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Executive Summary

This is a summary of research work performed on “Hall MHD Stability and Turbulence
in Magnetically Accelerated Plasmas,” DE-SC0001049. The object of the research was to
develop theory and carry out simulations of the Z pinch and plasma opening switch (POS),
and compare with experimental results. In the case of the Z pinch, there was experimental
evidence of ion kinetic energy greatly in excess of the ion thermal energy [1, 2]. It was
thought that this was perhaps due to fine scale turbulence. The simulations showed that
the ion energy was predominantly laminar, not turbulent [3]. Preliminary studies of a new
Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is
relevant to magneto - inertial fusion [4]. These studies indicate [5] the axial magnetic field
makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrody-
namic instability of the POS.

2D Z pinch simulations

A part of the proposal was to study turbulence in Z pinches and compare with exper-
imental results, in particular the WIS low density gas puff Z pinch [1, 2]. It was thought
that this and other experiments detect anomalous turbulent ion kinetic energy during the
stagnation of the Z pinch [6].

Two dimensional simulations were done with a modified version of the M3D extended
MHD code [7], which uses a 2D unstructured mesh to obtain high resolution in both radial
and axial directions at the cylindrical axis. A radiation model was added, which appeared
adequate to model the features of the experiment and to assess the turbulence during the
stagnation of the Z pinch.

In particular, some features of the experiment were
(1) the stagnated plasma column expands and then shrinks,
(2) ion kinetic energy during stagnation is greatly in excess of the electron thermal

energy. The ion kinetic energy is measured as a line broadening spectroscopically, but
it cannot be a temperature. The high collision frequency ensures that ions and electrons
have close to the same temperature of several hundred eV. The anomalous “effective ion
temperature” is almost 10 times higher, and it decays on the timescale of the stagnation [1].
It was attributed to turbulence;

(3) images in visible light showed large scale axially symmetric perturbation structures
outside the column, and later evidence of MHD instability of the column.

Experimental observation (1) is explained by the M3D simulations as follows:
The simulations showed that during implosion, a shock is driven by the magnetic piston

[8]. The piston front is Rayleigh Taylor unstable, but the shock front, traveling ahead of the



piston, is stable. The shock reaches the axis and reflects, starting the stagnation phase. The
high density core expands, until it collides with the incoming magnetic piston. This causes
the core to shrink again.

Observation (2) is explained by the reflection of the shock front, collision with the mag-
netic piston, and the setting up of a quasi equilibrium state. The core is not turbulent, until
the expanding shock collides with the incoming Rayleigh Taylor unstable magnetic piston.
Instead the ion energy is directed, largely laminar motion. It was observed as line broad-
ening, rather than as a Doppler shift, due to the experimental arrangement. The radiation
from the stagnated core was integrated along a chord passing nearly through the geometric
origin; hence a radial flow gives nearly equal positive and negative Doppler shifts which
evidently appeared as line broadening. Unfortunately it is almost impossible to change the
experimental line of sight. The ion kinetic energy can be found by by balancing ion kinetic
energy with pressure in the stagnated core. While the electron and ion temperatures are
nearly equal, the electron density is Z times larger than the ion density, where Z ≈ 6 is the
effective ion charge. This gives a ratio of kinetic energy per ion mass density to temper-
ature of about (Z + 1), which accounts for the large ratio of effective ion temperature to
electron temperature. Much of the ion kinetic energy is radiated away. It is comparable to
the magnetic energy density at the piston.

Observation (3) of the large scale MHD instability is explained by the Rayleigh Taylor
instability of the magnetic piston.

These findings have been published in H. Strauss, Stagnation of a gas puff Z pinch,
Phys. Plasmas 19, 032705 (2012).

A reprint is attached as an Appendix.

POS simulations

Hall turbulence and shock propagation in POS

A preliminary study of Hall MHD turbulence in a POS was carried out. The study
showed the excitation of turbulence at the plasma boundary. The study also showed the the
penetration of magnetic field into the POS was insensitive to magnetic polarity. This study
is attached as Appendix B.

current channel width in POS

Simulational studies of a plasma opening switch (POS) [9] were carried out. The POS
is interesting because it is in the Hall MHD regime. Previous theory has been reasonably
successful in explaining features of POS experiments [9]. Several experimental features
have been unexplained, in particular the following:

(1) The current channel width is much wider than predicted. It is measured to be much
wider than a resistive diffusion scale or skin depth.

(2) Different ion species show different dynamics. The plasma consists of protons and
carbon ions. The protons move ahead of the magnetic field front, while the heavy ions are
penetrated by the magnetic field and lag behind the magnetic field front.

(3) The evolution of a broad ion velocity distribution was observed [10].
The two features (1) and (2) can be explained by including finite temperature in the

dynamics, which was neglected in previous theory. Feature (3) is evidently caused by Hall



MHD turbulence. Simulations, in progress, with the M3D code confirm these features.
A preprint of this work is attached as Appendix c.

3D Z pinch simulations

A new experiment at Weizmann Institute of Science (WIS) with an applied axial mag-
netic field has recently been constructed and is beginning to operate. The experiment will
employ spectroscopic techniques to obtain magnetic field data, measurements of kinetic
energy, density, and temperature. The additional axial field is motivated by the present in-
terest in magneto inertial fusion, in particular magnetized liner inertial fusion (MagLIF) [4].
The addition of an axial field also permits the development of new instabilities, including g
modes (localized Rayleigh Taylor instabilities) and current driven instabilities, not usually
studied in the context of Z pinches. The axial magnetic field makes the Z pinch into a type
of screw pinch, and it becomes subject to instabilities typical of tokamaks, stellarators, and
other devices containing a sheared magnetic field.

Some preliminary theory and 3D simulations relevant to the WIS experiment have been
carried out. They were presented at the ICOPS conference, Edinburgh, 2012, and summa-
rized in the following. The results demonstrate the expected stabilization of the magnetized
Rayleigh Taylor instability at the magnetic piston interface. They also show development
of magnetic turbulence outside the magnetic piston interface, in the region of sheared mag-
netic field. Preliminary analysis identified the turbulent region with the region of kink mode
instability.

The following preliminary simulations were performed with the M3D code, which is
described below. The simulations were three dimensional. An initial state similar to those
of [3], except that an initially spatially constant axial magnetic field is included. The plasma
was allowed compress and stagnate. Two cases are compared. In Fig.1, the initial axial field
is small, B0

z = 0.02B0
θ . Shown in Fig.1(a) is Bθ(r, z, 0) at stagnation. The perturbations

of Bθ(r, z, 0) is similar to those produced by Rayleigh Taylor instability in [3]. A slice
of Bθ(r, L/2, θ) and is shown in Fig.2(a) of the same case at the same time, showing that
the perturbations are predominantly m = 0, with an m = 1 component. In Fig.1(b) and
Fig.2(b) are shown as case with larger B0

z = 0.10B0
θ . The magnetic field is quite differ-

ent from Fig.1(a), Fig.2(a). The perturbations are replaced by shorter wavelength modes,
localized outside the stagnation region.



(a) (b)

Figure 1: (a) The magnetic azimuthal field Bθ in (r, z, 0) plane, at time t = 3.41τA, at
stagnation. The axial field is 0.02 the initial azimuthal field. The perturbations are produced
by Rayleigh Taylor instability. (b) The field Bθ in (r, z, 0) plane, at time t = 3.66τA,
at stagnation, where the initial axial field is 0.10 the initial azimuthal field. In the low
axial field case, the perturbations reach the axis, while in the high axial field case, the
perturbations are of a different appearance, and occur in the region outside the stagnated
core, with high kz.

(a) (b)

Figure 2: The azimuthal field Bθ at the same times as in the previous figure except that the
(r, L/2, θ) plane is shown. (a) As in Fig.1(a), showing predominantly m = structure with
some m = 1. (b) As in Fig.1(b), showing high m structure. Theoretically the perturbations
have helical structure, with B · k ≈ 0.



The ICOPS presentation is given as Appendix D.

