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Summary 
 
BES grant DE-FG02-06ER15819 supported efforts at Oregon State University (OSU) to 
develop improved inversion methods for 3D subsurface electromagnetic (EM) imaging.   
Three interrelated activities have been supported by this grant, and its predecessor (DE-
FG02-06ER15818):  (1) collaboration with a former student of the PI, Dr. Weerachai 
Siripunvaraporn, who is now Professor at Mahidol University in Bangkok, Thailand 
(Siripunvaraporn and Egbert, 2007; 2009).  (2) Development at OSU of a new modular 
system of computer codes for EM inversion (Egbert and Kelbert, 2012; Egbert et al., 
2013), and initial testing and application of this inversion on several large field data sets 
(Patro and Egbert, 2008; 2011; Kelbert et al., 2012; Meqbel et al., 2013). (3) Research on 
more efficient approaches to EM inverse problems, exploiting special features of the 
multi-transmitter problems that are common in EM imaging applications (Egbert, 2012).      
The last of these activities was the main motivation for this research project.  The first 
two activities were important enabling steps, and produced useful products and results in 
their own right.  In the following we provide brief summaries of these three activities, 
and results from each; further technical details are contained in the cited references, 
which are attached.   
 
The project provided partial support for three post-doctoral scholars, who worked with 
the PI on various aspects of EM inversion, either in terms of development of code or 
theory, or in applications and testing: Dr. Prasanta Patro (2007-2008); Dr. Anna Kelbert 
(2008-2011); and Dr. Naser Meqbel (2010-2011).    Project funding also helped the PI to 
support and interact with several visitors (who brought most or all of their own funding).  
These include Dr. Aihua Wang, an assistant Professor from Jilin University in China, 
who visited for one year (2009-2010); extended visits from two PhD students from 
Thailand (both now graduated: Dr. Weerachai Sarakorn, and Dr. Chatchai 
Vachiratienchai), as well as shorter (~6 week) visits from PhD students working with Dr. 
Oliver Ritter at GFZ-Potsdam in Germany (Dr. Kristina Tietze, and Dr. Xiao-Ming 
Chen). 
 
(1) Collaboration with W. Siripunvaraporn 
 
This collaborative activity supported our initial efforts on 3D inversion, resulting in a 
total of six publications over this project and its predecessor.   During the first project 
(DE-FG02-06ER15818) collaboration with Dr. Siripunvaraporn resulted in development, 
and release to the academic EM community, of the first freely available 3D inversion 
code for magnetotelluric (MT) data, WSINV3DMT 
(http://mucc.mahidol.ac.th/~scwsp/wsinv3dmt/).  During the subsequent project period 
(grant DE-FG02-06ER15819, covered by this report) we continued this collaboration, 
completing our joint work on development of new approaches to EM inversion (i.e., first 
steps towards activity 3; Siripunvaraporn and Egbert, 2007) and adding new capabilities 
to WSINV3DMT (parallelization, inversion for vertical field TFs; (Siripunvaraporn and 
Egbert, 2009).   The OSU PI also hosted two PhD students from Mahidol University, for 
work on projects related to their dissertations.   Mr. Weerachai Sarakorn visited for 
approximately one year (2008-9), working on 3D finite element modeling for EM 



geophysics.   Mr. Chatchai Vachiratienchai spent 7 months at OSU (Dec. 2010-June 
2011), working on controlled source EM inversion, using the ModEM system described 
below.  Both of these students have subsequently completed the PhD degree program, 
and are working in Thailand. 
 
(2) Development of ModEM 
 
Our ultimate goal of exploring more efficient search algorithms for multi-transmitter EM 
inverse problems (activity 3) motivated our development of a fully modular system of 
computer codes for EM inversion, which we call ModEM (Egbert and Kelbert, 2012).  
We focused first on a simple (two-dimensional magnetotelluric; MT) problem as a 
specific example, but developed the code using an object oriented approach, independent 
of details of this specific problem.   The top level of modules implements gradient 
calculations, and allows straightforward implementation of a range of specific inversion 
algorithms, including standard Gauss-Newton and mathematical optimization (e.g., 
conjugate gradients; quasi-Newton) schemes which have been widely applied in this 
field, as well as more novel schemes, as discussed in the next section.  These calculations 
are implemented in an abstract way, to simplify generalization to treat a wide range of 
EM inverse problems (e.g., with different sources/receivers or data types; different model 
parameterization or regularization; different modeling schemes; different search 
algorithms).  Our next focus was to develop capabilities for a general class of 3D EM 
inverse problems, based on a finite element forward solver.   Again, the initial application 
focus was on MT.    We next parallelized ModEM (over forward problems, using MPI).  
This effort was begun in collaboration with Naser Meqbel, then a PhD student at GFZ-
Potsdam, and then completed with support of this project as a post-doc at OSU.  The 
parallelization scheme was again developed in a generic manner, independent of details 
of the inversion algorithm, or the specific EM technique, using the Message Passing 
Interface (MPI) library.   Extension of ModEM to frequency domain controlled source 
EM (CSEM) methods for land (with visiting Prof. Aihua Weng), and for marine CSEM 
(Dr.  Chatchai Vachiratienchai) was then pursued, although these capabilities have not 
been applied to real datasets yet.  
 
ModEM is now a mature parallel 3D inversion code for MT data, which we are 
distributing freely for academic use, and licensing for commercial applications.   Funding 
has recently been obtained from NSF to help us support maintenance and further 
development of the 3D MT code for academic use.  We are also continuing collaboration 
with Dr. N. Meqbel, now back at GFZ-Potsdam, on development of ModEM for 
controlled source, and joint CSEM-MT-DC inversion methods, with applications to real 
datasets now.  One paper describing the theory underlying ModEM has been published 
(Egbert and Kelbert, 2012), and a second describing implementation details will be 
submitted soon (Egbert et al., 2013).     
 
As part of our development and testing effort we have worked extensively throughout 
this project with real MT datasets.  Papers describing this work, and citing support from 
this grant, include (Patro and Egbert (2008; 2011); Kelbert (2012) and Meqbel et al. 
(2013).  



 
(3) Progress on new inversion approaches for multi-transmitter EM geophysical data 
 
This activity was the main project focus, and is more novel, so we provide a more 
detailed description of key ideas here.  A full technical development is provided in Egbert 
(2012).  Our focus has been on regularized inversion of EM data, which is accomplished 
by minimizing a penalty functional such as 
 2 2

0( , ) ( ) λ= − + −m d f m d m mP  (1) 
where the first term represents data misfit, and the second a regularization term enforcing 
smoothness, proximity to a “prior” solution, etc.  The tradeoff parameter λ is generally 
required to adjust the relative weighting of the data misfit and model regularity terms.  
All practical 3D EM inversion involves linearizing the non-linear data mapping ( )f m .  
Two general schemes based on this linearization have been applied: Gauss-Newton (GN), 
which is based on a second order Taylor series approximation to the penalty functional 
P , and non-linear optimization algorithms based on generating a series of conjugate 
search directions, and then minimizing P  with a line search along each successive 
direction.   Algorithms of the second class (e.g., non-linear conjugate gradients (NLCG), 
quasi-Newton) have become the standard approach for large scale 3D EM inversion (e.g., 
Comer and Newman, 2009, and many previous works).    This is largely because the 
simplest application of GN requires (i) solving the equivalent of one forward problem for 
each observation to obtain complete information about the linearized model parameter-
data mapping (the Jacobian), and (ii) forming, and then solving, a very large dense 
system of normal equations ( M M× , where M is the number of model parameters).  The 
first task (solving a 3D partial differential equation (PDE) thousands of times for each 
linearization) is computationally challenging, and the second is virtually impossible for 
realistic 3D model parameterizations, where M  may easily exceed 106.    Both of these 
complications are avoided by NLCG and related direct optimization methods. 
 
However, it has long been appreciated that there are variants on GN that are at least 
feasible.  In our own previous work (Siripunvaraporn et al., 2005) a data-space variant on 
GN was shown to be practical, particularly if run in parallel with both computations and 
storage distributed over a small cluster (Siripunvaraporn and Egbert, 2009).   This effort 
illustrates one of the advantages of GN over NLCG: using the so called “Occam” scheme 
an optimal value for the tradeoff parameter (λ ) can be found at very little cost as part of 
the GN inversion process; in NLCG the entire optimization process must be repeated a 
number of times to optimize the relative weighting of data and model norm.     Our work 
also showed that NLCG and GN require a similar number of forward model solutions 
(Siripunvaraporn and Egbert, 2007).   A key observation is that each NLCG step (and 
each forward model solution in the line search) requires solving the forward problem 
once for each frequency/transmitter—so with 20 or so frequencies, 50 minimization 
steps, and 4-5 forward solves per line search, NLCG also requires many thousands of 
forward solutions, comparable to GN. 
 
Another approach to GN has also long been known: the M M× system of normal 
equations can be solved iteratively using conjugate gradients (CG) without actually 
computing all of the data sensitivities, and forming the normal equation matrices.  This 



GN variant requires about the same number of total forward solves as a more direct 
approach (Siripunvaraporn and Egbert, 2007), but eliminates storing and solving the large 
dense matrix.  Unfortunately, with the simple application of CG that has generally been 
used in the past, the Occam scheme, which optimizesλ , cannot be used.   The first 
(rather simple) innovation discussed in Egbert (2012) is a hybrid scheme that allows the 
Occam approach to be used with the CG variant on GN.   The basic idea is very simple:  
CG effectively solves the normal equations by building up a low-dimensional 
approximation to the full sensitivity matrix, factored as a product of an orthogonal matrix 
and a bi-diagonal matrix.   The standard implementation of CG is super-memory 
efficient: rather than store these matrices, an approximate solution to the normal 
equations (for a fixed value ofλ ) is computed “on the fly”.   By saving the matrix factors 
(which have been computed at great cost, involving as many as a thousand forward solver 
calls) the normal equations can be solved (again approximately) for any value of the 
damping parameter, allowing application of Occam schemes, and efficient optimization 
of this parameter.    The insight that CG methods effectively generate the most important 
parts of the sensitivity matrix suggests further possible computational efficiencies, as we 
discuss below. 
 
The more significant innovation discussed in Egbert (2012) carries the hybrid CG/Occam 
idea one step further.   For EM problems with multiple frequencies (e.g., MT) or multiple 
transmitters (e.g., controlled source EM, with a towed transmitter—as used for marine 
applications) each CG step requires solving the forward problem separately for each of 
the K frequencies/transmitters.  Each of these calculations results in an independent 
sensitivity for a linear combination of the data components recorded for one transmitter.  
The standard CG scheme simply sums these sensitivity components, throwing away 
valuable information about the individual components, and hence the Jacobian.  By 
retaining the separate components for each frequency/transmitter an accurate 
approximation to the Jacobian can be built up more rapidly than with the simpler hybrid 
algorithm based on standard CG.  Although we have been pursing this general idea over 
the past several years, we have discovered only recently how to make this scheme work 
reliably.   Very briefly, (see Egbert (2012) for further detail) the key is to actually do a 
full solution to the linearized inverse problem after each multi-component gradient 
calculation.   This entails fitting the data (to within the linearized approximation) using 
all sensitivity components (saved from all previous iterations to that point, separately for 
each transmitter) to fit the projected data.  The resulting model is then multiplied by the 
Jacobian to generate the next set of residuals, and the process continued.  Each of the 
inverse solutions is computed in a relatively low-dimensional subspace, so these extra 
computations are actually not too onerous.   Tests (so far limited to two-dimensional MT 
inverse problems) show that this scheme reduces the required number of forward 
solutions by a factor of 2-3, relative to all of the standard inversion approaches 
(GN/NLCG), and yet produces results identical to an Occam solution based on a 
complete calculation of the Jacobian. 
 
We believe that the results of our research on methods will ultimately have a very 
significant impact on 3D EM inversion.     Initial tests of the multi-transmitter hybrid 
scheme already show a factor of 2-3 in computational speedup.   We still need to 



implement and test these ideas on other problems, but our intuition is that the advantage 
of the approach will be significantly greater for 3D MT (where some additional 
advantage can be gained from the fact that there are two polarizations, in addition to 
multiple frequencies), and in marine CSEM (where the number of transmitters and 
receivers is very large).  There are also extensions that we have not yet considered.  For 
example, the Occam inversion has an outer loop, which usually has to be executed 3-4 
times.  The approximated Jacobian computed in the hybrid scheme can effectively be 
used as a pre-conditioner for the next iteration, likely resulting in further speedup.    The 
schemes we have developed are likely to be especially useful for joint inversion (e.g., MT 
and CSEM; EM and seismic).  In the first place, multiple data types require running 
multiple forward models, and this can also be exploited within the multiple transmitter 
framework.  Furthermore, experience inverting multiple data types demonstrates that 
multiple tradeoff parameters are required to allow for differential weighting of data types.    
And, one approach to joint inversion is to enforce structural similarity between two 
disparate physical parameters (e.g., conductivity and seismic velocity).  This constraint is 
enforced by introducing another term into the penalty functional (1), with yet another 
adjustable weight.    With the NLCG approach the full inversion must be run many times 
to choose optimal weights in a joint inversion.  Efficient schemes for choosing these 
weights, as offered by the hybrid schemes we have developed, are thus likely to prove 
very valuable for joint inversion. 
 
One might argue that even a factor of 4 decrease in inversion run time is dwarfed by the 
impact of Moore’s law—the increase in computational power over the current project 
period has certainly exceeded a factor of 4.   However, any advantages obtained with 
algorithmic efficiency can be multiplied by speedups obtained through developments in 
computing hardware.   As long as the available computational resources fall short of 
requirements—and for 3D EM inversion they certainly do now, and will for the 
foreseeable future—speedups of the sort we are finding are certainly of practical value, 
and, we would argue, worth developing further. 
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S U M M A R Y
A data space approach to magnetotelluric (MT) inversion reduces the size of the system of
equations that must be solved from M × M , as required for a model space approach, to only
N × N , where M is the number of model parameter and N is the number of data. This
reduction makes 3-D MT inversion on a personal computer possible for modest values of M
and N . However, the need to store the N × M sensitivity matrix J remains a serious limitation.
Here, we consider application of conjugate gradient (CG) methods to solve the system of data
space Gauss–Newton equations. With this approach J is not explicitly formed and stored, but
instead the product of J with an arbitrary vector is computed by solving one forward problem.
As a test of this data space conjugate gradient (DCG) algorithm, we consider the 2-D MT
inverse problem. Computational efficiency is assessed and compared to the data space Occam’s
(DASOCC) inversion by counting the number of forward modelling calls. Experiments with
synthetic data show that although DCG requires significantly less memory, it generally requires
more forward problem solutions than a scheme such as DASOCC, which is based on a full
computation of J.

Key words: data space method, inversion, magnetotellurics.

I N T RO D U C T I O N

Three-dimensional (3-D) magnetotelluric (MT) inversion can re-
veal the 3-D resistivity structure beneath the Earth’s surface, and
can be applied to 3-D data sets (e.g. Tuncer et al. 2006), as well as
to 2-D profile data (Siripunvaraporn et al. 2005b). In recent years
a number of 3-D MT inversion algorithms have been developed
(e.g. Mackie & Madden 1993; Mackie, personal communication
2002; Newman & Alumbaugh 2000; Zhdanov et al. 2000; Sasaki
2001; Siripunvaraporn et al. 2004, 2005a). There are many sim-
ilarities in the formulation of the inverse problem used by all of
these authors—in all cases a data misfit/model roughness penalty
functional is minimized—but a number of different computational
approaches have been pursued. All approaches have pros and cons,
as discussed in Siripunvaraporn et al. (2005a).

Newman & Alumbaugh (2000) and Mackie (personal commu-
nication 2002) used the non-linear conjugate gradient method to
minimize a data misfit/model roughness penalty functional. Sasaki
(2001) and Mackie & Madden (1993) both used a Gauss–Newton
(GN) method, however in the latter case the system of normal equa-
tions was solved by the conjugate gradient method. Siripunvaraporn
et al. (2004, 2005a) developed a 3-D inversion algorithm based on
the Occam inversion of Constable et al. (1987), another variant of
the GN method. In this work, the data space approach previously
used for 2-D MT (Siripunvaraporn & Egbert 2000) was extended to
the 3-D case. This transformation to the data space significantly re-
duced memory requirements, and making it possible to run 3-D MT

inverse problems of modest size on a desktop PC. However, mem-
ory required to store the sensitivity matrix is still quite substantial,
and this limits the size of both data sets and model parametriza-
tion. Here, we consider another possible approach, the ‘data space
conjugate gradient’ (DCG) inversion. This is again a GN variant,
formulated in the data space as in Siripunvaraporn & Egbert (2000),
but without forming and storing the sensitivity matrix as in Mackie
& Madden (1993).

We begin the paper by reviewing the Occam inversion, compar-
ing model and data space approaches. We then introduce the DCG
method, and test this using synthetic 2-D MT data set. In these
tests we compare computational efficiency of DCG and previously
described, proven MT inverse methods (Siripunvaraporn & Egbert
2000).

R E V I E W O F O C C A M ’ S I N V E R S I O N

The data space Occam’s (DASOCC) inversion has been success-
fully applied to 2-D (Siripunvaraporn & Egbert 2000) and 3-D
(Siripunvaraporn et al. 2004, 2005a) magnetotelluric (MT) inver-
sion. DASOCC follows the general Occam approach of Constable
et al. (1987) to seek the ‘minimum structure’ model subject to an
appropriate fit to the data. Mathematically, an unconstrained func-
tional U(m, λ) is varied :

U(m, λ) = (m − m0)TC−1
m (m − m0)

+ λ−1
{
(d − F[m])TC−1

d (d − F[m]) − X∗2
}
, (1)

986 C© 2007 The Authors
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to minimize the model norm subject to the condition that the nor-
malized squared total misfit is equal to X ∗2. Here m is the resistivity
model of dimension M , m0 the prior model, Cm the model covari-
ance matrix which defines the model norm, d the observed data with
dimension N , F[m] the forward model response, Cd the data covari-
ance matrix, X ∗ the target misfit, and λ−1 a Lagrange multiplier.

The Occam scheme of Constable et al. (1987) is based on lineariz-
ing the forward response to obtain the following iterative sequence
of linear equations (see Constable 1987; Siripunvaraporn & Egbert
2000),

mk+1 − m0 = [
λC−1

m + JT
k C−1

d Jk

]−1
JT

k C−1
d dk, (2)

where the subscript k denotes iteration number, Jk = (∂F/∂m)k

is the N × M sensitivity matrix calculated at mk, and dk = d −
F[mk] + Jk(mk – m0). In (2) the dimension of the inverted matrix
is M × M , controlled by the size of the model space. For realistic
3-D problems M is usually very large, making application of this
model space approach impractical.

To reach the ultimate goal of finding a stationary point of (1), in
each iteration (2) is solved with a series of trial values of λ. In early
iterations (Phase I), the Occam algorithm searches over λ for the
model that minimizes misfit. The process continues until the target
X ∗2 is attained. Once the misfit reaches the desired level, the next
stage (Phase II) begins by keeping the misfit at the desired level,
varying λ to seek the model of smallest norm achieving the target
misfit. One advantage of Occam’s inversion is that only a small
number of iterations are required to converge to the solution.

Siripunvaraporn & Egbert (2000) transformed the Occam scheme
for the 2-D MT problem from the model space to the data space,
developing a variant of Occam in which the size of the inversion
depends on the number of data N , instead of the number of model
parameters M . See Parker (1994), Bennett et al. (1996) and Egbert
(1997) for data space approaches to other inversion problems. In the
data space approach, the series of iterative approximate solutions is

obtained as

mk+1 − m0 = CmJk

[
λCd + JkCmJT

k

]−1
dT

k , (3)

see Siripunvaraporn & Egbert (2000) and Siripunvaraporn et al.
(2005) for details. The system of equation as given in (3) shows that
the system of equations that must be solved for the inversion is in the
data space, and thus of size N × N . As in the model space Occam
scheme, (3) is solved for a series of trial values of λ to search for
the minimal misfit (Phase I) and then to minimize the model norm
while keeping the misfit constant (Phase II). We refer to this ‘data
space’ variant on Occam as DASOCC. Provided N is much less than
M , DASOCC will be considerably more efficient than the original
model space Occam. In particular, DASOCC allows an Occam type
scheme to be used for 3-D inversion of MT data on a personal
computer or workstation, as shown in Siripunvaraporn et al. (2004;
2005a). Pseudo-code for the DASOCC algorithm is given in Fig. 1.

Though the size of the system of equations that must be solved
in the inversion can be significantly reduced with a data space ap-
proach, very significant computer memory is still required to store
the N × M sensitivity matrix Jk for realistic values of N and M ,
particularly for 3-D MT problems. Furthermore, computation of the
sensitivity matrix requires many forward model solutions. Here, we
present an alternative approach that avoids storing the large matrix
Jk . Instead of forming and factoring the matrix (λ Cd + JkCmJT

k )
as in Siripunvaraporn & Egbert (2000) and Siripunvaraporn et al.
(2004, 2005a), we apply a conjugate gradient (CG) technique to
solve (3). With the CG method, there is no need to explicitly form
the full N × M sensitivity matrix. Rather, only multiplication of the
sensitivity matrix or its transpose with a given vector (p or q) to form
Jkp or JT

k q is required. Each of these matrix vector products in turn
requires one forward model solution per period. A very similar ap-
proach has been used before in the model space EM inversion algo-
rithms developed by Mackie & Madden (1993), Newman & Alum-
baugh (1996), Rodi & Mackie (2001) and Haber et al. (2000) among

Figure 1. Pseudo-code for DASOCC.

C© 2007 The Authors, GJI, 170, 986–994
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988 W. Siripunvaraporn and G. Egbert

others. Here, we describe and test DCG, a data space variant on this
algorithm. Although the primary rationale for developing this lim-
ited memory scheme is to increase practicality of 3-D inversion, we
report here initial tests and comparisons on synthetic 2-D MT. A
key goal here is to compare computational efficiency of DCG and
DASOCC, and these simpler tests are already instructive.

Note that an alternative approach to improving computational
efficiency is the Reduced Basis Occam (REBOCC) approach of
Siripunvaraporn & Egbert (2000). REBOCC is based on the ob-
servation that the updated inverse solution mk +1 of (3) is a linear
combination of the N columns of CmJk . In REBOCC sensitivites for
a subset of K data are calculated (e.g. skipping every other frequency
or every other site in a profile) and an approximate solution is sought
as a linear combination of the corresponding K columns of CmJk .
The full data set is still fit, using this reduced set of basis functions.
This scheme is more efficient than DASSOCC, particularly for MT
data sets that are highly redundant, either in spatial or frequency
sampling, To simplify our comparisons here we only consider the
DASOCC and DCG schemes, and we restrict our comparisons to
test data sets which are not heavily oversampled, for which only
modest gains in efficiency would be achieved with REBOCC. In-
deed, it is not obvious how, or even if, REBOCC might be usefully
extended to make use of a subset of sites for general 3-D problems.
Furthermore, as we shall see, DASOCC is generally already more
efficient in terms of computational time than DCG, so there is little
point to direct comparison of efficiency of DCG and REBOCC.

DATA S PA C E C O N J U G AT E G R A D I E N T
( D C G ) M E T H O D

With the DASOCC approach, eq. (3) is solved for a series of values
of λ using Cholesky decomposition. In the data space, each such
solution is very fast, compared to the time required for forming the
Jacobian. Such an Occam approach is not so well suited to using
CG as the solver, since in the latter case J is not explicitly calculated
and stored. To literally apply the Occam approach, the CG method
would have to be applied to solve (3) for each λ, requiring a very
large number of forward solutions.

We therefore, take a more traditional regularized optimization
approach, taking λ as a fixed damping parameter. Thus, instead of
solving the constrained optimization problem implied by (1), we
minimize the penalty functional Wλ(m),

Wλ(m) = (m − m0)TC−1
m (m − m0)

+ λ−1
{
(d − F[m])TC−1

d (d − F[m])
}
, (4)

with λ fixed. Linearizing F[m], we obtain the same system of data
space eq. (3). With the data normalized with diagonal matrix Cb

−1/2 ,
this can be written

mk+1 − m0 = CmJkC
−1/2
d

[
λI + C

−1/2
d JkCmJT

k C
−1/2
d

]−1
C

−1/2
d dk,

(5)

where I is the identity matrix. This simple transformation results
in a better conditioned system, with the term λ I acting to stabilize
the inversion. This simple transformation is analogous to the pre-
conditioning of the model space equations by approximate solution
of Poisson’s equation, used by Haber & Ascher (2001) and Rodi &
Mackie (2001).

CG is a relaxation method for solving the symmetric system of
equations Rx = b by iteratively minimizing the quadratic form
Q(x) = 1

2 xT Rx − xT b. The CG algorithm and its details can be
found in various publications (e.g. Press et al. 1992; Barret et al.

1994). In our application R is [λ I + C−1/2
d JkCmJT

k C−1/2
d ], b is C−1/2

d dk

and x is the unknown, which must be multiplied with C−1/2
d to ob-

tain the model mk+1 as given in eq. (5). Implementation of CG
requires only code to form the matrix–vector product Rp for arbi-
trary data space vectors p, rather than actually forming the matrix
R. Thus we can also avoid forming and storing Jk , provided we have
routines for multiplication of model space vectors by Jk and data
space vectors by JT

k . Both of these matrix–vector products can be
computed by solving one forward problem, as shown in Mackie &
Madden (1993). Pseudo-code for the DCG algorithm is given in Fig.
2. Since Jk is never explicitly computed, one clear advantage of this
approach is that storage of the large dense matrix Jk is not needed,
as it is with DASOCC.

To compare the computational efficiency of DASOCC and DCG,
we consider the total number of forward modelling steps required.

Figure 2. Pseudo-code for DCG.
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In DASOCC, where the full sensitivity is formed, the number of
forward solver calls required to form all of J is N mN sN p using the
reciprocity technique (Rodi 1976), where N m is the number of modes
(1 or 2 for MT), N s is the number of sites and N p is the number of
periods. Then for each iteration, a further N p forward solutions per
mode are required for each λ in order to compute the actual data
misfit. Thus the total number of forward solutions required per outer
loop DASOCC iteration is about N mN sN p + NλN pN m where Nλ is
the typical number of values of λ tried in each iteration. Since Nλ

is typically 4–5, NλN pN m is negligible compared to N mN sN p, and
will thus be ignored in the following comparisons.

With the DCG approach, the number of forward problems to be
solved depends on the number of CG iterations in each step in the
outer loop. For each (inner loop) CG iteration the number of forward
solver calls required is 2N pN m: one for computing Jkp and a second
for computing JT

k q, for each mode and for each period. At the end
of one outer loop iteration of DCG, N mN p forward modelling calls
are required to form the background solution required for the next
iteration, and to determine the misfit. Thus, the number of forward
solver calls per outer loop DCG iteration is 2N pN mN cg + N mN p,
where N cg is number of CG iterations. Similar to the DASOCC case,
we ignore N mN p here because it is a small fraction of 2N pN mN cg.
Thus, we can see that the DCG method will be more efficient than
DASOCC only if the total number of CG iteration (N cg) is less
than N s/2, and if the number of outer loop iterations remains the
same

N U M E R I C A L E X A M P L E S

Two 2-D synthetic data examples are used to test the relative effi-
ciency of DCG and DASOCC. For this comparison we consider only
the numbers of forward modelling calls used in each method, ignor-
ing other computational overhead, such as solving the system of data
space eq. (5) with Cholesky decomposition, as these represent only
a small part of the total computational burden.

Synthetic Example I

First, we test DCG on the simple synthetic example illustrated in
Fig. 3(a). The model is discritized into 100 × 31 blocks. The
impedance Z xy (TM mode) and Zyx (TE mode) are generated from
this model with 36 stations distributed uniformly from −40 to 40 km
with a site spacing of 2.5 km. At each site, nine periods distributed
uniformly in logarithmic period in the range from 0.01 to 100 s were
computed. Random errors with a relative magnitude of 5 per cent
were added to the real and imaginary part of the impedance data be-
fore inversion. The initial model for all inversion tests is a 50 Ohm-m
half-space.

Data space Occam’s inversion (DASOCC)

Convergence statistics from using DASOCC to invert TM mode,
TE mode and TM + TE mode data are summarized in Table 1.
For these three cases the inversion required 2, 3 and 3 outer loop
iterations, respectively, to reach the desired target misfit of 1. This
corresponds to Phase I of the Occam algorithm. For comparison
with DCG we omit the additional 1–2 Phase II iterations, which
fine tune the regularization parameter, and generally modify the
solution only slightly. The result from joint inversion of the TM and
TE data, fitting to an RMS misfit of one, is shown in Fig. 3(b). For
DASOCC, the number of forward solver calls is fixed (=N s N p N m),
since the sensitivity matrix Jk is explicitly formed. Thus, in each
iteration of DASOCC, the number of forward solutions required for
this example is 324 (36 × 9) for TM and TE single mode inversions,
and 648 (36 × 9 × 2) for the joint TM + TE inversion. The total
number of forward solutions required to reach the target misfit is
thus 648 (324 × 2) for TM, 972 (324 × 3) for TE and 1944 (648 ×
3) for TM + TE. These numbers provide a standard for evaluating
the computational efficiency of the DCG algorithm.

Data space conjugate gradient method (DCG)

When solving (5) with CG, some stopping criteria must be defined.
Rodi & Mackie (2001) terminate the CG process at three iterations
per GN step in their MM method. Here, instead of fixing the number
of iterations, we terminate when the relative error in the system of
equations ||Ax − b||/||b|| reaches a specified tolerance rstop. Initially
we fix λ = 1, and compare the overall computational efficiency of
the DCG scheme with different values of rstop, such as 10−6, 10−4,
10−2 and 10−1. The outer loop is terminated when the inversion
reaches (or drops below) the desired RMS misfit of 1. Results for
the TM mode are given in Table 2(a).

When rstop is small, the number of iterations required is high, but
when the actual data misfit is computed, the RMS is not reduced
relative to the case rstop = 10−2. Clearly it is not necessary (or
useful) to use a very stringent stopping criterion for inner loop DCG
iterations. When rstop is reduced further to 10−1, the number of inner
loop iterations is reduced, but the outer loop does not converge to the
desired misfit in this case. Furthermore, even when the outer loop
does converge, the number of outer loop iterations may be greater,
resulting in a larger total number of forward modelling calls with
this reduced value of rstop. This example suggests that terminating
the CG solver at a fixed small number of iterations, as in Rodi
& Mackie (2001), will not always allow convergence to the target
level. Indeed, in their tests examples Rodi & Mackie (2001) found
that the CG scheme stalled in the later iterations, unable to achieve
reduction in the objective function to levels achieved by GN, and
non-linear CG (NLCG) approaches. At the same time it is worth

Figure 3. (a) Model I used to generate synthetic data, Zxy and Zyx for TM and TE modes. (b) Inverse model recovered from joint inversion of TM and TE
modes using DASOCC inversion. (c) Same as (b) but using DCG with λ = 1. The 36 stations are distributed uniformly from −40 to 40 km.
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Table 1. Number of iteration for DASOCC inversion to reach desired level of misfit for TM, TE and joint TM + TE inversions for
synthetic test case I.

TM TE TM + TE
Outer
loop RMS # of RMS # of RMS # of
DASOCC FWD to FWD to FWD to
Iter no. form Jk form Jk form Jk

0 12.49 – 8.60 – 10.73 –
1 3.24 324 2.89 324 3.82 648
2 0.97 324 1.29 324 1.36 648
3 0.99 324 1.00 648
Total FWD 648 972 1944

Note: The number of forward modelling calls (FWD) required for each iteration, and the total over all iterations are also given.

Table 2. Number of iterations for the DCG inversion with different rstop levels for TM (a), TE (b) and TM + TE (c) inversions for test case I.

Outer loop DCG Iter. no. Relative error (rstop) for stopping CG iterative process (λ = 1.0)

rstop = 1.E-06 rstop = 1.E-04 rstop = 1.E-02 rstop = 1.E-01

RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter

(a) TM: Initial RMS = 12.49
1 3.24 58 3.24 39 3.22 23 3.70 11
2 1.44 45 1.44 32 1.44 16 1.57 7
3 1.01 43 1.01 29 1.01 14 1.37 6
4 1.37 6
5 1.33 6
6 1.33 6
Total CG Iter. 146 100 53 –
Total FWD 2628 1800 954 –

(b) TE: Initial RMS = 8.60
1 2.89 46 2.89 31 2.89 17 2.96 10
2 1.94 37 1.94 26 1.94 15 2.04 8
3 1.19 34 1.19 24 1.20 13 1.30 7
4 1.04 34 1.04 24 1.04 12 1.25 6
5 1.21 6
6 1.21 6
Total CG Iter. 151 105 57 –
Total FWD 2718 1890 1026 –

(c) TM + TE: Initial RMS = 10.73
1 4.38 77 4.38 49 4.38 28 4.38 16
2 2.60 61 2.60 41 2.61 22 2.98 12
3 1.17 50 1.17 36 1.19 20 1.75 10
4 0.95 50 0.95 36 0.96 19 1.18 9
5 1.08 7
6 1.08 7
Total CG Iter. 238 162 89 –
Total FWD 8568 5832 3204 –

Note: For rstop = 1.E-01, the inversion cannot reach the desired level of misfit. Essentially the same RMS misfit is attained for all values of rstop = 1.E-02 or
less. Note that for each CG iteration 2 forward model solutions are required for each period.

noting that in the early outer loop steps similar misfit values are
achieved with many fewer iterations when a larger value of rstop is
used. A more complex stopping criteria, with rstop becoming smaller
as the inversion converges may be worth considering.

Similar results are obtained for the TE and joint TM + TE in-
versions, as shown in Table 2(b) and (c), respectively. The inverse
model obtained from the TM + TE inversion is shown in Fig. 3(c).
Another general observation from these tables is that as the outer
loop converges the number of CG iterations is reduced, even though
it becomes necessary to use a more stringent stopping criteria to
continue to make progress.

Next, we apply DCG using various values of λ, but with rstop

now fixed at 10−2. Results for these experiments are given in

Table 3(a) for TM, Table 3(b) for TE and Table 3(c) for joint
TM + TE inversions. From these tables, we conclude that with
smaller values of λ a larger number of CG iterations is required. This
is because the system of equations becomes much stiffer. Higher val-
ues of λ on the other hand result in a well-conditioned system which
converges in a smaller number of iterations. However, in this case,
it may be impossible to reach the target misfit.

In all three inversion tests (TE, TM and TE + TM), optimal
convergence occurs when λ = 1, and rstop is 10−2. For each of
the outer loop iterations, the number of CG steps is roughly half
the number of stations. However, the total number of outer loop
iterations is slightly greater than what is required by DASOCC, that
is, three for TM, four for TE and four for TM + TE inversions. The
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Table 3. Number of iterations for the DCG inversion with different values of λ for TM (a), TE (b) and TM + TE (c) inversions of synthetic test case I.

