use distributions of outcomes (emissions) to identify interesting targets, 

5. Find an appropriate set of parameters that give the target emissions, and 

6. Choose a small set of scenarios: combinations of parameter assumptions and their 

resulting outcomes. 

This approach assumes that one or more modelling frameworks are being used to assist in 

the development of internally consistent scenarios.  The first step requires that all uncertain 

assumptions in the model be tested to find which exert the greatest influence over the model 

outcomes of interest.  The second step entails the development of a probability distribution for 

each of the most important assumptions.  This can be done with the use of historical observed 

data and measurements, reliance on expert elicitation, or on some combination of both.  The third 

step is the use of the parameter distributions to perform uncertainty analysis of the model and 

obtain probability distributions of the model outcomes.  These first three steps are described in 

detail in Webster et al (2002).   



 

The resulting probability distributions of projected outputs of interest can be used to 

locate percentile values to define scenarios, such as shown in Figure 1.  This is the fourth step of 

the procedure, selecting a useful set of possible outcomes.  Using the probabilistic information 

available from this approach, specific fractiles of the distributions can be chosen around which to 

construct scenarios.  For example, one could construct scenarios that bound +/- one standard 

deviation, enclosing a 67% probability, and +/- two standard deviations, enclosing 95%.  Other 

useful probability bounds include 50% and 99%.  For some questions, we may be interested in an 

even more extreme probabilistic upper bound case, such as one with a one in one hundred or one 

in one thousand level of risk. 

 The selection of a set of possible values for an outcome, for example global CO2 

emissions or global mean temperature change, does not by itself constitute a set of scenarios.  

For each targeted outcome value there are many possible combinations of the uncertain input 

assumptions that would yield the target result within some small error.  The task in the fifth step, 

then, is to choose one such representative assumption.  One obvious choice is to choose the set of 

input parameter values that are the most likely, in the sense of having the highest joint density.  

However, alternative criteria can be used to select one set of assumptions out of many that give a 

particular result, as will be illustrated below. 

An Example 

The model used for this example is the MIT Emissions Projection and Policy Analysis 

(EPPA) model (Babiker et al., 2001).  An uncertainty analysis of emissions from EPPA is 

described in Webster et al (2002).  In that analysis, two key uncertain parameters that drive 

carbon emissions were found to be labor productivity growth (LPG) and the autonomous energy 

efficiency improvement rate (AEEI).  Probability distributions of these parameters were 



 

developed from experts’ subjective judgements about the uncertainty in future trends. Monte 

Carlo simulation was then performed to obtain the probability density function (PDF) for global 

CO2 emissions (Figure 1), as well as for emissions of other greenhouse gases and local air 

pollutants. 

 We now use the results of this analysis to design a set of emissions scenarios for the 21st 

century.  The next step is to choose a set of targets around which to design scenarios.  One of the 

primary outcomes for an emissions scenario is carbon emissions.  We define seven targets at the 

percentiles of 5%, 10%, 33%, 50%, 66%, 90%, and 95% from the CO2 distribution.  These target 

outcomes are shown in Figure 1. 

 A complication to designing emissions scenarios is the fact that emissions of multiple 

species are relevant to climate projections, and the uncertainty in these emissions is neither 

completely uncorrelated, nor is it perfectly correlated.  Thus, the distribution of methane 

emissions depends strongly on whether model assumptions are leading to CO2 at 5%, median, or 

95% levels.  For this scenario set, we assume that other greenhouse gases and aerosols are at 

their median levels conditional on the seven CO2 cases described above.  In addition, we add 

four scenarios that result in non-CO2  greenhouse gases at 10%, 33%, 66%, and 90% conditional 

on CO2 at its median, and four additional scenarios that result in urban pollutant emissions (SO2, 

NOX, etc) at their 10%, 33%, 66%, and 90% conditional on CO2 emissions at their median.   

 The final step, given a target level for emissions, is to define the scenario by choosing the 

underlying parameter assumptions that result in those emissions.  For any given outcome, many 

different possible assumptions can result in roughly the same outcome.  In this example, there 

are 289 combinations of assumptions about the AEEI and LPG parameters that result in 20 GtC 

in 2100 within +/- 0.01 GtC (Figure 3).  This is because that one can increase the growth rate of 



 

the economy (LPG) and also increase the rate of energy efficiency improvements (AEEI) and 

still get the same carbon emissions.  One of these sets of assumptions must be chosen as a 

representative scenario for the median CO2 case.  This is where a storyline approach can 

complement the probabilistic approach.  A particular storyline can provide a guide or basis for 

selecting a particular set of assumptions out of the many candidates.  In the absence of a storyline 

to supplement this design, we choose the pair of assumptions with the highest joint density. 