Meetings and Laboratory Visits

Attended and made presentations at APS meeting Z pinch session, 2009,2010,2011.
Attended and gave talk at ICOPS meeting Z pinch session, 2012.

Several visits to WIS laboratory, 2009,2010,2011,2012.
Visited Imperial College London, Physics Department, Plasma Physics Z Pinch Labo-

ratory, March 2010.
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Stagnation of a gas puff Z pinch
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Simulations of a gas puff Z pinch were performed, using an appropriately modified version of the
M3D code [Park et al., Phys. Plasmas 6, 1796 (1999)]. The simulations investigated the stagnation
process, including the effects of the shock driven by the magnetic piston and the influence of the
Rayleigh Taylor instability. The results compare favorably with recent experimental measurements.
The stagnated plasma reaches a quasi equilibrium with approximate balance of plasma pressure and
magnetic pressure, measured by b ! 1: The dependence of the stagnation radius on b and radiative
energy loss are calculated, using a simple radiation model. VC 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3697979]

I. INTRODUCTION

The Z pinch is a candidate as a driver for inertial fusion,
either in its own right or in related magneto-inertial
approaches.1–4 In a gas puff Z pinch, an intense axial current
is made to flow in a cylindrical plasma shell. The radially
inward Lorentz force implodes the shell of plasma toward the
axis of the cylinder. When the plasma reaches the axis, the
inflow stagnates. The plasma is compressed to high density
and temperature. A problem with the Z pinch, as with other
accelerating plasmas, is the Rayleigh Taylor instability. This
can cause the imploding plasma to fragment during stagna-
tion. The present paper is motivated by recently reported stud-
ies of stagnation in a neon gas puff Z pinch.5,6 In the
experiment, the ion kinetic energy was measured directly
from spectroscopic data, and shown to be mostly in hydrody-
namic motion, rather than in thermal energy. During the stag-
nation time ts ¼ 10 ns, the ion kinetic energy decayed to
about 10% of its value at the beginning of stagnation. During
stagnation, the plasma was measured to have electron density
ne ¼ 663# 1020 cm$3; electron temperature Te % 200 eV;
and average ion charge Z¼ 8–9.5. The peak applied current
was 500 KA. The stagnation radius rs was about 0.5 mm. The
Alfvén speed was vA % 1:2# 107 cm=s: This is consistent
with a stagnation time ts % 2:4rs=vA ¼ 10 ns:

Under these conditions,7 the electron-ion temperature
equilibration time is about 0:1ns& ts: Hence, the ion tem-
perature Ti was nearly the same as the electron temperature
Te during stagnation. The ion-ion collision time was sii %
2:3# 10$13 s, which is much shorter than the stagnation
time ts: During implosion, it was also the case that sii was
short compared to the timescale of the motion r=vA, the ra-
dius of the plasma divided by the Alfvén speed. If it is
assumed that Ti; ni;B varied adiabatically during implosion
(see Sec. III), then the ratio of the ion-ion collision time to
the implosion timescale, siivA=r % 0:36# ð1=ZÞ4rs=r: This
was less than unity during the implosion, even for Z ¼ Oð1Þ.
Hence, it could not be the case that the plasma had low colli-
sionality during implosion and then thermalized in an ion-
ion collision time at stagnation.3,6 The collisionality was

sufficiently high that the plasma was well described by
magnetohydrodynamics (MHD) during implosion and
stagnation.

In the experiment, the ion kinetic energy was measured
in the beginning of stagnation to be about 10 times the ion
pressure. The paper6 cautiously states that “the nature of
the hydrodynamic motion that dominates the ion kinetic
energy at stagnation is not clear as yet.” It was thought that
perhaps the motion was turbulent.8 The present paper
shows that the ion energy is not primarily due to turbulence
but produced by the laminar inflow of the implosion. It is
noteworthy that in other Z pinch experiments, the ion ki-
netic energy is apparently much higher than the implosion
kinetic energy.9–11 In those experiments the ion-electron
temperature equilibration time is relatively long compared
to the stagnation time, so the ion temperature can greatly
exceed the electron temperature. There the high ion temper-
ature may be caused by viscous heating caused by dissipa-
tion of g mode turbulence.12 In the experiment considered
here, the ion-electron temperature equilibration time is
short compared to the stagnation time, so that ion and elec-
tron temperatures were nearly equal. Representative values
of Reynolds number during implosion were Re % 106 in the
unmagnetized region and Re % 103 in the magnetized
region. The magnetic Lunquist number was S % 104: These
values are such that viscous and resistive heating are not
very important.

The simulations and theory presented here offer an ex-
planation of the effective ion energy. It is laminar kinetic
energy due to the implosion of the plasma. The ion kinetic
energy in the stagnation region is comparable to the pressure.
This gives a scaling of the ratio of kinetic energy per ion to
temperature proportional to Zþ 1, which in this case is about
10. There is a turbulent component of the kinetic energy in
the stagnation region, but it is not important in the initial
stage of the stagnation process.

It is shown that the radius of the high density plasma
core in stagnation expands from zero and then contracts,
similar to experimental observation.5,6 The maximum stag-
nation radius rs depends on the ratio of plasma pressure in
the core to magnetic pressure outside the core, measured by
the quantity b ! 1; defined below. The effect of radiativea)Electronic mail: hankrs2@gmail.com.
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energy loss on the stagnation radius is calculated, using a
simple radiation model. Radiation produces a smaller stagna-
tion radius.

According to the simulations presented here, the ion
motion in the core, in the beginning of the stagnation phase,
is not turbulent. Turbulence is introduced to the stagnation
region by collision of the expanding core with the incoming
Rayleigh Taylor unstable magnetic piston.

Visible light visualization of the imploding Z pinch
reveal larger scale features as well,13 which resemble nonlin-
ear Rayleigh Taylor instability.

The stagnation of the simulated gas puff Z pinch begins
with a shock wave3 reaching the axis and reflecting. The
shock wave is produced during implosion. The magnetic pis-
ton pushes on the plasma, compressing it. The temperature
of the compressed plasma gives the plasma piling up on the
piston front a high pressure. This causes the plasma to
expand ahead of the piston, creating a shock wave. During
the implosion, there is a region of moderately high density
unmagnetized plasma between the shock and the piston. This
region is bounded by the shock front radius and the magnetic
piston. The shock front is evidently stable, unlike the piston-
plasma interface, which is unstable.

The stagnation phase begins when the shock front
reaches the axis. The high density plasma column reflects
from the axis and expands. At this point, the stagnated
plasma is unmagnetized and is not turbulent. Shortly after,
the magnetic piston arrives and hits the outgoing reflected
shock. This causes the plasma column to shrink in diameter
and transfers turbulent motion from the piston front to the
stagnated column. The timescale for the expansion and con-
traction phase of stagnation is comparable to a sound or
Alfvén wave transit time across the column, consistent with
experimental observations.

The expansion and contraction of the stagnated plasma
is observed experimentally. The radiating plasma region is
seen to expand and contract in x ray pinhole images.5,6

The ion kinetic energy in the stagnated column is pre-
dominantly laminar motion of the shock, first reflecting from
the axis and then from the incoming piston. The experimen-
tal observations5,6 could not distinguish laminar from turbu-
lent motion. Radiation emitted by the plasma was integrated
along a chord passing nearly through the geometric axis.
This sampled Doppler shifts corresponding to a range of
velocities along the line of sight, including zero velocity.
The standard deviation of the Doppler shifts was interpreted
as a temperature-like effective energy. This did not give in-
formation about the radial structure of the plasma velocity.