Outer loop DCG Iter. no. Different values of λ (rstop = 1.0E-02)

λ = 0.1 λ = 1 λ = 10

RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter

(a) TM: Initial RMS = 12.49
1 4.98 48 3.22 23 4.83 11
2 3.03 44 1.44 16 3.64 7
3 1.81 45 1.01 14 3.54 6
4 0.76 37 3.47 6
5 3.46 6
Total CG Iter. 174 53 –
Total FWD 3132 954 –

(b) TE: Initial RMS = 8.60
1 3.33 40 2.89 17 3.80 8
2 3.65 40 1.94 15 3.33 6
3 4.36 35 1.20 13 3.23 6
4 4.14 38 1.04 12 3.22 6
5 2.95 38 3.21 6
6 4.23 38 3.21 6
Total CG Iter. 57 –
Total FWD – 1026 –

(c) TM + TE: Initial RMS = 10.73
1 5.48 69 4.38 28 4.06 13
2 4.49 64 2.61 22 2.69 8
3 3.40 60 1.19 20 2.50 7
4 2.00 50 0.96 19 2.45 7
5 1.43 50 2.44 7
6 0.64 45 2.43 7
Total CG Iter. 338 89 –
Total FWD 12 168 3204 –

Note: For λ = 10, the inversion cannot reach the desired level of misfit, and for λ less than 0.1, the inversion diverges. For this test case λ = 1 is at least
approximately optimal.

total number of CG steps required to reach the target misfit are thus
53, 57 and 89 for TM, TE and joint TM + TE inversions, respectively
(Table 3). Each CG step requires two forward solutions for TM and
TE, and four forward solutions for joint TM + TE inversions, per
period. Thus, the total number of forward solver calls required are
954 (53 × 2 × 9), 1026 (57 × 2 × 9) and 3204 (89 × 4 × 9) for
TM, TE and TM + TE inversions, respectively.

These numbers are higher than were required by the DASOCC
method, by factors of roughly 1–1.6 times: 954 to 648 for TM, 1026
to 972 for TE and 3204–1944 for TM + TE inversions. Thus, for
this example the computational efficiency of the DCG method is not
superior to DASOCC in terms of CPU time. Numerous experiments
with other synthetic examples support the general validity of this
conclusion. Another issue for DCG is that we may need to try several
different values of λ, particularly for real data sets. Values of λ that

are too large may result in failure of the inversion to converge,
while values that are too small will require a high number of CG
iterations to converge, or may not result in convergence. However,
DCG does have a very significant advantage with regard to memory,
since storage of the sensitivity matrix is not required. Thus, there is a
trade-off between computational efficiency and memory.

Synthetic Example: Case II

We next compare DCG and DASOCC on the more complicated
structure shown in Fig. 4(a). This synthetic model may not look
geologically realistic, but it provides a more challenging test of the
inversions, and demonstrates that the relative performance of DCG
and DASOCC will depend on the data set. As in the first example
impedances Zxy (TM mode) and Zyx (TE mode) are generated for

Figure 4. (a) Model II used to generate synthetic data, Zxy and Zyx for TM and TE modes. (b) Inverse model recovered from joint inversion of TM and TE
modes using DASOCC inversion. (c) Same as (b) but using DCG with λ = 0.1. The 36 stations are distributed uniformly from −40 to 40 km.
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Table 4. Number of iteration for DASOCC inversion to reach desired level of misfit for TM, TE and joint
TM + TE inversions for synthetic test case II.

TM TE TM + TE
Outer
loop RMS # of RMS # of RMS # of
DASOCC FWD to FWD to FWD to
Iter no. form Jk form Jk form Jk

0 26.34 – 23.19 24.82
1 8.38 324 6.71 324 9.27 648
2 3.96 324 2.82 324 3.76 648
3 3.93 324 1.54 324 2.13 648
4 4.35 324 1.11 324 1.35 648
5 3.62 324 0.97 324 1.24 648
6 1.53 324 1.00 648
7 0.97 324
Total FWD 2268 1620 3888

Note: The number of forward modelling calls (FWD) required for each iteration, and the total over all
iterations are also given.

36 stations and nine periods from 0.01 to 100 s with 5 per cent
random errors. The model discretization is again 100 × 31 blocks,
and the initial model for all inversion tests is a 50 Ohm-m half-space.

Data space occam’s inversion (DASOCC)

Convergence of the DASOCC inversion for the TM, TE and TM +
TE modes are shown in Table 4. The result from the joint TM +
TE inversion at RMS misfit one is shown in Fig. 4(b) along with
results from the comparable DCG inversion. Because the model
is more complicated than the first case, the number of main loop
iterations is higher: seven, five and six iterations are required to
reach the desired target misfit of 1.0 for TM, TE and joint TM +
TE inversion, respectively. This results in 2268 (324 × 7), 1620
(324 × 5) and 3888 (648 × 6) forward solutions for the three cases,
as listed in Table 4.

Data space conjugate gradient method (DCG)

Next, we apply the DCG method to the same synthetic data sets.
Results are summarized in Tables 5(a)–(c). Here, in all case rstop

was set at 10−2. For the TE mode, with λ = 0.1, the inversion
converges to below the target misfit in three iterations. Although
this is less than what was required by DASOCC, the number of
CG steps per outer loop iteration is about 1.5 times the number
of stations, and the total number of CG iterations is 119. Thus the
total number of forward solutions (2142 = 119 × 2 × 9) still ex-
ceeds that required by DASOCC (1620). The joint inversion re-
quires 14 outer loop iterations, for a total of 806 CG steps, or 29 016
(806 × 4 × 9) forward solver calls. These numbers are huge com-
pared to those required for DASOCC (Table 4). Tests with other
values for λ did not yield better results; for λ lower than 0.1 there
was generally no convergence. For the TM mode case no value of
λ resulted in convergence of the DCG inversion. This example thus
illustrates two potential shortcomings of the DCG approach. First,
convergence can sometimes be very slow, and DCG may even fail to
converge, even in cases where a DASOCC scheme works perfectly
well. Second, DCG can be sensitive to the choice of regularization
parameter λ, and the optimal choice is seldom known a priori. In
the first synthetic example λ = 1 was optimal, but in the second
example DCG worked considerably better with λ = 0.1. With real

data sets one should plan on running the inversion for a range of
values of this damping parameter.

D I S C U S S I O N A N D C O N C L U S I O N

We have developed and tested a data space variant on the CG scheme
(DCG) for 2-D MT data. The proposed scheme is essentially a GN
scheme reformulated in the data space. Solution of the data space
equivalent of the standard GN equations is then accomplished with
CG, instead of computing the sensitivity matrix, forming the dense
data space cross-product matrix, and solving the normal equations
using Cholesky decomposition.

A widely perceived advantage of such CG approaches is that be-
cause they avoid explicit calculation of the sensitivity matrix, they
are faster and computationally more efficient. However, in our nu-
merical tests for 2-D MT data we find that a CG approach generally
requires as many or more forward solver calls than an algorithm
(DASOCC) which computes the full sensitivity. This is similar to
results reported by Rodi & Mackie (2001). In their computational
experiments, the numbers of forward solutions used in both their CG
based MM and preconditioned NLCG methods were greater than
those required for a more conventional GN method. However, they
used a model space formulation, and the additional computational
time required to form and solve the very large M × M system of
normal eqs (2), made the GN approach slow, especially for large
problems. This additional computational time is very significantly
reduced when the problem is formulated in the data space, as with
the DASOCC approach used here.

One disadvantage of a data space formulation is that there is no
analogue of NLCG, which Rodi & Mackie (2001) found to be some-
what more efficient than CG in the late stages of convergence. How-
ever, these authors did not find substantial overall performance dif-
ferences (in terms of forward solver calls required) between NLCG
and the model space CG scheme they tested. Thus, it is far from clear
that NLCG would require fewer forward calls than a GN approach
such as DASOCC. It is possible that as the number of sites N s is
increases DCG may achieve convergence in many fewer than N s/2
iterations, and hence be faster than DASSOC, although this remains
to be demonstrated. Furthermore, as the number of sites increases
a reduced basis approach such as REBOCC (Siripunvaraporn &
Egbert 2000) will also become more favourable.

One advantage of Occam in general, and DASOCC in particular,
is that once Jk is computed and stored, this system of equations can
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Table 5. Number of iterations for the DCG inversion with different values of λ for TM (a), TE (b) and TM + TE (c) inversions, synthetic test case II.

Different values of λ (rstop = 1.0E-02)

λ = 0.1 λ = 1 λ = 10

Outer loop DCG Iter. No. RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter

(a) TM: Initial RMS = 26.34
1 8.39 80 8.96 35 9.47 13
2 4.40 55 3.88 20 5.74 9
3 3.02 52 2.88 17 5.34 7
4 3.51 46 2.53 17 5.38 7
5 2.84 49 2.30 17 5.34 7
6 3.69 48 2.24 17 5.35 7
7 2.81 50 2.32 17 5.34 7
8 3.70 45 2.96 17 5.34 7
9 2.92 48 3.59 18 5.34 7
10 3.59 45 5.65 20 5.34 7
Total CG Iter. – – –
Total FWD – – –

(b) TE: Initial RMS = 23.19
1 6.92 48 7.12 23 7.84 11
2 2.50 39 2.53 15 4.08 7
3 0.99 32 1.50 13 3.77 6
4 1.44 13 3.75 6
5 1.42 13 3.73 6
6 1.42 13 3.73 6
Total CG Iter. 119 – –
Total FWD 2142 – –

(c) TM + TE: Initial RMS = 24.80
1 9.53 99 9.32 39 9.31 16
2 4.08 70 3.88 25 4.86 10
3 2.55 59 2.56 20 4.23 8
4 2.10 58 2.23 20 4.21 8
5 2.13 54 2.05 20 4.19 8
6 2.83 53 1.97 20 4.19 8
7 2.18 57 1.94 20 4.19 8
8 1.83 53 1.94 20 4.19 8
9 1.47 52 1.94 21 4.19 8
10 1.42 52 1.94 21 4.19 8
11 1.19 52 1.94 21 4.19 8
12 1.18 49 1.94 21 4.19 8
13 1.08 49 1.94 21 4.19 8
14 1.01 49 1.94 21 4.19 8
Total CG Iter. 806 – –
Total FWD 29 016 – –

Note: For TM, none of the values of λ tested allow the target level of misfit to be reached.

be solved repeatedly for different values of λ. Thus, the Lagrange
multiplier λ−1 can be used both for damping and for step length
control (Parker 1994). This guarantees, at least in theory, conver-
gence to a local minimum of the model norm, subject to the data
misfit achieved (Parker 1994). This property cannot be guaranteed
for more standard GN-CG or NLCG methods, where λ is indepen-
dently chosen and left fixed during penalty functional optimization.
Because Jk is not explicitly formed and stored in the DCG scheme,
we also cannot directly use an Occam style approach. The optimal
prior choice of λ is not obvious, and, as shown in our numerical
tests, performance of the CG inversion can be greatly influenced by
this parameter. Possible approaches to picking λ are given, for ex-
ample, in Haber et al. (2000). Another idea, which deserves further
exploration but is beyond the scope of this paper, would be to use
Lanczos tridiagonalization (the basis for CG; Gloub & Van Loan
1989). At the cost of increased memory (required to store all search

directions) the system (3) could then be efficiently solved for a range
of values of λ.

For realistic 3-D problems, both model and data sizes become
significantly larger. Therefore, DASOCC for 3-D MT inversion
(Siripunvaraporn et al. 2004; 2005a) requires huge amounts of
RAM. For example, in the EXTECH data set (Tuncer et al. 2006), N
= 16 × 131 × 4 = 8,384 and M = 56 × 56 × 33 = 103 488, requiring
about 8NM ≈ 7 Gbyte to store just the sensitivity matrix. This data
set thus requires running the 3-D inversion on a workstation or even
a supercomputer. Applying DCG to 3-D MT inversion is straight-
forward, and would allow running large problems such as this on
a common desktop PC. However, our 2-D numerical tests suggest
that the number of forward modelling calls are actually likely to be
larger for DCG, resulting in even longer run times. Clearly there is
a trade-off between memory used and CPU run time, and the choice
between DASOCC and DCG will depend on the application.
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a b s t r a c t

We describe two extensions to the three-dimensional magnetotelluric inversion program WSINV3DMT
(Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M., 2005, Three-dimensional magnetotelluric
inversion: data-space method. Phys. Earth Planet. Interiors 150, 3–14), including modifications to allow
inversion of the vertical magnetic transfer functions (VTFs), and parallelization of the code. The parallel
implementation, which is most appropriate for small clusters, uses MPI to distribute forward solutions for
different frequencies, as well as some linear algebraic computations, over multiple processors. In addition
to reducing run times, the parallelization reduces memory requirements by distributing storage of the
sensitivity matrix. Both new features are tested on synthetic and real datasets, revealing nearly linear
speedup for a small number of processors (up to 8). Experiments on synthetic examples show that the
ccam’s inversion horizontal position and lateral conductivity contrasts of anomalies can be recovered by inverting VTFs
alone. However, vertical positions and absolute amplitudes are not well constrained unless an accurate
host resistivity is imposed a priori. On very simple synthetic models including VTFs in a joint inversion
had little impact on the inverse solution computed with impedances alone. However, in experiments with
real data, inverse solutions obtained from joint inversion of VTF and impedances, and from impedances
alone, differed in important ways, suggesting that for structures with more realistic levels of complexity

rovid
the VTFs will in general p

. Introduction

WSINV3DMT (Siripunvaraporn et al., 2005) has been developed
o invert Magnetotelluric (MT) impedance tensor components for
hree-dimensional (3-D) Earth conductivity. It was made freely
vailable to the MT research community in 2006 and has since
ecome one of the standard tools for 3-D inversion and interpre-
ation (e.g., Tuncer et al., 2006; Heise et al., 2008; among others).
he inversion algorithm used closely follows the two-dimensional
2-D) data space Occam’s inversion of Siripunvaraporn and Egbert
2000) which has also been widely used for 2-D interpretation (e.g.,
ous et al., 2002; Oskooi and and Perdersen, 2005; Toh et al., 2006;
mong others). Here we describe extensions to this code, which we
llustrate with tests on synthetic and real data.

We first briefly summarize WSINV3DMT; see Siripunvaraporn

t al. (2005) for more technical details. The algorithm used is based
n the classic Occam’s inversion introduced by Constable et al.
1987) for the one-dimensional (1-D) MT and DC resistivity sound-
ng problems. The Occam inversion seeks a minimum structure

∗ Corresponding author. Tel.: +662 201 5770; fax: +662 354 7159.
E-mail address: scwsp@mahidol.ac.th (W. Siripunvaraporn).

031-9201/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.pepi.2009.01.013
e useful additional constraints.
© 2009 Elsevier B.V. All rights reserved.

model (as defined by some model norm which penalizes rough-
ness) subject to an appropriate fit to the data. The minimization is
accomplished with a modified Gauss–Newton algorithm, in which
the regularization parameter (which controls the tradeoff between
model roughness and data fit) is also used for step length control
(Parker, 1994). The main advantages of the Occam approach are
its stability and robustness, and the fact that the scheme often con-
verges to the desired misfit in a relatively small number of iterations
(e.g., Siripunvaraporn and Egbert, 2000). Occam was extended to
treat two-dimensional MT data by deGroot-Hedlin and Constable
(1990), but for multi-dimensional inversion the originally pro-
posed scheme can be computationally impractical, as the system
of normal equations is explicitly formed and solved in the model
space.

Siripunvaraporn and Egbert (2000) transformed the inverse
problem into the data space (e.g., Parker, 1994). If the number of
data (N) is small compared to the number of model parameters (M),
as will typically be the case in 3-D, the data space variant requires

a fraction of the CPU time and memory compared to a model space
scheme. This data space Occam scheme forms the basis for the
WSINV3DMT algorithm, which is summarized in Fig. 1.

The initial version of WSINV3DMT was only capable of inverting
the impedance tensor Z, the 2 × 2 complex frequency dependent

http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
mailto:scwsp@mahidol.ac.th
dx.doi.org/10.1016/j.pepi.2009.01.013
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Nomenclature

d observed data
Cd data error
m0 initial and prior model
Cm model covariance
mk model at k iteration
Jk N × M sensitivity matrix forming from mk
F[mk] forward responses of mk
�k data space cross product matrix
Rk representer for k iteration
� Lagrange multiplier
Ns number of stations
Nm number of modes
Np number of periods
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M number of model parameters

ransfer function relating electric to magnetic fields

Ex

Ey

]
=

[
Zxx Zxy

Zyx Zyy

][
Hx

Hy

]
. (1)

he impedance tensor is frequently used by itself for 3-D conduc-
ivity imaging (e.g., Tuncer et al., 2006; Heise et al., 2008; Patro
nd Egbert, 2008). However, modern MT field practice typically
ncludes measurement of vertical magnetic fields (particularly at
ong periods, where a tri-axial magnetometer is used), and thence
omputation of vertical field transfer functions (VTFs)

z =
[

Tzx Tzy

][
Hx

Hy

]
. (2)

he vertical magnetic field is only produced when there are lat-
ral or horizontal variations of conductivity. Researchers have often
sed VTFs in the form of induction vectors (Parkinson, 1959) to

ndicate or point to the source of conductivity anomalies and to
stablish or verify geoelectic strike directions (e.g., Bedrosian et
l., 2004; Uyeshima et al., 2005; Tuncer et al., 2006). A num-
er of 2-D inversion codes (e.g., REBOCC of Siripunvaraporn and
gbert, 2000; and NLCG of Rodi and Mackie, 2001) allow inversion
f VTFs (or “Tipper”), and these are often included along with TE
nd TM impedances in 2-D interpretations of MT profile data (e.g.,
annamaker et al., 1989; Wannamaer et al., 2008). Berdichevsky

t al. (2003) studied VTFs using analytical and modeling studies,
nd concluded that inclusion of these additional induction transfer
unctions can substantially improve the reliability of geoelectrical

odels, because they are not affected as strongly by local distortion
s the impedance tensor is.

Here, we describe the implementation of VTF inversion for the
SINV3DMT inversion code, and apply this to inversion of real and

ynthetic datasets. In addition, we describe implementation of a
arallel version of WSINV3DMT, using MPI and parallelizing over
requencies to help reduce program execution times, which can
e quite long for realistic modern datasets (e.g., Patro and Egbert,
008).

The paper is organized as follows. First, we summarize the mod-
fications to WSINV3D, for the most part omitting technical details.
ext, we illustrate and test the new features on the same syn-

hetic datasets previously used in Siripunvaraporn et al. (2005).

ere we illustrate the speedup obtained with the parallelization,
nd explore the effectiveness of VTF data for recovering conduc-
ivity structures, alone, and in conjunction with impedance data.

e then test the VTF inversion on the EXTECH dataset (Tuncer et
l., 2006), comparing inverted models from only VTF data, from
and Planetary Interiors 173 (2009) 317–329

only impedance data, and from a joint inversion of both data
types.

2. Implementation of WSINV3DMT to include the vertical
magnetic transfer function

There are only two major modifications to the WSINV3DMT
codes required to allow inversion of VTFs: adding the VTF com-
putation to the forward modeling routine, and the corresponding
modifications for the sensitivities of the real and imaginary parts
of the VTFs.

In WSINV3DMT, the electric fields are calculated by solving the
second order Maxwell’s equation using a staggered grid finite dif-
ference numerical scheme (Siripunvaraporn et al., 2002). Magnetic
field components can then be computed (on grid cell faces) from
Faraday’s law �× E = iω�H, and interpolated to the observation
locations, which in the modified version of WSINV3D can be at any
location on the surface. In order to compute the impedance tensor Z
the forward equations are solved for two polarizations, and Z is cal-
culated from the combination of horizontal electric and magnetic
fields from both polarizations, as described in Siripunvaraporn et
al. (2005).

The only modification required for the VTF is that the vertical
magnetic field must also be computed at the observation location.
As for the horizontal magnetic components, this is accomplished
using Faraday’s law, taking the curl of the horizontal E compo-
nents on the model air–Earth interface, and interpolating the result
(defined at cell centers) to the observation locations. Then, similarly
to the impedance tensor, the vertical and horizontal magnetic fields
computed from the solutions for both polarizations are combined
to form the vertical magnetic field transfer function T,

[
H1

z H2
z

]
=

[
T zx T zy

][
H1

x H2
x

H1
y H2

y

]
(3)

Here H1
z and H2

z are the z-component of magnetic fields for the
Ex–Hy and Ey–Hx polarizations, respectively, and similarly for other
field components. For a joint inversion with impedance tensor,
computing the vertical magnetic transfer function does not require
any extra forward modeling calls, as all transfer functions are com-
puted from the same solutions.

The sensitivity calculation for VTFs is essentially identical to that
used for impedances, which is based on the reciprocity approach
described in Rodi (1976), Newman and Alumbaugh (2000), and
Siripunvaraporn et al. (2005). Briefly, the linearized data functional,
which is represented by linear combinations of electric field solu-
tion components on cell edges surrounding the observation point, is
used to force the adjoint equation, and the result is mapped to per-
turbations in the model parameter, as described in Siripunvaraporn
et al. (2005). Only the first step requires modification, with the coef-
ficients for the linearized functionals for Tzx and Tzy replacing those
for Zxx and Zxy. Details of this modification are straightforward, and
are omitted here.

3. Parallel implementation with MPI

A major challenge in using WSINV3DMT, or for that matter,
any 3-D MT inversion code, is that the program is very time
consuming, especially when run with the sort of large dataset
(and model domain) that justifies a 3-D interpretation. Run times
exceeding a full month (on a single processor desktop computer,

for the full inversion process, including multiple iterations of the
outer loop of Fig. 1) have been reported when WSINV3D has
been applied to even modest 3-D MT datasets (e.g., Patro and
Egbert, 2008). These long run times primarily reflect the need
for many forward modeling calls, each of which requires iterative



W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329 319

MT (a

s
o
t
i
w

s
a
u
o
p
d
p
s
i
a
f
r
t
a

a
I
p
s
c
r
l
o
8
l
t
i

Fig. 1. Pseudo-code for serial WSINV3D

olution of the large sparse linear system arising from discretization
f Maxwell’s equations. WSINV3D was developed as a serial code,
o run on a single processor. An obvious way to speed up execution
s to parallelize the code, and make use of the multiple processors

hich are increasingly common even in desktop computers.
There are several ways to redesign the codes to run on parallel

ystem, and the most appropriate approach will depend on system
rchitecture. For supercomputers or large clusters to make effective
se of hundreds of processors it would be necessary to rewrite parts
f the forward solver—e.g., parallelizing the iterative solver and
reconditioner (e.g., Newman and Alumbaugh, 2000), or domain
ecomposition. Here, we consider a parallelization approach appro-
riate to small systems with a few to several tens of processors. Such
mall clusters and multi-processor workstations are now read-
ly affordable and more widely available than supercomputers. To
dapt WSINV3DMT for this class of systems, we parallelize over
requencies, adding calls to MPI (Message Passing Interface) library
outines to the existing codes. In this way, we do not have to alter
he core forward modeling and sensitivity calculation routines in
ny way. The parallel algorithm is summarized in Fig. 2.

Forward modeling and sensitivity calculations for each period
re sent to one processor (Steps 2.1 and 2.2 in Fig. 2).
f there are fewer processors than periods, each processor
erforms calculations for more than one period. With this
imple parallelization, which requires minimal inter-processor
ommunication, the computational time should be theoretically
educed by a factor P, the number of processors available. This paral-
el implementation also distributes storage of the sensitivity matrix
ver the available nodes. The N × M sensitivity matrix J requires

NM bytes (in double precision), and the need to store this in RAM
imits the size of datasets and model grids that can be practically
reated. With the parallelization, memory required on each node
s reduced to about two times 8NM/P (including temporary storage
fter Siripunvaraporn and Egbert, 2007).

for cross product computations), allowing WSINV3D to be run for
larger models grids and datasets.

With the sensitivities distributed over processors, formation of
the cross product matrix � = JC−1

m JT also requires MPI calls. We
have implemented this in a fairly simple way, breaking � into P2

blocks to be computed on the P processors (Step 2.3 in Fig. 2).
Diagonal blocks �ii are computed on the local processor where
the corresponding block Ji of the sensitivity matrix (correspond-
ing to one or more frequencies) is computed and stored. The
off-diagonal blocks (�ij) can only be formed by sharing blocks of
J between nodes. Since � is symmetric, only upper off-diagonal
blocks (j > i) need be formed. On step k block Jj, where j = mod(i + k, P)
is sent to node i to compute �ij where this block is stored. With
this simple scheme the load is balanced and the number of steps
required is approximately (Np + 1)/2. Although computing the cross
products requires significant communication time to share sen-
sitivities between nodes, it can still significantly reduce the total
computing time required to form � compared to single node pro-
cessing.

In the data space Occam scheme used by WSINV3D the system
of normal equations (Eq. (6) in Siripunvaraporn et al., 2005) must
be solved for a series of trial values of the regularization parameter
(about 3–7 from our experience) to find the optimal (in terms of
data misfit and model norm) model parameter update. In the serial
version of WSINV3D these dense systems are solved by Cholesky
decomposition (Step 2.4.2 in Fig. 1). Parallel Cholesky decomposi-
tion subroutines are available (e.g., Choi and Moon, 1997), but these
are generally tailored to a specific parallel architecture and are not
easily adapted. To develop code that will be portable, and reason-

ably efficient on a generic multi-processor system, we have thus
pursued a different strategy, using the easily parallelized precon-
ditioned conjugate gradient (PCG) algorithm to solve the normal
equations (Step 2.4.1.2 in Fig. 2). The major computation in the
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Fig. 2. Pseudo-code for parallel

CG algorithm is matrix–vector multiplication. This is readily par-
llelized by dividing the vectors and matrix into blocks, spreading
omputations for individual blocks over processors, and then gath-
ring the results back to the master node. To simplify the algorithm
e have distributed the full matrix to all computational nodes.

The preconditioner, based on the diagonals of the coefficient
atrix, is also trivially parallelized. Because the coefficient matri-

es are dense, the parallel PCG scheme may not be efficient when
is small, since communication and other overhead may exceed

he serial computational time. For smaller N, we therefore retain
he option of solving the normal equations with a serial Cholesky
ecomposition, after all blocks �ij are sent back to the parent node.
he optimal choice of solution scheme (parallel or serial) for a spe-
ific value of N will depend on the cluster architecture. We give
xamples below where each approach is more efficient.
Once the new model mk+1 is obtained, the parallelized forward
olver is called to compute the responses of each period, with the
esults gathered to the parent node to compute misfits (Step 2.4.2
n Fig. 2). All steps are repeated until an acceptable misfit and norm
re achieved
V3DMT for cluster PCs system.

4. Synthetic data examples

To illustrate the efficiency of the parallelized WSINV3D, and
the effectiveness of the VTF inversion, we first consider inver-
sion of synthetic datasets, revisiting the two synthetic examples
previously used by Siripunvaraporn et al. (2005), reproduced in
Fig. 3. The results of these tests are consistent with those obtained
for other synthetic examples. Our basic test configuration is the
two-block model (Fig. 3a) consisting of two anomalies, 1 � m and
100 � m located next to each other within a 10 � m host. The spa-
tially homogeneous layer, which extends from the surface to 10 km
depth, is underlain by a 100 � m half space. To test the efficiency of
our parallel codes, and the VTF inversion, we generated VTF and
impedance data at 16 periods (from 0.1 to 1000 s) for a total of
40 sites in a regular grid, as illustrated in Fig. 3a. Gaussian noise

(5% of the data magnitude) was added to the generated data. The
inversions for this case are performed on a 21 × 28 × 21 (+7 air lay-
ers) mesh. The second model consists of a single conductive block
(1 � m) buried in a 100 � m half-space (Fig. 3b), and responses
were computed at 16 periods for 36 sites (Fig. 3b). The inversions
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ig. 3. Two synthetic models used to test our inversion. (a) Two-block synthetic mo
he cross-section view in the lower panel is a profile cutting across the middle of th

or the second case are performed on a 28 × 28 × 21 (+7 air layers)
esh.
We first demonstrate the efficiency of the parallel version of

SINV3D, using both VTF and joint VTF/impedance datasets for
ests. We then consider the effectiveness of VTF data for recov-
ring conductivity variations, both alone, and in conjunction with
mpedances.

.1. Parallel efficiency

We tested WSINV3DMT by running on 1, 4, 8 and 16 nodes for
he first synthetic test case (Fig. 3a), with the 16 periods divided
venly among nodes (e.g., with 4 nodes, each solves for 4 periods).

ests were conducted on a small PC-clusters and a supercomputer
SGI Altix 4700) at the Earthquake Research Institute, University of
okyo. To quantify efficiency of the parallel code, we display the
peedup, defined as S = T1/TP, where T1 is the execution time of
he sequential WSINV3DMT algorithm and TP is the execution time
d (b) a single conductive block model. The solid dots indicate the observation sites.
el in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005).

of the parallel version, run on P processors. The idealized maxi-
mum speedup is P. However, due to computational overhead, the
need for some computations to be performed only on the mas-
ter node, and the time required to exchange information between
nodes, S will always be less than P. Fig. 4 displays speedup versus
the number of nodes. Inversions of all data (i.e., VTF + impedance,
N = 40 × 12 × 16 = 7680) are plotted with solid lines. Inversions of
the VTF only dataset (N = 40 × 4 × 16 = 2560, or one third the size
of the joint inversion dataset) are plotted as dashed lines. We also
compare speedups achieved with the two approaches for solving
the normal equations: speedups obtained with the single proces-
sor Cholesky decomposition are plotted as solid symbols, while
those obtained with the parallel PCG algorithm are plotted as open

symbols.

For the inversion of the VTF dataset for this very small test prob-
lem, actual (wall clock) run times were about 186 min on a single
node machine, 82 min on 4 nodes, 46 min on 8 nodes and 34 min
on 16 nodes, resulting in speedups of about 2.2 for 4 nodes, 4 for 8
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Fig. 4. Speedup versus the number of processors or nodes. Solid lines are the
speedups from inversion using both VTF and impedance data (N = 7680). Dashed
lines are the speedups from inversion using only VTF data (N = 2560). Results for the
scheme which solves the normal equations by Cholesky decomposition on a single
node (step 2.4.1.2 of Fig. 2) are plotted with solid symbols. The corresponding results
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tor, extending from near the surface to approximately 20 km depth.
ith the parallel PCG solver (step 2.4.1.4 of Fig. 2) are plotted with open symbols.
he thin-dashed line of slope one gives the ideal perfect speedup.

odes and 5.4 for 16 nodes. Thus, as the number of nodes increases,
he relative efficiency of additional nodes decreases. One reason for
his is that the run time of the iterative forward modeling routine
epends on the period of the data. Shorter periods typically require
larger number of iterations for convergence, and hence longer run

imes. Thus, some nodes are usually idle waiting for modeling com-
utations to complete on other nodes, before moving on to the next
tep in the inversion. With fewer nodes some of the frequency-to-
requency variations average out, resulting in better balance.

Efficiencies are somewhat lower for the larger joint
TF/impedance dataset, when the serial Cholesky decomposi-

ion solver is used (solid line with solid square symbols of Fig. 4).
ow the speedups are about 1.8, 2.6 and 3.2 for 4, 8 and 16
odes, respectively, almost 50% below those achieved for the VTF
nly inversion. However, solving the normal equations with the
arallel PCG solver (solid line with open square symbols in Fig. 4)
ignificantly improves performance, increasing S to approximately
, 4.5 and 7.3 for the three cases considered. In the VTF only
ase, where N is significantly smaller, both methods for solving
he normal equations have similar performance (dashed lines in
ig. 4), and indeed the speedup is slightly greater when the single
ode Cholesky decomposition is used.

The difference between the two cases is readily understood.
peration counts for Cholesky decomposition scale as N3 so com-
utation times for the serial Cholesky decomposition in the all
ata case (N = 7680) are expected to be about 27 times greater
han for the VTF only case (N = 2560). Other computational steps
cale better with increasing N. For fixed model parameter size,
otal operation counts for the sensitivity calculations increase lin-
arly in N, and formation of the cross product matrices increases as
2. Thus, as the size of the dataset increases, run times required

or the serial Cholesky decomposition step become increasingly
ignificant, and at large enough N this step will control the
verall runtime. Operation counts for a single iteration in the
arallel PCG scheme scale as N2, but overall runtimes will also
epend on the number of iterations required. Although this should
ncrease with N also, the dependence is weak, and so PCG becomes
ncreasingly advantageous as N increases, particularly since com-
utations for the PCG scheme can be distributed over the P
rocessors.
and Planetary Interiors 173 (2009) 317–329

The number of iterations for PCG also depends on the relative
tolerance for the residual (=||Ax − b||/||b||) used to define conver-
gence. We find that a tolerance of 10−4 results in models that are
essentially identical to those obtained with the Cholesky decompo-
sition technique. The number of iterations, and hence the run time
of the parallel PCG scheme also depends on the condition number
of the normal equations. For large values of the Lagrange multi-
plier (corresponding to a smoother model) the condition number
is smaller, and the parallel solver thus converges in a small num-
ber of iterations. In contrast, when the Lagrange multiplier is very
small (rough model) the parallel solver can require considerably
more iterations, and solution times can exceed those for the serial
Cholesky decomposition scheme. This occurred occasionally in our
tests with the larger VTF/impedance dataset, but overall perfor-
mance using the parallel PCG solver was much better when N is
large enough.

We will not attempt to quantify more precisely how large N
must be before the parallel approach to normal equation solution
would be preferred. This will depend on the cluster architec-
ture, especially on the sort of inter-processor communication
used, since the parallel PCG solver requires substantial sharing of
data.

In addition to reducing computational times, the parallel ver-
sion also reduces the need for a large amount of memory on a
single computer. Even for the small joint VTF/impedance inversion
test example, about 1.5 GBytes are required for the representer and
sensitivity matrices. In the parallel implementation, the required
memory may be distributed over all of the nodes used. For exam-
ple, with 16 nodes, each would require only 0.090 GBytes for storing
the sensitivity matrix and forming cross products, almost 13 times
less than required by the serial code. If the whole representer matrix
is stored on a single processor (for the Cholesky decomposition, or
to reduce the communication time between nodes for PCG) about
0.4 Gb are required on each node, still only a quarter required for a
serial version.

The exact time speedup and per-node memory reduction fac-
tors will depend to some extent on the problem size, both in terms
of model grid dimensions, and number of data. For larger prob-
lems, such as the real data EXTECH example considered below,
similar performance gains were attained. For these larger prob-
lems, however, a speedup by a factor of roughly 7 means a run
time that was perhaps 2–3 weeks on a single node is now reduced
to 2–3 days, making inversion of realistic datasets considerably
more practical. The practical impact of distributing memory is even
greater. Total storage required by WSINV3D for the EXTECH exam-
ple described below (joint inversion of the full impedance and VTFs)
is at least 30 Gb, making this impractical on almost any shared
memory machine.

4.2. Vertical magnetic transfer function inversion

We next consider the effectiveness of WSINV3DMT at correctly
recovering resistivity when only VTF data are available. Because
in practice one would not know a priori the correct background
resistivity, we run the inversion using several prior (and starting)
models. Inversion results for the synthetic VTF data from the test
case of Fig. 3a are summarized in Figs. 5 and 6. Using a 50 � m
half-space as a prior (this is intermediate between the true 10 � m
upper layer background, and the 100 � m basement), inversion of
VTF data reveals both the conductive body and the adjacent resis-
The calculated responses generated from the inverse solution of
Fig. 5 fit the observed responses within 15% of the typical VTF
amplitude (recall that 5% random noise was added to the synthetic
data).
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ig. 5. An inverse solution from the VTF data alone after the 9th iterations with an
a)–(c) is a plan view at the surface, at 3 km and at 7.5 km depth, and the bottom pan
s shown only in the central area around the anomalies, not for the full model doma

Although both anomalies are detected in approximately the

orrect location, the true resistivities of Fig. 3a are not correctly
stimated. However, calculating the average resistivity over the
nomalous volumes we find for the inverse model of Fig. 5 an aver-
ge resistivity of about 6.3 � m for the conductive anomaly, and of

ig. 6. Cross-sectional plots at X = 0 km (as in Fig. 5d) of the inverse solutions from VTF da
c) 100 � m half-space.
alue of 1, fitting synthetic data generated from the model in Fig. 3a. The top panels
is a cross-section view cutting across the conductive block at X = 0 km. The solution

about 453 � m for the resistive body, while the background resistiv-

ity of the inverse model was changed only slightly from the 50 � m
prior. Computing the volume average resistivity ratios from left to
right in Fig. 5d, we obtain values of 7.9 (=50/6.3), 72 (=453/6.3) and 9
(=453/50), compared to the actual ratios (Fig. 3a) of 10 (=10/1), 100

ta alone, when the prior models are (a) 10 � m half-space, (b) 1 � m half-space and
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=100/1) and 10 (=100/10), respectively. The inversion thus results
n roughly the correct structure, with approximately correct resis-
ivity contrasts, but it does not recover the correct amplitude of
ither the background or the anomalies, or the actual depth extent
f the anomalies.