 Note that the probability of this scenario is not 50%.  50% describes the likelihood that 

carbon emissions will be lower than or equal to the emissions in this scenario.  The probability of 

this particular set of characteristics is vanishingly small, as is any single set out of an infinite 

continuum. 

 We repeat this process for each of the targeted emissions, selecting the maximum joint 

density assumption that results with some small error of the target emissions level.  Together, 

these fifteen scenarios, designated by the target emissions level and the representative underlying 

assumptions that result in those emissions, comprise one complete set of emissions scenarios that 

could be used. 
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Figure 4-1: Probability distribution of global CO2 emissions in 2100, and fractiles used to define 

targets for scenario design. 
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Figure 4-2: a) CO2 emissions form seven scenarios that result in desired fractiles; b) CH4 

emissions from scenarios that vary economic growth, energy efficiency, and emissions 
factors. 
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Figure 4-3: Combinations of uncertain assumptions that result in median CO2 emissions 

 
Table 4-1: Fifteen Multi-Gas Emissions Scenarios 

Scenario # CO2 Emissions Other GHGs Urban Pollutants 
1 99% 50% 50% 
2 90% 50% 50% 
3 66% 50% 50% 
4 50% 50% 50% 
5 33% 50% 50% 
6 10% 50% 50% 
7 1% 50% 50% 
8 50% 90% 50% 
9 50% 66% 50% 
10 50% 33% 50% 
11 50% 10% 50% 
12 50% 50% 90% 
13 50% 50% 66% 
14 50% 50% 33% 
15 50% 50% 10% 

 
 
 
 



 

4.4. Integrated Approach to Emission Scenario Design 

Using percentiles from distributions of emissions is a simple way of using probabilistic bounds 

to guide scenario design. However, because emissions scenarios serve as common assumptions 

for climate and impacts projections, the design can be improved by considering the role that 

emissions play in climate modeling and that the focus of climate projection assessments is on 

impacts, not emissions. 

 From a climatic perspective, emissions are primarily interesting only in terms of their 

aggregate impact on total radiative forcing in the climate system.  Designing scenarios that span 

the probability space across multiple emissions will not necessarily result in a useful spread 

across the probability distribution of radiative forcing, or provide efficient coverage with a small 

number of scenarios.  Other possible impacts for design could be global mean temperature 

change, some aggregate index of regional/local physical impacts, or an economic valuation.  As 

an illustration here, we focus on scenarios that efficiently cover radiative forcing as an impact.  

 The total net radiative forcing that results from the 15 emissions scenarios from the 

previous example are not spread evenly or efficiently across the probability distribution of 

forcing (Figure 4).  A more efficient approach would be to design scenarios to explore 

percentiles of the radiative forcing distribution. Then one can choose one set of multi-gas 

emissions that will result in each desired radiative forcing based on one of several criteria.  For 

example, one might choose to design scenarios at the 5%, 50%, and 95% values for radiative 

forcing (Figure 4).   

 As was true for alternative parameter assumptions that result in a given emissions level, 

there are multiple emissions of CO2, other greenhouse gases, and aerosols that result in the same 

net radiative forcing change (Figure 5).  Different criteria can be used to choose a particular 



 

combination of emissions for one scenario.  For example, one might choose the highest CO2 

forcing that gives a particular total radiative forcing target, the lowest CO2 forcing, the highest 

aerosol forcing, and so on.  Because of different lifetimes of species, radiative forcing strength, 

and differing costs of reductions, it may be useful to choose several distinct alternative scenarios 

with the same net forcing.  For the median forcing, an alternative set of ten scenarios (Figure 2b) 

contains three that give 5% RF with different combinations of emissions, four that give 50% RF 

and three that give 95%. 
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Figure 4-4: Probability distribution of total change in radiative forcing 2000-2100, three 

percentiles for scenario design, and the radiative forcing of the Section 3 emissions 
scenarios. 
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Figure 4-5: Different multi-gas emissions with the median net radiative forcing change. 
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Figure 4-6: Alternative set of emissions scenarios based on radiative forcing. 
 
 
 
 
 
 
 
 
 



 

Table 4-2: Proposed Set of 10 Scenarios 
 

Scenario # RF Fractile Characteristics 
1 5% weak aer, low oghg 
2 5% low co2 
3 5% most likely 
4 50% strong aer 
5 50% low co2 
6 50% most likely 
7 50% high co2 
8 95% most likely 
9 95% strong aer 
10 95% high co2 

 
4.5. Challenges 

This simple illustration has several limitations, including the fact that even better bases 

for design exist, such as global mean temperature change or cumulative forcing. Critics may still 

object to the use subjective probabilities for some quantities.  In the end, we still a means of 

designing scenarios that are most useful and efficient for scientific assessment to advise policy.  

Probabilistic methods provide one aide in this design problem. 
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