The measurements indicated that the effective ion tem-
perature obtained from spectral broadening was about an
order of magnitude greater than the electron temperature. In
turn, the ion and electron temperatures should be nearly
equal because the collisional equilibration time is much
shorter than the stagnation time at the measured ion density.
It was concluded that the effective ion temperature was pro-
duced by hydrodynamic motion.6

In Sec. II, which follows, simulations are presented
which have some features of the experiment. The stagnated
plasma expands and contracts during the stagnation time ts;

which is comparable to about twice the stagnation radius rs

divided by the Alfvén speed. The kinetic energy is of order
of the pressure energy, which is (Zþ 1) times the ion pres-
sure. In the simulations, the stagnation process is at first not
turbulent; turbulence is introduced to the stagnation region
by collision of the expanding stagnation shock with the
incoming Rayleigh Taylor unstable magnetic piston. In Sec.
III, the stagnation radius rs is calculated, which depends on
b; the ratio of pressure energy to magnetic energy. A simple
expression for the stagnation radius rs is obtained which
agrees with simulations. The effect of radiative loss on rs is
calculated, using a simple radiation model, and is also in
agreement with simulations. Conclusions are presented in
Sec. IV.

II. SIMULATIONS

Simulations were done with an adaptation of the M3D
(Ref. 14) code. This code has been primarily applied to toka-
mak magnetic fusion devices. More recently, the code has
been applied to highly turbulent simulations, such as disrup-
tions15 and edge localized modes (ELMs).16 In these simula-
tions, strong advection was present. Upwind numerical
methods17 were introduced to deal with advection. This
made it possible to also simulate Z pinches in which advec-
tion is dominant. The code has the advantage of allowing
mesh refinement in two directions (r, z),18 which is helpful in
trying to find short wavelength turbulence, expected to occur
in Z pinch stagnation. Two dimensional simulations were
performed in cylindrical geometry.

The code solved the resistive MHD equations

q
@v

@t
¼ #qv $rv# ðr& BÞ & B#rpþ lr2v; (1)

@q
@t
¼ #r $ ðqvÞ; (2)

@B

@t
¼ r& ðv& BÞ þ gr2B; (3)

@T

@t
¼ #v $rT # ðc# 1ÞTr $ vþ Qþ vr2T; (4)

Q ¼ Qd þ Qb # Qrad; (5)

Qd ¼ q#1l½ðrvxÞ2 þ ðrvyÞ2); (6)

Qb ¼ q#1gðr& BÞ2: (7)

The total pressure is

p ¼ Z þ 1

Mi
qT; (8)

where Mi is the ion mass. A single temperature is used, mod-
eling rapid electron ion temperature equilibration. Here, Z is
the effective ion charge. From quasi neutrality, the electron
number density is Z times the ion number density. The
assumption of equal ion and electron temperatures gives Eq.
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(8) for the sum of ion and electron pressure. In the simula-
tional example given below, Z¼ 9. It is assumed that c¼ 5/3.

Radiation was treated using a simplified model, in which
Qrad was chosen so that the temperature was not allowed to
exceed a critical temperature Tc; modeling strong K shell
radiation. If the temperature was below Tc; then Qrad ¼ 0:
The temperature was adiabatic for T < Tc; while for T ¼ Tc

the temperature was isothermal.
In the two dimensional example the magnetic field is

B ¼ ð0; 0;BÞ;

where a (left handed) cylindrical coordinate system ðr; z;/Þ
is employed. The equations are in dimensionless form.14

Length, magnetic field, and density are in arbitrary units. Ve-
locity is in terms of Alfvén speed vA, and time is length units
divided by the Alfvén speed. Constant axial current bound-
ary condition is used. The idea is to make the simplest model
qualitatively like the experiment, in order to understand what
is happening.

The numerical method uses finite element discretization
on an unstructured mesh.18 In the present simulations, the
mesh is uniform, with triangular or rectangular elements.
Advection is treated with a flux limited upwinding method
for unstructured meshes.17

The dissipation coefficients are l; the viscosity, g; the
resistivity, and v; the thermal conductivity. In the examples
shown here, a finite element mesh was used of 100$ 280
meshpoints, with the region r < 0:2L refined in both the r
and z directions to give a local effective resolution of about
1000$ 800 meshpoints. The radius R is twice the axial
width L, R¼ 2L. The dissipative terms were solved implic-
itly. The viscosity was l ¼ 10%5; the resistivity g was 10%5;
and the thermal conductivity v ¼ 10%5: Spatially constant
dissipation coefficients were taken for simplicity. These
values were chosen in order to minimize possible stabiliza-
tion of short wavelength instabilities. Similar results were
obtained with the values of dissipation coefficients given in
Sec. I. The results are not sensitive to the values of
viscosity.

The initial normalized mass density was of the form

q ¼ q0½0:5% :45tanhððr % r1Þ=DÞ';

where r1 ¼ 1:85L;D ¼ 0:02L: Simulations with a more hol-
low density profile do not change the qualitative conclusions
reported below. Hence, a relatively simple model was chosen
to avoid consideration of detailed dependence on initial con-
ditions. The initial temperature was taken to be a constant,
T ¼ T0: The initial magnetic field was

B ¼ 0:5B0½1þ tanhððr % r1Þ=DÞ'=r:

B0 ¼ 0:5; q0 ¼ 1; so the Alfvén speed is 0.5. The spatial unit
is L¼ 1 cm, so the Alfvén time sA ¼ L=vA ¼ 2:

The magnetic field boundary condition maintains an
axial constant plasma current I. Simulations with an axial
current which rises in time change the time evolution quanti-

tatively but not qualitatively. Hence, a constant in time cur-
rent was chosen for simplicity.

The magnetic field is given by

B ¼ I=r: (9)

The magnetic field vanishes at r¼ 0, so that total current
is measured by I at the outer boundary r¼R. In the implo-
sion phase, I is approximately spatially constant between
R > r > rB; where rB is the radius of the maximum of the
z-average of B, which is approximately the magnetic front.

The initial velocity perturbation is a function of position
localized in the range r1 < r < R: The initial amplitude is
0:05vA. The perturbation is both “random,” oscillating from
grid point to grid point, and includes a non random sinusoi-
dal perturbation.

When the magnetic field pushes on the plasma, it starts to
form a high density layer, as in the snowplow effect. How-
ever, the pressure prevents the density from becoming too
high. Instead a shock forms ahead of the magnetic field, as
seen in Fig. 1. The front of the shock is stable, but the back of
the high density region, where it is pushed by the magnetic
piston, is Rayleigh Taylor unstable. Fig. 1(a) shows the
z-averaged magnetic field B at several times during the implo-
sion and stagnation. Also shown in Fig. 1(b) is the z-averaged
density q at the same time.

Contour plots of B and q are shown in Fig. 2, before the
shock reaches the origin. The magnetic piston front in Fig.
2(a) is perturbed by the Rayleigh Taylor instability. The shock
front in Fig. 2(b) is unperturbed, while the interface with the
magnetic piston is perturbed along with the magnetic field.

The condition for Rayleigh Taylor instability in a slab is

gq0 < 0;

where the effective gravity g ¼ vv0 and the primes denote ra-
dial derivatives. This is satisfied at the piston front, where
vv0 > 0 and q0 < 0; but not at the shock front, where both
vv0 > 0 and q0 > 0: The shock reaches the axis ahead of the
magnetic field and starts the stagnation phase.

The stagnation is caused by the buildup of pressure on
axis, which causes a pressure force on axis to oppose the
inward magnetic and inertial forces. After the shock reflects
from the origin, it propagates outwards. It encloses the high
density plasma which reaches the origin. It can be denoted
the stagnation shock. It is unmagnetized and expands rela-
tively slowly. During the expansion the shock front is stable,
with both vv0 < 0 and q0 < 0:

Contour plots of B and q are shown in Fig. 3, at time
t ¼ 3:4sA; after the shock reflects from the origin, halfway
through the stagnation phase. The magnetic piston front in
Fig. 3(a) is perturbed by the Rayleigh Taylor instability.
The density in Fig. 3(b) is perturbed at the magnetic piston
interface but the origin is relatively unperturbed. At this
time, the density has expanded to its maximum stagnation
radius.