To explore this issue further we ran the inversion on the same
TF dataset, using a range of values for the assumed half-space
rior. Fig. 6 summarizes the results with cross-sectional plots of
he inverse solutions at X = 0 km. When the prior model is the same
s the correct background resistivity (i.e., a 10 �-m half-space in
ur example), the inversion quickly converges to the desired misfit
ithin 4 iterations, even with error floors set to 5%. In this case,

he inversion estimates the resistivity, and the depth extents, of the
wo anomalies quite well (Figs. 6a and 3a). However, the 100 � m
asement resistivity (below 10 km depth in the synthetic test model
f Fig. 3a) is not recovered—the prior resistivity of 10 � m remains
nchanged at depth in the inverse solution. This again demonstrates
hat inversion of VTF data alone can only recover lateral resistiv-
ty contrasts, and is not effective at correcting resistivities, or their
ariations with depth.

Larger deviations of the prior model from the correct back-
round result in even larger discrepancies in anomaly amplitudes
nd depths, but still generally allow the horizontal structure to be
ecovered. With a 1 � m half-space (Fig. 6b) data is fit to within
0%. Anomalies appear at very shallow depths (upper few km), with
ll features more conductive than their actual values. At greater
epth, features with appropriate resistivity ratios are imaged, but
he absolute levels are incorrectly estimated, and spurious struc-
ures appear. Using a 100 � m half-space as a prior, the VTF data

an only be fit to within 20%. The basic structure is again recovered,
ut both anomalies are at greater depth (Fig. 6c) and have increased
esistivity. The host resistivity is estimated to be slightly lower than
he 100 � m starting value, but is still well above the correct value

Fig. 7. Results from joint inversion of both VTF and impedance tensor data ge
and Planetary Interiors 173 (2009) 317–329

of 10 � m. As in the other cases, the basement resistivity remains
the same as the prior model.

All of these experiments suggest that when only VTF data are
available, to achieve the target misfit and recover correct ampli-
tudes and depths, the inversion must be started with a prior model
that is close to the correct host resistivity. However, even starting far
from the correct background model, anomalies are recovered with
the correct horizontal location and dimensions. This result is not
unexpected since the vertical magnetic fields are generated where
there are lateral discontinuities, but are not inherently sensitive to
the profile of vertical conductivity structure.

In addition, resistivities of anomalous bodies scale with the
assumed prior background (Fig. 6), and resistivity contrasts (i.e.,
ratios) can be close to actual values, especially if the assumed back-
ground resistivity is not too far off. However, the VTFs provide little
intrinsic constraint on contrasts in the vertical direction, including
the location of the top or the bottom of the anomalies. The inver-
sion only gets these properties of the anomalies correct if something
close to the correct background is used (Fig. 6a).

Performing similar experiments to those summarized in Fig. 6,
but using impedance tensor data shows that these inversions are
much less sensitive to the assumed prior model. This is consistent
with the basic physics, as the ratio of electric to magnetic fields is
intrinsically related to the resistivity profile. In spite of the well-
known uncertainties in depth and absolute resistivity level that
may result from local static distortions, there is by now ample evi-
dence (e.g., Tuncer et al., 2006; Unsworth et al., 2000) that, with
proper care, MT impedances can yield reliable information about
conductivity-depth profiles. The same does not appear to be true

in practice with VTF data, although theoretical analysis of idealized
models suggests otherwise (Berdichevsky et al., 2003).

The above results suggest that VTF data will be most useful as an
adjunct to impedance data, which can provide the necessary con-

nerated from the model in Fig. 3a. See caption of Fig. 4 for other details.
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ig. 8. Cross-sectional plots at X = 0 km of the inverse solution from (a) fitting the ve
oth data types. The data is generated from the synthetic model in Fig. 3b.

traint on background resistivities. As a first example, we consider
oint inversion of VTF and the impedance tensor data derived for the
ynthetic model of Fig. 3a. As above we again tried a range of pri-
ri/initial models. Although in general the impedance tensor data
an adjust the resistivity background, we still had difficulties get-
ing the joint inversion to converge to the desired 5% misfit level,
specially with priori models that differ greatly from the correct
ackground resistivities. In this and other examples, we found that
o achieve the target misfit for both data types, it was necessary
o first fit the impedances to a half-space model, to determine a
rior model for the joint inversion. Even with this additional step,
e typically found it necessary to use increased error floors for the
TF data (but not the impedances) to achieve a normalized RMS of
ne.

Not surprisingly, a 50 � m half-space (as in Figs. 5 and 6 of
iripunvaraporn et al., 2005) yields a good fit to the synthetic
mpedance data for case 1. With error floors set to 15% for VTF data
nd 5% for impedance tensor data, the joint inversion converged
o the target misfit in 5 iterations. In the final iteration (Fig. 7) the
wo anomalies are recovered with essentially correct background
esistivities. In fact, in comparison with the inverse model obtained
rom inversion of just the impedance data (Fig. 6 of Siripunvaraporn
t al., 2005), there is little difference. Clearly, the relatively simple
tructures in this synthetic example are well enough constrained
lready by the array of 40 MT sites that addition of the VTF data can
dd little. In any event, this example demonstrates the consistency
f the two datasets, as both can be fit simultaneously with the same
nverse solution.

Other synthetic examples demonstrate the potential benefit of
oint inversion a bit more clearly. We performed three inversion
ests on the second test case, with data generated for the synthetic

odel of Fig. 3b, as described above. Error floors were set at 10% and
% for the VTF and the impedance data, respectively. Initial models
or all runs are 50 � m half space. The first inversion was performed

sing just the VTF data, the second with just the impedance tensor,
nd the last with both data types. All inversion reaches the target
isfit of 1 RMS. Fig. 8 displays cross-sectional plots at X = 0 km.
In all cases the conductor is recovered, although for the VTF case

he burial depth is greater than what it should be (Fig. 8a). This again
magnetic transfer function alone, (b) fitting the impedance tensor alone, (c) fitting

shows that the VTF data can primarily constrain the location of the
conductor in the horizontal, but not the vertical. Inversion of the
impedance tensor alone recovers the anomalous volume quite well
(Fig. 8b), but the conductivity is noticeably above the correct value
of 1 � m (Fig. 8b). The best results are obtained by the joint inver-
sion, where the resistivity, shape, size and depth of the conductor
are close to correct. It is not clear why this example demonstrates
a benefit of including VTF data, and the other does not; possibly
different results would be obtained if the experiment was repeated
with different realizations of random noise added to the data, or if
the locations of the MT sites were perturbed, or different initial or
prior models were used. Clearly the need to satisfy additional data
constraints reduces the effects of noise in the data, and is likely
to improve the fidelity of the inverse solution. For more complex
structure the value of additional constraints provided by the VTF
inversion are even clearer, as we show next by consideration of an
example with real data.

5. Numerical experiments on real data

We applied the VTF inversion to the EXTECH dataset (Tuncer
et al., 2006), consisting of tensor audio-magnetotelluric (AMT)
soundings for 131 stations around the McArthur River mine,
Saskatchewan, Canada. The goal in this survey was to use electro-
magnetic data to detect and map low resistivity graphite which is
indicative of unconformity-type uranium deposits. A full descrip-
tion of the survey, and an interpretation of this dataset based on 2-D
and 3-D analysis (including inversion with WSINV3D), is given in
Tuncer et al. (2006). Further efforts at 3-D interpretation are given
in and recently Farquharson and Craven (2008).

Here, we invert VTF and impedance data from 16 periods (from
8000 Hz to 5 Hz) at 131 sites (Fig. 2 of Tuncer et al., 2006), comparing
results obtained with the two sorts of responses, separately and in
combination. We use a 1000 � m half-space as an initial and prior

model for all runs, as previous inversion of the impedance tensor
suggests that this is a reasonable average background, and should
thus produce sensible results when inverting the VTF alone. For
inversion of the VTF (Tzx and Tzy) only, minimum error bars were set
at 15% of (|Tzx|2 + |Tzy|2)1/2. The inversion required about 8 iterations
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ig. 9. The inverse solution at various depths from fitting the vertical magnetic tran

o converge to a minimum RMS of 1.2. Results for this inversion are
iven in Fig. 9.
For the second run we inverted the impedance tensor alone. In
revious results using WSINV3D, reported in Tuncer et al. (2006)
nly the off-diagonal components (Zxy and Zyx) of the impedance
ere inverted. Here, we used all components including Zxx and Zyy

Fig. 10. The inverse solution at various depths from fitting all com
nctions of the EXTECH dataset. The cross-symbols indicate the location of stations.

also. The minimum error bar for this run was set at 5% of |Z1/2
xy Z1/2

yx |
for off-diagonal and 50% for diagonal terms. When the same error

floors were tried for off-diagonal and diagonal terms, the misfit
could not be reduced below 3 RMS. With the modified error floors,
the inversion required 4 iterations to converge to the target level of 1
RMS. The resulting model is shown in Fig. 10. The last run was a joint

ponents of the impedance tensors of the EXTECH dataset.
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Fig. 11. The inverse solution at various depths from fittin
nversion of the full impedance tensor and the vertical magnetic
ransfer function, with error floors set as in the first two runs. The
nversion reduced the RMS misfit to 1.3 in 5 iterations. The model
rom the joint inversion is shown in Fig. 11.

ig. 12. The induction vectors at 100 Hz generated from (a) the observed VTF data, (b) the
TF data of Fig. 11, and (d) the impedance tensor inversion alone of Fig. 10. Notice that the
VTF and the impedance tensors of the EXTECH dataset.
Inverting just the impedance tensor (Fig. 10) reveals two main
zones of high conductivity at 1000 m depth—an elongated fea-
ture of about 100 � m running perpendicular to the profiles on
the east side of the model domain, and an area of variable (but

VTF inversion alone of Fig. 9, (c) the joint inversion of both impedance tensor and
calculated induction vectors in (d) fit the observed induction vectors more poorly.
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enerally higher) conductivity located in the northwest. The same
eatures are evident, but somewhat weaker, in the 800 m layer. Sim-
lar features were obtained by inverting only the VTF data (Fig. 9).
owever, depth resolution appears poorer, as the inversion spreads

he conductive features to shallower depths, particularly in the
orth, beyond the area covered by the MT profiles. The indepen-
ent inversions of each data type confirm the lateral locations of
he conductors. However, based on our experiments with synthetic
ata, the vertical position and extents of the conductive zones are
lmost certainly better constrained by the impedance tensor.

Results from joint inversion (Fig. 11) show increased conductiv-
ty in the same two general areas at 1000 m depth. However, the
longated conductor to the east now appears to be broken into seg-
ents, with patches of resistivity as low as 10 � m, separated by

reas with resistivities of several hundred � m. In contrast, invert-
ng impedances alone results in a more uniform (approximately
00 � m) continuous feature. Apparently, the VTFs cannot be fit
y such a simple uniform conductor, but rather require significant
long-strike variability (see Fig. 12). The feature to the north is also
ubstantially modified by inclusion of both data types. Compared
o the VTF only inversion, the depth of this feature is now clearly
ocalized at around 1000 m, constrained by the impedance tensor.
nclusion of the VTF data also reduces peak conductivities in this
rea, and results in more linear conductive features which strike
pproximately east–west.

It is instructive to consider fits of the inverse solutions of
igs. 9–11 to the VTF data. Real induction vectors (with the Parkin-
on convention, so that arrows point toward conductors) are plotted
n Fig. 12 for a frequency of 100 Hz, along with computed responses
or the VTF only, impedance only, and joint inversions. The induc-
ion vectors are consistent with the presence of conductive features
n the southeastern and northern parts of the array—e.g., note the
lear reversal of vectors on most lines as they cross the elongated
onductive feature at 1000 m depth (clearest in Fig. 10), and the
eversal from South to North pointing vectors in the Northern cor-
er of the study area. However, as noted by Tuncer et al. (2006)
atterns in the observations are much more complex than can be
eproduced by simple 3-D models. The VTF only inversion repro-
uces almost all of the complexity seen in the data (Figs. 12a and
). The joint inversion results in a smoother VTF response, and a
lightly poorer fit to the data (Fig. 12; this is consistent with the
arger error floor assumed in this case), but again, significant fea-
ures in the data are reproduced in the fitted response. In contrast,
he solution obtained from fitting the impedance tensor data alone
Fig. 12c) fits the VTF observations considerably less well, suggest-
ng that the result from the joint inversion (Fig. 11) is more reliable
han that from the impedance tensor alone (Fig. 10). A more detailed
nterpretation of this dataset is beyond the scope of this paper. See
uncer et al. (2006) and Farquharson and Craven (2008) for further
nterpretation and discussion of the EXTECH data, and Craven et al.
2006) for comparison of inversion techniques using this data.

. Conclusions

Experiments on both synthetic and real data show that invert-
ng VTFs alone can recover anomalous structures, particularly if the
rior model is close to the correct background or host value. In gen-
ral, the qualities of the inverse solution obtained from VTF data
lone are inferior to those obtained from inverting the impedance
ensor alone. Vertical magnetic fields are generated whenever lat-

ral conductivity gradients align with the normal inducing field.
hus, VTFs are sensitive to horizontal structures, and to some extent
o resistivity contrasts, but not to depths or absolute values of
esistivity. If some constraint on host resistivity can be provided,
ither a priori, or through inversion of impedances, the VTF data
and Planetary Interiors 173 (2009) 317–329

can result in accurate 3-D imaging of the anomalous structures.
Joint inversion of VTFs and the impedance tensor can help con-
strain subsurface structures, as shown in both synthetic and real
data examples. In cases with very simple structures which are
already well resolved by the impedance data VTFs add little to
the inverse solution. However, with more realistic levels of com-
plexity, as exemplified by the EXTECH data, inclusion of VTF data
results in significant modifications to the inverse solution. Because
the joint inversion model fits both datasets, it is likely to be more
reliable.

One issue that deserves further investigation is the inability
of the inversion to fit synthetic VTF data to within the tolerance
implied by the noise level, which of course is well known in syn-
thetic tests. We speculate that the VTF data can only be fit perfectly
when the background resistivity is correct—implying at least a weak
sensitivity of this sort of data to the background, as the analysis of
Berdichevsky et al. (2003) in fact showed. In the case of using the
wrong background resistivity (for which the data have little sensi-
tivity) no nearby model parameters can provide a better fit, perhaps
after adjusting conductivities of the anomalous bodies to roughly
fit the VTFs, the Occam inversion is stuck in a local minimum of the
penalty functional, and cannot escape from. It would be useful to
compare other search algorithms (e.g., NLCG) to see if they suffered
from similar problems.

A significant drawback with WSINV3DMT has been the large
amount of memory required to store the sensitivity matrix, and
the extensive computational time required for forward and sensi-
tivity solutions. These drawbacks can be ameliorated by adapting
the code to run with MPI to on parallel systems. We have paral-
lelized the computations over frequencies, requiring no significant
changes to our forward modeling routine. This approach is prob-
ably most appropriate for small cluster type machines. To make
efficient use of a cluster or supercomputer with more than a few
tens of processors would require different approaches, such as
decomposing the modeling domain for the forward solver. We have
also parallelized computation of cross products, sharing rows of
the sensitivity computed on separate nodes to compute blocks
of the coefficient matrix needed for the Gauss–Newton normal
equations. The resulting dense system of normal equations can
be solved on the master node, or using a parallel solver based
on iterative methods. The optimal choice here depends on the
size of the data space, with the iterative parallel solver only effi-
cient for large datasets. The speedup of the code on a test dataset
with 16 periods is nearly linear (with a coefficient of roughly
0.5) for up to 8 processors, but rolls over for a further increase
to 16 processors. Even so, the parallelization should make use
of the code on realistic 3-D datasets significantly more practi-
cal.
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[1] In conjunction with the USArray component of
EarthScope, long period magnetotelluric (MT) data are
being acquired in a series of arrays across the continental US.
Initial deployments in 2006 and 2007 acquired data (10–
10,000 s) at 110 sites covering the US Pacific Northwest,
distributed with the same nominal spacing as the USArray
seismic transportable array (�75 km). The most striking and
robust features revealed by initial three-dimensional
inversion of this dataset are extensive areas of high
conductivity in the lower crust beneath all of southeastern
Oregon, and beneath the Cascade Mountains, contrasting
with very resistive crust in Siletzia and the Columbia
Embayment. Significant variations in upper mantle
conductivity are also revealed by the inversions, with the
most conductive mantle beneath the Washington backarc,
and the most resistive corresponding to subducting oceanic
mantle. Citation: Patro, P. K., and G. D. Egbert (2008), Regional

conductivity structure of Cascadia: Preliminary results from 3D

inversion of USArray transportable array magnetotelluric data,

Geophys. Res. Lett., 35, L20311, doi:10.1029/2008GL035326.

1. Introduction

[2] The USArray component of EarthScope is a conti-
nental-scale geophysical observational program that will
provide new constraints on the structure and evolution of
the North American continent. As an adjunct to the seismic
transportable array (TA), which over the next decade will
cover the continental US with temporary seismic observa-
tories at an approximate spacing of 75 km, long period (10–
20,000 s) magnetotelluric (MT) data will be acquired in
selected areas, with comparable site densities. The first MT
TA data were acquired at 30 sites in eastern Oregon in the
summer of 2006, followed by 80 sites covering western
Oregon, all of Washington State and western Idaho in
summer 2007. In contrast to traditional MT surveys, where
sites are concentrated along one or a few profiles, sites were
widely spaced to provide quasi-uniform coverage of the
entire area. This array configuration, and the geologic
complexity of the study area (Figure 1), effectively demands
a three-dimensional (3D) interpretation. Here we present the
results of our preliminary efforts in this direction.
[3] The MT array traverses a wide range of geologic

environments, from the subducting Juan de Fuca (JDF)
plate in the west, across the Cascade volcanic arc, and into
the Columbia Plateau, High Desert, western Snake River

Plain and Northwest Basin and Range provinces to the east.
The modern position of the subduction zone dates from
approximately 48 Ma, when a large fragment of thickened
oceanic lithosphere was accreted to the Pacific Northwest
margin [Madsen et al., 2006] near the end of Laramide
orogeny. This accreted oceanic terrane, which fills the
Columbia Embayment and forms the modern forearc base-
ment in NW Oregon and SW Washington, is sometimes
referred to loosely as Siletzia (e.g., E. Humphreys, Relation
of flat subduction to magmatism and deformation in the
western USA, submitted to Backbone of the Americas,
2008). From 17 to 12 million years ago, great flood basalts
(over 200,000 km3) erupted in Washington and Oregon,
covering much of the Columbia Plateau [Camp and Ross,
2004]. These eruptions have been followed by age progres-
sive silicic volcanism which continues to the present day
and has resulted in the Snake River Plain (terminating in the
east at Yellowstone [Pierce and Morgan, 1992]) and the
High Lava Plains of eastern Oregon (terminating in the west
at Newberry Volcano [Jordan et al., 2004]).
[4] In a broader context, much of the crust in the Western

US is rapidly deforming, with widespread extension in the
Basin and Range (BR), which the southeast corner of
the array intersects, and a broad zone of right-lateral shear
to the south extending from the San Andreas Fault deep into
the continental interior [Humphreys and Coblentz, 2007]. In
contrast, Siletzia has retained sufficient strength to avoid
deformation, accommodating right-lateral shear through
clockwise block rotation which continues to this day [Wells
et al., 1998, McCaffrey et al., 2007].

2. Magnetotelluric Data and Analysis

[5] MT data were acquired by a commercial contractor
(GSY-USA) using conventional long period MT instru-
ments based on fluxgate magnetometers. Time series data
(typically of three weeks duration) were processed using a
standard robust remote reference approach [Egbert, 1997],
resulting in most cases in smooth response curves over the
period range 10–10,000 s. Although there are significant
site-to-site static shifts in apparent resistivities [e.g., Bahr
and Simpson, 2005], spatial maps of phases are generally
well behaved, and exhibit large scale coherent features (see
auxiliary material1, Figures S1 and S2).
[6] Induction vectors, which are computed from the ratio

of vertical to horizontal magnetic field components, are
indicative of lateral conductivity contrasts. For the Cascadia
array these are strongly affected by the ocean in the western
part of the array, but also reveal other substantial conductive

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GL035326.
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anomalies with varying orientations, as summarized in
Figure 1 (bottom inset). Geo-electric strike analysis based
on tensor decomposition [e.g., Smith, 1997] further confirms
(Figure 1, top inset) that there is no consistent geo-electric
strike that would allow two-dimensional interpretation of
this dataset.

3. 3D inversion

[7] We used WSINV3D, a 3-D regularized inversion
program [Siripunvaraporn et al., 2005], to fit the 4 complex
impedance tensor components for the 109 sites with data of
acceptable quality. The model domain has total dimensions
1460 � 1590 � 550 km consisting of Nx = 80, Ny = 78
horizontal grid cells with nominal grid spacing in the central
part of the domain approximately 12 km. The Pacific Ocean,
with realistic bathymetry and conductivity (3.33 S/m),
extends 480 km west of the coast. In the vertical the mesh
has Nz = 34 layers, plus 7 additional layers for the air.
Impedances for 8 periods (100–8000 s) were selected for
inversion. Even for this relatively limited data subset and
coarse model resolution the serial inversion code required
11 days per (outer loop) iteration on a single (2.8 GHz)
processor PC, using essentially all of the 16 Gb of available
RAM.

[8] Actual impedance estimation errors were used to
normalize data misfits, and a half space of 100 ohm-m
(except for the ocean) was used as a prior. As discussed in
the auxiliary material, we experimented with several var-
iants on the model covariance. The smoothest inverse
solution, computed with larger horizontal decorrelation
length scales, is shown in Figure 2. Alternate runs with
less horizontal smoothing fit the data somewhat better
(Figure S3), but all inverse solutions were qualitatively
similar, particularly with regard to the large scale features
emphasized below. The computed responses fit the ob-
served signal well for periods up to a few thousand seconds
(Figure S1). At longer periods fits are poorer, particularly
for some sites near the coast (Figure S2). We also verified,
by forward modeling, that the induction vectors were fit at
least qualitatively by the inverse solutions.

4. Results and Interpretation

[9] The most prominent feature revealed by the inversion
is an extensive lower crustal conductor (C1 in Figure 2),
which occupies the triangular region southeast of the dotted
white line extending from the coast near the California
border to the eastern edge of the array, near the Oregon-
Washington border (Figures 1 and 2). This conductive

Figure 1. Location of MT sites collected in 2006 (blue stars) and 2007 (red stars) on a map of physiographic provinces
[after Rosenfeld, 1985]. Black arrows give geo-electric strike directions determined by fitting the distortion model of
Smith [1997] for periods of 1000–10000 s. The top inset shows the distribution of strike directions, which have a 90�
ambiguity. The bottom inset is a rose diagram for real induction vectors, which point towards conductive features, for
a period of 1092 s.
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feature extends beneath the northwest BR, High Lava
Plains, Western Snake River Plain, and Blue Mountains.
The contact between C1 and more resistive crust to the
northwest is interpreted as the southern boundary of the
oceanic accreted terrane, i.e., Siletzia. Vertical conductivity
profiles for selected physiographic provinces (Figure 1),
computed by geographic averaging of the 3D inversion
results, are given in Figure 3. The integrated conductance of
the lower crustal layers is over 3000 S beneath the NWBR,
and somewhat less to the north. In the NWBR in particular
the zone of high conductivity appears to extend into the
upper mantle, but further analysis will be required to verify
this possibility.
[10] Based on higher frequency MT studies across the

Cascade Range and surrounding geological provinces,
Stanley et al. [1990] inferred a zone of high conductivity
in southeastern Oregon below depths of about 15–20 km.
Our results refine this picture significantly, revealing the
broad spatial extent, approximate thickness, and high total
conductance of this layer, which is quite similar in these
respects to those seen in the lower crust elsewhere in the
BR, and most probably reflects similar processes.
Wannamaker et al. [2008] infer a lower crustal conductance
in the eastern Great Basin and Transition Zone of �3000 S
and suggest that these high conductivities result from
magmatic underplating associated with BR extension. As
upward migrating magmas crystallize at the base of the
crust several volume percent of H2O-CO2, highly saline
brines are exsolved. With appropriate (interconnected) pore
geometry these fluids (possibly with some contribution
from partial melt near the moho) can easily account for
the observed high conductivities [Wannamaker et al., 2008].
[11] Note that the lower crustal conductor extends north-

ward beyond what is normally considered to be the BR,
albeit with reduced amplitude. This is consistent with the
interpretation of Humphreys (submitted manuscript, 2008)
that the interior shear zone in California broadens across
NW Nevada and SE Oregon to accommodate rotation of the
large strong crustal block that is Siletzia, resulting in faults
of releasing orientation, and effective integration of this

zone with Basin and Range extension (Humphreys, submit-
ted manuscript, 2008). The zone of enhanced lower crustal
conductivity thus correlates with weakened continental
crust, and coincides with the zone of active crustal
deformation.
[12] An elongate (N–S) conductive zone in the lower

crust beneath the Cascade axis is also delineated (C2–C3 in
Figure 2). This feature, which exhibits significant variability

Figure 2. 3D resistivity image of the Pacific Northwest USA derived from the 3D inversion, plotted as slices of (left)
constant depth and (right) constant latitude. Slab geometry from McCrory et al. [2003]. A: conductive zone in the forearc;
C1–C6 and R1–R2 conductive and resistive features discussed in the text.

Figure 3. Vertical conductivity profiles for selected
physiographic provinces.
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along axis, also most likely reflects the presence of
interconnected fluids, in this case from the subducting slab
[Wannamaker et al., 1989]. In central Oregon, near where
the EMSLAB MT profile also imaged a zone of high
conductivity in the lower crust beneath the high Cascades
[Wannamaker et al., 1989], C2 extends deeper, and merges
with the lower crustal conductor to the east. In the north the
Cascades conductive anomaly is more pronounced, and
extends into the upper crust (C3 in Figure 2, right) where
it coincides with the Southwest Washington Cascades
Conductor (SWCC) [Stanley et al., 1990; Egbert and
Booker, 1993]. Similar to Stanley et al. [1990], the SWCC
appears in the 3D model as an upper crustal feature just west
of the Cascades, but then dips to the east, possibly even
connecting to high conductivities in the upper mantle
beneath the Columbia Plateau. The shallow part of the
SWCC was interpreted by Stanley et al. [1990] to be a late
Creataceous to early Eocene forearc basin and accretionary
prism system sutured against pre-Eocene North America
during accretion of Siletzia. It is likely that the deeper parts
of the SWCC have a distinct cause (i.e., fluids associated
with subduction and arc magmatism), given the near ubiq-
uity of high conductivities beneath the arc.
[13] Most of the forearc is highly resistivity (R1) coin-

ciding with the thick crust and high seismic velocities
[Parsons et al., 1999] of the Siletz terrane. There is some
suggestion of higher conductivity above the slab further to
the west, along much of the margin (A in Figure 2). This
would be consistent with the zone of low resistivity imaged
above the JDF plate by the EMSLAB MT profile which
Wannamaker et al. [1989] inferred to be due to dewatering
of subducted sediments (and possibly also mineral dehy-
dration), but it may also result from accreted marine
sedimentary rocks in the deformation front offshore. Given
the wide station spacing and limited high frequency content
of the data used for the 3D inversion, such (important)
details are poorly resolved.
[14] There are several other zones of enhanced crustal

conductivity evident in Figure 2. For example, a crustal
conductor (C4) is evident near the northeast corner of the
array. This feature appears to be shallower (upper crustal)
near the Canadian border, but deepens as it extends to the
southeast to at least 47.5N, where it perhaps then connects
to more conductive features in the mantle. A similar crustal
feature was identified by Gough et al. [1989] from
EMSLAB magnetic variation array data as the southern
termination of a prominent conductive feature (the Southern
Alberta-British Columbia conductor) mapped in Canada
with MV array data. High conductivity in the upper crust
is also evident in the core rocks of the Olympic peninsula
(47–48N, near the Pacific coast [Aprea et al., 1998]).
[15] The oceanic mantle subducting beneath the North

American continent is clearly more resistive (R2) than the
adjacent continental mantle, to depths of at least 150 km.
Perhaps the most striking feature in the mantle is a zone of
high conductivity (C5) in the Washington backarc above the
subducting JDF plate. This is consistent with elevated
mantle conductivities reported for MT profiles just to the
north by Soyer and Unsworth [2006], who suggested
shallow convecting asthenosphere [Currie et al., 2004] as
the cause. To the extent that C5 continues at all into Oregon,
this feature has reduced amplitude, and appears broken up

and shifted to the east. There is also a circular conducting
feature surrounded by a ring of more resistive mantle in
central Oregon (C6). This pattern is qualitatively similar to
variations in seismic velocities imaged by Roth et al. [2008]
at similar mantle depths beneath Oregon. However, C6 is
offset somewhat to the northeast relative to the lowest
seismic velocities, which appear directly beneath Newberry
Caldera, and were inferred to result from partial melts,
concentrated in this area due to the combination of fluids
released from the downgoing slab and elevated astheno-
spheric mantle temperatures beneath the High Lava Plains.
These deeper mantle features in the resistivity images
deserve more careful investigation, including further tests
to verify that they are truly required of the data, and how
well their position is resolved.

5. Conclusions

[16] In spite of the wide site spacing and limited control
over near-surface distorting structures, a very sensible and
coherent large scale picture of regional scale conductivity
variations in the Pacific NW US results from 3D inversion
of the USArray TA MT data. Major crustal features in the
3D inverse solution are generally consistent with previous
higher resolution EM investigations in Cascadia [e.g.,
Wannamaker et al., 1989; Stanley et al., 1990], but the
broad spatial coverage provides valuable new insights into
the geoelectric structure of the region. Gough et al. [1989]
inferred many of the same large scale features from the
EMSLAB MV array, including the relatively conductive
NWBR and Cascades. However, the interpretation by these
authors was necessarily more qualitative, with very limited
depth resolution—e.g., they inferred that the NWBR con-
ductor was in the mantle, and they had no constraint on its
conductance. The view of the mantle provided here, with a
very clear delineation of more resistive oceanic mantle, and
the variation of backarc conductivity from north to south,
are in fact more novel, as previous MT investigations in this
area have not had sufficient aperture to effectively explore
to these depths. However, these deeper features have a more
subtle expression in the MT data, and data fits are poorer at
long periods. Further inversion studies, including explora-
tion of issues of mantle anisotropy, are clearly warranted.
[17] While resolution of fine scale details, especially in

the upper crust, will clearly be limited by the wide station
spacing and the lack of high frequency data that will be
collected by USArray, our initial inversion results are
extremely encouraging. The regional scale MT array data
that will be collected over the next few years, will, in
conjunction with further development of 3D inversion
capabilities, provide important new constraints on physical
state and composition—in particular with regard to fluid
content—of the North American crust and upper mantle.

[18] Acknowledgments. Thanks to Weerachai Siripunvaraporn for
providing the 3D inversion code. Support for P. K. Patro while at Oregon
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National Science Foundation (NSF-EAR0345438) and the U.S. Department
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Using synthetic data Siripunvaraporn et al. (2005b) demonstrated possible advantages of interpreting
single-profile MT data with a three-dimensional (3D) inversion program. Here we explore this idea fur-
ther using real MT data from two profiles on the Indian subcontinent. The first profile (330 km long) cuts
across the Deccan Volcanic Province of Peninsular India. The second (130 km long) is in the Narmada Son
Lineament zone, approximately 100 km further north. Using the data-space Occam inversion code of Sir-
ipunvaraporn et al. (2005a) 3D inversion is carried out on each of these profiles independently, and
results are compared with previously-published two-dimensional (2D) interpretations. In addition to
inversion of the full impedance tensor, we consider 3D inversion of only the off-diagonal components.
We also experiment with variants on the model covariance, in particular allowing for longer smoothing
length scales along the geoelectric strike. Not surprisingly, the 3D inversion finds models that fit the data
better than had been possible with the 2D programs. Many of the features inferred from these previous
2D interpretations are also present in the 3D inverse solutions, but the positions and amplitudes of indi-
vidual conductive features are in some cases changed. The 3D models suggest substantial non-unique-
ness in the single profile data. Even without explicit or special treatment, we find that the (relatively
modest) near surface distortion effects in these datasets were well fit by the 3D inversion, by inserting
small scale conductive and resistive features in surface layers, mostly off-profile.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Due to both limitations in interpretation methods and the cost
of data acquisition, magnetotelluric (MT) data have been tradition-
ally obtained in profiles targeted to the geology, and then inter-
preted with two-dimensional inversion. In such an interpretation,
one fits the off-diagonal impedances (Zxy and Zyx), generally after
rotating the coordinate system so that the main diagonal compo-
nents (Zxx and Zyy) are minimum, or at least small. It is seldom pos-
sible to find a single strike angle that is optimal for the full
frequency range and for all sites, and possible impacts of off-profile
structure must always be considered. Siripunvaraporn et al.
(2005b) demonstrated the interpretation of MT profile data with
a 3D inversion code using synthetic data examples. Results of that
study suggest that inversion of even single profile MT data with the
3D algorithm results in more realistic images beneath the profile
and, if the full tensor is fit, may even provide limited resolution
ll rights reserved.

@rediffmail.com (P.K. Patro),
of off-profile structures. With the availability of the 3D inversion
code WSINV3DMT (Siripunvaraporn et al., 2005a), we were moti-
vated to test this 3D interpretation approach on actual profile data
from the Deccan Volcanic Province (DVP) of Western India. Here
we present 3D inversion results for two MT profiles from this re-
gion and compare the results with previously published 2D
interpretations.
2. Study region and the data

During 1998–1999 broad-band magnetotelluric studies were
carried out on two profiles in the DVP, one of the great igneous
provinces on Earth. Voluminous basalts were erupted around
65 Ma at the Upper Cretaceous–Tertiary boundary, widely believed
to be due to the northward passage of the Indian plate over the Re-
union hotspot (Duncan and Pyle, 1988). The study region (Fig. 1) is
mainly covered by these flood basalts, and is an area associated
with several continental scale and smaller rift zones (Biswas,
1982, 1987). The Narmada Son Lineament (NSL) is believed to have
been a zone of weakness since the Precambrian times and regions
north and south of the NSL have undergone vertical block move-
ments (West, 1962). The Narmada valley represents a zone of

http://dx.doi.org/10.1016/j.pepi.2011.04.005
mailto:patrobpk@ngri.res.in
mailto:patrobpk@rediffmail.com
mailto:egbert@coas.oregonstate.edu
http://dx.doi.org/10.1016/j.pepi.2011.04.005
http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi


Fig. 1. Location of magnetotelluric stations plotted on the top of the geological map of the Deccan Volcanic Province (modified after Biswas, 1987; Peng et al., 1994). White
lines are axes of gravity lows (dashed) and highs (solid) redrawn from Krishna Brahmam and Negi (1973). Major rift zones, such as the Cambay, Narmada Son and Godavari
rifts are in contact with the DVP. The numerical 3D grid for the SP profile, oriented N45E, is shown as a solid black square. The grid for the EK profile is oriented N–S as shown
by the dashed rectangle. Red arrows show orientations of x and y axes used in the text in discussions of 3D inversion results. The black solid and dotted lines shows the
average geologic strike of the Narmada Son Lineament region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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tectonic truncation of regional structural trends and is bounded by
the Narmada North and Narmada South fault systems (Acharya
et al., 1998).

