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Summary 

 
Effective storage of hydrogen presents one of the most significant technical gaps to successful 
implementation of the hydrogen economy, particularly for transportation applications.  Amine 
boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been 
identified as promising, high-capacity chemical hydrogen storage media containing potentially 
readily released protic (N-H) and hydridic (B-H) hydrogens.  At the outset of our studies, 
dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE 
sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can 
each significantly increase both the rate and extent of hydrogen release from amine boranes 
under moderate conditions.  Our studies also showed that depending upon the activation method, 
hydrogen release from amine boranes can occur by very different mechanistic steps and yield 
different types of spent-fuel materials.  The fundamental understanding that was developed 
during this grant of the pathways and controlling factors for each of these hydrogen-release 
mechanisms is now enabling continuing discovery and optimization of new chemical-hydride 
based hydrogen storage systems.   
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Introduction 
 

Effective storage of hydrogen presents one of the most significant technical gaps to 
successful implementation of the hydrogen economy, particularly for transportation 
applications.1 Amine-boranes, such as ammonia borane (AB, H3NBH3, 1) and ammonia 
triborane (H3NB3H7, 2) have been identified as promising, high-capacity chemical hydrogen 
storage media containing potentially readily released protic (N-H) and hydridic (B-H) 
hydrogens.2  At the outset of our studies, dehydrogenation of ammonia borane had been studied 
primarily in the solid state,3 but our DOE sponsored work that is summarized in this report 
clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each 
significantly increase both the rate and extent of hydrogen release from AB under moderate 
conditions.  Our investigations also showed that, depending upon the activation method, 
hydrogen release from amine boranes can occur by very different mechanistic steps and yield 
different types of spent-fuel materials.  The fundamental understanding that was developed 
during this grant of the pathways and controlling factors for each of these hydrogen-release 
mechanisms is now enabling continuing discovery and optimization of new chemical-hydride 
based hydrogen storage systems.   
 
1) Ammonia Triborane 
 

The high hydrogen release capacity that could potentially be achieved by ammonia triborane 
2 oxidative-hydrolysis, (9.7 materials-wt% H2) or thermolysis (17.7 materials-wt% H2), has 
made it an attractive candidate for chemical hydrogen storage.  Although NH3B3H7 was first 
synthesized over 50 years ago,4 owing to the lack of a suitable method for its efficient and safe 
synthesis, its reactivities and properties had not been intensively explored.  Of the fewer than 30 
previous publications on 2, many were stimulated by the apparent contradiction between the 
computational studies that predict a symmetric single hydrogen-bridged CS-symmetric structure, 
and the early single crystal X-ray determination of 2 that showed an asymmetric structure with 
perhaps two bridging-hydrogens.  In this project, we demonstrated: (1) a new, efficient 
preparation of 2 that now makes this compound easily available; (2) a new crystallographic study 
of the solid-state structure of 2, along with a structural determination of the 2●18-crown-6 adduct, 
that resolves the contradictions with computational structural predictions; and (3) a description of 
the hydrolytic hydrogen release properties of 2.5,6 

Iodine oxidation of B3H8− in glyme solution to produce (glyme)B3H7, followed by 
displacement of the coordinated glyme by reaction with anhydrous ammonia was shown to 
provide a safe and convenient preparation of 2.  X-ray crystallographic determinations and DFT 
computational studies of both NH3B3H7 and the NH3B3H7•18-crown-6 adduct demonstrated that 
while computations predict a symmetric single bridging-hydrogen conformation, 2 has a highly 
asymmetric structure in the solid-state that results from intermolecular N-H+--H–-B dihydrogen 
bonding interactions (Figure 1).  