The implosion and stagnation of the plasma column is
shown in Fig. 4, which shows the radii rB; rn1; rn2 as a func-
tion of time. The radius rB is defined as the radius of the
maximum value of the z-average of B. This a reasonable
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measure of the magnetic piston radius. The density is
described by two radii. The peak value of the z-averaged
density has radius r ¼ rn1: During implosion, it is the shock
radius. The radius of the half maximum z-averaged density
is rn2: During implosion, it is somewhat less than the mag-
netic piston radius rB: During stagnation, it is the radius of
the reflected shock wave, which first reflects from the origin
and then from the magnetic piston. Hence, it is always the
case that rn1 " rn2 " rB: The radius rn1 stays at zero during
stagnation because the density is maximum on axis. Experi-
mental observations are made of the radius rr; the average
maximum radius of temperature T ¼ Tc; as defined in Eq.
(4). This is the radius of the strongly radiating high tempera-
ture plasma. In the simulations, the radius rr expands,
reaches radius rB; and then contracts. The time scale for the
plasma to expand is ðrs=LÞsA ¼ 0:3 in dimensionless units,

taking rs equal to the minimum value of rB or the maximum
value of rr: If the stagnation time ts is taken to be 0:7sA;
then ts ¼ 2:3rs=vA; which is close the experimental value
ts ¼ 2:4rs=vA ¼ 10ns given in the Introduction.

The total kinetic energy drops at stagnation. Shown in
Fig. 5 are the total ion kinetic energy KE and the total pres-
sure P, as a function of time,

KE ¼ 1

2

ð ð
qv2rdrdz; (10)

P ¼ 1

c% 1

ð ð
prdrdz: (11)

The radiated energy, the viscously dissipated energy, and the
ohmically dissipated energy are all less than 0.05 P, hence

FIG. 1. (a) Magnetic field B, averaged in z, as a function of r, at times t ¼ 2:2sA; 2:9sA; 3:4sA: (b) Density q, averaged in z, as a function of r, at same times.
The high density region at t ¼ 2:9sA has not quite reached the origin. It is bounded on the left by the shock radius rn1 and on the right by the radius rn2, adjacent
to magnetic piston. At later times, the high density has reached the origin and rn1 ¼ 0; while rn2 is the width of the high density stagnated core.

FIG. 2. (a) Magnetic field B at time t ¼ 2:2sA: The magnetic front to the left is the magnetic piston. It is rippled by the Rayleigh-Taylor instability. (b) Density
q at same time. This is near the end of the implosion phase. The shock is on the left side of the high density density region, while the unstable piston interface
is to the right.
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negligible compared to the total pressure. Even with the
larger dissipation coefficients mentioned in the Introduction,
the heating is still relatively unimportant. The drop in kinetic
energy corresponds to a rise in plasma pressure, evidently
related to pdV compression of the plasma, rather than
dissipation.

The ion pressure Pi ¼ P=ðZ þ 1Þ; is also shown in Fig.
5, where Z¼ 9 as in the experiment described in the Intro-
duction.6 At the beginning of stagnation, the kinetic energy
is comparable to the pressure and is about (Zþ 1) times the
ion pressure. This is consistent with experimental observa-
tions6 as presented in the Introduction. After reaching the or-
igin, the ion kinetic energy is comparable to the plasma
pressure in the stagnated unmagnetized region

1

2
qv2

i % p: (12)

Hence from Eq. (8),

1

2
Miv2

i ¼ ðZ þ 1ÞT: (13)

The kinetic energy per ion is Zþ 1 times the temperature.
This scaling might be confirmed by carrying out a

sequence of simulations with different Z. However, Eqs. (1),
(2), and (3) do not contain Z explicitly. The same initial pro-
files of q;B; p; and v will give the same time dependent evo-
lution. From Eq. (8), T must be scaled as ðZ þ 1Þ&1 to give
the same pressure.

FIG. 3. (a) Magnetic field B at time t ¼ 3:4sA; in the stagnation phase. (b) Density q at the same time.

FIG. 4. Pinch radius, as determined from magnetic field rB, shock radius rn1;
density column rn2; and radiative radius rr as a function of time. At stagnation,
the shock radius reaches the origin and becomes zero. The density column ra-
dius rn2 expands to meet the magnetic radius rB and is reflected back toward
the origin. The radiative radius rr also expands to rB and then shrinks.

FIG. 5. Shown is the total ion kinetic energy KE and the total pressure P as
a function of time. Also shown is the ion pressure Pi ¼ P=ðZ þ 1Þ, where
Z¼ 9, hence Pi ¼ 0:1P. At the beginning of stagnation, the kinetic energy is
comparable to the pressure.
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III. STAGNATION RADIUS

Section II showed that the laminar inflow kinetic energy
is comparable to the pressure energy in the beginning of
stagnation. In turn the pressure is comparable to the mag-
netic pressure, measured by quantity b; defined below. In a
stagnated state, b can be used to obtain the stagnation radius
rs: The agreement between the analytic solution and numeri-
cal simulation is a simple test of the computer code. It is also
possible to find how radiative loss decreases the stagnation
radius.

The compression and stagnation of the plasma depends
on the quantity b; the ratio of plasma pressure to magnetic
pressure. If the plasma is in equilibrium, it satisfies force bal-
ance, from Eq. (1),

2br2rpþrðI2Þ ¼ 0; (14)

where the proportionality constant b has been introduced,
and I is given by Eq. (9). Integrating over the plasma vol-
ume, assuming @p=@z ¼ @I=@z ¼ 0 at the z¼ 0, L bounda-
ries and integrating by parts, yields

b ¼ 4

Ð
dzdrrp

I2
r L

; (15)

where Ir is measured at the outer boundary r¼R. The quan-
tity b is plotted as a function of time in Fig. 6. During the im-
plosion phase, the magnetic energy density exceeds the
plasma pressure, and b < 1:

The magnetic field and density are compressed approxi-
mately adiabatically. Let rs be the stagnation radius. Then
the density scales as

q / r%2
s

and the magnetic field scales as

B / r%1
s :

The temperature scales as

T / r%4=3
s ;

up to the critical compression for which T ¼ Tc; at which
radiation limits the temperature. The peak temperature as a
function of time is shown in Fig. 6. At the beginning of the
stagnation phase, the peak temperature reaches Tc and
remains there.

It follows that b scales as r%4=3
s for T < Tc; and b is in-

dependent of rs for T ¼ Tc: Fig. 6 shows that T and b have
the same time variation, until the stagnation phase.

The scaling of rs with b is confirmed in Fig. 7(a). In this
case Tc & T0; where T0 is the initial temperature. Then
bs=b0 ¼ ðR=rsÞ4=3; where bs ¼ 1 is the stagnation b; and b0

is the initial b: Hence,

rs ¼ b3=4
0 R: (16)

FIG. 6. Time history of b and T in a simulation. While the plasma is
imploding, b < 1: At the beginning of stagnation, b& 1: It then settles
down to b ' 1; at about t ¼ 3:4sA; indicating approximate equilibrium. Also
shown is the peak temperature Tmax in arbitrary units. The peak temperature
reaches Tc at t ¼ 3:0sA; just before stagnation. The time dependence of b
and T is almost the same until stagnation, indicating adiabatic compression.

FIG. 7. (a) The stagnation radius, rs; as a function of initial plasma b0, with no radiation, bc & b0. It is well fit by b3=4
0 ; indicating that the stagnation radius

satisfies b ¼ 1: (b) The stagnation radius, rs; as a function of radiation onset bc=b0; for fixed b0: The data are fit by the curves rs ¼ b3=4
0 R; for b& b0; and by

rs ¼ ðbc % b0Þ
1=2b3=4

0 R for lower b: The point with bc=b0 ¼ 10 corresponds approximately to the case in the previous plots.
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Because of the scaling of q;B; then b depends only on the
temperature, b ¼ 2Tq0=B2

0: In Fig. 7(b), T0 is constant,
while Tc is varied. There is a gradual cutoff of rs as Tc is
reduced. The critical value of Tc occurs when the stagnation
temperature equals the radiation onset temperature or
when Tc ¼ T0b

"1
0 : In Fig. 7(b), b0 ¼ 0:12: so that the critical

bc ¼ 8:33b0: In this plot, rs ¼ rn2 is the radius at which the
plasma first “bounces,” when the outgoing reflected shock
hits the incoming magnetic piston. The stagnation radius rs

is shown as a function of radiation onset bc=b0; for fixed b0:
The data are fit by the curves rs ¼ b3=4