The first profile considered here consists of 41 sites covering a
period range 0.001–1000 s along the 330 km long NNE–SSW trend-
ing Sangole–Partur (SP) profile (station spacing was 5–10 km). The
second, the NNE–SSW trending Edlabad–Khandwa (EK) profile,
included a total of 18 MT sites, with data in the period range
0.001–1000 s, and station spacing ranging from 5 to 15 km. For
both profiles Metronix GMS 05 broad-band MT data acquisition
systems were used, and the data are generally of good quality.
The time series were edited manually to remove sections contam-
inated by the most severe noise, and then analyzed using the
Metronix robust processing code (PROCMT).

For the determination of regional strike direction the ap-
proaches of Smith (1997) and McNeice and Jones (2001) were used
for the SP profile data. Both these approaches resulted in nearly the
same strike angle for most of the sites, covering a range from 45� to
65� W of N, with the largest variations observed at sites near
Kurduwadi (see Fig. 1). For the 2D interpretation reported in Patro
et al. (2005a) and Patro and Sarma (2009) sites were divided into
two groups, with impedances from the southern sites (1–18) ro-
tated to 50� W of N, with the remaining sites rotated to 65� W of
N. This coordinate system is consistent with the strike (NW–SE)
evident in the regional geology (Arya et al., 1995; Peshwa and Kale,
1997). For the EK profile, the regional strike direction was com-
puted using the tensor decomposition techniques of Smith
(1997) and Becken and Burkhardt (2004). Both these analysis gave
consistent results with a geoelectric strike of 75� E of N, in good
agreement with the strike of the Narmada Son Lineament (Patro
et al., 2005b). However, the recovered geoelectric strike direction
is slightly oblique to the strike of Tapti rift, which the southern
end of the EK profile crosses.
3. Review of 2D inversion results

We first summarize briefly the 2D inversion results presented in
Patro et al. (2005a,b) and Patro and Sarma (2009), and relate these
to the principal features evident in pseudo-sections for the two
profiles. The 2D inversion of TE and TM data was carried out using
the nonlinear conjugant gradient (NLCG) algorithm of Rodi and
Mackie (2001). The period range used for the SP profile was
0.01–1000 s; for the EK profile data from 0.001 to 546 s were used.
In both cases a uniform homogeneous half space of 100 X m was
used as the prior (and starting) model. The final geoelectric models
are shown in Fig. 2.

Observed pseudo-sections of apparent resistivities and phases
are shown for the SP profile in Fig. 3a, and for the EK profile in
Fig. 4a. In these figures we also present pseudo-sections of pre-
dicted data for the 2D inversions (Figs. 3b and 4b), and also for
the 3D inversions (Figs. 3c, d and 4c, d) discussed below. Note that
for the 3D inversions we have fit data from a subset of the available
periods and sites, and for consistency only these responses are dis-
played in all of the pseudo-sections. A denser set of periods (42 for
SP, 44 for EK) and sites (40 for SP, 18 for EK) were actually used for
the 2D inversions. The most prominent feature that can be seen in
the SP profile pseudo-sections (Fig. 3a) is the band of low phase
above about 1 s in both modes. This feature results from approxi-
mately 1 km of moderately conductive overburden (presumably
fractured basalts; barely visible in the inverse solution of Fig. 2a)
over the highly resistive granitic basement. There are some spatial
variations along profile in this upper band of low phases, reflecting
variations of thickness and resistivity of the basalt layer. At longer
periods there are several features in the pseudo-sections to note.
The most prominent is the small decrease in qyx (TE mode) at long
periods at the northern end of the line beyond site 20, with a cor-
responding increase in phases centered at a period of approxi-



Fig. 2. (a) 2D geoelectric model derived from joint inversion of TE and TM data using the NLCG algorithm of Rodi and Mackie (2001) along Sangole–Partur profile (Patro and
Sarma, 2009). A, B and C denotes deep crustal conductive features and UMC is the upper mantle conductor. (b) 2D geoelectric model derived in a similar manner for the
Edlabad–Khandwa profile by Patro et al. (2005b) who interpreted conductive features A, B, C and D as the electrical signatures of Gavligarh fault, Tapti fault, Barwani-Sukta
fault and Narmada south fault, respectively. The sites that were used for 3D inversion are marked with black triangles and omitted sites are marked with the gray symbols.
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mately 30 s. This data feature corresponds to two patches of in-
creased crustal conductivity (features B and C in Fig. 2a) at the
northeast end of the SP profile.

Other features in the data for the SP profile are more subtle.
Again in the yx-mode (TE) apparent resistivity is slightly reduced
in patches at 10 s period centered at site 10, and also at the longest
periods centered near site 20. The latter feature, which is also
clearly visible in the slightly elevated phases at 300–400 s, corre-
sponds to the upper mantle conductor (UMC) near and below
80 km depth in the 2D inverse solution (Fig. 2a). The xy-mode
(TM) exhibits fewer spatial variations, though there is a phase in-
crease on the southwest end of the profile at the longest periods.
More importantly, there is a constant phase difference of around
10� between the xy- and yx-modes for periods of 50–100 s over
most of the profile. This difference, with the TM mode exhibiting
reduced phase, suggests alternating conductive and resistive fea-
tures along the profile at crustal depths (e.g., in the box labeled A
in Fig. 2a).

The data along the EK profile (Fig. 4a) are noisier, but also exhi-
bit more substantial lateral variations, consistent with the complex
geological terrain of the Narmada Son Lineament zone. The bottom
of the conductive overburden (alluvium and fractured basaltic
layer) is again marked most clearly by the band of low phase,
now at longer periods due to the much greater thickness. Com-
pared to the SP pseudo-sections there is more along-profile varia-
tion at all periods, which is consistent with more complex deeper
structure, relative to the uniform highly resistive layer underlying
the first profile. The 2D inversion of data from the EK profile re-
vealed four conductive structural features extending from mid to
deep crustal levels (A, B, C and D in Fig. 2b).
The conductive features imaged in the 2D inverse solution of
Fig. 2b are seen most clearly in the data as the band of high phase
around 100 s in the yx-mode (Fig. 4a). This band is not uniform
along profile, suggesting a series of localized conductive features.
Again, the xy- and yx-mode phases around 100 s differ, except per-
haps at the N end of the profile. The relatively higher phases in the
yx-mode (TE) at these periods are again indicative of a gross struc-
tural anisotropy, with higher conductivity in the deep crust aligned
along strike. While a series of individual conductors are suggested
by the along profile variations of this phase high, it is not clear that
they are so distinct to require the same four conductors (A, B, C and
D in Fig. 2b) that were used by the 2D inversion to match this
behavior in the phase data.
4. 3D inversion of profile data

We inverted the MT data along the SP and EK profiles (sepa-
rately) using WSINV3DMT, a 3D minimum structure inversion
algorithm which is based on a data-space variant of the Occam
scheme (Siripunvaraporn et al., 2005a). In addition to inversion
of the full impedance tensor (four complex components, Zxx, Zxy,
Zyx, Zyy), we also ran the inversion with only the off-diagonal com-
ponents (Zxy, Zyx) as input data, and we experimented with several
variations on the model covariance. In particular, WSINV3DMT al-
lows smoothing over different length scales for the x, y and z direc-
tions, and we use this to test the effect of forcing structures to have
longer length scales in the along-strike (approximately cross-pro-
file) direction. The smoothing scales in WSINV3DMT are defined
in terms of grid cells rather than physical length units. The default



Fig. 3. (a) Observed pseudo-sections of apparent resistivity and phase along the Sangole–Partur profile, for the 13 periods and 32 sites used for the 3D inversion. (b) Predicted
TE and TM mode pseudo-sections from the 2D inversion for the same periods and sites. Blank spaces show the data that were omitted from the 2D inversion. (c) Predicted
pseudo-sections from the full-tensor 3D inversion. (d) As in (c) but for the 3D inversion fitting off-diagonal data only.

36 P.K. Patro, G.D. Egbert / Physics of the Earth and Planetary Interiors 187 (2011) 33–46
decorrelation scale, following the setup in the test case provided
with the code, is

p
2 cells in all directions. We present results from

two cases here: the default isotropic formulation with dx = dy =
dz =
p

2, and an anisotropic covariance with dx = dz =
p

2,
dy =

p
10, where y denotes the geoelectric strike direction inferred

from the previously published 2D analysis.
Three-dimensional inversion is very expensive in terms of com-

putation time and memory requirements. All the computations re-
ported here were performed using a Sun Solaris system with 8 GB
RAM. Because WSINV3DMT is a serial code, and forms the full Jaco-
bian of the model parameter-data mapping, some compromises
were required with regard to grid size and the number of periods
fit. Given the relatively coarse grid spacing that we were forced
to use (10 km in the central portion of the grid for the SP profile,
and 4 km for EK) in some cases more than one site fell within a sin-
gle cell of the 3D grid. Since the version of WSINV3DMT we used
only allows data sites at the centers of grid cells, we generally se-
lected the site nearest the center, considering also data quality and
evidence for static shifts (see Fig. 7 of Patro et al., 2005a). This re-
sulted in selection of 32 out of 41 sites for the SP profile. In the case
of the EK profile 16 sites were chosen out of 18. The sites that were
used for 3D inversion are marked with black triangles in Fig. 2;
omitted sites are marked with the gray symbols. Considerations
of computational practicality also forced us to select a subset of
the available periods for the 3D inversion experiments. In both
cases we used 13 periods; for the SP profile these were from
0.005 to 410 s, and for the EK profile from 0.009 to 911 s.

To allow different covariance length scales in along and
across-strike directions, it is necessary to align the 3D numerical
grid with the geoelectric strike. For the SP profile we thus rotated
the grid, to coincide with the average geoelectric strike (55 de-
grees W of N) determined from the 2D analysis of Patro et al.
(2005a). The impedances were of course also rotated to be consis-
tent with this coordinate system. See Fig. 1 for orientations of the x
and y axes, which are, respectively, oriented in cross-strike
(roughly NE) and along-strike (SE) directions. Model grid dimen-
sions for this profile were Nx = 36, Ny = 22 and Nz = 29 layers (plus
7 air layers). The mesh was created with a vertical factor of 1.33
with the top layer thickness being 60 m. Horizontal grid spacing
was 10 km in the central part of the domain (including all of the
MT sites) and total dimensions of the total model domain were
438 � 394 � 351 km. The prior model was a 100 X m half space.
Note that the Arabian Sea, which is approximately 250 km west
of the profile, is not included in the 3D model domain, as previous
studies with 2D models showed that the ocean influence is mini-
mal for the period range of MT data considered here (Patro et al.,
2005a).

The EK profile (approximately N–S) is already nearly perpendic-
ular to the geological strike, and for this dataset the grid was
aligned so that the x-axis (cross-strike) is geographic N (Fig. 1).
Now grid dimensions were Nx = 39, Ny = 21 and Nz = 28 layers,
again with 7 air layers, and a vertical spacing factor of 1.4 was
used. Dimensions of this model domain were 191 � 116 �
482 km in the x, y and z directions, respectively, in this case with
a nominal resolution of 4 km in the grid core. The inversion was
again started from a 100 X m half space.

With WSINV3DMT it is only possible to invert impedances, and
it is thus impossible to assign different error floors to apparent
resistivity and phase, as we did for the 2D inversions. Thus, for
all 3D inversion tests we set errors as 5% of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jZxy � Zyxj

p
. In general

we used a two step procedure for the inversion results presented
here. First, the model was run for 3–4 iterations, starting from
the prior described above. Results from the iteration where the
minimum RMS misfit was achieved were then taken as a new prior



Fig. 4. As in Fig. 3, but for the Edlabad–Khandwa profile for which 13 periods and 16 sites were used for the 3D inversion.

Fig. 5. Final model obtained from inversion of the full impedance tensors from the Sangole–Partur profile using (a) default model covariance and (b) anisotropic model
covariance discussed in text. Features A, B and C correspond approximately to the crustal conductive features shown in Fig. 2a; UMC indicates the upper mantle conductor. (c)
Profile cross section of the model (marked as gray color line in (b)) obtained from anisotropic covariance for Sangole–Partur profile.
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model, and the inversion was restarted and run for an additional
two iterations. This two step procedure was found to result gener-
ally in better fitting models than were obtained without restarting,
but because only deviations from the prior model are penalized in
the inversion, the final model does not represent a true minimum
structure model, relative to the original prior.
5. Results

5.1. Isotropic and anisotropic model covariances

The final models obtained by inverting the full impedance ten-
sor using both the default and modified anisotropic covariance de-
scribed above, are presented in Figs. 5 and 6 for the SP and EK
profiles, respectively. Profile cross section plots are presented in
Fig. 5c and 6c for more direct comparison with Fig. 2. Although re-
sults obtained with the two covariances have many similarities
there are also some significant differences, especially for the SP
profile. For this profile the anisotropic covariance tends to result
in structures that are more elongated along strike (i.e., in the direc-
tion of the y-axis). The upper mantle conductor (UMC), which ap-
pears in the 2D inversion (Fig. 2a) is found in both of the 3D inverse
solutions, but with substantially different forms. For the isotropic
case (Fig. 5a) the UMC is localized beneath the profile, centered
near x = 170 km. When the anisotropic covariance is used the
UMC shows much greater along strike continuity, and is signifi-
cantly more conductive (<10 X m vs. �30 X m; Fig. 5b). In addi-
tion, a second zone of high conductivity appears in the upper
mantle near x = 250 km, This is similar, but not identical, to the
extension of the UMC to the north in the 2D inversion result. Note
Fig. 6. Final model obtained from inversion of the full impedance tensors from the Edl
covariance discussed in text. Features A, B, C and D correspond approximately to the c
(marked as gray color line in (b)) obtained from anisotropic covariance for Edlabad–Kha
that in the 2D inversion data up to 1000 s were used, but for the 3D
inversion only data up to 400 s are used. This may explain some of
the differences between 2D and 3D results.

Subtle crustal conductive features are imaged on the southwest
end of the profile by both the 2D and 3D inversions (box A in Figs.
2a and 5). In both cases these features peak at depths of 20–40 km,
are of only moderately low resistivity (�100 X m), and are broken
into segments along profile. However, individual crustal conduc-
tive features from the 2D solution cannot be clearly matched to
specific features in either of the 3D solutions. Again, results ob-
tained with the anisotropic covariance exhibit greater along-strike
continuity.

Much greater differences between the two 3D inversions are
seen in crustal structure on the northern end of the profile. In par-
ticular, amplitudes are noticeably larger, and the model has a gen-
erally rougher appearance when the anisotropic covariance is used
for regularization. Conductive features B and C from the 2D inver-
sion (Fig. 2a) are not imaged as distinct anomalies in the 3D inver-
sion with the isotropic covariance (Fig. 5a), but rather appear as an
increase in crustal conductivity extending NE from near
x = 250 km. These features appear as more distinct anomalies
when the anisotropic covariance is used (Fig. 5b and c), but there
are still significant differences from the 2D results, e.g., the peak
in feature B is shifted to the southeast, where it connects to the
NE branch of the UMC. Away from the profile there are often even
greater differences in deep structure, e.g., with the areas of greatest
resistivity shifted significantly between the two solutions, and
from the 2D inversion results.

Differences between results obtained with the two covariances
are less noticeable for the EK profile. All four of the conductive fea-
tures seen in the 2D inverse solution (A–D in Fig. 2b) can be
abad–Khandwa data using (a) default model covariance and (b) anisotropic model
rustal conductive features shown in Fig. 2b. (c) Profile cross section of the model
ndwa profile.



Table 1
Comparison of RMS misfits achieved for the 2D inversion, and for 3D inversion of full
tensor, off-diagonal and main diagonal tensor elements of the MT data from SP and EK
profiles for different model covariances.

Off
diagonal

Main
diagonal

Total

SP profile—RMS
Prior model misfit 10.89 2.49 7.90
2D inversion 2.93 2.49 2.72
Default covariance 2.20 1.75 1.99
Anisotropic covariance 2.30 1.80 2.06
Off-diagonal only with anisotropic

covariance
2.27 3.27 2.81

EK profile—RMS
Prior model misfit 6.54 4.28 5.53
2D inversion 2.82 4.28 3.62
Default covariance 2.04 1.53 1.80
Anisotropic covariance 2.22 1.67 1.96
Off-diagonal only with anisotropic

covariance
2.24 5.35 4.10

Fig. 7. Observed (star) and computed (line) responses of qxy, qyx, Uxy, Uyx (top) and Z
Predicted data are shown for inversion of the full tensor, using the anisotropic model co
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matched to conductive features at similar positions along-profile in
both of the 3D inverse solutions. However, now these features ex-
hibit marked asymmetry with respect to the MT profile, with the
northeast quadrant of the model domain particularly resistive. A
conductive feature (labeled C in Figs. 2b and 6) appears in all of
the inverse models, but is restricted to the west side of the profile
in both 3D cases. The feature identified as D in Fig. 2b is not clearly
a separate structure in either of the 3D inverse solutions. In the
case of the isotropic covariance this feature appears more as a con-
tinuation of C, with a strike that is not perpendicular to the profile.
Conductor B is mostly on the east side, though it is extended just
across the profile when the anisotropic covariance is used. Overall,
inversion results for the EK profile appear more starkly 3D, as
might be expected from the geological complexity of this area. It
is worth noting that the anisotropic covariance results in greater
along-strike smoothing and extension of features in the case of
the less clearly 3D SP profile. Thus, even when the off-diagonal
components of the impedance might be reasonably consistent with
xx(r,i), Zyy(r,i) (scaled by
p

T) (bottom) for Sangole–Partur profile at selected sites.
variance.



Fig. 8. Observed (star) and computed (line) responses of qxy, qyx, Uxy, Uyx (top) and Zxx(r,i), Zyy(r,i) (scaled by
p

T) (bottom) for Edlabad–Khandwa profile at selected sites.
Predicted data are shown for inversion of the full tensor, using the anisotropic model covariance.

Fig. 9. Final models obtained from 3D inversion of off-diagonal tensor components, using the anisotropic model covariance, for (a) the Sangole–Partur profile and (b) the
Edlabad–Khandwa data.
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Fig. 10. Pseudo-sections of the real and imaginary parts (scaled by
p

T) of the main diagonal impedance components are plotted for the Sangole–Partur profile: (a) observed
data; (b) predicted responses for inversion of full tensor and (c) predicted responses computed from the model derived by inverting only the off-diagonal components.
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a 2D model (as for the EK profile; Patro et al., 2005b), fitting the full
impedance may still require substantial local 3D structure.

A comparison of normalized RMS misfits achieved with the two
covariances is presented in Table 1, along with the comparable
misfits for the 2D inversions. For these comparisons we have used
consistent datasets, and error bars, for computation of the normal-
ized RMS for the 2D and 3D cases (i.e., with error floors set as 5% of
jZxyZyxj1=2). Different error normalizations were in fact used to
specify the penalty functionals in the 2D inversion, so the numbers
reported here are not directly comparable to results presented in
Patro et al. (2005a,b). In the table the normalized RMS misfits are
broken down into off-diagonal and main-diagonal components.
For the SP profile the misfit of the prior model is strongly domi-
nated by the off-diagonal components. For the EK profile the over-
all normalized RMS misfit of the prior model is smaller (primarily
reflecting the lower signal-to-noise ratio in this dataset) but contri-
butions from the main-diagonal component are significantly lar-
ger, consistent with the more strongly 3D character of the EK
dataset.

For the SP profile the total RMS misfit (all impedance elements)
obtained using the default model covariance was 1.99, only slightly
below that achieved with the anisotropic covariance (RMS = 2.06).
Both significantly improve the fit achieved by the 2D inversion
(RMS = 2.72). The misfit is distributed roughly equally over both
off-diagonal and main-diagonal elements for both 3D cases, as is
the small increase in RMS with the modified covariance. Inversion
with the anisotropic covariance can be viewed as an intermediate
step between 3D inversion and enforcing a strictly 2D structure—
along strike variations are penalized, but not prevented. With the
less restrictive isotropic covariance the data can be fit more readily.
Thus, even though the anisotropic solution has slightly larger misfit,
it is rougher and has larger amplitude anomalies, suggestive
of over-fitting within the constraints imposed by the model
covariance.

The RMS misfit of the prior model is 7.9, so most of the signal is
fit using either covariance, as can be seen in the pseudo-sections of
Fig. 3c, and in Fig. 7, where observed and predicted curves for both
the off-diagonal and diagonal impedance components are shown
for selected sites. Note that in Fig. 7 the diagonal components,
which are often very small and thus have a poorly defined phase,
are plotted as real and imaginary parts of the impedance, multi-
plied by

p
T, where T is period in seconds. This compensates for

the expected reduction in impedance amplitudes at long periods,
e.g., for a half space this scaling would result in a flat (frequency
independent) response for the off-diagonal impedance.

Similar analyses were carried out for the EK profile data. Again,
misfits are increased slightly with the modified covariance (total
RMS = 1.96 vs. 1.80). Both solutions reduce data misfit substan-
tially compared to the 2D inversion results (RMS = 3.62). Much of
the reduction results from improved fit of the main-diagonal com-
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ponents, where the 3D inversion reduces the normalized RMS mis-
fit from 4.28 (prior model and 2D) to 1.67 and 1.53 (anisotropic
and isotropic covariances). All of this is consistent with the results
shown in Fig. 6 for the EK profile inverse solutions obtained with
the two covariances are quite similar, in both cases exhibiting sub-
stantial 3D structure, as already suggested by the relatively larger
main-diagonal components. Data fits for the EK profile, shown for
apparent resistivity and phase pseudo-sections in Fig. 4c, and for
selected sites in Fig. 8, are again reasonably good for both off-diag-
onal and diagonal impedance components.

5.2. 3D inversion of off-diagonal components

The inversion was also run using only the off-diagonal compo-
nents (Zxy and Zyx) of the impedances as data. The frequencies
and prior models are as given above for the two profiles, and the
anisotropic covariance was used for regularization. Results are
plotted in Fig. 9. For the SP profile (Fig. 9a) results are almost indis-
tinguishable from those obtained with the full tensor inversion
using the same covariance.

For the EK profile omitting the main diagonal components re-
sults in much greater differences in the inverse solution. The con-
ductive feature between 20 and 40 km along profile (‘‘A’’ in Figs.
2b, 6 and 9b) has similar position, size and amplitude in all inverse
Fig. 11. Pseudo-sections of the real and imaginary parts (scaled by
p

T) of the main d
observed data; (b) predicted responses for inversion of full tensor and (c) predicted
components.
solutions. However, further north along the profile the pattern of
conductive and resistive crustal features is noticeably different
for the off-diagonal inversion, e.g., there is a conductor near where
C is imaged in Figs. 2b and 6, but this feature is shifted to the south,
and there is no separate structure near the profile corresponding to
B. The absence of this conductor is compensated by the extension
of C to the south, and the appearance of a small conductive feature
to the west. Conductor D to the north of the profile is similar to that
seen in the 2D and 3D anisotropic inversions (Figs. 2b and 6b).
Overall, the 3D asymmetric character of the resistivity model is sig-
nificantly reduced, the resistive area in the northeastern quadrant
of the models of Fig. 6 is no longer clear, and conductive and resis-
tive features are clearly oriented to the assumed strike, extending
further across the profile. In some respects fitting only the off-diag-
onal components with the 3D inversion results in a solution that is
more like the 2D result of Fig. 2b—e.g., conductors A and C are very
similar. However, the smaller conductive features in the 2D solu-
tion (b and d) are not evident in 3D (Fig. 9b).

Another perspective on the diagonal components is provided by
Figs. 10 and 11, where pseudo-sections of the real and imaginary
parts of the diagonal impedance components (scaled by

p
T, as in

Figs. 7 and 8) are plotted for the SP and EK profiles, respectively.
Although the estimated diagonal components are relatively noisy,
coherent features are evident at frequencies below about 1 Hz in
iagonal impedance components are plotted for the Edlabad–Khandwa profile: (a)
responses computed from the model derived by inverting only the off-diagonal



Fig. 12. Near surface conductance integrated over the top few model layers (0–1.3 km for SP profile; 0–1.4 km for EK profile) for the anisotropic covariance inverse solutions
for SP and EK profile data. Electric current vectors (real and imaginary) modeled at a period of 50 s for N–S and E–W magnetic source polarizations are overlain,
demonstrating how electric current flow is distorted by near-surface conductivity variations. The great similarity of the spatial pattern of real and imaginary parts is
consistent with quasi-static galvanic distortion. Note that the SP profile numeric grid was oriented to coincide with the average geoelectric strike direction of 55� W of N.
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the data sections for both profiles (Figs. 10a and 11a). These fea-
tures are fit well by the full-impedance inverse solution (Figs.
10b and 11b), but not when the main diagonal elements are ex-
cluded (Figs. 10c and 11c). Indeed, for the SP profile the normalized
RMS misfit (see Table 1) for the prior model (which, as a 1D model,
has zero diagonal impedance response) is 2.49. This increases to
3.27 when the 3D inversion fits only the off-diagonal components,
consistent with the impression given by Fig. 10, that the off-diag-
onal inversion actually degrades the fit to the main diagonal com-
ponents. Similar results are obtained for the EK profile, where the
normalized RMS misfit of the main diagonal components was 4.28
for the prior model, and increases to 5.35 when these components
are not explicitly fit (see Table 1).

At higher frequencies the observed scaled diagonal impedance
components for the SP profile are for the most part fairly small
(see Fig. 10a). This is also seen in the example single-site curves
of Fig. 7, and is consistent with the approximately 1D (and even
largely undistorted) character of the TE and TM modes at high fre-
quencies for most sites in this profile (Figs. 3a and 7). This can be
explained by the relatively uniform weathered basaltic overburden
in this area (Patro et al., 2005a).

Compared to the SP profile off-diagonal impedances for EK are
significantly smaller (by a factor of more than two on average),
while main diagonal amplitudes are as large or larger. The main
diagonal components thus represent a significantly larger part of
the total signal for the EK profile—e.g., note the much larger contri-
bution of the main diagonal to prior misfits for this profile (Table
1). For the EK profile the observed scaled diagonal components
are also relatively larger (compared to the SP profile) at high fre-
quencies (see also Fig. 8). Although amplitudes are reduced com-
pared to lower frequencies, there are now also spatially coherent
features in the main-diagonal pseudo-sections even at short peri-
ods. This is again consistent with the more complicated 3D
character of the MT data along this profile. For both profiles the



Fig. 12 (continued)
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3D inverse solutions show little response at the highest frequen-
cies. Features which appear to be clearly spatially coherent at
frequencies above 1 Hz for the EK profile are not fit by the 3D
inversion with either covariance.

5.3. Near surface structure and galvanic distortion

The main diagonal responses discussed above may result at
least partly from galvanic distortion of the electric fields by near
surface structure—the rapid site-to-site variations in diagonal
components (Figs. 10 and 11) are particularly suggestive of such ef-
fects. With WSINV3DMT it is not possible to explicitly allow for
galvanic distortion (e.g., by simultaneous fitting of a real frequency
independent distortion matrix at each site or by increasing error
floors for amplitudes but not phases). However one might hope
that the inversion could account for these effects by inserting con-
ductive and resistive features in the surface layers. That is,
although our grid (and dataset) cannot resolve the actual near-sur-
face distorting features, the distorted data may still be fit by insert-
ing relatively shallow features near the profile. The effectiveness of
this implicit treatment of distortion is likely reduced at higher fre-
quencies, since the grid (horizontally 4/10 km) is certainly too
coarse to allow modeling of purely galvanic distortion at the short-
est periods considered (0.01 s). Thus, what we refer to as distortion
here may not be purely galvanic over the full range of periods, but
rather only for the longer periods relevant to the deeper structure
emphasized by the vertical scale in Fig. 2.

To further explore how the inversion accommodates distortion
at longer periods, we consider the impact of modeled shallow con-
ductivity structure on near surface current flow. Surface conduc-
tance, computed by integration of model conductivity over the
top seven layers (1.3 km for SP, 1.4 km for EK) is plotted for the
anisotropic covariance inverse solutions for both profiles in
Fig. 12. Electric current vectors computed from the inverse solu-
tions by integrating over the same seven layers are overlain as ar-
rows. For each profile four current maps are shown, i.e., real and
imaginary parts for two source polarizations (corresponding to
predominantly S–N and W–E current flow), all for a period of
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50 s. The skin depth at this period greatly exceeds this layer thick-
ness, so the effect of this layer on the modeled currents (and hence
electric fields) is almost purely galvanic. The conductance varia-
tions clearly have a first-order effect on the magnitude and direc-
tion of the near-surface electric currents, which turn to avoid
resistive patches and to flow into more conductive zones. The large
scale patterns in the main diagonal components of Figs. 10 and 11
can be matched to the direction of current flow near the profile.
Where currents (and hence electric fields) are strongly deflected
from the dominant S–N or E–W direction of current flow for that
mode, there will be a significant main diagonal impedance compo-
nent. For example, for the SP profile with current flowing S–N (and
hence the magnetic field in the y-direction) sites in the southern
part of the profile (numbers below 20) show north-flowing cur-
rents deflected to the east; north of site 20 currents are deflected
to the west, matching the spatial pattern seen in the Zyy component
predicted (and observed) data sections in Fig. 10.

Fig. 12 is instructive as to how the inversion accounts for sur-
face distortion by inserting resistive or conducting zones near indi-
vidual sites. Because we used an anisotropic covariance, these
features are elongated along strike in Fig. 12, and they generally
peak off the profile. Clearly these near surface layers are not re-
solved or interpretable—the actual distorting features are likely
of much smaller scale.

At 50 s period, plots of the imaginary parts the electric field vec-
tors (see Fig. 12) are nearly identical to those for the real parts, as
would be expected if the spatial variations in electric field vectors
were primarily controlled by galvanic distortion (and the regional
impedance was relatively constant across the profile). At much
shorter periods (not shown) inductive effects in the 1 km thick
layer we have used to define the near surface are more significant,
and real and imaginary parts become quite different. Even at 50 s
period some differences between real and imaginary parts of the
current vectors are evident for the EK profile, implying that deeper
3D structures responding inductively contribute more substan-
tially to diagonal impedance components in this 3D case.
6. Discussion and conclusions

In this paper we have applied the data-space Occam inversion
code of Siripunvaraporn et al. (2005a) to two MT profiles from pen-
insular India, and compared the resulting inverse solutions to pre-
vious 2D results. For the 3D inversion, in addition to the default
isotropic model covariance, we tested an anisotropic covariance,
with longer decorrelation length scales along previously deter-
mined geoelectric strikes. Models derived with this covariance are
in some sense intermediate between those obtained with 2D inver-
sion (with infinite length scales along strike) and those obtained
with the default 3D covariance, which enforces no a priori strike
preference. Given the substantial geological (Arya et al., 1995; Pes-
hwa and Kale, 1997) and geophysical evidence for 2D structure in
the areas surrounding these profiles—e.g., gravity (Krishna Brah-
mam and Negi, 1973; Tiwari et al., 2001) and seismic studies (Kaila
et al., 1985)—such quasi-2D geoelectric models should perhaps be
preferred, to the extent they provide an adequate fit to the data.

Our experiments with the 3D inversion suggest that data
from the SP profile are much more nearly 2D than those from
the EK profile to the north. Main diagonal components are smal-
ler for the SP profile, and reduction in misfit achieved by the 3D
inversion is modest. Use of the anisotropic covariance resulted in
more significant changes to the inverse solution in the case of
the more 2D SP profile, resulting in greater along strike extent
and continuity of conductive features. But while the model
was smoothed along strike, it became rougher across-strike, with
amplitudes of most anomalies increased. Models obtained with
the two covariances achieve nearly the same misfit but with
structural complexity introduced in different ways. These results
suggest that while the SP data might be consistent with a 2D
interpretation there are probably finite strike length effects in
the data. Moreover, our inversion results with the default isotro-
pic covariance show that these data can be fit well by models
with resistivity variations restricted to the near vicinity of the
profile. As might be expected, along-strike extents of features
imaged beneath the profile are poorly constrained by data from
a single profile.

For the EK profile 3D structure is more clearly required near the
profile, particularly to fit the diagonal impedance components. For
this dataset the impact of changing the covariance was not so sig-
nificant—although the anisotropic covariance favors features elon-
gated along strike, the data do not allow such structures. These
along-strike variations appear to be required by the main-diagonal
impedance components. When these impedance components are
not fit the 3D inverse solution for the EK profile changes substan-
tially, becoming more nearly 2D with elongated conductive fea-
tures extending along strike (at least when the anisotropic
covariance is used). In contrast, for the more 2D SP profile omitting
the diagonal components had almost no impact on the 3D inverse
solution. Results for the two profiles thus suggest that the diagonal
components of the impedance tensors for even a single profile at a
minimum provide information about the need for nearby off-pro-
file 3D structure. Perhaps some specific characteristics of the 3D
structure might also be constrained (e.g., the need for more resis-
tive crust in the NE quadrant of the EK profile) but this is an issue
that requires further study.

In principal, near surface distortion can be accounted for di-
rectly in a fully 3D treatment—even if the site density is not suffi-
cient to actually resolve the distorting structures, features can be
inserted in the surface layers that allow distorted data to be fit.
Our results suggest that the inversion did exactly this, inserting
conductive and resistive features, generally with peak amplitudes
off-profile, and restricted to the upper few model layers. These
near surface features effectively fit site-to-site variations in imped-
ance amplitudes, and also ‘‘twisting’’ of the electric field to produce
diagonal impedance components. However, it should be born in
mind that neither of the two datasets considered here included
impedances with substantial distortion. To fit MT data that are
more seriously distorted (e.g., out of quadrant phases, or mode
splits of several orders of magnitude), and to allow for distortion
at the shortest periods, a more explicit treatment of near surface
distortion may in fact be required. This is another issue deserving
of further investigation.

For both profiles similar conductive and resistive features ap-
pear at similar depths, and at similar locations along the profile
in both 2D and 3D inverse solutions (see Figs. 2a, b, 5c and 6c).
In particular, the 3D inversion results from the SP profile confirm
the general areas of enhanced crustal conductivity (A, B and C),
and the UMC delineated earlier from 2D interpretation. However,
the amplitude of the UMC in the 3D inverse solutions is quite var-
iable, depending on how well the data are fit, the model covari-
ance, and the assumed prior model. Furthermore, the six low
resistivity (�5–50 X m) features at mid-crustal depths identified
in Patro et al. (2005a) for the SP profile (see Fig. 2a) are not consis-
tently resolved in the 3D images.

The 3D inversion results from the EK profile all reveal the pres-
ence of conductive Gavligarh fault, Tapti fault, Barwani-Sukta fault
and Narmada south fault (features A, B, C and D). However, individ-
ual conductive and resistive features along the northern half of the
profile (Fig. 2b) are again not reliably reproduced in the various 3D
tests. The marked variation in position of the imaged crustal con-
ductors and resistors beneath both profiles implies that many of
these individual features are not well resolved. All inverse solu-
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tions do share alternating conducive and resistive zones, implying
an anisotropic electric fabric (at some scale), with current flowing
more readily along-strike (TE mode) than cross-strike (TM mode),
as can in fact be seen clearly in the data pseudo-sections of Figs. 3
and 4. This gross electric anisotropy may result from enhanced
conductivity in a few isolated zones within the crust (as in the
2D interpretation of Patro et al. (2005b) in terms of specific
mapped faults), or it may reflect anisotropic fabric at finer scale.
The MT data considered here, does not, by itself, resolve which of
these possible interpretations should be preferred.

The observed differences between solutions reflect the inherent
non-uniqueness of the MT data, particularly for details with spatial
scales at or near the site spacing. However, it should be born in
mind that due to computational constraints we have used a rela-
tively coarse model discretization, and reduced the number of sites
and frequencies, which we expect should further limit along-pro-
file resolution in the 3D inverse models. Perhaps if all sites and
all frequencies could be used resolution could be improved and
non-uniqueness could be reduced.

