
36 U.S. Department of Energy Journal of Undergraduate Research 

http://www.scied.science.doe.gov

MASSIVELY PARALLEL LATENT SEMANTIC ANALYSES USING A GRAPHICS PROCESSING UNIT

JOSEPH CAVANAGH AND XIAOHUI CUI

 Joe Cavanagh was born in St. Paul, MN and grew up in nearby Woodbury.  
He currently attends the  University of Minnesota–Morris, where he is 

pursuing a degree in computer science.  Joe completed his fi rst SULI appointment 
with the ASER group at Oak Ridge National Laboratory in August 2008.  
After graduation, he plans to work as a software engineer in the St. Paul area.  
In his spare time, Joe enjoys watching and playing basketball.

 Xiaohui Cui is an associate research staff member in the Computational 
Sciences & Engineering Division of Oak Ridge National Laboratory.  

He received his Ph.D. degree in Computer Science and Engineering from 
 University of Louisville in 2004.  His research interests include swarm 
intelligence, high performance computing, agent based modeling and 
simulation, emergent behavior in complex systems, information retrieval 
and knowledge discovering.  Dr. Cui has performed a number of research 
works in multi-agent systems, parallel and distributed knowledge discovering 
algorithms, and swarm-based social simulation.  His current research focuses 
on developing new computational algorithms inspired from biological models. 

ABSTRACT

Latent Semantic Analysis (LSA) aims to reduce the dimensions of large term-document datasets using Singular 
Value Decomposition.  However, with the ever-expanding size of datasets, current implementations are not fast 
enough to quickly and easily compute the results on a standard PC.  A graphics processing unit (GPU) can solve 
some highly parallel problems much faster than a traditional sequential processor or central processing unit 
(CPU).  Thus, a deployable system using a GPU to speed up large-scale LSA processes would be a much more 
effective choice (in terms of cost/performance ratio) than using a PC cluster.  Due to the GPU’s application-specifi c 
architecture, harnessing the GPU’s computational prowess for LSA is a great challenge.  We presented a parallel 
LSA implementation on the GPU, using NVIDIA® Compute Unifi ed Device Architecture and Compute Unifi ed Basic 
Linear Algebra Subprograms software.  The performance of this implementation is compared to traditional LSA 
implementation on a CPU using an optimized Basic Linear Algebra Subprograms library.  After implementation, we 
discovered that the GPU version of the algorithm was twice as fast for large matrices (1 000x1 000 and above) that 
had dimensions not divisible by 16.  For large matrices that did have dimensions divisible by 16, the GPU algorithm 
ran fi ve to six times faster than the CPU version.  The large variation is due to architectural benefi ts of the GPU for 
matrices divisible by 16.  It should be noted that the overall speeds for the CPU version did not vary from relative 
normal when the matrix dimensions were divisible by 16.  Further research is needed in order to produce a fully 
implementable version of LSA.  With that in mind, the research we presented shows that the GPU is a viable option 
for increasing the speed of LSA, in terms of cost/performance ratio.

INTRODUCTION

Considering the large amount of data being collected annually, 
methods are needed to extract valuable information from this data 
[1].  Latent Semantic Analysis (LSA) is a numerical technique used 
to extract information from large collections of text documents such 
as relationships between various terms, sentences and full documents 
[2]–[3].  LSA works by taking the singular value decomposition 
(SVD) of A where A = D*DT, with D being the term-document 
matrix.  A term-document matrix contains a numerical value for each 
term in its respective document, with the documents representing 
the columns of the matrix and the terms representing the rows of 
the matrix.  Since there are often 5 000 or more unique terms, and 
documents may contain only a couple hundred terms, many of the 
matrix values become zero.  The term-document matrix is created 
beforehand, using a term weighting and text stripping algorithm such 
as a Term Frequency-Inverse Document Frequency (TF IDF) [14].  
The core of the SVD algorithm requires an eigendecomposition 
of the matrix, which has been a computational problem for many 

decades [2], [7]–[8], [11].  This makes SVD a computationally 
expensive algorithm, which makes it a prime candidate for 
decreasing processing times [2], [7], [11].  Many modern SVD 
methods tridiagonalize A before computing the SVD, due to the 
performance increase between calculating SVD on a normal matrix 
and a tridiagonal matrix [2], [7]–[8], [15].  A tridiagonal matrix is a 
matrix with values only in its main diagonal, one element above the 
main diagonal, and one element below the main diagonal.  All other 
elements in the matrix are set to zero.  Tridiagonalization takes up a 
large portion of the time for computing the SVD, so our main focus 
is our parallel algorithm which saves computation time.