0 R; for bc # b0; and
by rs ¼ ðbc " b0Þ

1=2b3=4
0 R for lower b: The rationale for the

lower b fit is that the stagnation radius is only a fraction
vs=vA of the nonradiating radius, where vs is the effective
sound speed in the stagnating column. The effective sound
speed is taken proportional to ðTc " T0Þ1=2:

IV. CONCLUSION

In conclusion, several points have been demonstrated
about a gas puff Z pinch resembling the experiment6

described in the Introduction. The experiment was in a col-
lisional parameter regime. Hence, it could not be the case
that the plasma had low collisionality during implosion and
then thermalized in an ion-ion collision time at stagnation.
Instead, the plasma was well described by MHD during im-
plosion and stagnation. Electron ion thermal equilibration
was sufficiently rapid so that ion and electron temperatures
were nearly equal. The simulations demonstrated several
features in common with the experiment. First, the plasma
core in stagnation expands from zero and then contracts,
similar to experimental observation.6 The time scale for this
is twice the stagnation radius rs divided by the sound speed
in the stagnated plasma. In turn, the sound speed is compa-
rable to the Alfvén speed, depending on b: Second, the ratio
of kinetic energy per ion, to temperature, is determined by
balancing ion kinetic energy with pressure in the stagnated
core. This gives a ratio of kinetic energy per ion to ion tem-
perature of about (Zþ 1), where Z is the ion charge. In the
neon gas puff of interest, Z ' 9; giving an order of magni-
tude ratio between the total pressure and the ion pressure.
Third, the ion motion in the core, in the beginning of the
stagnation phase, is not turbulent. Turbulence is introduced
to the stagnation region by collision of the expanding core
with the incoming Rayleigh Taylor unstable magnetic pis-
ton. Fourth, the stagnation phase reaches a quasi equilib-
rium with approximate balance of plasma pressure and
magnetic pressure, b ( 1: Finally, the dependence of the

stagnation radius on b and radiation are calculated, using a
simple radiation model.
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Appendix B: Notes on Hall MHD Turbulence in a Planar Plasma
Opening Switch

H.R. Strauss
HRS Fusion

West Orange NJ 07052

Abstract
We apply two fluid plasma evolution equations a planar plasma opening switch (POS). We find

Hall MHD turbulence is excited at the plasma boundary. We show that the propagation of the
magnetic field in a planar POS can be explained if the density gradient reverses sign. In that case
the magnetic field propagation is insensitive to the magnetic field polarity.

I. Introduction
We study Hall MHD turbulence in a planar plasma opening switch (POS) The relative

strength of the Hall term is measured by the Hall parameter H,

H =
c

ωpiL
=

vA

ΩiL
(1)

where c/ωpi is the ion skin depth, L is a typical length, vA is the Alfvén velocity, and Ωi is
the ion cyclotron frequency. The MHD limit isH ! 1. In the high density plasma opening
switch experiments,H ≈ 1. Electron MHD is obtained in the limitH # 1 [8].

When H is of order unity or more, the plasma, which is Rayleigh Taylor unstable,
becomes unstable to faster growing Hall Rayleigh Taylor instability [14]. In both cases, the
instability criterion is that the density gradient is opposite to the magnetic field gradient.
This implies that when there is a snowplow effect, in which density is piled up ahead of a
magnetic front, the front of the snowplow is stable [9].

When there is a density gradient transverse to the magnetic front, the Hall effect causes
magnetic field penetration [1]. The penetration depends on the polarity of the magnetic
field. If the polarity has one sign (positive) the field penetrates, while if it has the opposite
(negative) sign, the field is does not penetrate. On the other hand, experimental evidence
indicates that penetration (or at least propagation) occurs for either polarity [4]. It was
suggested that perhaps Hall Rayleigh Taylor turbulence allowed propagation of the field
regardless of polarity [4]. The present results on Hall turbulence show that this is unlikely.
The turbulence occurs behind the magnetic front. In a previous study it was shown that the
Hall effect tends to be turned off and the motion of the front is dominated by MHD plasma
pushing [7]. Here another possibility is suggested, that the density gradient changes sign. In
that case penetration will always occur, although depending on polarity, penetration occurs
in different regions of the POS. This causes the front to have characteristic wedge shape,
which is seen in experiments [4].

II. Two-Fluid Equations
In the experiment reported in [4, 5, 6], there were two ion species, hydrogen and carbon

ions. In a previous study, we considered the effects of the relative drift of the ion species
and found it made little qualitative difference [7]. In this study, for simplicity, we will study
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a single ion species, which in fact could be composed of several species that move with the
same MHD velocity, having effective mass µZ compared to a proton mass and average
charge Ze. The average ion number density is nZ . From quasineutrality (negligible Debye
length), the electron density is

ne = ZnZ . (2)

The electron velocity can be expressed in terms of the current, as

ve = v −
H

ne
∇× B (3)

where v is the ion velocity. Here dimensionless variables have been introduced. The mag-
netic field, density, and length are normalized to typical values. Velocities are expressed in
terms of Alfvén speed. The time is expressed in Alfvén transit times τA = L/vA, where
L a length. This scaling was used in our previous study [7]. Since the experiments of in-
terest have low plasma pressure relative to magnetic pressure, the plasma pressure will be
neglected. The ion momentum equation can be added together with the electron equation
to obtain the MHD result,

n
∂v

∂t
+ nv ·∇v = (∇× B) × B (4)

Here n is given by
n = µZnZ (5)

Neglecting electron pressure and electron inertia, the induction equation gives

∂B

∂t
= ∇×

[(

v −
H

ne
∇× B

)

×B − η∇×B

]

(6)

where η is the resistivity. The mass density satisfies

∂n

∂t
= −∇ · (nv) . (7)

This is a complete set of equations, (4), (6), (7) for the primary variables v, B, n .
III. Hall Rayleigh Taylor Instability

The Hall Rayleigh Taylor instability has been described previously [14].
To analyze stability, assume slab geometry and perturbed velocity

ṽ = (ṽx, ṽy, 0).

It will be assumed that the perturbed quantities have the time and spatial dependence,

ṽ ∼ exp(γt + ikZ).

Then (7) becomes
γñ = −n′ṽx − iknṽy (8)
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where the prime denotes a derivative with respect to the argument x. Similarly (6) gives

(γ + ηk2)B̃ = −(B′ − iγk
H

Z
))ṽx − ikBṽy. (9)

The y component of (4) yields
γnṽy = −ikBB̃ (10)

This can be used to eliminate ṽy from (9) to give
[

nγ(γ + ηk2) + k2B2
]

B̃ = −nγ(B′ − iγk
H

Z
))ṽx (11)

and from (8) to yield

γñ = −n′ṽx −
Bk2

γ
B̃ (12)

Taking the φ̂ component of the curl of (4) gives

∇× (γṽ + ˜v ·∇v) · ẑ =
1

2n2
∇n ×∇B2 · ẑ (13)

and substituting (11),(12) yields the dispersion relation

(γ + ηk2 +
B2k2

γn
)(γ +

BB′n′

γn2
) = (B′ − ikγ

H

Z
)(

B2B′k2

γ2n2
+

Bn′

n2
) (14)

There are two limits of interest. TheMHD limit is obtained fromH = 0 and γ2 $ k2B2/n.
This yields

γ2 =
BB′

n
(
B′

B
−

n′

n
) (15)

In the MHD limit, stability requires that

n′

n
>

B′

B
.

It evidently is possible to have an MHD instability if the density gradient has the same sign
as the magnetic field gradient. This might happen at the front of a snowplow. However
the density gradient cannot become steeper than the magnetic field gradient, or it becomes
stable. In the case when the gradients of density and magnetic field have opposite sign,
there is MHD instability.

The other limit of interest is the case in which Hk % 1. This gives the dispersion
relation [14]

γ2 = −
B′

n′
Bk2. (16)

If the acceleration is expressed in terms of a gravity

g = −B
B′

n
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the dispersion relation becomes
γ2 = g

n

n′
k2.