In conclusion, 3D inversion appears to be a useful, if still compu-
tationally challenging, tool for enhancing interpretation of even
single profile MT data. Many of the features obtained from earlier
2D inversions also appear in the 3D inversions, suggesting that these
features are robust. At the same time, the 3D inversion allowed us to
explore a larger range of solutions, further clarifying the range of
acceptable models. Efforts at 3D inversion also clarified the extent
and nature of 3D effects in the data. This in particular is an useful
adjunct to the standard suit of tools for 2D interpretation.
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S U M M A R Y
The Jacobian of the non-linear mapping from model parameters to observations is a key
component in all gradient-based inversion methods, including variants on Gauss–Newton
and non-linear conjugate gradients. Here, we develop a general mathematical framework for
Jacobian computations arising in electromagnetic (EM) geophysical inverse problems. Our
analysis, which is based on the discrete formulation of the forward problem, divides com-
putations into components (data functionals, forward and adjoint solvers, model parameter
mappings), and clarifies dependencies among these elements within realistic numerical in-
version codes. To be concrete, we focus much of the specific discussion on 2-D and 3-D
magnetotelluric (MT) inverse problems, but our analysis is applicable to a wide range of active
and passive source EM methods. The general theory developed here provides the basis for
development of a modular system of computer codes for inversion of EM geophysical data,
which we summarize at the end of the paper.

Key words: Numerical solutions; Inverse theory; Magnetotelluric; Geomagnetic induction.

1 I N T RO D U C T I O N

Over the past decade or so, regularized inversion codes have been de-
veloped for a range of three-dimensional (3-D) frequency-domain
electromagnetic (EM) induction problems, including magnetotel-
lurics (MT; e.g. Newman & Alumbaugh 2000; Siripunvaraporn
et al. 2004) global geomagnetic depth sounding (Kelbert et al.
2008), and controlled source methods including cross-well imaging
(e.g. Alumbaugh & Newman 1997) and marine controlled source
EM (CSEM; e.g. Commer & Newman 2008). Generally, these ef-
forts have been based upon minimization of a penalty functional,
a sum of data misfit and model norm terms. Several distinct algo-
rithms have been applied to solve the minimization problem, includ-
ing Gauss–Newton (GN) schemes (Mackie & Madden 1993; Sasaki
2001; Siripunvaraporn et al. 2004) and direct gradient-based min-
imization schemes such as non-linear conjugate gradients (NLCG;
e.g. Newman & Alumbaugh 2000) or quasi-Newton schemes (e.g.
Newman & Boggs 2004; Avdeev & Avdeeva 2009). All of these
various applications, and the different inversions algorithms that
have been used, share many common elements. Here, we consider
these commonalities explicitly, developing a general mathematical
framework for frequency-domain EM inverse problems. Through
this framework, we provide recipes for adapting previously devel-
oped inversion algorithms to new applications and for developing
extensions to standard applications (e.g. new data types, model
parametrizations and regularization approaches), and a basis for
development of more efficient inversion algorithms.

Recently, Pankratov & Kuvshinov (2010) have given a general
formulation for calculation of derivatives for 3-D frequency-domain
EM problems. A general formalism for derivative calculation is

also central to our development, so in principal there is consider-
able overlap between their development and what is presented here.
However, in contrast to Pankratov & Kuvshinov (2010), we adopt
a purely discrete approach, assuming from the outset that the for-
ward problem has been discretized for numerical solution, so that
all spaces (EM fields, model parameters and data) are finite dimen-
sional. The penalty functional to be minimized is explicitly taken
to be a discrete quadratic form, and derivatives, adjoints, etc. are
all derived for this discrete problem. Similarly, we explicitly con-
sider the need to use discrete interpolation operators to simulate the
measurement process, and to represent dependence of the discrete
model operator on the unknown parameters.

There has been considerable discussion in the ocean data assim-
ilation literature concerning the virtues of discrete versus contin-
uous formulations of inverse problems (e.g. Bennett 2002). Cer-
tainly, there are some issues in inverse problems (e.g. regularity and
well-posedness) that can only be understood and discussed rigor-
ously through consideration of the problem in continuous form (e.g.
Egbert & Bennett 1996). However, for development of actual prac-
tical inversion algorithms there are good reasons to focus on the
discrete formulation. In particular, only through a direct treatment
of the discrete problem can symmetry (with respect to appropri-
ate inner products) of the numerical implementation of adjoints
be guaranteed. Furthermore, in discrete form many derivations are
trivial, and the steps actually required for computations are often
more clearly and explicitly laid out.

Of course, details about Jacobian calculations and discussions
of the solution of EM inverse problems in discrete form have been
given in many previous publications, both for specific EM methods
(e.g. see references earlier), and with some degree of generality
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(McGillivray et al. 1994; Newman & Hoversten 2000). One moti-
vation for presenting this material again here, with a more abstract
formulation and using homogeneous mathematical notation, is to
provide a foundation for a system of modular computer codes for
frequency-domain EM inverse problems that we have recently de-
veloped. We sketch key aspects of this system at the end of this
paper, and provide a more detailed description elsewhere. Devel-
opment of this modular system motivates us to clearly define all
of the fundamental objects and methods required for a generic EM
inverse problem, and to analyse the dependencies among these ob-
jects. This framework for the modular system, which we believe is
unique both in its abstraction and completeness, is one of the key
results presented in this paper. Another key result which emerges
from our analysis concerns the structure of the Jacobian calculations
in multifrequency and multitransmitter inverse problems. The rather
obvious factorization of the Jacobian into receiver and transmitter
components (previously used to improve efficiency in cross-well
EM inversion by Newman & Alumbaugh 1997) is a simple con-
sequence of our analysis. A less obvious consequence, which has
not to our knowledge been previously noted or made use of, is that
computations of sensitivities for problems with multicomponent
transfer functions (TFs; e.g. 3-D MT) can also be factored, reduc-
ing required computations by a factor of 4 relative to a more naive
approach. Our abstract treatment of Jacobian calculations thus pro-
vides a basis for developing more efficient computational strategies
for specific problems.

This paper is organized as follows: In Section 2, we summarize
some common linearized EM inversion methods based on gradient-
based minimization of a penalty functional, demonstrating at a
coarse level the basic objects used for EM inversion methods. A
key component in all methods is the Jacobian of the mapping from
model parameters to data; we derive general expressions for this
linear operator in Section 3. In Section 4, we consider more explic-
itly the discretization of the governing differential equations, and
the dependence of the discrete equation coefficients on the model
parameter. Here, we introduce specific examples of EM inverse
problems (2-D and 3-D MT) which we will follow throughout the
remaining development. These EM inverse problems are sufficiently
different to motivate and illustrate much of the abstraction required
of a flexible modular system. With these examples as motivation,
we then show in Section 5 how operations with the Jacobian can
be factored into reusable components, and we consider how these
components depend on each other, and on details of the EM method
(e.g. sources and receivers), model parametrization and numerical
discretization. In Section 6, we consider more explicitly the form
of the Jacobian when there are multiple frequencies and multiple,
possibly coupled, source geometries. Some new results on possible
computational efficiencies are given here. In Section 7, we provide
a brief overview and illustration of the modular system of Fortran
95 computer codes that we have developed based on the framework
for general frequency-domain inversion developed in the preceding
sections.

2 L I N E A R I Z E D E M I N V E R S I O N :
OV E RV I E W

We consider regularized inversion through gradient-based mini-
mization of a penalty functional of the form

�(m, d) = (d − f(m))T C−1
d (d − f(m))

+ ν(m − m0)T C−1
m (m − m0) (1)

to recover, in a stable manner, m, an M-dimensional Earth’s con-
ductivity model parameter vector, which provides an adequate fit to
a data vector d of dimension Nd. In (1), Cd is the covariance of data
errors, f(m) defines the forward mapping, m0 is a prior or first guess
model parameter, ν is a trade-off parameter, and Cm (or more prop-
erly ν−1Cm) defines the model covariance or regularization term. In
practice, Cd is always taken to be diagonal, so by a simple rescal-
ing of the data and forward mapping (Cd

−1/2d, Cd
−1/2f), we may

eliminate C−1
d from the definition of �.

The prior model m0 and model covariance Cm can also be
eliminated from (1) by the affine linear transformation of the
model parameter m̃ = C−1/2

m (m − m0), and forward mapping
f̃(m̃) = f(C1/2

m m̃ + m0), reducing (1) to

�(m̃, d) = (d − f̃(m̃))T (d − f̃(m̃)) + νm̃T m̃

= ||d − f̃(m̃)||2 + ν||m̃||2. (2)

After minimizing (2) over m̃, the model parameter in the untrans-
formed space can be recovered as m = C1/2

m m̃ + m0. Note that
this model space transformation is in fact quite practical if instead
of following the usual practice of defining C−1

m = DT D, where D
is a discrete representation of a gradient or higher order deriva-
tive operator, the regularization is formulated directly in terms of
a smoothing operator (i.e. model covariance) Cm. It is relatively
easy to construct computationally efficient positive definite discrete
symmetric smoothing operators for regularization (e.g. Egbert 1994;
Siripunvaraporn & Egbert 2000; Chua 2001). Although the result-
ing covariance matrix Cm will not generally be sparse and may not
be practical to invert, all of the computations required for gradient
evaluations and for minimization of the transformed penalty func-
tions require only multiplication by the smoothing operator C1/2

m (i.e.
half of the smoothing of Cm). It is also straightforward to define
model covariances that can be inverted (i.e. so that multiplication
by both Cm and C−1

m are practical.) In the following, we focus on the
simplified ‘canonical’ penalty functional (2), with tildes omitted.

We begin by summarizing some standard approaches to
gradient-based minimization of (2) using a consistent notation.
Siripunvaraporn & Egbert (2000), Rodi & Mackie (2001), New-
man & Boggs (2004), Avdeev (2005) provide further details and
discussion on these and related methods. A key component in all of
these linearized search schemes is the Nd × M Jacobian, or sensi-
tivity matrix, which we denote J. This gives the derivative of f with
respect to the model parameters, with J ij = ∂f i/∂mj. Newman &
Alumbaugh (1997); Spitzer (1998); Rodi & Mackie (2001) provide
detailed expressions for J for some specific EM inverse problems,
and we will consider the general case extensively below (Section 3).

Search for a minimizer of (2) using J is iterative, as, for example,
in the classical GN method. Let mn be the model parameter at the
nth iteration, J the sensitivity matrix evaluated at mn and r = d −
f(mn) the data residual. Then, linearizing the penalty functional in
the vicinity of mn for small perturbations δm leads to the M × M
system of normal equations

(JT J + νI)δm = JT r − νmn, (3)

which can be solved for δm to yield a new trial solution mn+1 =
mn + δm. As discussed in Parker (1994), this basic linearized
scheme generally requires some form of step length damping for
stability (e.g. a Levenberg–Marquardt approach; Marquardt 1963;
Rodi & Mackie 2001).

There are many variants to this basic algorithm. For example, in
the Occam approach (Constable et al. 1987; Parker 1994), (3) is
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rewritten as

(JT J + νI)m = JT d̂, (4)

where d̂ = d − f(mn) + Jmn . Although mn+1 is obtained directly
as the solution to (4) the result is exactly equivalent to solving (3)
for the change in the model at step n + 1, and adding the result
to mn. A more substantive difference is that in the Occam scheme
step length control is achieved by varying ν, computing a series
of trial solutions, and choosing the regularization parameter so that
data misfit is minimized. An advantage of this approach is that ν

is determined as part of the search process, and at convergence
one is assured that the solution attains at least a local minimum of
the model norm ||m|| = (mT m)1/2, subject to the data fit attained
(Parker 1994). The Occam scheme can also be implemented in the
data space (Siripunvaraporn & Egbert 2000; Siripunvaraporn et al.
2005). The solution to (4) can be written as

mn+1 = JT bn ; (JJT + νI)bn = d̂, (5)

as can be verified by substituting (5) into (4) and simplifying. This
approach requires solving an Nd × Nd system of equations in the
data space instead of the M × M model space system of equa-
tions (4), and can thus be more efficient if the model is heavily
overparametrized.

Computing the full Jacobian J required for any direct GN algo-
rithm is a very demanding computational task for multidimensional
EM problems, since (as we shall see in Section 3) the equivalent
of one forward solution is required for each row (or column) of J.
An alternative is to solve the normal eqs (4) or (5) with a memory
efficient iterative Krylov-space solver such as conjugate gradients
(CG). This requires computation of matrix-vector products such as
[JT J + νI]m, which can be accomplished without forming or stor-
ing J at the cost of two forward solutions (e.g. Mackie & Madden
1993). Mackie & Madden (1993), Zhang et al. (1995), Newman &
Alumbaugh (1997), Rodi & Mackie (2001) and others have used
CG to solve (3), whereas Siripunvaraporn & Egbert (2007) have ap-
plied the same approach to the corresponding data space equations
of (5).

The GN scheme requires solving normal equations derived from a
quadratic approximation to (1). Alternatively, the penalty functional
can be directly minimized using a gradient-based optimization algo-
rithm such as NLCG (e.g. Rodi & Mackie 2001; Newman & Boggs
2004; Avdeev 2005; Kelbert et al. 2008). With this NLCG approach,
one must evaluate the gradient of (1) with respect to variations in
model parameters m

∂�

∂m

∣∣∣∣
mn

= −2 JT r + 2 νmn . (6)

The gradient is then used to calculate a new ‘conjugate’ search di-
rection in the model space. After minimizing the penalty functional
along this direction using a line search which requires at most a few
evaluations of the forward operator, the gradient is recomputed.
NLCG again uses essentially the same basic computational steps as
required for solving the linearized equations (3). In particular, the
forward problem must be solved to evaluate f(m) and the residual
r must be multiplied by JT . Quasi-Newton schemes (e.g. Nocedal
& Wright 1999; Newman & Boggs 2004; Haber 2005; Avdeev &
Avdeeva 2009) provide an alternative approach to NLCG for direct
minimization of (1), with similar advantages with regard to stor-
age and computation of the Jacobian, and similar computational
requirements.

All of these schemes for minimizing (1) can be abstractly ex-
pressed in terms of a small number of basic ‘objects’ (data and

model parameter vectors, d and m), and operators (the forward
mapping f(m), multiplication by the corresponding Jacobian J and
its transpose JT (and, implicitly, the data and model covariances Cm

and Cd). Given modular computer codes which implement these
basic objects, any of the inversion algorithms outlined here, as
well as many variants, are readily implemented. In the next sec-
tions, we analyse further the discrete forward problem, and pro-
vide a finer grained general formulation of the modules required
to implement essentially any linearized inverse scheme for any
EM problem. In particular, we provide ‘recipes’ for J in terms
of more basic objects associated with the model parametrization,
the forward solver and the numerical simulation of the observation
operators.

3 DATA S E N S I T I V I T I E S

The EM forward operator f(m) generally involves two steps: (1)
Maxwell’s equations, with conductivity defined by the parameter
m are solved numerically with appropriate boundary conditions
and sources; (2) the resulting solution is used to compute predicted
data—for example, an electric or magnetic field component, TF or
apparent resistivity—at a set of site locations. For the first step,
we write the numerical discretization of the frequency-domain EM
partial differential equation (PDE) generically as

Sme = b, (7)

where the vector b gives appropriate boundary and forcing terms
for the particular EM problem, e is the N e-dimensional vector rep-
resenting the discretized electric and/or magnetic fields (or perhaps
potential functions), and Sm is an N e × N e coefficient matrix which
depends on the M-dimensional model parameter m. We take e to
represent both interior and boundary components of the discrete
solution vector, so that any boundary conditions required for the
problem are included in b. The second step then takes the form

f j (m) = ψ j (e(m), m), (8)

where ψ j is some generally non-linear, but usually simple, function
of the components of e (and possibly m).

With this general setup we have, by the chain rule,

Jjk = ∂ f j

∂mk
=

∑

l

∂ψ j

∂el

∂el

∂mk
+ ∂ψ j

∂mk
. (9)

Letting F, L, Q be the partial derivative matrices

Flk = ∂el

∂mk

∣∣∣∣
m0

L jl = ∂ψ j

∂el

∣∣∣∣
e0,m0

Q jk = ∂ψ j

∂mk

∣∣∣∣
e0,m0

, (10)

where e0 is the solution to (7) for model parameter m0, the Jacobian
at m0 can be written in matrix notation as

J = LF + Q. (11)

The jth row of L represents the linearized data functional, which
is applied to the perturbation in the EM solution to compute the
perturbation in dj. These row vectors are generally very sparse,
supported only on a few nodes surrounding the corresponding data
site. When the observation functionals are independent of the model
parameters (as they often are) Q ≡ 0. When Q is required it is
also typically sparse, but this depends on the specific nature of the
model parametrization. Although, as we show below, derivation of
expressions for L and Q can be quite involved for realistic EM data
functionals, calculation of F presents the only real computational
burden.
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To derive a general expression for F, differentiate (7) at m0 with
respect to the model parameters m. We assume that b is constant,
independent of m, although, as discussed in Appendix A (see also
Newman & Boggs 2004) some subtle issues related to this point
may arise with specific solution approaches. Then, letting e0 be the
solution of (7) at m0, and noting that the EM solution e varies as m
is varied, we obtain

Sm0

[
∂e

∂m

∣∣∣∣
m=m0

]

= − ∂

∂m
(Sme0)

∣∣∣∣
m=m0

, (12)

or

Sm0 F = P. (13)

The N e × M matrix P depends on details of both the numeri-
cal model implementation and the conductivity parametrization (as
discussed later), but is in general inexpensive to calculate, once
the solution e0 has been computed. Putting together (11) and (13),
we obtain an expression for the numerical Jacobian (or sensitivity
matrix) J for general EM problems

J = LS−1
m0

P + Q. (14)

Computing all of J would appear to require solving the induction
equation M times (i.e. applying the inverse operator S−1

m0
to each of

the columns of P.) However, simply taking the transpose of (14) we
obtain

JT = PT [ST
m0

]−1LT + QT , (15)

so the sensitivity matrix can in fact be obtained by solving the trans-
posed discrete EM system Nd times (once for each column of LT ),
the usual ‘reciprocity’ trick for efficient calculation of sensitivities
(e.g. Rodi 1976; de Lugao et al. 1997). It should also be emphasized
that for many of the inversion algorithms described in Section 2,
J is not explicitly calculated. Instead, a series of multiplications
of model space vectors by J and/or data space vectors by JT are
required. These, in turn, require implementation of the component
operators P, L, Q and the solver S−1

m0
, together with the adjoints (or

transposes) of these operators.
The EM equations are self-adjoint (except for time reversal) with

respect to the usual L2 inner product (i.e. reciprocity holds). For now
leaving aside complications regarding boundary conditions (these
are discussed in Appendix B), this implies that on a uniform grid
operator Sm is symmetric. For more general grids, the fact that the
EM operator is self-adjoint implies

ST
m = VSmV−1, (16)

where V is a diagonal matrix of integration volume elements for
the natural discrete representation of the L2 integral inner product
on the model domain (see Appendix B). Eq. (16) implies ST

mV =
VSm is a symmetric (though not Hermitian) matrix. It is easier
to compute solutions to this symmetrized problem, so solutions to
the forward problem are generally computed as e = (VSm)−1Vb
(e.g. see Uyeshima & Schultz 2000). The solution for the adjoint
problem can also be written in terms of the symmetrized inverse
operator as e = (ST

m)−1b = V(VSm)−1b; the principal difference
from the forward case is thus the order in which multiplication by
the diagonal matrix V and the symmetrized solver are called. In
general, the adjoint solver (ST

m)−1 for EM problems is trivial to
implement, once a suitably general forward solver is available.

Before proceeding, two general points require discussion. First,
we note that many of the computations in frequency-domain EM
problems are most efficiently implemented (and described) using

complex arithmetic, but the model conductivity parameter m is
real. Data might be complex (e.g. in MT a complex impedance,
formed as the ratio of electric and magnetic fields) or real (e.g. an
apparent resistivity or phase, derived from the MT impedance). As
already implicit in our formulation of the penalty functional (1), we
formally assume that all data are real, that is, real and imaginary
parts of a complex observation are separate elements of the real data
vector d, and that the basic operators f and J have been recast as real
mappings from model parameter to data vector. However, we will
frequently use complex notation and we will often be somewhat
casual in moving between real and complex variables. Thus, for
example, the frequency domain forward problem (7) will generally
be formulated and solved in terms of complex variables. P will then
be a mapping from the real parameter space to the complex space
of forcings for the forward problem, whereas L will be a mapping
from a complex, back to a real space. Both P and L can be most
conveniently represented by complex matrices, with the convention
that for L only the real part of the matrix-vector product is retained.
We discuss this more explicitly in Appendix C.

Secondly, in most cases EM data are obtained for a large num-
ber of distinct sources, that is, different frequencies and/or different
current source geometries. For example, in the case of MT, there are
data for two source polarizations and a wide range of frequencies,
whereas for controlled source problems there may be a multiplic-
ity of transmitter geometries or locations. Each of these distinct
sources, which we refer to in general as ‘transmitters’, requires
solving a separate forward problem. In most, but not all, cases these
forward problems are decoupled, so the data vector and forward
modelling operator can be decomposed into t = 1, . . . , NT blocks,
one for each transmitter

d =

⎛

⎜
⎝

d1

...
dNT

⎞

⎟
⎠ , f =

⎛

⎜
⎝

f1

...
fNT

⎞

⎟
⎠ . (17)

Here dt gives the data associated with a group of ‘receivers’, con-
sisting of possibly multiple components, at multiple locations, all
making observations of fields generated by transmitter t. Thus, with
multiple (decoupled) transmitters the Jacobian can be partitioned
into NT blocks in the obvious way, and each block can be repre-
sented as in (14), so that the full sensitivity matrix can be expressed
as

J =

⎛

⎜
⎝

J1

...
JNT

⎞

⎟
⎠ =

⎛

⎜
⎝

L1S−1
1,mP1 + Q1

...
LNT S−1

NT ,mPNT + QNT

⎞

⎟
⎠ . (18)

The matrices Pt and Qt generally depend on the solution for trans-
mitter t. If the transmitter t only specifies the source geometry, the
differential operator for the PDE St,m will be independent of
the transmitter; however, in general the transmitter will also de-
fine the forward problem to solve. An obvious example is the MT
case, where the operator depends on frequency. Only Lt and Qt de-
pend on the configuration of receivers; these also in general depend
on the forward solution, and thus on transmitter t.

There is an important complication to the simple form of (18),
most clearly illustrated by the case of 3-D MT. Here, evaluation
of the forward operator for an impedance tensor element requires
solutions for the pair of transmitters associated with two uniform
source polarizations. Thus, for 3-D MT, the rows of the Jacobian cor-
responding to a single frequency are formed from components for
two transmitters, corresponding to N–S and E–W polarized uniform
sources, coupled through the linearized measurement operators
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L and Q,

J =
2∑

t=1

[
Lt S

−1
m Pt + Qt

]
. (19)

The same complication would arise for any plane wave source TF
(e.g. vertical, or intersite magnetic). Other examples of multiple
polarization EM inverse problems can be imagined, for example, al-
lowing for a combination of horizontal spatial gradients and uniform
sources (e.g. Egbert 2002; Schmücker 2004; Semenov & Shuman
2009) would require allowing for five coupled sources. Pankratov
& Kuvshinov (2010) discuss the general multiple polarization prob-
lem from a theoretical perspective, although to our knowledge, no
actual applications of the theory to inversion of real data sets have
yet been reported, beyond the standard two polarization uniform
source case.

We return to the coupled multiple polarization case in Section 5.2,
where we discuss measurement operators in more detail. Then, in
Section 6, we consider the general multiple transmitter case further,
and show more explicitly how the source and receiver configura-
tion can result in special structure for the Jacobian, which can be
exploited to improve computational efficiency. For the next few sec-
tions, we focus on the simpler case of a single transmitter, as we
develop the basic building blocks for more complex and realistic
problems.

4 D I S C R E T I Z AT I O N O F T H E
F O RWA R D P RO B L E M

To derive more explicit expressions for the operators L, P and Q,
and hence for the full Jacobian, more specific assumptions about the
numerical implementation of the forward problem (7) are required.
To motivate the general development, we consider as examples two
specific cases in detail: inversion of 2-D and 3-D MT data. We
discuss most explicitly a finite difference (FD) modelling approach,
though most of the results obtained are more broadly applicable.

Numerical schemes for solving Maxwell’s equations are often
most elegantly formulated in terms of a pair of vector fields de-
fined on conjugate grids. For example, the space of primary fields
which we denote as SP may represent the electric fields, whereas
the space of dual fields, denoted SD, represents the magnetic fields.
Even when the coupled first-order system (i.e. Maxwell’s equations)
is reduced to a second-order equation involving only the primary
field, it is worthwhile to explicitly consider the dual field also. Most
obviously, in many applications both electric and magnetic field
components are required to evaluate the data functionals. Further-
more, depending on the model formulation, the dependence of the
discrete PDE operator coefficients on the model parameter can gen-
erally be represented most explicitly through a mapping π (m) from
the model parameter space M—sometimes to SP, but in other cases
to SD, and a general treatment should allow for both cases. Bound-
ary conditions are of course a critical part of the formulation of the
forward problem. These are included implicitly in our generic for-
mula of the forward problem (7). In the following, we omit technical
details concerning implementation of boundary conditions, leaving
discussion of these issues to Appendix B.

As a first illustration, we consider FD modelling of the 3-D quasi-
static Maxwell’s equations appropriate for MT. In the frequency
domain (assuming a time dependence of eiωt), the magnetic fields
can be eliminated, resulting in a second-order elliptic system of
PDEs in terms of the electric fields alone,

∇ × ∇ × E + iωμσE = 0, (20)

Figure 1. Staggered finite difference grid for the 3-D MT forward prob-
lem. Electric field components defined on cell edges are the primary EM
field component, which the PDE is formulated in terms of. The magnetic
field components can be defined naturally on the cell faces; these are the
secondary EM field in this numerical formulation.

where ω is the angular frequency, μ is magnetic permeability and
σ is electrical conductivity, with the tangential components of E
specified on all boundaries. To solve (20) numerically in 3-D, we
consider an FD approximation on a staggered grid of dimension
Nx × Ny × Nz, as illustrated in Fig. 1 (e.g. Yee 1966; Smith 1996;
Siripunvaraporn et al. 2002). In the staggered grid formulation,
the discretized electric field vector components are defined on cell
edges (Fig. 1). In our terminology, the primary field space SP is the
space of such finite-dimensional cell edge vector fields. A typical
element will be denoted by e. As illustrated in Fig. 1, the magnetic
fields, which in continuous form satisfy H = (−iωμ)−1∇ × E, are
naturally defined on the discrete grid of cell faces. The dual-field
space SD is thus the space of discrete vector fields defined on faces.
A typical element of this space will be denoted by h.

In the staggered grid FD discretization used for (20), the discrete
magnetic and electric fields are related via

h = (−iωμ)−1C e, (21)

where C : SP �→ SD is the discrete approximation of the curl of cell
edge vectors, and (20) can be expressed in its discrete form as

[C†C + diag(iωμσ (m))]e = 0. (22)

Here, diag(v) denotes a diagonal matrix with the components of
the vector v on the diagonal, and C† : SD �→ SP is the discrete
curl mapping interior cell face vectors to interior cell edges. As
the notation indicates this operator is the adjoint of C, relative to
appropriate (i.e. volume weighted) inner products on the spaces SD

and SP. Although e is the full solution vector (including boundary
components), (22) provides equations only for the interior nodes.
Additional equations are required to constrain e on the boundary,
and to complete specification of the discrete forward operator Sm.
These details, and further discussion of C and its adjoint, are pro-
vided in Appendix B. The key point here is that the dependence of
the operator coefficients on the model parameter (which we take to
be an element of some finite-dimensional spaceM) is made explicit
through the mapping σ : M �→ SP in (22).

The 3-D EM induction forward problem can also be formulated
in terms of magnetic fields

∇ × ρ∇ × H + iωμH = 0, (23)
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Figure 2. Finite difference grid for the 2-D MT TM mode forward problem.
The scalar Hx magnetic field, defined on 2-D cell corners is the primary
field. The secondary field components are Ey and Ez, defined on vertical and
horizontal cell edges, respectively.

where ρ is electrical resistivity, now with the tangential component
of the magnetic fields specified on boundaries. With this formulation
(e.g. Mackie et al. 1994; Uyeshima & Schultz 2000), H would be the
primary field, and the electric field E = ρ∇ × H would be the dual
field. Using an analogous staggered grid FD discretization, with
magnetic field components defined on cell edges, and electric field
components defined on cell faces, the discrete induction equation
now takes the form

[C†diag(ρ(m))C + diag(iωμ)]e = 0. (24)

In this case, the dependence of the coefficients on model parameter
m is made explicit through the mapping to the dual-field space
ρ : M �→ SD. Note that for both the electric and magnetic field
formulations e represents the primary field, and h the dual field.
Thus, in (24), e represents the discrete magnetic field H, and h
would represent the discrete electric field.

It is also instructive to consider the 2-D MT inverse problem. Now
there are effectively two distinct modelling problems: for transverse
electric (TE) and transverse magnetic (TM) modes, with electric and
magnetic fields, respectively, parallel to the geologic strike. The TE
mode case is essentially identical to the 3-D electric field formula-
tion of (20)–(22). The TM mode case, which is solved in terms of
the magnetic field instead of the electric field, is more instructive
with regard to generalization. In the TM mode, the magnetic field
parallels the geological strike (x) and (23) can be reduced to a scalar
PDE in the y-z plane

∂yρ∂y Hx + ∂zρ∂z Hx + iωμHx = 0, (25)

with Hx specified on boundaries.
As for the 3-D problems, for the discrete 2-D problem we can

define finite-dimensional spaces of primary (SP) and dual (SD) EM
fields. Now the primary field is Hx, defined on the nodes (corners) of
the 2-D grid, and the dual fields are the electric field components Ey

and Ez defined on the vertical and horizontal cell edges (Fig. 2). A
natural centred FD approximation of (25) can be written in terms of
a discrete 2-D gradient operator G : SP �→ SD and a 2-D divergence

operator D : SD �→ SP. Using e ∈ SP to denote the primary discrete
EM field solution (Hx), we have a more explicit form of (7) for this
discrete TM mode implementation,

[D diag (ρ(m)) G + iωμI] e = 0, (26)

with additional equations again required to specify boundary
conditions.

In most other FD or finite volume modelling approaches, for ex-
ample, with Maxwell’s equations cast in terms of vector potentials,
similar (although potentially more complicated) sets of conjugate
spaces can be defined, the differential operator can be decomposed
into discrete approximations to first-order linear differential oper-
ators which map between conjugate grids, and the dependence of
discrete operator coefficients on an abstract model parameter space
can be described explicitly through a mapping π : M �→ SP,D.
Finite-element approaches to EM modelling will result in simi-
lar structures. For example, the space of linear edge elements (or
more properly, the degrees of freedom associated with these ele-
ments; Nedelec 1980) can be taken as the primary space, repre-
senting the discrete electric field. The natural dual space is then the
space of face elements, representing the discrete magnetic field (e.g.
Rodrigue & White 2001). The natural model parameter mapping
then defines conductivity associated with each edge degree of
freedom.

5 C O M P O N E N T S O F T H E JA C O B I A N

5.1 Matrix P

We can give an explicit expression for the operator P, assuming the
forward operator Sm can be written in the general form

Sme ≡ S0e + U (π (m) ◦ Ve), (27)

where S0, U and V are some linear operators that do not depend
on the model parameter vector m, π (m) is a (possibly non-linear)
operator that maps the model parameter space M to the primary
or dual grid, and ( ◦ ) denotes the component-wise multiplication
of the two vectors in SP,D (also known as the Hadamard product).
Note that on an FD grid, Sm (and hence S0 and V) act on a full
solution vector that includes both the interior and boundary edges
(see Appendix B). All of the examples outlined earlier are special
cases of (27), as we will discuss.

Assuming (27) and recalling the definition of P from (12) and
(13), we find

P = − ∂

∂m
(Sme0)

∣∣∣∣
m0

= −U

(
∂π

∂m

∣∣∣∣
m0

◦ Ve0

)

, (28)

= −U

(

Ve0 ◦ ∂π

∂m

∣∣∣∣
m0

)

, (29)

= −Udiag(Ve0)
∂π

∂m

∣∣∣∣
m0

. (30)

Writing �m0 for the Jacobian of the (in general, non-linear) model
parameter mapping π (m) evaluated at the background model pa-
rameter m0, we have

P = −Udiag(Ve0)�m0 , (31)

PT = −�T
m0

diag(Ve0)UT . (32)

C© 2012 The Authors, GJI, 189, 251–267

Geophysical Journal International C© 2012 RAS



Computational recipes for EM inverse problems 257

Note that only the operator �m depends on the details of the
model parametrization—the other terms depend only on the numer-
ical discretization of the governing equations. Eqs (31) and (32)
provide broadly applicable recipes for implementation of the op-
erators P and PT , as illustrated in the following examples. If the
dependence of the forward operator on the model parameter can-
not be cast as a special case of (27), similar formal steps could
almost certainly be used to derive appropriate expressions for these
operators.

5.1.1 Example: 2-D MT

For the 2-D TM problem (26), the PDE coefficients depend on
the model parameters through ρ : M �→ SD, that is, the resistiv-
ity ρ(m) defined on the dual grid, cell edges. To be specific, we
consider the simplest model parametrizations, with conductivity or
log conductivity for each cell in the numerical grid an indepen-
dent parameter. From physical considerations, it is most reasonable
to compute the required edge resistivities from cell conductivities
by first transforming to resistivity, and then computing the area
weighted average of resistivities of the two cells on either side of
the edge. Representing the averaging operator from 2-D cells to cell
sides as WTM, and letting (m)−1 denote the component-wise inverse
of the model parameter vector, we then have

ρ(m) = WTM(m)−1, (33)

ρ(m) = WTMexp(−m), (34)

for linear and log conductivity, respectively. The model operator of
(26) can be cast in the general form of (27) with the identifications
S0 ≡ −iωμI, U ≡ D, V ≡ G and π (m) ≡ ρ(m), where D and G
are the discrete 2-D divergence and gradient operators defined in
Section 4. Thus, we obtain the expressions for P and PT in the 2-D
TM mode case.

P = −Ddiag(Ge0)�m0 , (35)

PT = −�T
m0

diag(Ge0)DT , (36)

where �m0 = −WTM[diag(m0) ]−2 for the parametrization in terms
of linear conductivity, or �m0 = −WTM[diag(exp(−m0)) ] for log
conductivity.

5.1.2 Example: 3-D MT

We again assume the simplest model parametrization, with conduc-
tivity, or the natural logarithm of conductivity, specified indepen-
dently for each of the M = NxNyNz cells in the numerical grid.
The discrete operator of (22) requires conductivity defined on cell
edges, where the electric field components are defined. For physical
consistency (current should be conserved), the edge conductivities
should represent the volume weighted average of the surrounding
four cells. Let W be the N e × M matrix representing this weighted
averaging operator, a mapping from M to SP. Then, the conduc-
tivity parameter mapping is given by σ (m) = Wm or σ (m) =
Wexp(m), for the cases of linear and log conductivity, respectively.

Eq. (22) can be seen to be a special case of (27) with the identi-
fications S0 ≡ C†C, U ≡ iωμI, V ≡ I and π (m) ≡ σ (m), and we
have

P = diag(−iωμe0) �m0 , (37)

PT = �T
m0

diag(iωμe0), (38)

where �m0 = W for linear conductivity, and �m0 =
W[diag(exp(m0))] for logarithmic conductivity. Note that the trans-
poses of the averaging operators W and WTM represent mappings
from cell edges to cells, a weighted sum of contributions from all
edges that bound a cell.