Studies of hydrolytic reactions showed that upon the addition of acid or an appropriate 
transition metal catalyst, aqueous solutions of 2 rapidly release hydrogen, with 6.1 material-wt% 
H2-release being achieved from a 22.7-wt% aqueous solution of 2 at room temperature in the 
presence of 5wt%-Rh/Al2O3 (1.1 mol% Rh).  The rate of H2-release was controlled by both the 
catalyst loading and temperature.  The hydrolysis reaction of a highly concentrated 22.7 wt% 
sample yielded 6.1 material-wt% H2 [i.e., mat-wt% H2 = H2-wt/(NH3B3H7+H2O+Rh/Al2O3-wts)] 
making an ammonia triborane-based hydrolytic system competitive with both the NH3BH3- and 
NaBH4-based hydrolysis systems.  



 5 

 
Figure 1.  Left: Comparison of (a) the solid-state structure of 2 with (b) the DFT-optimized 2 
structure.  Dashed lines indicate the positions of the dihydrogen bonding interactions. Right: 
(top) X-ray crystal structure of 2•18-crown-6; (bottom) selected distances in the ammonia 
triborane fragment of 2•18-crown-6. 
 
2) Ionic Liquid Activation of Ammonia Borane H2-Release 
 

One of the most significant findings of our DOE sponsored work was the discovery that ionic 
liquids provide advantageous media for ammonia borane dehydrogenation in which both the 
extent and rate of dehydrogenation are significantly increased over that which can be achieved 
by its solid-state reactions.7-9   Furthermore, in contrast to solid-state reactions, ammonia borane 
dehydrogenations in ionic liquids do not exhibit any induction period.  For example, AB 
reactions at 85 oC in 1-butyl-3-methylimidazolium chloride (bmimCl) (50:50-wt%) exhibited no 
induction period and released 1.0 H2-equiv. in 67 min and 2.2 H2-equiv. in 330 min at 85 oC, 
whereas comparable solid-state AB reactions had a 180 min induction period and required 360 
min to release ~0.8 H2-equiv. at 85 oC, with the release of only another ~0.1 H2-equiv. at longer 
times.  As shown in Figure 2 below, more extensive studies demonstrated that both faster rates 
and a greatly increased extent of hydrogen release can be attained when other ionic liquids are 
employed. 

It was also demonstrated that significant rate enhancements for the ionic-liquid mixtures 
could be obtained with only moderate increases in temperature, with, for example, a 50:50-wt% 
AB/bmimCl mixture releasing 1.0 H2-equiv. in 5 min and 2.2 H2-equiv. in only 20 min at 110 oC.  
Increasing the AB/bmimCl ratio to 80:20 still gave enhanced H2-release rates compared to the 
solid-state, and produced a system that achieved 11.4 materials-weight percent H2-release.   
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Figure 2. Summary of H2 release in different ionic liquids at 85 oC. 
 

Solid-state and solution 11B NMR studies of AB H2-release reactions in progress strongly 
support the mechanistic pathway shown in Figure 3 involving: (1) ionic-liquid promoted 
conversion of AB into its more reactive ionic diammoniate-of-diborane (DADB) form, (2) 
further intermolecular dehydrocoupling reactions between hydridic B-H hydrogens and protonic 
N-H hydrogens on DADB and/or AB to form neutral polyaminoborane polymers and (3) 
polyaminoborane dehydrogenation to unsaturated cross-linked polyborazylene materials.10,11 
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Figure 3.  Proposed Pathway for Ionic Liquid Promoted H2 Release from Ammonia Borane 
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3) Base-Initiated H2 Release from AB 
 

As shown in Figure 4, we also demonstrated that strong Bronsted bases, such as Proton 
Sponge, react with ammonia borane in either ionic-liquid or ethereal solvents to produce the 
H2NBH3

– anion.10-11  This anion then induces dehydropolymerization of ammonia borane to 
produce a growing polyaminoborane polymer with enhanced H2-release rates.  For example, AB 
reactions in 1-butyl-3-methylimidazolium chloride (bmimCl) containing 5.3 mol% PS released 2 
equivalents of H2 in 171 min at 85 oC and only 9 min at 110 oC, whereas comparable reactions 
without PS required 316 min at 85 oC and 20 min at 110 oC.  Ionic liquid solvents proved more 
favorable than tetraglyme since they reduced the formation of undesirable products, such as 
borazine. 