Recently, the graphics processing unit (GPU) has become 
a focus for inexpensive, high performance computing in various 
scientifi c fi elds [10].  Due to the massively parallel architecture of 
the GPU, it is able to perform fl oating point calculations much 
faster than a standard central processing unit (CPU) [10].  We 
performed the CPU benchmarks on a Dell™ Precision 370 using 
SiSoftware® Sandra, a program for benchmarking various computer 



U.S. Department of Energy Journal of Undergraduate Research   37

http://www.scied.science.doe.gov

components.  When this paper was written, an Intel™ Pentium 4 
3.6 GHz CPU was priced around $140 and produced 11 gigafl ops 
(one billion fl oating point operations per second).  An NVIDIA® 
1 GB 8800 GT GPU cost around $200 and produced around 
300 GFLOPS.  The price-to-performance ratio for the CPU is 
0.079 GFLOPS/dollar, while the GPU price-to-performance ratio 
is 1.5 GFLOPS/dollar.  The impressive price-to-performance ratio 
of the GPU makes it a prime candidate for increasing the speed 
of LSA while still using components found in many desktop and 
laptop personal computers. 

The increased performance of the GPU comes with certain 
diffi culties.  Memory transfer from system memory to GPU memory 
(host to device and device to host) remains relatively slow and can 
often be a bottleneck in many applications.  Most current GPUs offer 
support for only single precision, while many scientifi c applications 
require double precision support.  Also, certain algorithms are 
primarily serial, prohibiting much of the GPU’s processing power 
from being utilized.  For each of these problems a solution must 
be found.  Currently, the effect of slow memory transfer can be 
minimized by performing as many GPU-based computations as 
possible between transfers.  Transferring large amounts of data at 
one time is generally faster than making numerous small memory 
transfers.  Double precision can be either emulated by an algorithm or 
can be obtained by purchasing a new NVIDIA® 200 series GPU.

Our literature research shows that there is currently no GPU-
based implementation of LSA.  Related research includes a team 
at the University of North Carolina at Chapel Hill that used a 
GPU-based algorithm for solving dense linear systems [4].  Their 
implementation of an LU decomposition algorithm performed 35% 
better than an Automatically Tuned Linear Algebra Subroutines 
(ATLAS) implementation on the CPU for matrices of rank 3500.  
Manavski and Valle have implemented the Smith-Waterman 
algorithm on the GPU [9].  The Smith-Waterman algorithm explores 
alignments between two sequences in protein and DNA databases.  
Their implementation ran between two and 30 times faster than 
other implementations for commodity hardware.  Another example 
of the power of the GPU is given in the literature [13].  Robert, 
Schoepke and Bieri used the GPU to implement ray tracing 
algorithms and then compared the results to an implementation on 
a CPU.  In an animated example, the GPU performed around six 
times better than the CPU.  These examples show that the GPU is 
a powerful tool that, when used correctly, can be used to increase 
the speeds of a variety of algorithms in a variety of fi elds.

MATERIALS AND METHODS

For our implementation, we decided to use a Lanczos algorithm 
to assist with the SVD.  The Lanczos algorithm tridiagonalizes a 
matrix which allows for the computation of SVD to be performed 
signifi cantly faster [8].  This is done by using various matrix-
vector and vector-vector operations in order to achieve a Krylov 
subspace.  This subspace is a representation of the original matrix 
and maintains approximate eigenvalues and eigenvectors to that of 
the original matrix.  The reason we chose Lanczos is that it is not as 
computationally demanding as alternative options.  The algorithm 
can be seen in Figure 1.  The vector alpha is then used to form the 
main diagonal of the new matrix, where the vector beta will form 
the subdiagonal and superdiagonal.  This algorithm is proven to be 

accurate in an environment without rounding errors.  However, due 
to the fact that our GPU supports single precision, rounding errors 
are inevitable.  Maintaining accuracy while using the GPU will be 
discussed more in the Discussion and Conclusion section. 