5.2 Matrices L and Q

We turn now to the matrices L and Q, which represent the linearized
observation process, as it is applied to the discrete numerical forward
solution.

5.2.1 L: general case

The very simplest sort of EM data is an observation of the primary
field at a single location (e.g. ε = Ey(x)), which can be represented
as a local average of the modelled primary field

ε = (λP)T e. (39)

Here λP ∈ SP is a sparse vector of interpolation coefficients, aver-
aging from the discrete primary grid to the observation point x. A
point observation of the dual field (e.g. η = Hx(x)) is only slightly
more complicated. Assuming, as will generally be the case, that the
dual fields can be written as h = Te, where T : SP �→ SD is a
discrete differential operator (e.g. see 21), we have

η = (λD)T Te, (40)

where λD ∈ SD is again a sparse vector of interpolation coefficients,
now representing averaging on the dual grid. For some problems,
T ≡ Tπ (m) will depend on the model parameter through π (m) (see
Section 5.2.4 for an example). It is also possible for the interpolation
coefficients λP and/or λD to depend on the model parameter m. We
will return to these complications, which are accounted for in the
operator Q, below.

Note that for a finite-element formulation, where the solution
is represented in terms of a discrete set of basis functions, field
component evaluation functionals would have the same form (sparse
vectors defined on the primary or dual space), but would have a
slightly different interpretation—that is, the non-zero components
of the evaluation functional for any location would be computed
by evaluating (at this point) the basis functions for all degrees of
freedom associated with the containing element.

Together, (39) and (40) give the basic evaluation functionals for
the fundamental observables (point measurements of magnetic and
electric fields) in any EM problem. For controlled source problems,
where the data are typically just point measurements of the primary
or dual field, these evaluation functionals are already the rows of L.
More generally, EM data are functions of both electric and magnetic
components, at one or more locations. The most obvious example
is the impedance, the local ratio of electric and magnetic fields.
Other examples include interstation magnetic TFs, network MT
accounting for the geometry of long dipoles (Siripunvaraporn et al.
2004), or horizontal spatial gradient methods based on array data
(Schmücker 2003; Semenov & Shuman 2009). Inevitably, real data
must be based on a discrete set of observations of the magnetic and
electric fields, so the general EM data functional can be represented
as

ψ j (e(m), m) ≡ γ j (ε1(m), . . . , εKP (m),

η1(e(m)), . . . , ηKD (e(m))), (41)
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where εk , k = 1, . . . , KP and ηk , k = 1, . . . , KD are sets of primary
and dual components computed at one or several points in the model
domain, as εk = (λP

k )T e and ηk = (λD
k )T Te , respectively.

From (10), the jth row of L is then given by

l j = ∂ψ j

∂e

∣∣∣∣
e0,m0

=
KP∑

k=1

∂γ j

∂εk

∂εk

∂e

∣∣∣∣
e0,m0

+
KD∑

k=1

∂γ j

∂ηk

∂ηk

∂e

∣∣∣∣
e0,m0

, (42)

=
KP∑

k=1

aP
jk(λP

k )T +
KD∑

k=1

aD
jk(λD

k )T T, (43)

where aP
jk and aD

jk are the partial derivatives of the jth data functional
with respect to the kth local field components. These coefficients
depend only on the details of the data functional formulation, and
the background EM solution e0. Eq. (43) thus implies that we can
decompose L into two sparse matrices as

L = AT �T , (44)

with

A =
[

AP

AD

]
and � = [ �P TT �D ]. (45)

Here, L is a sparse Nd × N e matrix that maps the EM solution to the
data space, as in Eq. (14). A is a K × Nd sparse matrix (K = KP +
KD), such that the non-zero elements in its jth column are the coeffi-
cients ajk , the derivatives of the data functionals with respect to each
of the relevant local magnetic or electric field components. Finally,
� is an N e × K sparse matrix, with columns λk ∈ SP containing
the field component evaluation functionals, that is, the interpola-
tion coefficients required to compute the kth electric/magnetic field
component at a point from the primary EM field.

Thus, � depends only on the observation locations for each of
the K local field components (and possibly on the model parame-
ter m0). Observation functionals (non-linear or linearized) for any
sort of EM data will be constructed from the same field compo-
nent functionals, which are closely tied to the specific numerical
discretization scheme used. A, however, depends on details of the
observation functionals (e.g. impedance versus apparent resistivity),
and will also depend, in general, on the background EM solution
used for linearization, e0. However, A (which is essentially a lin-
earization of γ ) does not depend on the details of the numerical
implementation of the forward problem.

5.2.2 L: multivariate TFs

Multivariate TFs are an important special case of non-linear data
functionals which deserve a closer look. Plane wave source TFs pro-
vide the most important (and, in fact, only widely applied) example.
In this case, two independent sources are assumed, corresponding
to spatially uniform sources of a fixed frequency polarized in the
x- and y-directions. As a consequence of the linearity of the in-
duction equations, under this assumption any point observation of
the EM fields can be linearly related to two reference components,
through a frequency-dependent TF. Examples include the rows of
the impedance tensor, such as

Ex = Zxx Hx + Zxy Hy, (46)

vertical field TFs, and intersite magnetic TFs. TF components such
as Zxx and Zxy, which are estimated from time-series of electric and
magnetic fields observed at a single site, provide the basic input
data for 3-D MT inversion.

For completeness, we consider the general case where a generic
predicted component, which we denote as Y , is related to Np pre-
dicting variables X1, . . . , X Np via the TF

Y = θ1 X1 + · · · + θNp X Np . (47)

To evaluate the components of the complex TF vector � =(
θ1, . . . , θNp

)T
it is necessary to solve forward problems for each

of the assumed source configurations—that is, forward solutions
e1, . . . , eNp for Np transmitters are required. To compute the TF, we
must evaluate Y and X j, j = 1, . . . , Np for each of these forward
solutions. Here, we represent this as

Yi = λT
Y ei Xi j = λT

X j
ei i = 1, . . . , Np. (48)

Then, if Y denotes the vector of predicted components for the Np

transmitters and X denotes the corresponding Np × Np matrix of
predicting variables, the TF can be computed as

� = X−1Y. (49)

Note that, in general, the evaluation functionals λX j ∈ SP might be
more complicated than the simple interpolation operators consid-
ered previously—for example, for the usual plane wave source case
the predicting components are typically taken to be magnetic fields
at the local site, which for the 3-D MT example we have considered
would require computation of the secondary field (multiplication
by the operator T) followed by interpolation. And for more exotic
cases such as the generalized horizontal spatial gradient (HSG) TF
(Egbert 2002; Schmücker 2003, 2004; Semenov & Shuman 2009;
Pankratov & Kuvshinov 2010) the predicting components would
involve magnetic fields measured at multiple sites, used to form
some sort of estimate of uniform and gradient field components.
We thus assume only that these are sparse vectors representing lin-
ear functionals defined on SP.

Taking partial derivatives of � with respect to ei we find, after
some simplification

∂�

∂ei
= X−1

0

[
∂Y

∂ei
− ∂(X�0)

∂ei

]
. (50)

In (50), the subscript zero denotes TFs and predicting components
evaluated for the background forward solution. Note that the ex-
pression in brackets is a matrix of size Np × N e (N e = dimension
of ei), but only the ith row is non-zero (only the ith component of Y
and row of X depend on solution ei). This row takes the form

λT
Y − θ1λ

T
X1

− · · · − θNpλ
T
X Np

, (51)

which is independent of the source polarization index i.
As we noted at the end of Section 3, rows of L for TF components

couple the terms S−1
m Pi for multiple transmitters. We can now give an

explicit form for this coupling, considering only a single predicted
component Y , so that there are Np complex rows of the matrix L,
one for each component of the TF. L can also be divided into Np

blocks of columns, one for each transmitter as in (19). From (50) and
(51), L can be written in terms of X−1

0 and block diagonal matrices
as

L = X−1
0

⎡

⎢⎢⎢
⎣

� 0 0

0
. . . 0

0 0 �

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

�T 0 0

0
. . . 0

0 0 �T

⎤

⎥⎥⎥
⎦

, (52)

where

� = [ 1 −�T ] � =
[
λT

Y λT
X1

. . . λT
X Np

]
. (53)
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The product of the first two matrices corresponds to AT (and the
rightmost of course to �) in (44). The more explicit form here
more clearly defines the coupling between transmitters, and has
important implications for efficient calculation of the full Jacobian,
as we discuss further in Section 6.

5.2.3 Matrix Q

When either the evaluation functionals or the field transformation
operator T have an explicit dependence on the model parameter
(denoted in the latter case by Tπ (m)) there is an additional term in
the sensitivity matrix, which we have denoted Q. The jth row of this
matrix is given by

q j = ∂ψ j

∂m

∣∣∣∣
e0,m0

=
⎡

⎣
KP∑

k=1

aP
jk

∂
(
λP

k

)T
e0

∂π

∣∣∣∣∣
π (m0)

+
KD∑

k=1

aD
jk

×
⎛

⎝ ∂
(
λD

k

)T
Tπ (m0)e0

∂π

∣∣∣∣∣
π (m0)

+ (
λD

k

)T ∂Tπ (m)e0

∂π

∣∣∣∣
π (m0)

⎞

⎠

⎤

⎦ �m0 ,

(54)

where π (m) is the (possibly non-linear) model parameter mapping
to the dual or primary grid, and �m0 is the Jacobian of this mapping.
Defining

T̃π (m0),e0 = ∂

∂π
[Tπ (m)e0]

∣∣∣∣
π (m0)

, (55)

�̃T
P = ∂

∂π
[(�P)T e0]

∣∣∣∣
π (m0)

(56)

and

�̃T
D = ∂

∂π
[(�D)T Tπ (m0)e0]

∣∣∣∣
π (m0)

. (57)

Eq. (54) can be given in matrix notation

Q = [
AT

P AT
D

]
[

�̃
T

P

�̃
T

D + �T
DT̃

]

�m0 . (58)

If the interpolation coefficients are independent of the model pa-
rameters (as will be most often the case) this reduces to

Q = AT
D�T

DT̃π (m0),e0�m0 . (59)

5.2.4 Example: 2-D MT

For 2-D MT, the fundamental observation is an impedance, the
ratio E/B of orthogonal components of the electric and magnetic
fields. For the TE mode, Ex corresponds to the primary (modelled)
field e, whereas Hy is the secondary field, which is computed as
h = TEe. The secondary field mapping can be given explicitly as
TE = (−iωμ)−1OG, where O is a diagonal matrix with entries
+1 and −1 for components corresponding to y- and z-edges, re-
spectively. Columns of �P and �D now represent bilinear spline
interpolation from the 2-D grid nodes and edges, respectively,
to the data sites. These are independent of the model parameter,
so Q ≡ 0.

The impedance can be written explicitly as

Z ≡ γ j (e) = λT
E e

λT
H TE e

, (60)

where e is the (primary) electric field, and λE and λH are, respec-
tively, columns of �P and �D, and represent bilinear spline in-
terpolation functionals on node (primary) and edge (dual) spaces.
From (42), the row of L corresponding to an impedance is found
to be

l j ≡ lZ = (
λT

H TE e0

)−1
λT

E −
[
λT

E e0/
(
λT

H TE e0

)2
]
λT

H TE . (61)

For the TM mode, �P and �D are the same as in the TE case, but
the roles of primary and dual fields are reversed, so that

Z ≡ γ j (e) = λT
E TH e

λT
H e

, (62)

e now denoting the (primary) magnetic field. Also the field trans-
formation operator is now TH = diag[ρ(m)]OG, and thus depends
on the model parameter, so Q will be non-zero. Row j of L is now

l j ≡ lZ = −
[
λT

E TH e0/
(
λT

H e0

)2
]
λT

H + (
λT

H e0

)−1
λT

E TH , (63)

whereas the corresponding row of Q is found to be

q j ≡ qZ = (λT
H e0)−1λT

E diag[OGe0]�m0 . (64)

Note that the expressions for the scalar impedance for 2-D MT can
also be derived as a special (degenerate) case of the multivariate
TFs considered earlier.

Linearized data functionals for apparent resistivity and phase are
discussed in Appendix C.

5.2.5 Example: 3-D MT

For the 3-D MT problem formulated in terms of the electric fields
(Section 5.1.2), the discrete operator T = (iωμ)−1C maps from
edges to faces, computing magnetic fields through application of
the discrete curl operator. Interpolation from edges and faces to an
arbitrary location within the 3-D staggered grid model domain can
be based on something simple such as trilinear splines. In this case,
both � and T are independent of m, and so Q ≡ 0.

L can be readily derived as a special case of the multivariate TF
with Np = 2. Each row of the 2 × 2 impedance tensor is a separate
TF—that is, Y in the general development of Section 5.2.2 corre-
sponds to Ex for the first row and Ey for the second. The predictor
variables X 1, X 2 correspond to the local horizontal magnetic field.
Thus, λT

Xi
= λT

Hi T, i = 1, 2 are functionals for computing the two
magnetic field components and λT

Y = λEk for rows k = 1, 2 of the
impedance. The 2 × 2 matrix X thus has elements Xi j = λT

Hi Te j

(same for both rows of the impedance). From (52) and (53), the row
of the (complex) L corresponding to impedance element ki is

[
X−1

i1

(
λT

Ek − Zk1λ
T
H1T − Zk2λ

T
H2T

)

X−1
i2

(
λT

Ek − Zk1λ
T
H1T − Zk2λ

T
H2T

)] (65)

where the components of X, and the impedance components Zkj are
calculated from the background solution. Note that this row of L
has two blocks (each of length N e), which multiply perturbations
to the two polarizations δej, j = 1, 2, and are summed to compute
the total perturbation δZki to the impedance element. Rows of L for
vertical field TFs, which relate Hz to the two local horizontal compo-
nents of the magnetic field, have the same form, with λHz replacing
λEk and the two components of the vertical field TF replacing Zkj,
j = 1, 2.
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6 M U LT I P L E T R A N S M I T T E R S

We now give a more explicit discussion of how all of the pieces
of J fit together in the case of multiple transmitters, allowing for
the sort of coupling that occurs with multivariate TFs. In general,
there will be NT transmitters, corresponding to different source
geometries and/or different frequencies. There will also be a total of
NR measured components of the EM field at some location. Note that
these would correspond to the actual field components observed.
Some or all of the data actually used for the inversion would be
constructed from these, for example, through TFs, with possible
further transformation to apparent resistivity and phase. In general,
subsets of receiver locations may be used for each transmitter. The
full Jacobian for all data can then be written

J = AT

⎡

⎢⎢⎢
⎣

�T 0 0

0
. . . 0

0 0 �T

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

S−1
1 0 0

0
. . . 0

0 0 S−1
NT

⎤

⎥⎥⎥
⎦

×

⎡

⎢⎢⎢
⎣

P1 0 0

0
. . . 0

0 0 PNT

⎤

⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

Q1 0 0

0
. . . 0

0 0 QNT

⎤

⎥⎥⎥
⎦

,

(66)

where � is the measurement operator, evaluating solutions for each
transmitter for all of the NR receivers. The matrices Pt and Qt are
generally different for each transmitter t, as they depend on the for-
ward solution et, computed for the reference model parameter used
for the Jacobian calculation (see 12). Two transmitters, indexed by
t1, t2, which only differ in the geometry of the source will typically
have identical forward operators, that is, St1 = St2 (though this is
not true for the 2-D MT case, where the two source polarizations
are decoupled, and different forward problems are solved for TE
and TM modes). The solution operators will always be different
for transmitters corresponding to different frequencies. Complica-
tions such as the possibility that not all receiver/transmitter pairs
are observed, coupling between transmitters through TFs, and fur-
ther non-linear transformations of data are embedded in the matrix
A. This matrix will generally be very sparse, with diagonal blocks
coupling at most a few transmitters.

Perhaps the simplest specific example of (66) is the controlled
source cross-well imaging problem (e.g. Alumbaugh & Newman
1997). In this case, transmitters are point magnetic dipoles in one
well, and observations are point measurements of the magnetic
field in another well. Assuming all transmitter–receiver pairs are
observed, the total number of data is Nd = NT NR, and we may take
A = I. Assuming further that all data are taken at a single frequency,
the forward operators are all identical, St ≡ S. Then (assume Q ≡
0) the transpose of the full Jacobian can be computed as

JT = [
P1(ST )−1� P2(ST )−1� . . . PNT (ST )−1�

]
. (67)

Thus, any of the NT NR rows of JT can be constructed from NT

forward solutions (required to form Pt, t = 1, . . . , NT ), and NR

adjoint solutions (one for each column λr of �). At the same time,
the gradient of the data misfit can be written in terms of the residual
vector (as in 6)

JT r =
∑

t

Pt (S
T )−1�rt , (68)

where rt are the components of the residual for transmitter t. Thus,
calculation of the gradient (as required for each step in an NLCG
or quasi-Newton search scheme) will require NT adjoint solutions

(and again NT forward solutions, for Pt, t = 1, . . . , NT ). When
NT ≈ NR (as, e.g., in the cross-well EM imaging example) the
full Jacobian can thus be had for the same cost (at least in terms
of calls to the forward/adjoint solver) as the gradient alone. Al-
though storing the full Jacobian (of size NT NR × M) might be
prohibitively expensive in terms of memory, by computing and
saving the NT forward and NR adjoint solutions, a GN scheme
can be implemented, solving the normal equations with CG as in
Alumbaugh & Newman (1997). This seems certain to be more
practical and efficient than direct optimization schemes such as
NLCG and quasi-Newton. Extensions of the simple case discussed
here, to allow for multiple frequencies or more complex sam-
pling patterns with only some transmitter–receiver pairs, would be
straightforward.

In the simple cross-well example, the Jacobian ‘factors’ into
components dependent on the transmitter and receiver with the
sensitivity for data dt,r (where t and r are, respectively, the trans-
mitter and receiver indices) is Pt(ST )−1λr. A similar factorization
will apply to any problem where there are transmitters with a single
frequency (more precisely, with identical forward solvers), but mul-
tiple source geometries. Many active source problems, in particular
marine CSEM, would fall into this category.

This source–receiver factorization also applies to the case of
multivariate TFs, and more complicated data derived from them.
Consider the Np rows of J associated with the components of a
single TF �. These rows of J can be represented in the general
form (66), with a single forward operator St ≡ S. From (52), we
thus have

J� = X−1

×

⎡

⎢⎢
⎣

��T 0 0

0
. . . 0

0 0 ��T

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

S−1 0 0

0
. . . 0

0 0 S−1

⎤

⎥⎥
⎦

×

⎡

⎢⎢
⎣

P1 0 0

0
. . . 0

0 0 PNp

⎤

⎥⎥
⎦

(69)

or, for the transpose

JT
� =

[
PT

1 (ST )−1��T . . . PT
Np

(ST )−1��T
] (

X−1
)T

. (70)

Thus, all Np rows of J require only a single adjoint solution, which
must then be multiplied by each of the matrices Pt, t = 1, . . . , Np.
The resulting model space vectors are then coupled, through the
Np × Np matrix (X−1)T to form the Np rows of J�. For multivariate
TF problems, there will generally be several predicted components
at a single site, each associated with an Np component TF. Each
of these TFs will require a separate adjoint solution, (ST )−1� j�

T
j

since � and � will be different for each TF, but all share the
same transmitter dependent matrices Pt, and the same coupling
matrix.

In the context of the 3-D MT problem, one has two TFs, cor-
responding to the two rows of the impedance tensor, and hence
two adjoint solutions are required to compute sensitivities for the
full impedance tensor. If vertical field TFs are also included, there
would be a third TF, and a third adjoint solution would be re-
quired. A direct calculation of sensitivities through the transposed
eq. (15), taking account of (19) but ignoring the factorization of
L used to derive (69) and (70), would suggest that two adjoint
solutions are required for each of the four components of the

C© 2012 The Authors, GJI, 189, 251–267

Geophysical Journal International C© 2012 RAS



Computational recipes for EM inverse problems 261

impedance tensor. This would imply a total of eight adjoint so-
lutions to evaluate the full sensitivity for an impedance tensor
at one location/frequency. Thus, the more careful analysis given
here suggests substantial efficiencies, reducing the total number
of adjoint solutions for a full calculation of the Jacobian by a
factor of 4.

Sensitivities for any data derived from impedance tensor com-
ponents can obviously be constructed from the adjoint solutions
(ST )−1� j�

T
j , j = 1, 2 essentially as in (70) but with a modified

coupling matrix, analogous to (X−1)T . An example would be the
four components of the phase tensor (e.g. Caldwell et al. 2004),
which is a non-linear function of the full impedance.

7 M O D U L A R I M P L E M E N TAT I O N

The mathematical developments of previous sections provide a
framework for implementation of a general modular system for
inversion of frequency-domain EM data. Here, we provide an
overview of the organization and principal features of such a system,
which we have developed in Fortran 95. A more detailed descrip-
tion of this modular system (hereinafter referred to as ModEM)
will be provided in a future publication. Although a purist might
argue that it is not strictly possible to write object-oriented code in
Fortran 95 we have based our development on this programming
paradigm, following approaches appropriate for the Fortran lan-
guage as described in Akin (2003). We also use the terminology of
this approach in our discussion here. As with most object-oriented
programming our goals in ModEM are code reuse for multiple re-
lated applications, and providing templates for rapid development
of new applications.

As discussed in detail earlier, the basic data objects which are
manipulated in any inversion scheme include model (m) and data
(d) vectors, and EM solution and source fields (e and b). These are
treated in ModEM as essentially ‘abstract data types’, encapsulated
data structures with details of the internal representation effectively
hidden from higher level routines which manipulate them. For each
of these classes, a standard series of methods must be defined (cre-
ation, destruction, vector space methods, dot products, etc.) with
standardized interfaces. The inversion algorithms then apply oper-
ators such as f, J, S−1, L, P, Q, Cm, which are implemented as
methods that interact with the basic objects m, d, e, b. Standard-
izing type names and interfaces allows multiple instances of these
operators and objects to be used interchangeably within the inver-
sion system, and at the same time, simplifies development of any
inversion algorithm that can be described in terms of these compo-
nents.

Components in ModEM can be usefully organized into three lay-
ers, as illustrated in Fig. 3. On the left-hand side of the figure are
components which define the basic discretization and numerical
solution approach used for the forward problem, whereas the com-
ponents on the right-hand side are more generic, constructed to be
directly applicable to a wide range of EM inverse problems. These
are separated by an interface layer, which serves to hide problem
and implementation specific details from the more generic inversion
modules. Each layer in the figure contains several boxes (represent-
ing modules or groups of modules in our actual implementation)
which are worth distinguishing at the level of this overview.

Two boxes represent the core of the numerical implementation
layer. The first includes the grid, data structures that define the pri-
mary and dual-field spaces SP, SD, field component interpolation
functionals (�), and the primary to dual mapping T—everything

needed to define the discrete formulation of the forward problem.
The second provides the actual solver for these discretized equa-
tions. To be useful for the inversion system this solver, which will
be used for both forward and sensitivity calculations, must allow
for general sources and boundary conditions, and for solution of
the transposed or adjoint system, as well as the usual forward prob-
lem. As noted earlier, the PDEs of EM are intrinsically symmetric,
so supporting adjoint solutions is typically almost trivial, although
there are some details (e.g. associated with non-uniform grids) that
may require some care (e.g. Kelbert et al. 2008).

No specific data type or procedure names from the core nu-
merical implementation modules are referenced by more generic
components of ModEM, so there is a great deal of flexibility in
actual implementation at this base level. We have so far used
ModEM with three distinct numerical models: the 3-D (electric
field) and 2-D (TE and TM mode) Cartesian coordinate FD mod-
els discussed earlier, and a 3-D spherical coordinate FD model
for global induction studies formulated in terms of the magnetic
fields. Source code from previously developed applications were
used for the 2-D MT and spherical models, which are described by
Siripunvaraporn & Egbert (2000) and Uyeshima & Schultz (2000),
respectively. Relatively minor modifications to these codes were re-
quired to ensure the required generality of the solver, and to simplify
interfacing with other components of ModEM.

The model space is also placed on the left-hand side of Fig. 3, as
important components of this module—in particular the mappings
π and �—are strongly dependent on details of the numerical for-
mulation of the forward problem. At the same time, the model space
is heavily used by higher level components of ModEM, including
the generic inversion modules, and possibly the data functionals (see
Section 5.2). Thus, any implementation of the model space mod-
ule must follow certain conventions to maintain consistency with
the rest of the system, for example, providing methods with stan-
dardized names and interfaces for linear algebra, dot products and
covariance operators. We view the model parametrization and regu-
larization (also part of this module) as something that should be very
easy to extend and modify to accommodate a diversity of interpre-
tation problems. For example, the simple conductivity parametriza-
tions discussed earlier could be modified to enforce bounds on
conductivities, for example, by replacing the logarithm by a differ-
ent conductivity transformation as in Avdeev & Avdeeva (2009),
or additional parameters to allow explicitly for near-surface distor-
tion (de Groot-Hedlin 1995) could be added. Completely different
model parametrizations (e.g. in terms of interface positions between
bodies of known conductivity; Smith et al. 1999; de Groot-Hedlin
& Constable 2004) or regularization approaches may be appropri-
ate in specific situations. To simplify modification and extension,
we adopt a strict object-oriented approach for the model parameter
space module, hiding all details of a specific instantiation from the
rest of the modular system (i.e. in Fortran 95 all attributes of m are
‘private’). Note that only the model parameter mappings depend
explicitly on the numerical discretization of the EM fields; the rest
of the model space implementation is independent of these details
and could in principal be used with multiple numerical modelling
approaches.

The generic inversion layer is represented by the three boxes on
the right-hand side in Fig. 3. The inversion box represents the actual
search algorithms, which are written in a generic way using methods
from data space, model space and sensitivity modules. Several of the
algorithms discussed in Section 2 have been implemented, including
the NLCG scheme (e.g. Rodi & Mackie 2001) and the Data space
CG scheme of Siripunvaraporn & Egbert (2007). Other inversion

C© 2012 The Authors, GJI, 189, 251–267

Geophysical Journal International C© 2012 RAS



262 G.D. Egbert and A. Kelbert

Figure 3. Schematic overview of the Modular Electromagnetic Inversion (ModEM) system. Boxes represent modules (or groups of modules, in actual
implementation), with dependencies defined by arrows. Data objects and operators, as defined in Sections 3–5, are listed in the appropriate module, along with
a brief summary of function. Tx, Rx denote the transmitter and receiver indices, respectively.

approaches can easily be added. Of course, the same inversion
routines can be used for multiple problems: the NLCG code has
been applied to 2-D and 3-D MT, simple controlled source EM, and
global induction problems in spherical coordinates.

The data space is also part of the generic layer. This is orga-
nized, following the discussion of Sections 5.2 and 6, to allow for
multicomponent data, observed with multiple receivers, and with
sources generated by multiple transmitters. Elements of the data
vector d are thus described by three attributes: transmitter, data
type and receiver. Transmitter uniquely defines the forward prob-
lem that must be solved, including both the specific PDE as well as
the sources and boundary conditions. Receiver defines, in conjunc-
tion with data type, the measurement process that must be applied
to the forward solution to allow comparison between model and
data. The three attributes are treated abstractly at the level of the
generic inversion modules, with data vector components carrying
only pointers to the actual metadata associated with these attributes
(e.g. site location, source polarization, transmitter location, etc.)
which are stored as entries in lists, or dictionaries. This approach
allows a generic format for data storage, hides extraneous details
from the inversion modules, and still provides enough information
about the transmitter/receiver structure so that forward modelling
and sensitivity computations can be organized efficiently.

These tasks are managed by routines in the sensitivity module,
which implement the full forward mapping f and operations with the
Jacobian J or its transpose. For example, the transmitter, receiver and
data type attributes can be used to ensure that each required forward
problem is solved once (and only once), and then used to compute
predicted data (or implement appropriate sensitivity calculations)
for all necessary receivers and data types. For some cases (CSEM,
and even to some extent 3-D MT; see Section 6), computations with
the Jacobian can be ‘factored’ for efficiency into components that
depend on the receiver and on the transmitter. In ModEM, such
efficiencies can be implemented through specialized versions of the

sensitivity module. A coarse grained parallelization (over transmit-
ters, or unique forward problems, similar to the approach used in
Siripunvaraporn & Egbert 2009) is also implemented through the
sensitivity module. This allows the parallel version to be used with
only minor modifications for a wide range of different applications,
and to some extent different search algorithms, including those to
be developed in future.

The middle layer in Fig. 3 provides an interface between the
generic inversion modules, and the problem and numerical imple-
mentation specific base modules. In particular, the EM solution and
source terms e and b are defined at this level in the solution space
module. These objects must always meet the interface standards of
the generic layer, but the implementation of a particular instance
of these objects will be problem-specific, and built on base layer
routines. Source and receiver details for each specific application
are also defined in this interface layer. Thus, inversions for different
EM methods may be developed using the same base of numerical
discretization modules (and of course the same inversion modules)
through modifications to the interface layer.

For example, we have used the 3-D Cartesian FD code base for
both MT and CSEM. The fundamental EM solution and source
objects have distinct implementations for the two methods. For a
single transmitter (frequency) in the 3D MT problem, b represents
boundary conditions for two orthogonal plane wave sources, and e
represents the corresponding pair of solutions, each a 3-D vector
field. For the CSEM problem, b represents a single dipole source,
and e is just a single vector field. These differences are imple-
mented in the solution space module. A secondary field formula-
tion (e.g. Alumbaugh et al. 1996), which is essential for accurate
forward modelling for the CSEM problem, but less critical for MT,
is readily implemented through the solver interface module. For
the CSEM case, the interface includes routines to compute the pri-
mary and scattered fields and hence the source term needed for the
FD solver; for the MT case appropriate boundary conditions are
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simply generated (and the secondary field approach is not used). In
both cases, the same base-level FD solver is then called (once for
CSEM, twice for 3-D MT) to do the core computations. Data for the
MT and CSEM problems also differ, requiring modifications to the
data functional module: for 3-D MT data are TFs or impedances,
whereas for CSEM they are just simple observations of individual
electric or magnetic field components.

A joint MT-CSEM inversion could also be implemented with very
minor changes to the interface layer: solution space, solver driver
and data functional modules for MT and CSEM can be merged,
with the appropriate case (one or two source polarizations, sec-
ondary field solver or MT boundary value problem, impedances or
field components) selected based on the transmitter index. This idea
can be extended to develop joint inversion for EM with other sorts of
geophysical data (seismic, gravity, etc.). In a joint inversion setting,
the base layer might include two or more numerical discretization
and forward solver modules, with physical parameters that define
the forward problems coupled (explicitly or structurally) through
a joint model parameter module. These forward problem solvers
would then be interfaced to the generic inversion layer through
merged solution space, data functional and solver driver modules.
The structure of the data space module provides a good basis for
developing modified inversion search algorithms as might be appro-
priate for joint inversion, such as allowing for control over trade-offs
between fitting data of different types.

As a brief illustration of some of the capabilities of ModEM, we
consider synthetic data inversion tests for three of the EM inverse
problems discussed in previous sections: 2-D MT, 3-D MT and
global induction. In all of the tests discussed here, we generated
synthetic data using some variant on a ‘checkerboard’ conductivity
distribution, of the sort often used for resolution tests in seismic
tomography, added Gaussian random noise and used the NLCG
algorithm implemented in ModEM for inversion.

For the 2-D MT tests, we inverted TE and TM mode data for
12 periods evenly spaced on a logarithmic scale from 0.3–3000 s.
Data were generated for 30 sites, with error standard deviation 3 per
cent of impedance magnitude. The conductivity model consisted of
a checkerboard pattern of 10 and 1000 ohm-m blocks embedded
in a 100 ohm-m half-space (Fig. 4a). The same grid (Ny = 106

with nominal resolution 1.5 km; Nz = 40 increasing logarithmi-
cally, starting from 0.5 km) was used for generating the synthetic
data, and for the inversion. The covariance used was similar to
that of Siripunvaraporn & Egbert (2000), and the prior model was
a 100 ohm-m half-space. The NLCG inversion converged from a
normalized root-mean-square (rms) misfit of 15.9 to below 1.05 in
68 iterations. The resulting solution, which fits the data to within
the expected errors, and captures the main features of the synthetic
model, is shown in Fig. 4(b).

For the 3-D MT tests, we used a 3-D variant on the checkerboard,
as illustrated in Fig. 5(a). For data we used the full impedance (all
four complex components), plus the vertical magnetic field TFs,
for 12 periods logarithmically spaced between 10–10 000 s. Error
levels were set at 3 per cent of |ZxyZyx|1/2 for all impedance com-
ponents, and at 0.03 for the non-dimensional vertical magnetic TF
components. The grid (again used both for computing the synthetic
data and for inversion) was 67 × 67 × 60, with a nominal resolution
in the core of 20 km horizontally (see Fig. 5a) . A total of 225 sites,
on a 15 × 15 regular 80 km grid were used for the inversion. The
covariance was similar to that used for the 2-D tests, and the prior
was again a 100 ohm-m half-space. The NLCG algorithm converged
from a normalized rms misfit of 12.32 to below 1.05 in 51 itera-
tions, resulting in the inverse solution shown in Fig. 5(b). Again,
major model features are well recovered, with some degradation in
imaging capability evident below shallower conductive features, as
would be expected.

As a final example, we show a simple global induction example.
As discussed earlier, the ModEM implementation for this case is
based on the spherical coordinate forward solver of Uyeshima &
Schultz (2000), which is formulated in terms of the magnetic fields.
Data for this global problem are so-called C-responses, ratios of
the vertical (Hz) and north (Hx) components of the magnetic field,
computed under the assumption that external sources can be ap-
proximated well by a zonal (geomagnetic coordinates) dipole. A
stand-alone inversion code for this sort of data, based on the same
solver, is described by Kelbert et al. (2008). An application of the
inversion to observatory data is given in Kelbert et al. (2009). Here,
we only demonstrate our new ModEM version, using a simple syn-
thetic example based on a four-layer 1-D Earth (0–100 km depth:

Figure 4. (a) Resistivity model used to generate synthetic data for 2-D MT test, with site locations shown at top. (b) Inverse solution obtained with ModEM,
fitting TE and TM mode impedances with a normalized rms misfit of 1.05.
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Figure 5. (a) Resistivity model used to generate synthetic data for 3D MT test. The centre of the model grid (used for generating data and for inversion) is
shown, along with the regular grid of sites on the surface. (b) Inverse solution obtained with ModEM, fitting full impedance tensor plus vertical magnetic TFs
to a normalized rms misfit of 1.05. Note that in the cut-away view the upper surface shown is at 2 km depth, but the structures shown extend to the surface.

Figure 6. (a) Heterogeneous conductivity in layer 3 (400–650 km depth) of global model used to generate test data for the global induction inversion, with
sites shown as filled circles. (b) Conductivity variations in the same layer recovered by the NLCG inversion, implemented with ModEM.

0.0001 S m−1; 100–400 km: 0.01 S m−1; 400–650 km: 0.1 S m−1;
650–4000 km: 2.0 S m−1) with an l = 6, m = 4 spherical harmonic
perturbation (in geomagnetic dipole coordinates) imposed in layer
3 (400–650 km). The amplitude of the perturbation (Fig. 6a) is
equivalent to one order of magnitude variation around the 0.1 S m−1

background.
Data were distributed on a regular spherical grid (eight latitudes,

from 56S to 56N, 15 evenly spaced longitudes, 120 sites total), for
four periods: 6 hr, 1, 4 and 16 d. The synthetic C-responses were
computed on a 3◦ × 3◦ grid, and again 3 per cent Gaussian errors
were added. The inversion assumed the same 1-D prior, and a rela-
tively low-dimensional model parametrization: only the third layer
was allowed to deviate from uniform, with variations parametrized
by spherical harmonics up to degree and order 9. A diagonal (in
the spherical harmonic domain) model error covariance was used
for the inversion, which was run on a 5◦ resolution spherical grid.
For this case, the inversion converged from a normalized rms mis-
fit of 14.43 to 1.46 in 76 NLCG iterations. Although the fit is not
quite to within the expected errors (presumably because of numer-
ical errors associated with the coarser grid used for the inversion)

conductivity variations in layer 3 (Fig. 6b) are recovered almost
perfectly.