 

 
 
Figure 4.  Proton Sponge promoted H2-release in bmimCl ionic-liquid and tetraglyme solvents at 
85 oC. 
 

Based on extensive solid-state and solution 11B NMR studies of PS-promoted reactions in 
progress, we proposed that the base-promoted AB H2-release reactions precede via an anionic 
dehydropolymerization mechanism to produce growing anionic polyaminoborane polymers.  
Additional support for this mechanism was initially obtained through model studies of the 
reactions of the Et3BNH2BH3

– anion with AB.11  This anion was synthesized by AB 
dehydrogenation with either lithium or potassium triethylborohydride.  The crystallographically 
determined structure of the [Et3BNH2BH3]−K+●18-crown-6 complex shown in Figure 5 
confirmed AB nitrogen-deprotonation by the triethylborohydride with the Lewis-acidic 
triethylborane group coordinated at the nitrogen.  Subsequent reactions of [Et3BNH2BH3]−Li+ with 
AB showed spectroscopic evidence of chain-growth products, providing further indirect support 
for a PS-promoted AB anionic dehydropolymerization H2-release process. 
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Figure 5.  Crystallographically Determined Structure of [Et3BNH2BH3]−K+●18-crown-6.  
 

Studies of the activating effect of the Verkade’s base, 2,8,9-triisobutyl-2,5,8,9-tetraaza-1-
phosphabicyclo[3.3.3]undecane (VB), on the rate and extent of H2-release from ammonia borane 
(AB) led to the syntheses and structural characterizations of three anionic aminoborane chain 
growth products that provided the first direct support for anionic dehydropolymerization 
mechanistic steps in the initial stages of base-promoted AB H2-release reactions.12  The 
VBH+[H3BNH2BH2NH2BH3

–] (3) salt, containing a linear 5-membered anionic aminoborane 
chain, was produced in 74% yield via the room temperature reaction of a 3:1 AB:VB mixture in 
fluorobenzene solvent, while the branched and linear chain 7-membered anionic aminoborane 
oligomers VBH+[HB(NH2BH3)3

–] (4a) and VBH+[H3BNH2BH2NH2BH2NH2BH3
–] (4b) were 

obtained from VB/AB reactions carried out at 50 oC for 5 days when the ratio of AB to VB was 
increased to 4:1.  X-ray crystal structure determinations confirmed that these compounds are the 
isoelectronic and isostructural analogs of the n-pentane, 3-ethylpentane and n-heptane 
hydrocarbons, respectively.  The structural determinations also revealed significant interionic B-
H--H-N hydrogen bonding interactions in these anions that could enhance dehydrocoupling 
chain-growth reactions.  
 

 
 
  3    4a    4b 
Figure 6.  Crystallographically determined structures of structures of borane-capped 
aminoborane oligomers. 

 
The isolation of these anionic chain-growth products provides strong direct evidence for the 

mechanistic sequence, illustrated in Figure 7, for base promoted AB H2-release involving the 
initial formation of the previously known [H3BNH2BH3]– anion,13 followed by sequential 
dehydrocoupling of the B-H and H-N groups of AB with the growing borane-capped 

!
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aminoborane anions. The H2-eliminations are likely facilitated by N-H--H-B dihydrogen bonding 
interactions between the AB N-H protonic hydrogens and the hydridic B-H hydrogens of the 
growing anionic aminoborane chains.  Thus, elimination of a protonic N-H on AB with one of 
the internal BH2 hydridic hydrogens of 3 would yield 4a, while the reaction of an AB with one of 
the 3 terminal BH3 hydrides would give 4b.  Solid-state 11B NMR studies showed that in the 
final stages of the AB H2-release reactions, dehydrogenation of the initially formed sp3-
hybridized anionic-polyaminoboranes involves cyclization and formation of B=N unsaturation to 
ultimately yield polyborazylene-type sp2-hybridized structures.  
 
 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.  Proposed base-promoted anionic AB polymerization mechanism.    