Our GPU implementation uses Compute Unifi ed Basic Linear 
Algebra Subprograms (CUBLAS) to perform the matrix-vector and 
vector-vector operations that the algorithm requires.  CUBLAS is a 
Compute Unifi ed Device Architecture (CUDA) implementation of 
Basic Linear Algebra Subprograms (BLAS) which has been tuned to 
provide good performance across a variety of GPUs.  To avoid bias, 
we compare our performance with the Intel® Math Kernel Library.  
The linear algebra routines from the BLAS libraries used in both the 
CPU and GPU implementations were identical.  The only difference 
was that the algorithmic designs of each version were used in order to 
extract performance out of their respective architectures.  The main 
linear algebra routines used are sgemv, saxpy, sdot and snrm2.  These 
routines are frequently used for basic linear algebra functions that 
were developed to provide building blocks for larger applications.  If 
A = D*DT, with D representing the term-document matrix, only A 
needs to be stored in memory on the GPU, along with a few vectors 
which are a fraction of the data size of D.  This is very advantageous, 
as the memory on a GPU card can be a very limiting factor.  The 
card used for our testing has 1 GB of memory, which allows us to 
allocate about 950 MB to use in our program.  The extra memory 
which cannot be allocated is due to a process behind the scenes 
preventing full allocation.  The CUDA community currently regards 
this as a bug as it is unclear why this much memory is reserved for 
other uses.  With 950 MB of usable memory, we are able to allocate 
matrices that exceed 15 000x15 000.  This is well within the matrix 
size targeted for our algorithm.  

After implementing the CPU- and GPU-based algorithm, we 
timed each implementation for various matrix sizes.  The computer 
testing the implementations has the following specifi cations: one 
3.6 GHz Intel Pentium 4 CPU, 3.00 GB of RAM, NVIDIA® 
8 800 GT with 1 GB device memory, 160 GB hard drive.  Three 
randomly generated matrix sizes were selected in an interval thought 
to clearly display the performance of each implementation, to 
perform the LSA of each matrix.  For each of the three matrices, 
both CPU and GPU versions are run fi ve times and the total time 
is averaged.  This produces 15 total runs for both the CPU and 

Figure 1.  Lanczos Algorithm [8].



38 U.S. Department of Energy Journal of Undergraduate Research 

http://www.scied.science.doe.gov

GPU at every matrix size interval.  The times are then averaged for 
display purposes. 

RESULTS

Our initial results can be seen in Figure 2, which is for matrices 
up to 4000x4000.  These initial results show a performance increase 
of two to six times.  Figure 3 shows the average CPU and GPU run 
times for matrices that have dimensions divisible by 16.  The tests 
were performed in the same manner as the original tests, with the 
only change being the matrix sizes.  The GPU in this scenario is 
able to process the data from four times faster (for a 1 600x1 600 
matrix) up to almost seven times faster (for a 5 600x5 600 matrix). 

The CPU version takes about twice as long for the majority 
of matrices 1 000x1 000 and larger.  For matrices smaller than this, 
the speed increase is less noticeable.  For extremely small matrices 
(smaller than 600x600) the CPU version is faster than the GPU 
version.  The reasoning for this is that using the GPU requires 
signifi cant constant overhead, which can consume a large percentage 
of the time [10].  When matrix sizes are increased, the percentage 
of the total time that the overhead consumes is decreased.  This 
is because the overhead time does not change, but the amount of 
computation being done signifi cantly increases.  Even for matrices 
near the high end of our selected sizes, the GPU is nearly twice as fast.

DISCUSSION AND CONCLUSION

After testing our algorithm, it became evident which areas 
needed further research to produce an effective, fully implementable 
algorithm.  The fi rst area to be addressed is the accuracy of the 
algorithm.  Currently, spurious eigenvalues and their resulting 
vectors are being created due to rounding errors.  These are generated 
during the tridiagonalization process [8], [12], [15].  Two methods 
may be used in this situation.  Either the spurious values can be 
removed after computation or reorthogonalization can be performed 
during computation [12], [15].  Removing spurious values after 
computation, while technically possible, is thought to be less effective 
than reorthogonalization.  Reorthogonalization is the process 
of ensuring that the generated vectors are an accurate sub-space 
representation of the original matrix.  For this reason, we will aim to 
implement partial reorthogonalization.  Partial reorthogonalization 
has been proven to be able to preserve semiorthogonality [11], [15].  
Partial reorthogonalization would allow us to stop our iteration 
sequence shorter than a simple Lanczos algorithm.  These reasons 
make a partial reorthogonalization method necessary in a fully 
implementable LSA algorithm.