8 C O N C LU S I O N S

We have derived general recipes for the Jacobian calculations that
are central to a wide range of EM inversion algorithms. Our analysis
is based on the discrete formulation of the forward problem, includ-
ing explicit treatment of parameter mappings and data functionals
in the numerical implementation. Through this analysis, we show
how the Jacobian can be decomposed into simpler operators, and we
analyse the dependence of these operators on the specific EM prob-
lem (e.g. through the transmitter and receiver configuration), or on
implementation specific details, such as the model parametrization
or the nature of the numerical discretization. Based on the general
formulation, we provide explicit expressions for Jacobian calcula-
tions for several example problems, including 2-D and 3-D MT, and
3-D controlled source problems with multiple transmitter locations.
A key result of our general analysis is the ‘factorization’ of the
Jacobian into components dependent only on transmitters, and on
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receivers. This has important implications for efficient implemen-
tation of inversion algorithms, which will be explored more thor-
oughly elsewhere. To the extent that we have discussed numerical
and discretization details of the forward problem, we have focused
on FD methods. However, much of our theory is more generally
applicable—for example, the division of the Jacobian into compo-
nents, and the dependencies of these components on details of the
EM problem and model parametrization—and will provide a useful
guide to development of inversion algorithms for any numerical
implementations of the EM forward problem.

Building on the general theoretical framework, we have sketched
our development of ModEM, a modular system of computer codes
for EM inversion. ModEM allows inversion codes developed for
one purpose to be rapidly adapted to other problems, and simplifies
development of new capabilities. For example, the 3-D MT inver-
sion discussed earlier can be extended to include intersite magnetic
TFs through very minor modifications to the data functional module
(essentially adding rows to the matrix A in 44). Only slightly greater
modifications were required for initial development of an inversion
for CSEM data, for which both sources and receivers are different.
Flexibility and ease of modification of the model parametrization,
and interchangeable inversion search algorithms are other notewor-
thy features of ModEM.
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A P P E N D I X A : D E P E N D E N C E O F
S O U RC E T E R M S O N M O D E L
PA R A M E T E R S

In some cases (in particular for active source problems), it is ap-
propriate to use a so-called ‘secondary field’ approach to solve
the forward problem (e.g. Alumbaugh et al. 1996). In this case,
a background (typically 1-D) conductivity is assumed, allowing
quasi-analytic computation of a background solution, with the ‘sec-
ondary’ field due to deviation from the background conductivity
then computed numerically. More precisely, the total field solution
is represented as e = ê + δe, where the background field ê sat-
isfies the 1-D equation defined by conductivity parameter m̂. It is
readily verified that the secondary field δe satisfies the induction
equation with a modified source. Assuming the 3-D operator can be
expressed as in (27) this takes the form

Smδe = −U[(π (m) − π (m̂)) ◦ Vê]. (A1)

The RHS in (A1) depends on the model parameter m, suggesting
that an additional term should be included in eq. (12).

However, if we differentiate both sides of (A1) with respect to m
and use (27) again we find

∂

∂m
[S0δe + U(π (m) ◦ Vδe)] = − ∂

∂m
[U(π (m) ◦ Vê] , (A2)

implying

0 = ∂

∂m
[S0δe + U(π (m) ◦ Ve)] = ∂

∂m
[Sme] , (A3)

the last equality following from the fact that S0ê does not depend
on m. Thus, as long as the RHS of the original problem is in-

dependent of the model parameter, ∂e/∂m = ∂[δe]/∂m satisfies
(12) without any additional terms, even if the equation for the sec-
ondary field does depend on m. Note also that even if the forward
problem is solved with a secondary field approach, the Jacobian
calculation (either through 14 or 15) involves only the standard
discrete solver S−1

m . Use of a secondary field approach only affects
the derivative indirectly through its dependence on the forward
solution.

A P P E N D I X B : 3 - D S TA G G E R E D G R I D
D E TA I L S

Here, we give a more precise definition of the discrete finite dif-
ference (FD) operator corresponding to ∇ × ∇ × +iωμσ and its
adjoint, and clarify implementation of boundary conditions for the
3-D magnetotelluric (MT) problem. Similar considerations apply to
other cases considered in the text. To do this, we need to distinguish
more precisely between interior and boundary nodes in the grid. In
the main text, SP (SD) have been used to denote the space of discrete
complex vector fields defined on all edges (faces) of the staggered
grid. Here, we use the same symbols with tildes (S̃P, S̃D) to indicate
the restriction to interior edges or faces. The discrete curl operator
is naturally defined as a mapping from all edges to all faces, but we
need only consider the partial mapping which computes the curl for
interior faces (see e.g. Kelbert (2006) for details). Denote this as

C : SP �→ S̃D (B1)

and partition e ∈ SP and C into interior and boundary edge compo-
nents

e =
[

ẽ
eb

]
C = [

C̃ Cb

]
, (B2)

so that C̃ : S̃P �→ S̃D and Ce = C̃ẽ + Cbeb .
To define adjoints precisely, we need to specify inner products.

The natural inner products for the primary and dual spaces (interior
nodes only) are

〈ẽ1, ẽ2〉P = ẽ∗
1VEẽ2

〈
h̃1, h̃2

〉
D

= h̃∗
1VFh̃2. (B3)

In (B3), VE and VF are real diagonal matrices of edge and face
volume elements. Edge volumes, for example, are defined as one-
fourth of the total volume of the four cells sharing the edge, so that
the first discrete inner product in (B3) approximates the integral L2

inner product for vector fields
∫ ∫ ∫

E∗
1(x) · E2(x)dV . The adjoint

of the interior curl operator C̃† : S̃D �→ S̃P satisfies, by definition,
〈
h̃, C̃ẽ

〉
D

= 〈
C̃†h̃, ẽ

〉
P

∀ẽ ∈ S̃P, h̃ ∈ S̃D. (B4)

Noting that that C̃ is real, one then readily derives

C̃† = V−1
E C̃T VF. (B5)

From the definitions of VE and VF one can verify that C̃† indeed
corresponds to the appropriate geometric definition of the curl op-
erator defined on cell faces. Thus, the electric field eq. (22) with
source js

∇ × ∇ × E + iωμσE = js (B6)

can be approximated on the discrete grid as

C̃†Ce + iωμσ ẽ = [C̃†C̃ + iωμσ ]ẽ + C̃†Cbeb = b̃, (B7)

where b̃ ∈ S̃P gives the discrete approximation for the source cur-
rent js inside the domain; these currents (and hence b̃) vanish for
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the 3-D MT example we have focused on. The discrete system
(B7) has one equation for each of the Ñe interior edges, but N e (=
total number of edges) unknowns. Boundary conditions are thus
required, most simply specification of tangential electric field com-
ponents on the boundary edges. Then, the full system of equations
(Se = b) can be decomposed into interior and boundary components
as
[

C̃†C̃ + iωμσ C̃†Cb

0 I

][
ẽ

eb

]

=
[

Si i Sib

0 I

][
ẽ

eb

]

=
[

b̃

bb

]

,

(B8)

where bb represents the specified boundary data. Eliminating the
boundary edges results in a well-posed Ñe × Ñe problem for electric
fields restricted to interior edges

[C̃†C̃ + iωμσ I]ẽ = Si i ẽ = b̃ − C̃†Cbbb, (B9)

with the RHS determined from the boundary data, and any source
terms in the domain. Using (B5), we see that the discrete opera-
tor in (B9) can be written as Si i = V−1

E C̃T VFC̃ + iωμσ I. Thus, as
sketched in Section 3, the system Se = b can be reduced to symmet-
ric form by eliminating the boundary nodes, and then multiplying
both sides of the resulting eq. (B9) by VE.

We emphasize that in our treatment of the discrete forward prob-
lem we take e, S and b to include both interior and boundary nodes.
Thus to be precise in our application of (27) to the 3-D FD equations
considered here, we should take

S0 =
[

C̃†C̃ C̃†Cb

0 I

]

, (B10)

and we should define π (m) ≡ σ (m) ≡ 0 on boundary edges. This
is a general property of π (m), since the boundary conditions do not
depend on the model parameter. This implies that the columns of P
corresponding to boundary nodes will all vanish. Also, accounting
for the boundary conditions in the transpose of S we have, in the
notation of (B8),

ST e =
[

Si i 0

ST
ib I

] [
ẽ

eb

]

=
[

b̃

bb

]

. (B11)

The transposed solution operator (ST )−1b, which appears exten-
sively throughout the main text, can thus be interpreted as solution
of the homogeneous problem (for interior nodes)

ST
ii ẽ = b̃ (B12)

followed by computation of the boundary terms

eb = bb − ST
ib ẽ. (B13)

In fact, solutions to the adjoint problem (ST )−1b are always multi-
plied by PT , and because the rows of PT corresponding to boundary
components are zero, the boundary terms in (B13) are never actually
required for our purposes.

A P P E N D I X C : T R A N S F O R M AT I O N O F
JA C O B I A N T O R E A L F O R M

To allow for the fact that the model parameter m is typically real, and
in some cases data are also real, we have assumed that d and J are
real, with any complex observations (e.g. an impedance) represented
as two real elements of the data vector. However, throughout the text,
we have used complex notation for L, S−1

m0
, P and Q, so J computed

from (14) would also be complex. In fact, for complex observations
it is readily verified that the real and imaginary parts of a row of the
complex expression for the Jacobian give the sensitivity (a vector
in the real model parameter space) for the corresponding real and
imaginary parts of one observation. Thus, to keep the Jacobian and
the data vector strictly real, we can set

d̄ =
[ �(d)

�(d)

]

J̄ =
[ �(J)

�(J)

]

= �
[[

L

−iL

]

S−1P +
[

Q

−iQ

]]

(C1)

with the convention that for any observations that are intrinsically
real the rows corresponding to the imaginary component are omit-
ted. From (C1), J̄T d̄ = �(JT )�(d) + �(JT )�(d). It is easily seen
that

J̄T d̄ = �[JT d∗] = �[PT ST −1
LT d∗ + Qd∗], (C2)

where the superscript asterisk denotes the complex conjugate. Thus,
the complex component matrices can be used to construct the
real Jacobian J̄, and to implement multiplication by this matrix
and its transpose. Note also that while we assume the data vec-
tor is real, real and imaginary parts of sensitivities for a com-
plex observation are computed (e.g. via 15) with a single adjoint
solution.

Apparent resistivity and phase provide examples of observations
that are intrinsically real. In terms of the impedance, the apparent
resistivity is defined as

ρa = (ωμ)−1 |Z |2 = (ωμ)−1
[
Z 2

r + Z 2
i

]
, (C3)

where Zr and Z i are real and imaginary parts of the impedance Z,
and ω is angular frequency. Applying the chain rule,

∂ρa

∂m
= ∂ρa

∂ Zr

∂ Zr

∂m
+ ∂ρa

∂ Z i

∂ Z i

∂m
= 2

ωμ

[
Zr

∂ Zr

∂m
+ Z i

∂ Z i

∂m

]
(C4)

= 2

ωμ

[
Zr� ∂ Z

∂m
+ Z i� ∂ Z

∂m

]
= �

[
2Z∗

ωμ

∂ Z

∂m

]

= �
[

2Z∗lT
Z

ωμ

∂e

∂m

]
. (C5)

Thus, lρ = 2Z∗lT
Z /ωμ gives the (complex) row of L for an apparent

resistivity, again with the convention that the real part of the product
in (14) is taken for the corresponding row of the real Jacobian.
Similarly for the phase φ = tan −1(Zr/Z i), we find that the row of L
takes the form lφ = iZ∗lT

Z / |Z |2.
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S U M M A R Y
We describe novel hybrid algorithms for inversion of electromagnetic geophysical data, com-
bining the computational and storage efficiency of a conjugate gradient approach with an
Occam scheme for regularization and step-length control. The basic algorithm is based on
the observation that iterative solution of the symmetric (Gauss-Newton) normal equations
with conjugate gradients effectively generates a sequence of sensitivities for different linear
combinations of the data, allowing construction of the Jacobian for a projection of the original
full data space. The Occam scheme can then be applied to this projected problem, with the
tradeoff parameter chosen by assessing fit to the full data set. For EM geophysical problems
with multiple transmitters (either multiple frequencies or source geometries) an extension of
the basic hybrid algorithm is possible. In this case multiple forward and adjoint solutions (one
each for each transmitter) are required for each step in the iterative normal equation solver,
and each corresponds to the sensitivity for a separate linear combination of data. From the
perspective of the hybrid approach, with conjugate gradients generating an approximation to
the full Jacobian, it is advantageous to save all of the component sensitivities, and use these
to solve the projected problem in a larger subspace. We illustrate the algorithms on a simple
problem, 2-D magnetotelluric inversion, using synthetic data. Both the basic and modified
hybrid schemes produce essentially the same result as an Occam inversion based on a full
calculation of the Jacobian, and the modified scheme requires significantly fewer steps (rela-
tive to the basic hybrid scheme) to converge to an adequate solution to the normal equations.
The algorithms are expected to be useful primarily for 3-D inverse problems for which the
computational burden is heavily dominated by solution to the forward and adjoint problems.

Key words: Inverse theory; Magnetotelluric; Geomagnetic induction.

1 I N T RO D U C T I O N

Among the most widely applied, and practical, approaches to inver-
sion of electromagnetic (EM) geophysical data (e.g., magnetotel-
lurics; MT) in two and three dimensions are regularized schemes
based on minimizing a penalty functional of the form

�(m, d) = (d − f(m))TC−1
d (d − f(m))

+ λ(m − m0)TC−1
m (m − m0), (1)

(e.g. see Avdeev (2005) and Siripunvaraporn (2012) for reviews).
In (1) Cd and Cm are data and model covariances; as these are
not central to our focus we assume the simplest form for both
(Cd = I, Cm = I), and we take the a priori model parameter m0 =
0. Treatment of the more general case complicates notation, but
presents no essential difficulty for the ideas discussed here (see
the Appendix for details). We consider in particular methods for
minimization of (1) based on linearization of the non-linear model-
data mapping f(m), that is, that make use of the derivative of f, the

N × M Jacobian J (so Ji j = ∂ fi/∂m j ; N = #data; M = # model
parameters). Two general approaches, each with many variants, can
be distinguished. In a Gauss-Newton approach (e.g. Parker 1994) the
full Jacobian is used to approximate the second-order (Taylor series)
expansion of the penalty functional around a current estimate of the
model solution. The resulting quadratic form is then minimized,
leading to a standard linear least-squares problem, defined (at least
formally) by the system of normal equations

(JTJ + λI)δm = JT(d − f(mn)) − λmn, (2a)

which can be solved for the model update

mn+1 = mn + δm. (2b)

The whole procedure must be iterated, with the Jacobian recom-
puted for the updated model parameter, to achieve the minimum of
(1). As described in Parker (1994) some form of step-length con-
trol is required (e.g. setting mn+1 = mn + μδm with 0 < μ ≤ 1
determined by line search). The second approach is epitomized by
non-linear conjugate gradients (NLCG; e.g. Rodi & Mackie 2001):

C© 2012 The Author 255
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the minimum of (1) is found by direct optimization, computing the
gradient of the penalty functional

1

2

∂�

∂m

∣∣∣∣
mn

= −JT(d − f(mn)) + λmn, (3)

and using this to define a search direction in the model space. � is
then minimized along this search direction, the model parameter is
updated to mn+1 and the whole process is repeated. Both approaches
are reviewed and compared in the context of EM geophysics prob-
lems of the sort considered here in Rodi & Mackie (2001). Limited
memory quasi-Newton (Liu & Nocedal 1989) represents an alter-
native direct optimization approach, which has also been used for
EM inverse problems (e.g. Avdeev & Avdeeva 2009).

The forward problem f(m) for a frequency-domain EM induction
problem, such as 2-D or 3-D MT, involves solving elliptic partial
differential equations (PDEs), derived from Maxwell’s equations.
For example, in quasi-static 3-D EM problems the governing equa-
tions formulated in terms of the electric field E are:

∇ × ∇ × E − iωμσE = s. (4)

The forward mapping f(m) requires solving (4) subject to ap-
propriate boundary conditions, and using the solution, evaluated at
observation locations, to compute predicted data. In (4) σ is the
spatially varying electrical conductivity of the medium, which we
assume is defined through the unknown discrete model parameter
m, ω is angular frequency and s represents the sources (which may
vanish, as for MT where the system is forced through the boundary
conditions). In most realistic problems data are available for N f

frequencies, and Ns source geometries, so a total of N f Ns PDEs
must be solved to evaluate f(m) for a single model parameter. As
shown in general by Newman & Hoversten (2000), Pankratov &
Kuvshinov (2010), and Egbert & Kelbert (2012) and previously for
numerous specific examples referenced therein, computing one row
(or one column) of J requires solving the governing PDE (or more
precisely, its adjoint; though (4) is essentially self-adjoint) once.
Evaluating a matrix-vector product such as JTr (e.g. in the gradient
of data misfit used in (3)) requires essentially the same computations
as one forward problem.

A GN approach would appear at first blush to be much less ef-
ficient than NLCG: to implement (2) directly, one must apparently
first compute all of J (requiring N = N f Ns Nr (where Nr is the
number of receivers) solutions of the appropriate PDE, one for each
row of the Jacobian), and then form and solve the M × M system
of equations. In contrast, a single iteration with (3) requires a sin-
gle gradient computation, followed by a line search to minimize
over the search direction (generally requiring 2–4 additional solu-
tions of the forward problem). However, as Rodi & Mackie (2001)
show, NLCG requires many more iterations (typically 50–100 or
more) compared to a GN scheme (typically 5–10 or less; see ex-
amples below). Furthermore, for ‘multitransmitter’ problems (i.e.
with multiple frequencies and/or source geometries) each forward
solution or gradient evaluation actually requires solving the gov-
erning PDE N f Ns times. Accounting for the significantly greater
number of iterations needed for convergence (each requiring a line
search) direct minimization with NLCG may require as many or
more PDE solutions as a GN scheme based on full calculation of
J (Siripunvaraporn & Egbert 2007; Siripunvaraporn & Sarakorn
2011). However, NLCG still avoids forming and solving the large
system of normal equations of (2), so this and related approaches
are now used in almost all implementations of 3-D inversion (e.g.
Commer & Newman 2008; Avdeev & Avdeeva 2009); the efforts of

Sasaki (2001), Siripunvaraporn et al. (2005) and Siripunvaraporn
& Egbert (2009) are exceptions.

It is of course possible to use a GN approach without explic-
itly forming the normal equations of (2a), but instead solve this
symmetric linear system of equations iteratively using conjugate
gradients (CG). This approach, which has been used fairly exten-
sively for EM inversion (e.g. Mackie & Madden 1993; Alumbaugh
& Newman 1997; Rodi & Mackie 2001) is a variant on the trun-
cated Newton approach to optimization (e.g. Dembo et al. 1982;
Nash 2000), with the Hessian replaced by the GN approximation
(e.g. Newman & Hoversten 2000).

To be concrete, and to set the stage for coming developments, we
consider a variant on the GN equations of (2):

(JJT + λI)b = d̂ = d − f(mn) + Jmn (5a)

mn+1 = JTb. (5b)

This data space scheme (e.g. Siripunvaraporn & Egbert 2000;
Siripunvaraporn & Sarakorn 2011), which requires solving the
N × N system of normal equations in the data space (instead of
the M × M system in the model parameter space), can be shown to
be equivalent to (2). Instead of actually making the full dense ma-
trix, one can again use CG, which requires multiplying an arbitrary
vector by the coefficient matrix (JJT + λI). This in turn requires
multiplication of data space vectors by JT and model space vec-
tors by J, essentially the same sort of computations as required by
NLCG. This approach also avoids calculation of the full Jacobian
and eliminates the need to form the normal equations. As shown in
Siripunvaraporn & Egbert (2007) the total number of PDE solutions
is, however, still typically comparable to that required for a full cal-
culation of J. And the CG scheme has an apparent disadvantage:
once the full Jacobian is calculated, solving (5a) for different values
of the tradeoff parameter λ is fairly fast—in particular no further
PDE solutions are required.

The Occam approach (Constable et al. 1987; see also Parker
1994) exploits this efficiency, varying λ both for step length con-
trol, and as a damping parameter, to search for minimum norm
inverse solutions, which fit the data to a prescribed tolerance. Once
J is computed (5) is used to compute a series of trial solutions cor-
responding to a range of λ, and the forward problem is then solved
for each to evaluate the actual data misfit achieved as a function
of λ. Initially, λ is chosen to minimize data misfit; as the scheme
converges λ is chosen to minimize the model norm while keeping
the misfit constant at the target value (Constable et al. 1987; Parker
1994). With this approach λ is determined as part of the search
process, and at convergence one is assured that the solution attains
at least a local minimum of the model norm, subject to the data fit
attained (Parker 1994). With a straightforward application of CG
all of the PDE solution steps must be repeated for each new trial
value of λ (Siripunvaraporn & Egbert 2007). The same situation
holds for NLCG: the penalty functional is minimized with λ fixed,
and the entire (or at least much of ) the iterative process must be
repeated with each new trial value. Thus, if one has to vary the reg-
ularization parameter—and often this is critical, even if one does
not have the precise information about data error levels required to
rigorously provide an a priori target misfit—GN schemes based on
full calculation of J would appear to have some advantages.

We make two points in this paper. The first is in fact rather
obvious: at the cost of a modest increase in memory requirements,
CG schemes can be easily modified to allow the Occam approach
to be implemented without computing the full Jacobian. The idea
is closely related to the so-called hybrid algorithms, which have
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previously been discussed in the context of damped least-squares
problems (O’Leary & Simmons 1981; Kilmer & O’Leary 2001;
Hanke 2001). It can also be viewed as a special case of the subspace
inversion methods of Oldenburg et al. (1993), in which a small and
effective model subspace is generated by the iterative CG solver.

Our second point is more novel, and is specific to multitransmitter
inverse problems where computational costs are dominated by the
need for multiple expensive forward solutions. Such problems are
the norm in EM geophysics, and arise also in other geophysical
problems, such as full waveform seismic inversion (e.g. Tape et al.
2010). We show that for such problems iterative solution of the
data space normal eq. (5a) can be modified to achieve substantially
more rapid convergence (in particular, with fewer required forward
solutions). Both ideas follow from a more careful examination of
the iterative CG algorithms used to solve (5a). We thus review the
basis for the CG solution approach—that is, the Lanczos process—
in Section 2, and demonstrate how the standard solution scheme
can be easily modified to implement a hybrid CG-Occam scheme.
In Section 3, we develop a modification to the Lanczos process
that uses the multiplicity of forward and adjoint solutions required
in multitransmitter EM geophysical inverse problems to accelerate
convergence of the solution to the normal equations, leading to a
modified hybrid CG-Occam algorithm. In Section 4, we demonstrate
the efficacy of the new schemes using the 2-D MT inverse problem
as a simple illustrative example. Although this simple problem is
sufficient to demonstrate the effectiveness of the new algorithms,
we stress that these schemes are likely to be most useful for 3-D
problems where computational costs are dominated by expensive
forward and adjoint solutions required for gradient calculations.
Results and possible extensions are discussed in Section 5.

2 A H Y B R I D C G - O C C A M S C H E M E

To motivate and describe the hybrid schemes we begin with a review
of the Lanczos bi-diagonalization algorithm of Paige & Saunders
(1982a), which forms the basis for standard CG solution methods.
Here the algorithm ‘BIDIAG1’ is applied to the Jacobian J, with the
ultimate objective of solving the system of normal eq. (5a), initially
taking λ = 0. In the first step of the Lanczos process unit vectors in
the data and model space are computed

β1u1 = d̂ ‖u1‖ = 1 (6a)

α1v1 = JTu1 ‖v1‖ = 1. (6b)

A key point to note here is that the model space vector α1v1 =
JTu1 is just the sensitivity of a particular linear combination of data
components, namely uT

1 d (ignoring noise ∂uT
1 d/∂m = ∂uT

1 f/∂m =
uT

1 ∂f/∂m = uT
1 J = α1vT). Next compute

Jv1 = α1u1 + β2u2, (7)

where u2 is orthogonal to u1. Now if β2 = 0, JJT[β1/α
2
1]u1 =

β1u1 = d̂ so b1 = (β1/α
2
1)u1 would be an exact solution to (5a).

In general, this will not be the case, and this initial estimate of b
must be refined. We thus continue for k = 2, . . . , K (where K is
determined by the stopping criterion discussed below)

βkuk = Jvk−1 − αk−1uk−1 ‖uk‖ = 1 (8a)

JTuk − βkvk−1 = αkvk ‖vk‖ = 1, (8b)

generating sequences of data and model space vectors (which
can be saved as orthogonal matrices UK = [u1 · · · uK ] and

VK = [v1 · · · vK ], respectively) and scalars αk, βk which can be
organized as the bi-diagonal matrix

BK =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1 β2 · · · 0

0 α2

. . .
...

...
. . .

. . . βK

0 · · · 0 αK

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (9)

Then (6)–(8) can be expressed in matrix notation as

JTUK = VK BK (10)

JVK = UK BT
K + βK+1uK+1êT

K , (11)

where êK is the unit vector for coordinate K in R
K and JvK =

αK uK + βK+1uK+1. The original system JJTb = d̂ can be solved
approximately by first projecting into the K -dimensional data sub-
space spanned by the columns of UK ; i.e.

UT
K JJTUK b̃K = UT

K d̂ = β1ê1. (12)

The last equality follows from (6a) and orthonormality of the
columns of UK . On the other hand, from the orthonormality of VK

and (10), the system to be solved can be seen to be symmetric,
positive definite and tri-diagonal

BT
K BK b̃ =β1ê1, (13)

and hence easily solved. The vector bK = UK b̃ then provides an
approximate solution to the original system. Indeed we have from
(10–13) and (6a)

JJTbK = JJTUK b̃ = JVK BK b̃ = [
UK BT

K + βK+1uK+1êT
K

]
BK b̃

= UK BT
K BK b̃ + βK+1uK+1

[
êT

K BK b̃
]

= β1UK ê1 + βK+1

[
αK êT

K b̃
]
uK+1 (14)

= β1u1 + αK βK+1b̃K uK+1 = d̂ + αK βK+1b̃K uK+1, (15)

where b̃K is the K th component of the vector b̃.
In standard implementations of CG the system (12) is not ac-

tually formed and solved. Rather, the approximate solution bK is
updated ’on the fly’, starting from b1 = (β1/α

2
1)u1. Iterations can

be terminated when the residual in the solution to (eq. 5a; i.e.
JJTbK − d̂ = αK βK+1b̃K uK+1) is sufficiently reduced, for exam-
ple, when ‖αK βK+1b̃K uK+1‖/‖d̂‖ < ε. More generally, memory
efficient and numerically stable schemes for damped least squares
problems (e.g., LSQR) have been developed based on Lanczos bi-
diagonalization (Paige & Saunders 1982b). With these approaches
memory requirements are minimal—only the most recent uk, vk

need be retained, and solutions (and residuals) are updated at each
step k. However, by actually saving all of UK , VK and BK (or in fact
UK and JTUK ) it is possible to form and solve the small (K ×K ) sys-
tem [UT

k JJTUK + λI]bλ = UT
K d̂ (analogous to (12)) for any value

of the regularization parameter λ. It is readily verified that the same
error estimate (15) applies to this modified system. This approach,
which allows an efficient implementation of the Occam scheme, is
an example of a hybrid algorithm, of the sort previously discussed
extensively in the numerical linear algebra literature (O’Leary &
Simmons 1981; Kilmer & O’Leary 2001; Hanke 2001).

A hybrid Occam-CG scheme is thus obvious: (1) Apply Lanczos
bi-diagonalization to J, saving the orthonormal matrix UK , and the
K model space vectors JTUK . (2) Use these to form the K × K
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= − + −

β = =

α = =
=

β α− − −= − =

β α − < ε

β α−− = =

[ ]=

λ λ
× + λ λ =

λ = λ

λ − λ

λ − λ =

Figure 1. Pseudo-code for hybrid Occam-DCG.

cross-product matrix R = UT
K JJTUK . This matrix is in principal tri-

diagonal, but round-off error will cause increasing large deviations
as K increases, so it is best to retain and work with the matrix
JTUK . (3) Optimize the regularization parameter by solving the
projected system [R + λI]bλ = UT

K d̂ for a series of values of λ,
and minimize the misfit ‖d − f(mλ)‖2, where mλ = JTbλ; after the
target misfit is achieved, choose λ to minimize the penalty functional
subject to achieving the target misfit. Pseudo-code for the scheme
is given in Fig. 1. This hybrid scheme effectively uses the Lanczos
process to generate a subset of sensitivities (i.e. the columns of
UT

K J), corresponding to the data subspace spanned by UK . The
Occam scheme is then applied to this projected problem, with the
tradeoff parameter chosen by assessing fit to the full data set.

The basic hybrid algorithm solves the linear subproblem in the
model subspace spanned by the columns of VK , and can thus be
viewed as a special case of the subspace inversion methods dis-
cussed in Oldenburg et al. (1993). Although we have focused on a
data space Occam approach, the same ideas are readily adapted to al-
ternative G-N formulations in the model space, for example, to solve
(2) for δm. From this perspective the Lanczos bi-diagonalization can
be viewed as a scheme for generating a particular model subspace,
which approximates the row span of J, and thus should be partic-
ularly efficient for finding approximate solutions to the full system
of normal equations (with any value of the regularization parame-
ter). Note that the Lanczos process already generates the sensitivity
matrix-model parameter products JVK needed to generate the re-
duced normal equations for the subspace inversion approach (see

Oldenburg et al. 1993), so a subspace inversion based on saving the
full set of Lanczos vectors would be quite efficient.

3 A M O D I F I E D H Y B R I D S C H E M E

In most EM inverse problems data are available for multiple fre-
quencies, or more generally, with multiple transmitters (different
frequencies and/or different source geometries). In this case the
data vector and Jacobian can be decomposed into J (= number of
transmitters) blocks as

d =

⎛

⎜⎜⎜
⎝

d1

...

dJ

⎞

⎟⎟⎟
⎠

, (16)

JT = [
JT

1 · · · JT
J

]
. (17)

A product such as JTr = ∑
j JT

j r j actually entails separate com-
putations for each transmitter (each requiring solution of the gov-
erning PDE appropriate for that frequency), followed by summing
the results (a sequence of J model space vectors). Details of the
Jacobian calculation are somewhat different for the case of multiple
transmitters (with a common frequency), but the decompositions of
(16) and (17) remain valid and the required number of forward and
adjoint solutions remains the same. Each one of the model space
vectors JT

j r j gives the sensitivity of a linear combination of data
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for a single transmitter. The basic idea behind the modified hybrid
algorithm is to save all of these separate sensitivities, and use these
to solve a projected data-space system analogous to (12). The key
modification is actually to the Lanczos scheme, which we will show
in Section 4 results in convergence of the normal equations in fewer
iterations (i.e. with fewer matrix-vector products JTu and Jv).

The scheme is motivated by the observation that if we saved the
individual transmitter data-space vectors and corresponding sen-
sitivities uk j , JT

j uk j generated by the Lanczos bi-diagonalization
discussed earlier, we could project (5) into a much larger
(JK-dimensional) data subspace (which would contain the K-
dimensional space spanned by the vectors uk), perhaps leading to
a more accurate solution—or rather, allowing an equally accurate
solution for a smaller value of K . We have found a modification to
this simple idea to be significantly more effective.

As for the standard Lanczos bi-diagonalization, the modified
scheme generates a sequence of data space vectors which we denote
as ũ1, . . . , ũK , subdivided into individual transmitter components
as ũT

k = [wT
1k · · · wT

Jk], with each now normalized separately so
‖wT

jk‖ = 1. As for standard Lanczos schemes the process is started

from the right hand side d̂ of the system (5), but now with each
block of the data vector normalized separately w j1 = d̂ j/‖d̂ j‖.
Leaving aside for the moment how the vectors w jk are generated
for k > 1, let � jk = [w j1 · · · w jk] be the matrix constructed from
the first ksubvectors for transmitter j , and define the block diagonal
matrix

Wk = diag (�1k, . . . , �Jk) . (18)

Then the columns of JT
j � jk are model parameter vectors corre-

sponding to the sensitivity for the k linear combinations of data
defined by �T

jkd j , and

JTWK = [
JT

1 �1K · · · JT
J �J K

]
, (19)

is the M × (KJ ) matrix containing all of the sensitivities generated
by the first K steps. We show by induction that, with the scheme
for generating ũk described next, �T

jk� jk = I for all k (i.e. for
fixed j the vectors w jk, k = 1, . . . , K are orthonormal) so that
WT

K WK = I.
Orthonormality of WK certainly holds for K = 1. Supposing it

holds also for K , we can use the computed sensitivities to solve the
projected problem
(
WT

K JJTWK + λ0I
)

b̃ = WT
K d̂ (20)

for any fixed λ0. This is analogous to (12), but the matrix WK

has KJ instead of K columns, so the projected problem is solved
in a larger subspace. Given the solution to (20) we next compute
m̃K = JTbK = JTWk b̃. If iterative solution of the linear subproblem
(5a) were truncated at this point, m̃K would be the model update
for the next iteration given in eq. (5b). To continue iterations we
compute

Jm̃K = JJTWK b̃K = WK WT
K JJTWK b̃K + eK+1, (21)

where eK+1 is orthogonal to all of the columns of WK , that is,
WT

K eK+1 = 0. But then we have �T
j K e j,K+1 = 0, so setting

w j,K+1 = e j,K+1/‖e j,K+1‖, this vector is orthogonal to w jk, k =
1, . . . , K . Thus, � j,K+1, j = 1, . . . , J , and hence WK+1, are all or-
thonormal matrices, as claimed. Note that eK+1 is analogous to uK+1

in (8a)—that is, it represents the next data-space search direction,
but blocks for each transmitter will be used separately.

Note that WK WT
K d̂ = d̂, and thus (20–21) imply that

(
JJT + λ0I

)
bK = d̂ + eK+1, (22)

Figure 2. Pseudo-code for modified hybrid scheme.

so that bK provides a good approximate solution to (5a) provided
‖eK+1‖ is small enough. This can thus serve as a stopping criterion.
If the residual is not sufficiently reduced, eK+1 can be used to gen-
erate the data space vectors w j,K+1, j = 1, . . . , J , along with the
corresponding model space vectors JT

j w j,K+1 for the next iteration.
Pseudo-code for the modified hybrid scheme is given in Fig. 2.

A key point to note is that a full solution to the projected linear
subproblem is required at each step—that is, (20) is solved, and m̃K

formed for the computation of (21). In fact this is what is required
to verify that the solution in the projected subspace (i.e. bK ) solves
the unprojected system (22) with sufficiently small residual. How-
ever, forming and solving the projected normal equations will not
represent a serious computational challenge as long as KJ remains
a small fraction of the total number of data. In particular, for 3-D
problems where computational effort is dominated by solving the
3-D forward and adjoint problems, these extra steps will typically
be negligible.