It is evident from (16) that the instability requires opposite density and magnetic field gra-
dients.

The Hall MHD Raleigh Taylor instability can give a high level of turbulence. A simple
quasilinear estimate of the nonlinear saturation is

ṽ =
γ

k
=

(

Ln

LB

)1/2

vA (17)

where the expression (16) was used for the growth rate, LB = B/B′, Ln = −n/n′. This
shows that the saturated turbulence will have perturbed velocity comparable to the directed
energy. There is evidence that this is the case in POS experiments.

IV. Simulation of a Planar Plasma Opening Switch
In this section we show simulations of a model planar plasma opening switch using

the equations developed in the previous section. The simulations were done with a sub-
stantially modified version of the M3D [12, 13] code. Because of numerical difficulties
with low density, the problem of field penetration from a vacuum region into the plasma
is not considered here. It is assumed that the field has penetrated into the plasma. The
computations are concerned with the propagation of the magnetic field in the plasma. The
computations used a 70×70 rectangular mesh. The dimensionless radial width is Ly = 2L,
and the vertical length is Lx = 5L, similar to the experiments [4, 5, 6]. Dissipation is added
to the equations: the resistivity was η = 10−3vAL, which is about an order of magnitude
greater than collisional diffusion [4, 5, 6]. This is compatible with more recent experimen-
tal measurements. The initial ion density has a spatial dependence of the form F (x)G(y)
where

F (x) = [1 − 0.9 tanh((x − x0)/∆)]

where x0 = .75Lx, ∆ = 0.05Lx, and

G(y) = (1 + 4|(y − y0)/(Ly − y0)|)

. The y density gradient changes sign at y = y0. In the example y0 = 0.3Ly. The x
dependence of the density The effective mass µZ = 4, and the effective charge Z = 1.33,
assuming a mixture of 1/4 carbon and 3/4 protons. The magnetic field B has only a z
component. The initial magnetic field is proportional to

B ∝ [1 + tanh((x − x0)/∆)].

The initial velocity is a random function of position localized in the range x > x0. The
initial amplitude is 0.01vA.

With the finite element method employed here, there is no need to specify boundary
conditions, except for the diffusion term. For this term, a Neumann (zero normal derivative)
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boundary condition is used, except for the magnetic field at y = 0. There, the magnetic field
is held constant in time, B(x, 0, t) = 1.

In the following simulations the normalized Hall parameterH = 4.Contour plots of the
magnetic field are shown in Fig.1. Shown are (a) the initial field B, and (b) the field at time
t = 1.7τA. The magnetic front advanced into the plasma. The front is laminar, although it
is wedge shaped. The front advances fastest where the density is lowest, where the initial
density gradient vanishes. At this point the Hall velocity [1] vanishes. Behind the front
there are eddy like structures. It would seem that the eddy structures can not play a role
in the magnetic front propagation, although they affect the magnetic field behind the front.
The corresponding electron density is shown in Fig.2. The times in Fig.2(a) and Fig.2(b)
are the same as in Fig.1. The initial density in (a) reverses its vertical gradient and has a
larger negative axial gradient. In Fig.2(b) there two effects: the electron density has piled
up at the front, and eddy structures have formed. The Rayleigh Taylor instability requires
∇B · ∇ne < 0. The instability condition is satisfied at the edge of the plasma. It is of
interest to investigate the turbulent velocity associated with the eddies. The plot in Fig.3 is
made by checking the ŷ component of fluid velocity at every mesh point contained in a box
whose vertices are (x, y) = (Lx/2, Ly/4), (Lx/2, 3Ly/4), (Lx, 3Ly/4), (Lx, Ly/4). The
mesh point is added to a bin whose velocities are in the range (n)dv < vy < (n + 1)dv,
where dv = (vymax − vymin)/N and 0 < n < N. The main feature is a broadened non
zero velocity. In Fig.3 (a) are plotted the initial axial velocity distribution. The average
velocity is nearly zero. The horizontal axis of the figure shows that the velocity is in the
range |vx| < 0.01vA. At the later time Fig.3(b) corresponding to the previous figures, the
spectrum has broadened to vx > 1.4vA, with the peak of the spectrum at vx = −0.15vA.

In the next series of plots the magnetic field polarity is reversed. The magnetic field is
shown in Fig.4(a) at time t = 1.7τA. The structure is quite similar to the case of normal
polarity, suggesting that the main effect is MHD pushing. The density is shown in Fig.4(b)
at the same time, and it is quite similar to Fig.2(b). The spectrum at the same time is shown
in Fig.5.

IV. Conclusion
In this paper we have applied two fluid plasma evolution equations to the problem of

magnetic field propagation in a planar plasma opening switch. We find that, similar to ex-
periment, there is strong Hall Rayleigh Taylor turbulence at the plasma boundary. The tur-
bulence is behind the front and cannot be responsible for the front propagation. Instead the
propagation appears to be largely MHD pushing, which has its maximum velocity where
the density is a minimum. When there is density gradient reversal, the front has a wedge
shape whose propagation is independent of the polarity of the magnetic field.

Appendix
It is interesting to compare these results to recent experimental POS data [15]. The POS

diagnostics were improved to give an order of magnitude better spatial resolution, of about
twice the electron skin depth, whose value is 3×10−2cm. This should be adequate to resolve
the Hall Rayleigh Taylor modes, whose wavelength should be longer than the electron skin
depth. If the modes are damped by gyrovsicosity, the stability condition would be kρi < 1,
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where ρi is the ion gyroradius and k is the wavenumber. In terms of the electron skin depth
this condition is

kδe(mivA/mevi)
1/2 = kρi < 1,

where vi is the ion thermal speed, and me, mi are electron and ion masses. The expression
in the parentheses is > 1, hence the modes will be damped even for kδe < 1.

The magnetic field front was observed to be laminar, with a profile similar to that ex-
pected from a snowplow model of magnetic field penetration [8]. The width of the front,
wB = 0.5cm, is consistent with anomalous resistivity, where wB is the width of the mag-
netic front. The front moved at about half the Alfvén speed, which was vA = 6×107cm s−1.
The ion velocity distribution was measured behind the magnetic front. In the front, the dis-
tribution was relatively narrow, while behind the front, the velocity distribution was broad,
consistent with the picture of turbulence developing behind the front in Fig.3,Fig.5. If we
use the Hall MHD Rayleigh Taylor growth rate (16) then the modes have of order kwB e -
folding times to grow and reach nonlinear saturation. It is possible that kwB ≈ 10, which
would make the mode wavelength resolvable, although so far the turbulent eddies have not
been identified. If we use the simple saturation model (17), then the perturbed velocities of
the eddies is comparable to the directed velocity. This is consistent with measurements of
the perturbed velocities.
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(a)

(b)

Figure 1: magnetic field B at times (a) t = 0 and (b) t = 1.7τA.

(a)

(b)

Figure 2: electron density ne at times (a) t = 0 and (b) t = 1.7τA.
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(a) (b)

Figure 3: integral energy spectrum at times (a) t = 0 and (c) t = 1.7τA.

(a)

(b)

Figure 4: (a) magnetic field B at time t = 1.7τA. (b) electron density ne at time t = 1.7τA.
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Figure 5: integral energy spectrum at time t = 1.7τA.
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Appendix C: Finite Temperature Effects in a Three Species Planar
Plasma Opening Switch

H.R. Strauss
HRS Fusion

West Orange NJ 07052

Abstract
We apply three fluid plasma evolution equations to a planar plasma opening switch (POS) with

two ion species. Finite temperature permits the low mass plasma species to propagate as an unmag-
netized shock ahead of the magnetic piston, while the high density species lags behind the magnetic
piston.

I. Introduction
We study Hall MHD motion in a planar plasma opening switch (POS). Previous theory

has been reasonably successful in explaining features of POS experiments [7, 1]. Several
experimental features have been unexplained [15], in particular the following:

1. The current channel width is much wider than predicted [1]. It is measured to be
much wider than a resistive diffusion scale or skin depth.