                     
 
4) Homogenous Metal Complex-Catalyzed H2 Release from AB 
 

The variety of mechanisms by which metals and metal complexes effect hydrogen release 
from AB is manifested by the different dehydrogenation products that are formed. Using the 
[Rh(cod)(µ-Cl]2 precatalyst (cod = 1,5-cyclooctadiene), the first detailed study by Manners and 
coworkers showed that AB dehydrogenation led eventually to borazine and B-N cross-linked 
borazine (polyborazylene).14  It was later found, however, that some catalysts, such as the iridium 
‘pincer’ bis(phosphine) complex used by Goldberg, Heinekey and coworkers,15 rapidly release a 
single equivalent of hydrogen forming insoluble polyaminoborane. In evaluating the first order 
rate constants for disappearance of deuterated analogues of AB using Baker’s high extent 
Ni(NHC)2 catalyst,16 significant kinetic isotope effects were observed for dehydrogenation of 
H3NBD3 (1.7) and D3NBH3 (2.3).  As expected, 1-d6 gave the largest KIE (3.0).  These results 
were taken to imply that the rate determining step(s) involve both B−H and N−H bond cleavage 
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or that these two steps have similar rates (Scheme 1).  While much more work has appeared over 
the period of our project on the pathways for metal-mediated AB activation,17 we sought to 
address the origin of the striking selectivity difference discussed above.  

 
 
 
 
 
 
Scheme 1. Proposed reaction pathway for initial steps of metal-catalyzed AB 

dehydrogenation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. 1H-decoupled 11B NMR spectra of Ni(NHC)2-catalyzed AB dehydrogenation in 

glyme. After 10 h at 25°C (bottom spectrum), the tube was placed in the NMR probe at 60°C and 
conversion of the intermediate (*) to borazine (^) and polyborazylene (#) monitored every 10 
min. Minor products in top spectrum are [H2NBH2]3 and H3B(NHC) (‡). 

 
We began our studies by detailed monitoring of a variety of metal-catalyzed 

dehydrogenations in tetrahydrofuran (THF) and glyme (1,2-dimethoxyethane) solvents at 
different temperatures using multinuclear NMR spectroscopy. An unusual intermediate was 
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identified by 11B and 11B-1H NMR correlation experiments as the BN analog of 
ethylcyclobutane. More surprisingly, our Ni catalyst appeared to convert directly from AB to 
ECB to borazine (Scheme 2, Figure 8). The chemical shifts of ECB (BH:  -5, BH2: -12, BH3: 
-23 ppm) matched well those predicted using DFT by Butterick and Sneddon (-4.4, -11.2, -23.8 
ppm).  

 

3 H3NBH3

H2B

H2N BH

NH2
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HN BH

NH
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H2N
BH3

- 3 H2 - 3 H2

 
 
Scheme 2. AB Dehydrogenation reaction progression for one class of metal catalysts. 
 
How is this unusual intermediate formed in such high yield?  In previous experiments with 

N-substituted amine-boranes, we and others had observed initial formation of the monomeric 
aminoborane R2NBH2 that subsequently formed more stable cyclic dimers or trimers.  The parent 
aminoborane, however, is much more reactive and has been shown previously in matrix studies 
to oligomerize rapidly above -120°C.18 No examples of coordination of aminoborane to a 
transition metal had yet been reported either experimentally or theoretically. We reasoned that 
formation of this reactive compound in the presence of an excess of AB would likely result in 
reactive trapping by the latter (Scheme 3).19  
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Scheme 3. Trapping of aminoborane by AB. 
 
In order to test our trapping hypothesis, we employed cyclohexene as an external trapping 

agent as aminoborane should be an excellent hydroboration agent.  Indeed, addition of equal 
volumes of THF and cyclohexene using Manners’ Rh catalyst gave complete trapping of the 
aminoborane as evidenced by formation of the doubly hydroborated product, Cy2BNH2. Even 
more interestingly, the same experiments using the Ir ‘pincer’ catalyst had no effect on the 
product distribution!  It thus seems that the more productive Ni and Rh catalysts are able to eject 
the aminoborane from their coordination sphere whereas the Ir catalyst retains the aminoborane 
as a ligand that presumably reacts with additional equivalents of AB to build the 
polyaminoborane chain (Scheme 4). In keeping with this proposal, by performing the trapping 
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experiments at 60°C, we now observe some hydroboration products even for the Ir catalyst, 
suggesting that at least some dissociation of the coordinated aminoborane ligand is occurring. 