Another area of interest in future research would be further 
increases in the speed of the algorithm.  Currently the GPU is 
only being used for the tridiagonalization computation.  However, 
the sstev BLAS routine, which computes the eigenvalues and 
eigenvectors of a tridiagonal matrix, is still being implemented on 
the CPU.  Transitioning this to the GPU should further increase 
the performance of the algorithm.  The percentage of the total 
computation time that sstev occupies is only around 5% (for a 
4 000x4 000 matrix).  As matrix sizes grow, the total time that sstev 
requires will also grow, making a GPU version of the routine highly 
useful.  This is especially true if the matrix sizes are approaching 
10 000x10 000.  Also, improvements upon the CUBLAS sgemv 
routine, which is a matrix-vector multiplication routine, would 
greatly increase performance as 90% of the GPU computation time is 
being occupied by this routine.  This is entirely feasible as CUBLAS 
is not stated as being the optimal implementation.

A fi nal area of research would be to attempt to implement 
the algorithm on a multiple GPU machine.  Currently, in order 
to use multiple GPUs, the algorithm must explicitly state how to 
use the GPUs.  There is no automatic optimization allowing the 
use of multiple GPUs.  For this reason, code needs to be modifi ed 
for each individual problem.  The use of multiple GPUs would be 
highly benefi cial due to the increase of raw computational power.  
Numerous computers are being released with multiple graphics 
cards built in or with the capability to add a second graphics 
card.  Adding multi-GPU functionality can be tricky and does 
not always increase the speed of code because very little effective 
communication happens between GPUs.  This makes sharing 
computation of problems very diffi cult, such as when computing 
a matrix-matrix product.  In order to complete the computation, a 
GPU must have each matrix in its global memory.  This adds a lot 
of increased overhead, as copying memory between GPUs currently 
requires copying from GPU 1 to the computer then from GPU 2 
to the computer.  This is very slow and limits the effectiveness of 
multi-GPU implementation.  Further research would be needed to 
investigate multi-GPU capabilities. 

Figure 2.  Shows test results for increasingly large matrices, up to 
4 000x4 000.

Figure 3.  Test results for increasingly large matrices with dimensions 
divisible by 16, up to 5 600x5 600.



U.S. Department of Energy Journal of Undergraduate Research   39

http://www.scied.science.doe.gov

The select few matrices that seem to be performing signifi cantly 
better than average, specifi cally matrices with a rank of 2 000, 3 200 
and 4 000, are a result of the unique architecture of the GPU.  These 
select few matrices all have one thing in common:  The matrix 
dimensions are all divisible by 16.  The reason behind the signifi cant 
speed increase lies in the architecture of the GPU.  When the matrix 
is not divisible by 16, there are confl icts in shared memory regarding 
multiple threads accessing the same bank at the same time.  This 
forces one thread into a queue while the other thread is accessing the 
memory, increasing the total amount of time for all memory accesses.  
This can be solved by using matrices with dimensions divisible by 16.  
CUBLAS will as a result provide coalesced memory access patterns, 
greatly reducing time of the overall function.  This was not evident 
until after obtaining the results, which led us to further test the 
implementations to verify problem with memory access patterns.

In this research, we developed a parallel latent semantic analysis 
algorithm for the GPU.  The results of our tests are very promising.  
The speed increase of the GPU based algorithm was fi ve to seven 
times for matrices with dimensions divisible by 16 and two times for 
matrices of other sizes.  One solution to ensuring that all matrices 
have dimensions divisible by 16 is to add extra columns and rows 
of zeros to the matrix.  The number of rows and columns to add 
would be equal to (x modulo 16) where x is equal to the dimension 
size of the matrix.  This number would always be between 1 and 15, 
requiring minimal computation time when adding this data.  We 
hypothesize that adding these rows and columns of zeros would not 
add a noticeable increase to computation time and thus would still 
yield a speed increase of fi ve to seven times.  With the GPU being 
so widespread in modern PCs, this algorithm is not just limited 
to expensive custom workstations.  Most mid-range computers 
currently come with a graphics card, including laptops.  This makes 
it possible to perform GPU-based LSA on a mobile computer.  That 
being said, a top of the line desktop computer would be expected 
to see even better results.  Currently, the NVIDIA® 280GTX has 
a theoretical computation level of about 1 terafl op.  This is more 
than twice that of the card we used and costs approximately 115% 
more.  With GPU computational power increasing at a higher rate 
than CPU computational power, it is very possible to see increased 
speed results in the near future [10].  We have shown that the GPU 
can be used to provide a performance increase to our algorithm.  
This should not only be useful to us, but it will provide evidence to 
further algorithmic development of the GPU.