2. Different ion species show different dynamics. The plasma consists of protons and
carbon ions. The protons move ahead of the magnetic field front, while the heavy ions are
penetrated by the magnetic field and lag behind the magnetic field front.

The two features 1 and 2 can be explained by including finite temperature in the dy-
namics, which was neglected in previous theory.

An additional feature is that the magnetic field propagation is independent of the sign of
the magnetic polarity [4]. It was shown that the Hall term in Ohm’s Law tends to be turned
off and the motion of the magnetic field front is dominated by MHD plasma pushing [7],
which is independent of magnetic polarity.

The relative strength of the Hall term is measured by the Hall parameter H,

H =
c

ωpiL
=

vA

ΩiL
(1)

where c/ωpi is the ion skin depth, L is a typical length, vA is the Alfvén velocity, and Ωi is
the ion cyclotron frequency. The MHD limit isH ! 1. In the high density plasma opening
switch experiments,H ≈ 1. Electron MHD is obtained in the limitH # 1 [8].

When H is of order unity or more, the plasma, which is Rayleigh Taylor unstable,
becomes unstable to faster growing Hall Rayleigh Taylor instability [14]. In both cases, the
instability criterion is that the density gradient is opposite to the magnetic field gradient.
This implies that when there is a snowplow effect, in which density is piled up ahead of a
magnetic front, the front of the snowplow is stable [9].

Finite temperature gives a pressure to the snowplow and causes the snowplow to ex-
pand. The low mass plasma species propagates as an unmagnetized shock ahead of the
magnetic piston, while the high density species lags behind the magnetic piston. The light
species can have a velocity much larger than the heavy species, as seen in experiment.
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The magnetic field partly penetrates the plasma and partly is carried with it. The varia-
tion of the electron velocity between the light and heavy species tends to stretch the mag-
netic field, giving a large width to the current channel.

Hence, three fluid Hall MHD offers an explanation of the experimental features listed
above.

II. Three-Fluid Hall MHD Equations
The derivation of three fluid Hall MHD equations has been given previously [7, 11].

These derivations omitted finite pressure, which is found to have an important effect,
and which is included here. In the experiment reported in [4, 5, 6], there were two ion
species, hydrogen ions with density ni and carbon ions with density nZ and charge Ze.
From quasineutrality (negligible Debye length), the electron density is

ne = ni + ZnZ . (2)

The electron velocity can be expressed in terms of the current, as

neve = nivi + ZnZvZ − H∇×B (3)

Here dimensionless variables have been introduced. The magnetic field, density, and length
are normalized to typical values. Velocities are expressed in terms of Alfvén speed. The
time is expressed in Alfvén transit times τA = L/vA, where L a length. The scaling is
discussed in Appendix A. Neglecting electron inertia, the electron momentum equation is

E + ve × B = −H
∇pe

ne
(4)

The dimensionless ion momentum equations are,

∂vi

∂t
+ vi ·∇vi =

1

H
(E + vi × B) −

∇pi

ni
(5)

∂vZ

∂t
+ vZ ·∇vZ =

Z

µZH
(E + vZ × B) −

∇pZ

nZ
(6)

where µZ is the mass ratiomZ/mi. The light ion momentum equation (5) can be multiplied
by ni and the heavy ion momentum equation (6) by µZnZ , and the equations added together
with the electron equation to obtain the MHD result, where all the terms are standard except
the inertia terms containing vD,

n
∂v

∂t
+ nv ·∇v + µZ∇ · (

ninZ

n
vDvD) = (∇× B) × B −∇p + µn∇2

v (7)

where p = pi + pZ + pe and µ is a viscosity. The mass density and center of mass velocity
have been introduced,

n = ni + µZnZ (8)

nv = nivi + µZnZvZ (9)
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along with the difference velocity

vD = vi − vZ . (10)

Next, the heavy ion equation (6) can be divided by µZ and subtracted from the light ion
equation (5) to give

∂vD

∂t
=

Ω

H
vD ×

B

B
+ F (11)

where

Ω =
ZnB

µZne
(12)

F =
µZ − Z

µZne
(∇×B × B −∇pe) −

∇pi

ni
+

∇pZ

µZnZ

−v ·∇vD − vD ·∇v − µ2

Z

nZvD

n
·∇

nZvD

n

+
nivD

n
·∇

nivD

n
− µ∇2

vD (13)

The electron velocity (3) can be expressed

ve = v + (µZ − Z)
ninZ

nne
vD −

H

ne
∇× B (14)

This can be inserted in the induction equation

∂B

∂t
= ∇× (ve ×B − η∇×B) (15)

where η is the resistivity. The mass density satisfies

∂n

∂t
= −∇ · (nv) + χ∇2n (16)

where χ is a diffusion coefficient, and the electron density satisfies

∂ne

∂t
= −∇ ·

(

nev + (µZ − Z)
ninZ

n
vD

)

+ χ∇2ne (17)

The ion densities can be obtained from the mass density (8) and electron density (2),

ni =
µZne − Zn

µZ − Z
(18)

nZ =
n − ne

µZ − Z
(19)

and the ion velocities can be obtained from the mass velocity and difference velocity,

vi = v +
µZnZ

n
vD (20)
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vZ = v −
ni

n
vD (21)

The pressures are given by

pe = neTe (22)
pi = niTi (23)
pZ = nZTZ (24)

In the following we we assume an isothermal temperature model, although an adiabatic
model is also reasonable. In the simulations we will also assume cold ions, Ti = TZ = 0,
so that only Te = constant is nonzero.

There is now a complete set of equations, (7), (11), (15), (16), (17) (22), (23) (24) for
the primary variables v, vD, B, n, ne, pe, pi, and pZ . The ion densities ni, nZ are derived
from (18), (19) and the ion velocities from (20), (21).

The first term on the right hand side of (11) causes the velocity to rotate with angular
frequency Ω/H. The other terms correspond to inertial and Lorentz acceleration. The ro-
tation effect appears to be important in making a transition to MHD behavior in a dense
planar plasma opening switch. After an initial transient involving rotation, vD becomes a
drift perpendicular to the magnetic field. In steady state, from (11),

vD ≈
H

ΩB
F ×B. (25)

Where the plasma is unmagnetized, B = 0, then

∂vD

∂t
≈ F.

This allows separation of the ion species in unmagnetized regions, an effect which was
neglected previously.

III. Simulation of a Planar Plasma Opening Switch
In this section we show simulations of a model planar plasma opening switch using

the equations developed in the previous section. The simulations were done with a sub-
stantially modified version of the M3D [12, 13] code. Because of numerical difficulties
with low density, the problem of field penetration from a vacuum region into the plasma
is not considered here. It is assumed that the field has penetrated into the plasma. The
computations are concerned with the propagation of the magnetic field in the plasma. The
computations used a 50 × 125 rectangular mesh. The dimensionless height is Ly = 2L,
and the horizontal length is Lx = 5L, similar to experiment [4, 5, 6]. Dissipation is added
to the equations: the dimensionless dissipation coefficients were η = µ = χ = 10−3vAL,
which is about an order of magnitude greater than collisional diffusion [4, 5, 6]. This is
compatible with more recent experimental measurements. The initial ion densities have a
spatial dependence of the form

n(x, y) = 1 − c0f(x)g(y) (26)
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where
f(x) = 1 − tanh[(x − xn)/δ] (27)

and where c0, xn, δ are constants given by c0 = 0.9, xn = 4L, δ = .05L. and

g(y) = 1 + qy/Ly (28)

The effective mass µZ = 12, and the effective charge Z = 2.7. The initial heavy ion
density nZ is 1/Z of the initial light ion density ni, so the two species contribute equally to
the electron density ne. The magnetic field B has only a z component. The initial magnetic
field is proportional to

B ∝ 1 + tanh((x − xB)/δ). (29)

where xB = 4.5L.
The initial velocity is a random function of position localized in the range x > x0. The

initial amplitude is 0.01vA.
With the finite element method employed here, there is no need to specify boundary

conditions, except for the diffusion term. For this term, a Neumann (zero normal derivative)
boundary condition is used, except for the magnetic field at y = 0. There, the magnetic field
is held constant in time, B(x, 0, t) = 1.