 

 
 
Scheme 4. Selectivity of H2 release from AB depends on coordination of aminoborane, 

H2NBH2. 
 

In our efforts to isolate the ECB intermediate so we could investigate catalysis of the second 
equivalent of H2 from AB, we discovered that the Schwartz catalyst (Cp2ZrHCl) can be used as 
an efficient precatalyst for the synthesis of this key intermediate. To our surprise, however, 
further studies suggest that this intermediate is actually the BN analog of ethylcyclohexane, an 
aminoborane tetramer (Figure 9). Additional DFT studies are in progress with David Dixon 
(Alabama) to understand the selective formation of ECH from AB and aminoborane. 
 
 
 
 
 
 
 
 
 

 
 
Figure 9. Crystal structures of ECH stabilized by hydrogen bonding with glyme (left) and 18-
crown-6 (right). 
 
5) Homogeneous Catalysis in Ionic Liquids 
 

In our initial studies using RuCl2(PMe3)2 complex, we showed that it was converted to a 
stable catalyst resting state, RuH(BH4)(PMe3)3, under AB dehydrogenation conditions. 
Unfortunately, in ether solvents hydrogen release was slow (ca. 1 TO/min at 60°C) and the major 
product was insoluble polyaminoborane. Employing low concentrations of this catalyst in a 
variety of ionic liquids, however, we found that those with the stronger coordinating ethylsulfate 
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anions effected hydrogen loss from AB at 25° C without formation of insoluble 
polyaminoborane. (Figure 10).21 

In recent work we found that an iron dihydride complex containing phosphine supporting 
ligands is a robust homogeneous pre-catalyst for selective synthesis of polyaminoborane. 
Moreover, reaction of the corresponding hydrido-iron (II) cationic complex in imidazolium ionic 
liquids gives borazine and polyborazylene selectively. While ionic liquids necessarily increase 
the weight of the AB-based storage system, they may offer a more desirable fuel form with 
higher volumetric density relative to solid alternatives. Moreover, passing a liquid over a 
heterogeneous catalyst has already been demonstrated as a controllable hydrogen release method 
for transportation applications.22 

 
 

 
Figure 10. Ru complex-catalyzed AB release in ionic liquids 

 
6) Heterogeneous Iron Catalysts 
 

Catalyst robustness, selectivity and recyclability are the main challenges in this field that 
have not been completely solved. Looking to more practical catalysts, a heterogeneous iron 
catalyst made by in situ AB reduction of FeCl2, shows excellent selectivity for borazine and PB 
(i.e. negligible insoluble polyaminoborane formation). Characterization of the catalyst by SEM, 
EDX and XPS suggests that it is has a novel Fe on Fe boride structure (Figure 11). The 
heterogeneous catalyst was recovered and reused several times with the same efficiency. This 
first long-lived, selective heterogeneous catalyst system23 is most desirable for fuel cells from the 
engineering point of view, since hydrogen release can be controlled by flowing the ammonia-
borane/IL solution over the catalyst bed.  
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Figure 11. SEM images of the used heterogeneous iron catalyst. Iron particles (bright spots) are 
sitting on in-situ formed iron boride support (based on EDX analysis). 
 
7) Conclusions and Future Outlook 
 

Our completed DOE sponsored project has led to both the discovery and continued 
improvement of a variety of promising H2-release systems based on amine boranes.  These 
studies have also demonstrated that H2-release from chemical hydrides can occur by a number of 
different mechanistic pathways and strongly suggest that optimal chemical-hydride based 
H2-release systems may require the use of synergistic activation methods, including ionic-liquid, 
bases and/or transition metal catalysts, to induce H2-loss from chemically different intermediates 
formed during release reactions. 
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