ACKNOWLEDGEMENTS

This research was done at ORNL as part of the U.S. Department 
of Energy’s Student Undergraduate Laboratory Internship (SULI) 
program.  I would like to thank Xiaohui Cui for his support and 
knowledge of information analyses as well as Engin Sungur for his 
knowledge of linear algebra.  I would also like to thank the Applied 
Software Engineering Research group as part of the Computational 
Sciences and Engineering division for their support and assistance 
throughout the summer.  Finally, I would like to thank the 
Department of Energy and ORNL for giving me this opportunity.

REFERENCES

[1] N.M. Adams, G. Blunt, D.J. Hand and M.G. Kelly, “Data 
mining for fun and profi t,” Statistical Science, vol. 15, no. 2, 
pp. 111–131, 2000.

[2] M.W. Berry, “Large-scale sparse singular value 
computations,” The International Journal of Supercomputer 
Applications, vol. 6, no. 1, pp. 13–49, 1992.

[3] S. Dumais, G. Furnas, T. Landauer, R. Harshman and S. 
Deerwester, “Using Latent Semantic Analysis to improve 
access to textual information,” in Proceedings of the 
Conference on Human Factors in Computing Systems, 
1988, pp. 281–285.

[4] N. Galoppo, N.K. Govindaraju, M. Henson and D. 
Manocha, “Effi cient Algorithms for Solving Dense Linear 
Systems on Graphics Hardware,” ACM/IEEE SC 05 
Conference, vol. A, pp. 3, 2005.

[5] N.E. Gibbs and W.G. Poole, “Tridiagonalization by 
permutations,” Communications of the ACM, vol. 17, no. 1, 
pp. 20–24, 1974.

[6] S. Huang, M.O. Ward and E.A. Rundensteiner, “Exploration 
of dimensionality reduction for text visualization,” Worcester 
Polytechnic Institute Computer Science Department, 
Worcester, MA, Technical Report TR-03-14, 2003.

[7] H. Kersken and U. Kuster, “A Parallel Lanczos Algorithm 
for Eigensystem Calculation,” Computing Center of the 
University of Stuttgart, Stuttgart Germany, 1999.

[8] C. Lanczos, “An Iteration Method for the Solution of the 
Eigenvalue Problem of Linear Differential and Integral 
Operators,” Journal of Research of the National Bureau of 
Standards, vol. 45, pp. 255–282, 1950.

[9] S.A. Manavaski and G. Valle, “CUDA compatible GPU 
cards as effi cient hardware accelerators for Smith-
Waterman sequence alignment,” BMC Bioinformatics 
(Italian Society of Bioinformatics: Annual Meeting), vol. 9, 
pp. S10, 2007.

[10] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. 
Kruger, A.E. Lefohn and T.J. Purcell, “A survey of General-
Purpose Computation on graphics hardware,” Computer 
Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

[11] C.C. Paige, B.N. Parlett and H.A. Van der Vorst, 
“Approximate solutions and eigenvalue bounds from Krylov 
subspaces,” Numerical Linear Algebra with Applications, 
vol. 2, no. 2, pp. 115–134, 1995.

[12] B.N. Parlett and D.S. Scott, “The Lanczos algorithm with 
selective orthogonalization,” Mathematics of Computation, 
vol. 33, no. 145, pp. 217–238, 1979.

[13] P.C.D. Robert, S. Schoepke and H. Bieri. “Hybrid ray 
tracing — ray tracing using gpu-accelerated image-space 
methods,” presented at International Conference on 
Computer Graphics Theory, Barcelona, Spain, 2007.

[14] G. Salton and C. Buckley, “Term-Weighting approaches 
in automatic text retrieval,” Information Processing & 
Management, vol. 24, no. 5, pp. 513–523, 1988.

[15] H.D. Simon, “The Lanczos Algorithm with Partial 
Reorthogonalization,” Mathematics of Computation, vol. 42, 
no. 165, pp. 115–142, 1984.