In the following simulation the normalized Hall parameter H = 1. The normalized
electron temperature is Te = 0.1. Contour plots of the magnetic field and density are shown
in Fig.1. Shown are (a) the initial field B, and (b) the initial light ion density ni. The initial
heavy ion density nZ has the same contours as ni, but rescaled by a factor 1/Z. The initial
axial profiles in the midplane, B(x, Ly/2), ni(x, Ly/2), nZ(x, Ly/2), are shown in Fig.2.

At time t = 7.1τA, the contours of B, ni, nZ are shown in Fig.3. The axial profiles in
the midplane, at the same time, are shown in Fig.4. The light ion density has advanced
furthest. It has a broad axial profile. The magnetic field lags behind. Further behind the
magnetic field, is the heavy ion density nZ .

The separation of the two ion species requires nonzeroH . The case ofH = 0, Te = 0.1
is shown in Fig.5, at time t = 7.85τA. Here the heavy ions move together with the light
ions.

The case of H = 0, Te = 0 is shown in Fig.6, at time t = 6.33τA. The light ions and
heavy ions are pushed together in a thin layer ahead of the magnetic field.

The ions are much more peaked when the temperature Te = 0. The case ofH = 1, Te =
0 is shown in Fig.7, at time t = 5.14τA. The light ions are pushed in a thin layer ahead of
the magnetic field. The heavy ions lag behind the magnetic front.

The three fluid equations support three velocities of moving shock like structures: vB,
the magnetic piston velocity ve (3); vi, the light ion species velocity (20); and vZ , the
heavy ion species velocity (21). Nearly always vi > vZ . The magnetic front velocity is
typically less than or equal to the light ion velocity, vi ≥ vB. In the following, the initial
heavy ion density nZ is 1/µZ of the initial light ion density ni. The magnetic front velocity
is mostly a fraction the Alfvén velocity in addition to a small contribution from the Hall
velocity. It was shown in previous work [7] that the Hall velocity tends to vanish, because
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the density gradient tends to align with the magnetic field. The field penetration comes from
the difference velocity vD, which causes the heavy ions to be penetrated by the magnetic
field and lag behind the magnetic front.

A qualitative understanding of these results can be developed as follows. Assume all
quantities are planar, i.e. functions of x only. Hence q will not be considered. Assume that
the magnetic piston and plasma species are moving at a speed v0 = −B0/n

1/2

0 , the average
Alfvén speed of the piston. Now let v = v0 + v1 ahead of the piston. In the moving frame
of the piston, from (7), B = 0 and

∂v1

∂t
+ v1

∂v0

∂x
= −

Te

n

∂n

∂x

Substituting for v0, and assuming that v1 is time independent and n ≈ n0, yields

v1 = −2
c2
2

v0

where cs = T 1/2
e , the sound speed. Hence, if the pressure is neglected, v1 and the MHD

velocity is the same as the piston velocity. IfH = 0, there is no difference velocity, vD = 0.
The light and heavy ions move together. If H #= 0, the difference velocity equation (11) is
almost the same as (7) when µZ >> Z. Hence behind the piston, vD ≈ v. If vi >> µzvz

ahead of the piston, then v ≈ vi. Since vD = vi − vZ ≈ vi, then vZ ≈ 0. Hence, ahead of
the piston, nZ , vZ ≈ 0.

Behind the piston, from (25), vDx = 0. Hence light and heavy ions move together at
the piston speed. The magnetic field is also advected at the speed v0. The Hall term in
(15) vanishes if there is no vertical gradient, ∂ne/∂y = 0. Similarly the vD term does not
contribute when it is given by (25).

The spreading of the current sheet might be understood as follows. The magnetic field
partially penetrates the light and heavy ions. When the light and heavy ions move at dif-
ferent speeds, when H > 0, the magnetic field also moves at somewhat different speeds at
the top and bottom of the magnetic field front. The magnetic field gradient is stretched out
and broadened. Its width becomes comparable to the height of the plasma, as is observed
experimentally [4].

To summarize, ahead of the piston, if T > 0, the light ions move faster than the piston.
IfH = 0, both ion species move together, as in Fig.5, while ifH > 0, the heavy ions move
with the piston, as in Fig.4. If T = 0, then ifH = 0, both species move at the piston speed,
as in Fig.6. Instead of ions moving ahead of the piston, the ion density piles up as in a
snowplow. If T = 0 and H > 0, there is some magnetic penetration of the heavy ions, as
in Fig.7, which may depend on a transient effect not described above.

IV. Conclusion
In this paper we have applied two fluid plasma evolution equations to the problem of

magnetic field propagation in a planar plasma opening switch. The magnetic field propa-
gates at the Alfvén speed, with only a very small Hall contribution. This is because the Hall
term tends to be suppressed, as shown previously [7]. In the presence of finite pressure, the
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ions are pushed ahead of the magnetic piston. This can also occur in Z pinch implosions. In
the POS, the Hall parameter produces a difference velocity between light and heavy ions.
This causes the heavy ions to lag behind the magnetic piston, and for the heavy ions to
be penetrated by the magnetic field. The light ion velocity, in the examples given here, is
generally about twice the heavy ion velocity, an effect seen in POS experiments.
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(a)

(b)

Figure 1: (a) light ion density ni, (b) magnetic field B, at time t = 0.0τA.
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Figure 2: Profiles of light ion density ni, magnetic field B, and heavy ion density nZ at
time t = 0.0τA.
at time t = 7.60τA.
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(a)

(b)

(c)

Figure 3: (a) light ion density ni, (b) magnetic field B, and (c) heavy ion density nZ at time
t = 7.13τA. The dimensionless parameters are H = 1, Te = 0.1.
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Figure 4: Profiles of light ion density ni, magnetic field B, and heavy ion density nZ at
time t = 7.13τA. The dimensionless parameters are H = 1, Te = 0.1.
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Figure 5: Profiles of (a) light ion density ni, (b) magnetic field B, and (c) heavy ion density
nZ at time t = 7.85τA. The dimensionless parameters are H = 0, Te = 0.1.
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Figure 6: Profiles of light ion density ni, magnetic field B, and heavy ion density nZ at
time t = 6.33τA. The dimensionless parameters are H = 0, Te = 0.0.
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Figure 7: Profiles of light ion density ni, magnetic field B, and heavy ion density nZ at
time t = 7.14τA. The dimensionless parameters are H = 1, Te = 0.0.
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Introduction

• Experiment at Weizmann Institute
– Experiment is about to start operation
– 500KA Z pinch, with 1 T applied axial magnetic field
– Plan to measure 3D magnetic fields
– Related to liner experiments: axial field but no liner!
– Initial state: plasma is ionized in a spatially constant axial field, 

then imploded by axial current

• Theory and simulations 
– Will compare predictions with experiment
– H. Strauss, Stagnation of a gas puff Z pinch, Phys. Plas.19 

(2012):  2D simulations of WIS Z pinch without axial field



Model MHD equations
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Rayleigh Taylor stabilization
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Kink / Tearing mode destabilization
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Fourier transform, multiply by exp( ) and integrate over x
(ballooning transform) to get a 1st order equation (Strauss, P.Fl. 24, 1981, 2004.)
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Stagnation radius
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Simulations with M3D code

• M3D used mostly for tokamaks, but allows advection 
dominated calculations

• Unstructured mesh in (r,z)
• Parallelized with OpenMP and MPI
• Solves full (not approximate) resistive MHD equations



Low axial field example
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Higher axial field
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Kink / tearing stability
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Kink stability criterion for previous case is consistent
turbulence in simulation. The turbulence is external
to stagnation region, so it may be benign



Conclusions

• theory of effect of axial magnetic field on Z pinch 
Rayleigh Taylor and kink stability
– Rayleigh Taylor stable for moderate axial field
– Kink mode easily destabilized

• Simulations in qualitative agreeement with theory
– Rayleigh Taylor unstable for small axial field
– Kink unstable, becomes turbulent, but outside the stagnation 

region

• Experiment
– To be done at WIS
– Compare with these results