Note that the modified scheme depends on the initial tradeoff
parameter selected λ0. This is because the intermediate solution
m̃k , which is used through (21) to compute the next data space
search vectors ek+1, w j,k+1, depends on λ0. The trade-off parameter
should scale with the eigenvalues of the matrix JJT, and we can
very roughly estimate this scale from

Tr
[
WT

1 JJTW1

] =
∑

j

∥∥JT
j w j1

∥∥2
/J = η0, (23)
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which is computed in the first step of the modified Lanczos process,
before λ0 is required.

In our tests we have taken λ0 = 0.01η0 for the first loop of
the Occam scheme, and then used the optimal λ from the previous
iteration for subsequent iterations.

As with the standard scheme, the modified Lanczos scheme gen-
erates a model subspace, now spanned by the KJ columns of JTWK .
However, the connection to the model subspace inversion methods
of Oldenburg et al. (1993) is now somewhat weaker than for the
standard hybrid scheme. To solve the model space equations of (2)
projected into this subspace it would be necessary to compute Jv
for all KJ model space vectors, but in the modified Lanczos scheme
the Jacobian is only applied to the K intermediate model solution
vectors m̃k . The modified hybrid scheme developed here is thus
more clearly rooted in the data space perspective, with the inverse
problem solved for a projection of the full data vector. It is also
worth noting that the sequence of data subspaces that we solve the
problem in are not the usual Krylov subspaces generated by repeated
application of JJT. Indeed the actual sequence of projected spaces
depends to some extent on λ0.

4 E X A M P L E : 2 - D M T

As an illustration of the above ideas we consider the 2-D MT inverse
problem. While the more complicated modified hybrid scheme for
multitransmitter problems can hardly be justified for such a prob-
lem, where computational costs associated with forward and adjoint
calculations are relatively low, this simple problem is sufficient to
demonstrate the two main points we wish to make: (1) even for
modest values of K the hybrid schemes essentially reproduce re-
sults obtained with a full Occam scheme based on a full Jacobian
calculation, and (2) the modified hybrid scheme accomplishes this
with fewer iterations of the Lanczos schemes, and hence fewer for-
ward and adjoint solutions.

For 2-D MT electrical conductivity is assumed to be a function
of depth z and ’cross-strike’ distance y, with no variation along the
x-direction (e.g. Fig. 3a), and source magnetic fields are assumed
to be uniform (constant in x and y at z = −∞). The magnetic
source can be polarized either perpendicular or parallel to strike,
corresponding to TE and TM modes, with induced currents flow-
ing along and across strike, respectively (i.e. in the x direction and
in the y–z plane). Data for this problem are complex impedances
(Zxy = Ex/By for TE mode; Z yx = Ey/Bx for TM mode) observed

at a series of Ns y-locations at the surface z = 0, for a set of N f

frequencies. With this setup the total number of ‘transmitters’, each
requiring solution of a separate forward problem, is J = 2N f , and
the total number of (complex) data is N = 2N f Ns . We have im-
plemented the inversion schemes outlined above (a standard data
space Occam approach, plus the hybrid scheme of Fig. 1 and the
modified hybrid scheme of Fig. 2) and tested these on a range of
synthetic data sets; we show results from two cases here. Forward
and adjoint problems were solved numerically using a finite differ-
ence approach, essentially identical to that used in Siripunvaraporn
& Egbert (2000), with the actual inversion procedures implemented
in Matlab. In our implementation the regularization term was es-
sentially as in (1), with deviations from a prior model (m − m0)
penalized using a model space covariance similar to that described
by Siripunvaraporn & Egbert (2000). See the Appendix for further
details.

The test case I (Fig. 3a) is fairly simple, consisting of a series of
blocks (three relatively conductive, one resistive) buried in a 100
ohm-m half-space. TE and TM mode data were generated for Ns =
40 sites evenly spaced between −30 ≤ y ≤ 30 km, at N f = 16
frequencies logarithmically spaced between 0.00033 and 3.3 Hz.
We thus have a total of 1280 complex (2560 real) synthetic obser-
vations, to which we add 5 per cent random noise. Results of ap-
plying the data space Occam inversion scheme, using a 100 ohm-m
half-space as a prior (and starting) model, are shown in Fig. 3(b).
The algorithm converges in four outer loop iterations, and struc-
tures in the synthetic model are recovered accurately. Trade-off
curves, showing misfit as a function of the regularization param-
eter λ used in (5), are shown for each of the four outer-loop
Occam iterations in Fig. 4(a). Note that the minimum in the trade-
off curve occurs because of nonlinearity of the inverse problem;
for a linear problem the misfit would converge to zero as λ is
reduced.

Test case II (Fig. 5a) presents greater challenges, with a more
complex pattern of near-surface heterogeneity, and more spatially
extensive deep conductivity variations. Synthetic data for this model
were generated in the same way as for case one (Ns = 40, N f = 16,
5 per cent noise added). Starting from the 100 ohm-m prior the
initial misfit is much greater (650 vs. 23.5 normalized rms), and
the Occam scheme does not quite achieve the target misfit, stalling
with a normalized rms of 2.4 after eight iterations (Fig. 6a). The
model achieving this misfit is shown in Fig. 5(b). Many features are
recovered (e.g. the alternating pattern of conductive and resistive
near-surface blocks, the deep vertical conductor in the middle of

Figure 3. Synthetic 2-D MT test case I. (a) Resistivity model used to generate synthetic data. (b) Resistivity model recovered by Occam algorithm, based on
full Jacobian calculation. Results obtained with the hybrid and modified hybrid schemes are indistinguishable, and are not plotted.
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Figure 4. Trade-off curves for test case I, for (a) full Occam scheme; (b) hybrid scheme; (c) modified hybrid scheme.

Figure 5. Synthetic 2-D MT test case II. Resistivity models (a) used to generate synthetic data; (b) recovered by Occam algorithm; (c) with the Hybrid scheme,
and (d) with modified hybrid scheme. Essentially the same solution is recovered in all cases.

the domain, lateral variations in deep resistivity), although in detail
the result deviates somewhat from the model used to generate the
data,

For the hybrid Occam scheme we terminated the inner-loop
(BIDIAG1) algorithm when the relative error in the solution to
(5) (i.e. ‖(JJT + λI)b − d̂‖/‖d̂‖ dropped below ε = 10−2, or the
number of iterations exceeded Kmax = 30. Using these conver-
gence criteria the hybrid scheme reproduced results obtained with
the standard Occam scheme based on the full Jacobian for both test
cases. The final hybrid-scheme solution for case II (also fitting to
a normalized rms of 2.4) is shown in Fig. 5(c). For case I results
from the hybrid scheme are indistinguishable from the full Occam
solution, and are not shown. Trade-off curves for the hybrid scheme
are shown in Figs 4(b) and 6(b) for the two synthetic test cases. The
behaviour as a function of iteration is very similar to that obtained

with the full Jacobian, though the minima of the trade-off curves
become somewhat narrower with the hybrid scheme.

For each iteration the hybrid solution is constructed as a linear
combination of the model space vectors JTuk, k = 1, . . . , K . The
first three of these, computed for the first iteration of test case I (i.e.
with the Jacobian calculated for a 100 ohm-m half-space) are plot-
ted in Figs 7(a)–(c). Note this Jacobian depends only on the uniform
distribution of sites (and the frequencies), and the spatial patterns
that dominate the basis functions are determined by the data (which
determine the data-space vectors uk). In particular, the large positive
feature in Fig. 7(a) coincides with the near-surface conductor be-
tween kilometres 10 and 20 (Fig. 1a), which has severely distorted
the synthetic data from nearby sites.

The basis for the modified hybrid scheme is illustrated through the
two lower rows of Fig. 7, where some of the individual transmitter
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Figure 6. Trade-off curves for test case II, for (a) full Occam scheme; (b) Hybrid scheme; (c) Modified hybrid scheme.

Figure 7. Sensitivity components JTu generated by the hybrid and modified hybrid schemes. (a–c) First three model space vectors generated by BIDIAG1 on
the first (outer loop) iteration for test case I (i.e. with the Jacobian calculated for a 100 ohm-m half-space). In the lower two rows selected individual transmitter
component sensitivities (again for the first iteration test case) are plotted for three frequencies (3.3, 0.5, 0.02 Hz) for (d–f) the TE mode and (g–i) the TM mode.

component sensitivities are plotted. More specifically, the model
space vector derived at the first step (plotted for test case I in Fig. 7a)
can be expanded

JTu1 =
J∑

j=1

JT
j u1 j , (24)

where the index j = 1, . . . , J indicates transmitter number. For
our examples, with TE and TM mode data for 16 periods, the total
number of transmitters is J = 32. Component sensitivities for

three frequencies (3.3, 0.5, 0.02 Hz) are plotted for the TE mode
in Figs 7(d)–(f). Sensitivities for the same three frequencies for
the TM mode are shown in Figs 7(g)–(i). Note that the sensitivities
generally vary fairly smoothly with frequency. The lowest frequency
TM mode sensitivities (e.g. Fig. 7i) are very similar by themselves
to the sum of (24). Evidently, fitting the large static shifts associated
with the near-surface conductor is the first priority in the iterative CG
solution. Other model features are evident in the larger set of basis
functions available to the multitransmitter scheme. In particular the
large conductive block on the left side of the model at 5–30 km
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depth (Fig. 1a), corresponds to a clear peak in the same area in
the longest period TE mode sensitivity (Fig. 7f). We anticipate
that the additional model space basis functions will allow better
approximation of the solution after fewer inner-loop steps.

This expectation is confirmed in Fig. 8, where we plot conver-
gence to the solution of (5) for the inner loop of the standard and
modified CG Occam schemes. For both test cases I and II the mod-
ified scheme converges more rapidly, with comparable reduction in
the normal equation residual in roughly half the number of itera-
tions required of the standard CG scheme. Convergence of the outer
loop of the modified hybrid Occam scheme remains comparable to
the standard data space Occam implementation based on the full
Jacobian (Figs 4c and 6c). Final model results are also virtually
identical for both case I (not shown) and case II (Fig. 5d).

It is well know that numerical round-off causes orthogonality of
the sequence of vectors uk, vk generated by the Lanczos process
to break down as k increases, degrading convergence of the CG

solver (e.g. Gollub & Van Loan 1989). The modified hybrid scheme
explicitly enforces orthogonality of the sequence ũk , and perhaps
this is at least in part responsible for the more rapid convergence
seen in Fig. 8. To test this we repeat the Lanczos bi-diagonalization,
modified so that the sequence uk, k = 1, . . . , K remains exactly
orthonormal, as in, for example, the generalized conjugate residual
scheme of Eisenstat et al. (1983). For both cases I and II convergence
of the CG scheme with explicit orthogonalization at each step shows
significant improvement, but is still significantly slower compared
to the modified scheme of Section 3 (Fig. 9).

In Fig. 10 we further compare the convergence behaviour of
the hybrid schemes for a set of eight test cases (including cases I
and II). Here we plot the number of inner-loop iterations required
for each outer-loop step in the Occam scheme for the Lanczos bi-
diagonalization with explicit orthogonalization, and for the mod-
ified multitransmitter scheme. Black filled symbols are used for
the first scheme, and grey open symbols for the modified scheme,

Figure 8. Convergence of the solution to the linear subproblem (5), for the hybrid scheme of Section 2 (solid lines) and for the modified hybrid scheme of
Section 3 (dashed lines). Different line shadings correspond to different outer-loop Occam iterations, which are numbered near the end of each curve. Panels (a)
and (b) give results for test cases I and II, respectively. In both cases the iterative solution is terminated when the relative error in the solution to eq. (5a; defined
as ‖(JJT + λ0I)bk − d̂‖/‖d̂‖) drops below 10−2, or k exceeds 30. In all cases the multifrequency scheme converges significantly faster than the standard CG
iterative solution.

Figure 9. As in Fig. 8, but using a modified Lanczos bi-diagonalization scheme with explicit orthogonalization of all saved data-space vectors uk for the
standard hybrid scheme (solid lines). Dashed lines are as in Fig. 8. Explicit orthogonalization improves the convergence, although the multifrequency scheme
still performs better.
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Figure 10. Total number of inner-loop iterations required for each outer-
loop step in the Occam scheme for eight different synthetic model test cases.
Different symbol styles are used for each case, with black filled and grey
open symbols used for the standard (with explicit orthogonalization) and
modified hybrid schemes, respectively. The lines give the averages (over test
cases) for each outer-loop iteration: solid black line denotes standard hybrid
scheme, dashed grey denotes modified scheme.

with different symbol styles used for each of the different synthetic
model tests. The lines give the averages (over test cases) for each
of the outer-loop iterations. The greatest increase in efficiency for
the modified approach occurs on the first iteration, where the av-
erage number of steps decreases from 30 to 11. More modest, but
still significant, improvement is seen for later iterations. Overall,
the modified multitransmitter scheme reduces the total number of
inner-loop iterations by a bit less than half, compared to Lanczos
bi-diagonalization with explicit re-orthogonalization.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We have discussed two hybrid schemes, which approximate the
Occam scheme almost exactly without full calculation of the for-
ward data mapping Jacobian. Both are based on the observation that
iterative solution of the symmetric normal equations in the Gauss-
Newton scheme effectively generates a sequence of sensitivities for
different linear combinations of data, allowing construction of the
Jacobian for a projection of the full data space. The Occam scheme
can then be applied to this projected problem, with trade-off param-
eters chosen by assessing fit to the full data set. For EM geophysical
problems with multiple transmitters (either multiple frequencies
or source geometries) multiple forward solutions are required for a
search step in the Lanczos process. Each of these solutions generates
the sensitivity for a linear combination of data from the correspond-
ing transmitter. From the perspective of the hybrid approach, with
the Lanczos process generating an approximation to the full Jaco-
bian, it is advantageous to save all of the component sensitivities,
and use these to solve the projected problem in a larger subspace.
This forms the basis for our second scheme, the modified hybrid
algorithm.

Compared to standard CG schemes the proposed hybrid meth-
ods require substantially more storage, as the full sequence of data
and model space vectors generated by the Lanczos process must be

saved (K (M + N ) real numbers). For the modified approach stor-
age requirements are even greater, as separate model space vectors
are saved for each transmitter and each step in the solution pro-
cess (K J M + K N real numbers). However, as long as KJ � N
the additional memory required even for the modified scheme will
be small compared to the M N real numbers required for storage
of the full Jacobian. For our examples we have KJ ≈ 500 while
N = 2560.

Note also that a key component of the modified hybrid scheme is
to explicitly solve the normal equations for the projected problem
at each step in a modified Lanczos process, construct a ‘trial’ solu-
tion m̃, and then apply the Jacobian J to this solution (i.e. compute
J j m̃, j = 1, . . . , J ) to generate the next set of data-space search
vectors. Thus, additional computation is also required with the mod-
ified scheme [to compute m̃; the equivalent multiplication by J is
already required for the Lanczos process, e.g. in (8a)]. However, the
projected system of normal eqs (12) or (20) will generally be small
enough to be solved very rapidly—the largest system in our test
cases was about 500 × 500, and the size of this system would not
change significantly for a large 3-D inverse problem. Even so, this
extra computation probably only makes sense when a single vector
matrix multiply such as JTr is sufficiently expensive, as it would be
for something like the 3-D-MT inverse problem, where this single
multiplication represents solving J independent 3-D PDEs. Indeed,
for the 2-D-MT example we have used for illustration, solution of
forward problems is sufficiently fast that justification for the modi-
fied scheme is at best marginal. Note also that one could apply the
modified algorithm of Fig. 2 to any matrix J, artificially divided
into row blocks. However the extra computations required for each
step of this scheme would in general overwhelm any saving due to
reduction in the number of Lanczos steps that could be achieved.

The hybrid schemes described here are likely to be especially
useful for joint inversion, for example, of MT and controlled source
EM (e.g. Commer & Newman 2009), or EM and seismic travel-
time data (e.g. Gallardo & Meju 2007). In the first place, multiple
data types require running multiple forward models, and this can
also be exploited within the framework developed here (as it was
in the 2-D MT example, where TE and TM model solutions are
computed). Furthermore, experience inverting multiple data types
(e.g. Commer & Newman 2009) demonstrates that multiple trade-
off parameters may be required to allow for differential weighting
of disparate data types. And, one approach to joint inversion is to
enforce structural similarity between two or more distinct physical
parameters (e.g. conductivity and seismic velocity) by minimizing
the norm of parameter gradient cross products (Gallardo & Meju
2004). Structural similarity defined in this way can be enforced
by introducing another term into the penalty functional (1), with
yet another adjustable weight. Efficient schemes for choosing these
weights, as may be offered by hybrid schemes, are thus likely to
prove valuable for joint inversion.

There are a number of potential extensions and refinements of the
ideas presented here. First, we have focused on basic ideas, ignor-
ing details that might make the schemes numerically more stable or
efficient. For example, the cross product matrices in the projected
normal eqs (12) and (20) need not be formed explicitly. Instead
the singular value decomposition of the projected sensitivity ma-
trix (e.g. WT

K J) could be used, both for efficient and stable solution
of the normal equations, and to reduce storage requirements. And
with the projected Jacobian saved, forming an approximation to the
linearized resolution matrix would be straightforward (e.g. Minkoff
1996). In this application the additional sensitivity vectors provided
by the modified scheme would improve the approximation of the
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resolution matrix (e.g. see discussion on approximations to the res-
olution matrix in Deal & Nolet 1996). Another possible extension
worth exploring would be to use the approximated Jacobian com-
puted in a hybrid scheme as a preconditioner for the next outer loop
iteration of the Occam inversion scheme.

Finally, we have focused on making the data-space Occam
scheme efficient for even very large problems. The basic idea be-
hind this scheme could be adapted to a more general truncated
Gauss–Newton scheme. More generally, it would be worth con-
sidering how (or if) the individual transmitter gradient components
generated in each evaluation of the penalty functional gradient might
be used in other search algorithms such as NLCG or quasi-Newton.
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A P P E N D I X : I N C LU D I N G M O D E L
A N D DATA C OVA R I A N C E S

Here we briefly sketch treatment of the general form of the penalty
functional (1) where model and data covariances are not the identity.
We follow the approach used by Siripunvaraporn & Egbert (2000)
where the model covariance Cm = C1/2

m C1/2
m is implemented as a
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positive definite symmetric smoothing operator; applying half the
smoothing steps essentially provides the square root of the oper-
ator. Examples of such covariance operators are given in Egbert
et al. (1994), Siripunvaraporn & Egbert (2000), and Purser et al.
(2003a,b). Defining a transformed model parameter m̃ implicitly
through

m = C1/2
m m̃ + m0, (A1)

and transforming the data vector in the usual way as d̃ = C−1/2
d d =

C−1/2
d f + C−1/2

d ε (so that the data error covariance is the identity),
the Jacobian for the transformed problem can be written as

J̃ = ∂ f̃

∂m̃
= C−1/2

d

∂f

∂m
C1/2

m = C−1/2
d JC1/2

m , (A2)

where J is the original sensitivity for the untransformed problem.
Dropping the tildes the penalty functional (1) is reduced to the sim-
pler form used throughout the paper, and the methods described

can be applied to invert the transformed data for the transformed
model parameter m̃. This can be converted back to the physical
model parameter using (A1). Note that only multiplication by
the model covariance operator C1/2

m and the inverse data error covari-
ance square root C−1/2

d are required; the inverse model covariance
is never directly used. Although we have focused on data space
solution methods, the same approach can be used for model space
solution approaches, such as NLCG—that is, the penalty functional
can be minimized with respect to m̃, with the gradient derived from
the transformed Jacobian J̃.

The principal limitation of the approach described here is that
multiplication by C1/2

m must be implemented, and for some classi-
cal regularization operators this may not be so straightforward. For
example, if the regularization term is taken to be ‖∇2m‖2, applying
the smoothing operator C1/2

m amounts to solving Poisson’s equation;
boundary conditions are a complicating, although not insurmount-
able, issue. Such details are beyond the scope of this paper.

C© 2012 The Author, GJI, 190, 255–266
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INTRODUCTION
The Snake River Plain–Yellowstone (Idaho 

and Wyoming, United States) volcanic province 
has long been associated with a stationary deep 
mantle plume source (e.g., Hadley et al., 1976; 
Geist and Richards, 1993). However, this simple 
model is diffi cult to reconcile with at least some 
important observations of the system, including 
the temporal persistence of basaltic volcanism 
and geochemistry of erupted magmas, and the 
spatial and temporal relationship of magmatism 
in the Snake River Plain (SRP), Yellowstone, 
and High Lava Plains, leading some to empha-
size the role of shallower lithospheric convec-
tion (e.g., Humphreys et al., 2000; Christiansen 
et al., 2002; Leeman et al., 2009).

While body-wave tomography images for 
this area are in broad agreement, they have 
been interpreted to support both plume and 
“no plume” hypotheses. Early studies based on 
local arrays suggested a continuous low-veloc-
ity plume beneath Yellowstone, dipping to the 
northwest and extending to at least the transition 
zone (e.g., Yuan and Dueker, 2005). Resolution 
has been greatly improved with the deployment 
of the USArray (a component of the EarthScope 
project), revealing that this low-velocity feature 
extends into the lower mantle, but is discontinu-
ous (e.g., Tian et al., 2011; James et al., 2011). 

USArray seismic data also provide a regional 
context for the Yellowstone low-velocity anom-
aly. Several studies have identifi ed a broad 
volume devoid of fast anomalies extending 
through the transition zone into the uppermost 
lower mantle: a “slab gap” between segments of 
the subducting Juan de Fuca plate (Tian et al., 
2011). Relatively low velocities within the gap 
have been interpreted as evidence for interaction 
with a deeper plume source (e.g., Obrebski et 
al., 2010; Tian et al., 2011), or mantle upwell-
ing through the gap in response to a sinking slab 
segment (James et al., 2011).

Surface wave inversions of USArray data 
show fast anomalies beneath the eastern SRP 
and Yellowstone at mid- to lower crustal depths 
(except directly beneath and near the Yellow-
stone caldera), but a very pronounced low-

velocity anomaly in the mantle between the 
Moho and 200 km depth, extending southwest 
from Yellowstone caldera in the direction of 
North American plate motion (Obrebski et al., 
2010; Wagner et al., 2010; Gao et al., 2011; 
Yang et al., 2011).

MAGNETOTELLURIC DATA
Long-period magnetotelluric (MT) data have 

also been collected as part of USArray project, 
using the same 70 km site spacing as the seismic 
component. These data are highly sensitive to the 
presence of volatiles and partial melt, and thus 
offer potentially valuable additional constraints 
on the physical state of the crust and mantle in 
this tectonically and magmatically active area. 
Here we use recently developed three-dimen-
sional (3-D) inversion methods to interpret long-
period MT data from 91 USArray MT sites, 
covering much of Idaho and Wyoming, southern 
Montana, eastern Oregon, and northern Nevada, 
together with 32 sites from an earlier MT survey, 
collected in two denser profi les along (~40 km 
site spacing) and across (~10 km site spacing) 
the eastern SRP (see Fig. 1).

For 3-D inversion, we employed the Modular 
system for Electromagnetic Inversion (ModEM; 
Egbert and Kelbert, 2012), a fl exible system for 
regularized inversion of electromagnetic data. In 
our application to the MT data, we regularized 
with a model covariance that penalizes devia-
tions from a prior model, fi tting all six MT data 
components from 123 sites, at 14 periods from 
7.3 s to 5.2 h. Poor-quality data (~1%) were 
removed from the data set, and an error fl oor 
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ABSTRACT
Combining long-period magnetotelluric data from the spatially uniform EarthScope USAr-

ray and higher-resolution profi les, we obtain a regional three-dimensional electrical resistivity 
model in the Snake River Plain and Yellowstone areas (Idaho and Wyoming, United States), 
and provide new constraints on the large-scale distribution of melt and fl uids beneath the 
Yellowstone hotspot track. Contrary to what would be expected from standard mantle plume 
models, the electromagnetic data suggest that there is little or no melt in the lower crust and 
upper mantle directly beneath Yellowstone caldera. Instead, low mantle resistivities (10 Ωm 
and below), which we infer to result from 1%–3% partial melt, are found 40–80 km beneath 
the eastern Snake River Plain, extending at least 200 km southwest of the caldera, beneath 
the area of modern basaltic magmatism. The reduced resistivities extend upward into the 
mid-crust primarily around the edges of the Snake River Plain, suggesting upward migration 
of melt and/or fl uid is concentrated in these areas. The anomaly also shallows toward Yel-
lowstone, where higher temperatures enhance permeability and allow melts to ascend into the 
crust. The top of the conductive layer is at its shallowest, in the upper crust, directly beneath 
the modern Yellowstone supervolcano.
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Figure 1. Topography 
of study area (see inset 
map for location within 
the United States), with 
physiographic provinces 
outlined in red. USAr-
ray magnetotelluric (MT) 
site locations used for 
this study are marked 
with blue dots; 32 sites 
from the earlier Snake 
River Plain profi les are 
denoted by green dots. 
Smaller gray dots indi-
cate heat fl ow from Pol-
lack et al. (1991), ranging 
from 0 (white) to >300 
mW/m2 (black) .
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of 5% was imposed. See the GSA Data Reposi-
tory1 for details of our inversion procedure.

Multiple inverse solutions were obtained 
at 10 km nominal resolution, using a range 
of prior one-dimensional models and varying 
degrees of smoothing. The preferred solution 
(model 1; Figs. 2 and 3) used a 200 Ωm half 
space as the prior, and fi t the data to a normal-
ized root mean square misfi t of 1.89. We also 
discuss results from two alternative models 
(models 2 and 3, shown in the Data Reposi-
tory) in the following section.

RESULTS
The most striking feature in all of the inverse 

solutions is a large, interconnected conductive 
body extending from the Yellowstone caldera 
at least 200 km to the southwest, roughly paral-
lel to the direction of North America absolute 
motion (Figs. 2C and 3A). The depth to the 
top of this conductor varies from 30 to 60 km 
along the SRP, except in localized areas, includ-
ing directly beneath Yellowstone caldera, where 
it reaches into the upper crust (Fig. 3A), and 
around the edges of the eastern SRP where it 
shallows to 18 km or so (Figs. 2A and 3B). The 
thickness of the most pronounced conductive 
area is 30–40 km, mostly in the uppermost man-
tle, and all within 80–100 km of the surface. To 
the east, the mantle is signifi cantly more resis-
tive, over 600 Ωm. At greater depths beneath the 
study area the upper mantle has moderately low 
resistivity (100 Ωm or less).

Crustal thickness beneath the eastern SRP 
and Yellowstone is inferred to be 40–50 km 
(Yuan et al., 2010), with the thickest crust 
directly beneath Yellowstone. Thinner crust 
surrounds the SRP, except to the east, beneath 
the Rocky Mountains. The vertically integrated 
conductivity (conductance; SI unit Siemens; S) 
of the lower crust (16–42 km) is highly vari-
able in the inverse solution, ranging from ~80 to 
over 10,000 S beneath and around the SRP, and 
averaging ~1000 S. The average conductance 
at 42–80 km is over 3000 S beneath the SRP, 
reducing to 30–300 S in the Wyoming craton 
and directly beneath Yellowstone.

Depth resolution of the MT data is limited, 
both by the diffusive propagation of the electro-
magnetic fi elds in the conducting Earth, and by 
the distorting effects of near-surface heterogene-
ity. Indeed, assuming a more conductive mantle 
a priori results in conductive features that, while 
very similar in plan view, are shifted upward 
by up to 10 km (model 2, shown in Figs. DR1 
and DR2 in the Data Repository). We thus must 
entertain the possibility that the low resistivities 
imaged at the top of the mantle in model 1 might 
actually be above the Moho. To test this, we ran 
the inversion using a prior model in which the 
crust was less resistive (60 Ωm) than the upper 
mantle (200 Ωm), thus pushing the low resis-

tivities into the crust as much as possible while 
still fi tting the data adequately. The resulting 
inverse solution (model 3; Figs. DR3 and DR4) 
is noticeably rougher and has excessively con-
ductive crust, averaging ~3000 S below the SRP, 
with peak values exceeding 10,000 S. Such high 

conductivities are diffi cult to explain other than 
with free saline fl uids distributed throughout 
the mid- to lower crust, an inference which is 
diffi cult to reconcile with seismic surface wave 
studies that reveal normal to fast lower crustal 
velocities in this area (Gao et al., 2011; Yang et 
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Figure 3. Cross sections from the preferred model along (A–A′) and across (B–B′) the 
eastern Snake River Plain. x—point of profi le intersection; Y—Yellowstone caldera.
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al., 2011; see also Fig. 2E). Furthermore, even 
with much of the anomaly pushed into the crust, 
model 3 is still anomalously conductive at the 
top of the mantle, with an average conductance 
of roughly 1000 S between 42 and 80 km depths 
beneath the SRP. We thus conclude that the MT 
data require elevated conductivities at the top of 
the upper mantle. Resistivities average no more 
than 40 Ωm beneath the SRP, and we consider 
the much lower values found in model 1 (Figs. 2 
and 3) to be more likely.

In all inverse solutions, the upper mantle 
below ~100 km is more resistive beneath the 
Wyoming craton than beneath the SRP, but a 
range of resistivities, from 30 to over 100 Ωm, 
is recovered beneath the SRP depending on the 
prior model and regularization (Figs. DR3 and 
DR4). We conclude that deeper structures are 
shielded and confounded by the highly conduc-
tive and inhomogeneous crust and lithosphere, 
and thus concentrate our discussion on the lower 
crustal and uppermost mantle inhomogeneities 
that are resolved robustly.

DISCUSSION

Depth of Conductive Layers
High conductivities near the Moho have fre-

quently been observed in the western United 
States, but these have most often been inter-
preted to be in the lower crust. For example, 
in the eastern Great Basin (Wannamaker et al., 
2008) and the Pacifi c Northwest (Patro and 
Egbert, 2008), integrated lower crustal conduc-
tances of 3000 S or more, imaged by MT data, 
have been interpreted as saline fl uids and partial 
melt associated with magmatic underplating. 
Indeed, elevated lower crustal conductivities 
for the eastern SRP were previously inferred by 
Stanley et al. (1977) from wide-band (0.001−
500 s) MT profi le data. Based on one-dimen-
sional inversion of data from 12 sites, Stanley 
et al. (1977) inferred a low resistivity (~1 Ωm) 
layer with the top at ~7–9 km directly beneath 
the Yellowstone caldera system, deepening to 
~25 km beneath the Island Park caldera, and 
then slightly shallowing further to the southeast. 
This is very similar to the shape of the anom-
aly we image, although our preferred solution 
(model 1; Figs. 2 and 3) locates the top of the 
conductive zone somewhat deeper.

The data of Stanley et al. (1977) were 
restricted to periods below 500 s, and could not 
image below the fi rst highly conductive layer 
encountered in the crust. At the longer periods 
we have used (up to 20,000 s), the electromag-
netic fi elds penetrate this layer, allowing resolu-
tion of deeper structure. However, as the varia-
tions between the three models discussed here 
demonstrate, the MT data by themselves do not 
always precisely constrain depths to specifi c fea-
tures. This depth ambiguity results largely from 

the effects of near-surface conductive heteroge-
neity (Jones, 1988), which can distort electric 
fi elds, essentially multiplying impedances for 
each site by a different frequency-independent 
real factor. This translates into uncertainty in 
MT data amplitudes, which carry the informa-
tion about depth and magnitude of a conductor. 
An extreme example of this ambiguity is per-
haps provided by the recent study by Zhdanov 
et al. (2011), who inverted a subset of the USAr-
ray MT data considered here. Their interpreta-
tion emphasized a deep (~300 km), extremely 
conductive (1 Ωm or less) sub-horizontal mantle 
structure dipping to the southwest, with a foot-
print quite similar to the anomaly we image. 
However, Zhdanov et al. (2011) only fi t phase 
data in their inversion, and these data provide 
little constraint on actual depths.

Correlation with the results from seismic 
imaging can reduce the depth uncertainties 
and allow us to choose among models that fi t 
the MT data. The footprint of the conductive 
anomaly in all of models 1–3 coincides with 
that of the very prominent low in shear wave 
velocities inferred at the top of the mantle from 
surface wave tomography (Obrebski et al., 
2010; Wagner et al., 2010; Gao et al., 2011; 
Yang et al., 2011; see also Fig. 2F). Although 
the low velocities extend to greater depth than 
the conductive anomaly seen in even model 1 
(200 km versus 100 km), peaks in the seismic 
and conductivity anomalies are both between 
40 and 80 km depth, suggesting a common 
physical explanation, partial melt.

Implications for Melt Porosity
Accounting for the uncertainties associated 

with model smoothing and with the near-surface 
heterogeneity distortions, resistivities of 10 Ωm 
or below over large areas in the uppermost man-
tle are robustly resolved by the MT data (see the 
Results section). Observed shear-wave velocity 
anomalies of 6%–8% (Wagner et al., 2010) in 
the uppermost mantle beneath the SRP sug-
gest a melt porosity of 1%–2% (Hammond and 
Humphreys, 2000). Laboratory measurements 
of basaltic melt in an olivine matrix (Yoshino et 
al., 2010) suggest that ~1% melt results in bulk 
resistivities of 2–10 Ωm, when extrapolated to 
temperatures of 1350–1450 °C, appropriate 
for the SRP lithosphere (Leeman et al., 2009). 
These results are consistent with complete wet-
ting of grain boundaries and a melt resistivity of 
roughly 0.1 Ωm (at 1350 °C). Other studies (Ni 
et al., 2011) have found somewhat higher values 
for resistivity of dry basaltic melts, 0.2–0.3 Ωm 
at 1350–1450 °C. Based on the Hashin-Shtrik-
man upper bound, this would require a melt 
fraction of ~3% for a bulk resistivity of 10 Ωm. 
Signifi cantly lower resistivities are found just 
below the Moho (a few Ωm). Considering the 
possibility of imperfect melt connection, higher 

melt fractions, or some other explanation might 
be required. Although erupted SRP basalts are 
relatively dry (no more than ~1 wt% water; Lee-
man et al., 2009; Till et al., 2010), as little as 0.5 
wt% water could reduce melt resistivity by a fac-
tor of two (Ni et al., 2011). Variations in compo-
sition could also increase the conductivity of the 
melt phase (Roberts and Tyburczy, 1999).

CONCLUSIONS
The MT and seismic results are consistent 

with the presence of a few percent partial melt 
between 40 and 80 km, depths that would nor-
mally be considered mantle lithosphere. The spa-
tial coincidence of this region with the Yellow-
stone hotspot track suggests that passage of the 
North American plate over the plume has resulted 
in signifi cant modifi cation or thinning, perhaps 
leaving little or no lithospheric root beneath the 
eastern SRP. The presence of melt at the top of 
the upper mantle is consistent with the ongo-
ing basaltic magmatism in the SRP, which has 
continued along the length of the hot-spot track 
since initial passage over the plume. Our images 
are also consistent with inferences from ther-
mobarometry (Leeman et al., 2009) on shallow 
melt equilibration depths of 80–100 km or less, 
and with suggestions (Till et al., 2010) that simi-
lar basaltic magmas from the nearby High Lava 
Plains have equilibrated just below the Moho.

None of our inverse solutions show the SRP 
conductivity anomaly extending beneath Yel-
lowstone at mantle depths. This stands in con-
trast to the seismic images (e.g., Wagner et al., 
2010; Yang et al., 2011; see also Fig. 2F), which 
show substantial slow anomalies in the mantle 
immediately beneath Yellowstone. Both melt 
and high temperatures could contribute to these 
low seismic velocities, but the high resistivities 
rule out signifi cant interconnection of any melt 
phase in the lithosphere directly beneath Yellow-
stone. Possibly the cratonic lithosphere in this 
area is largely intact, and still too thick to allow 
decompression melting (Leeman et al., 2009). In 
this scenario, the seismic anomaly would have a 
purely thermal explanation, with the lithosphere 
heated by a deep plume source. Alternatively, 
melt may be present in the lithosphere beneath 
Yellowstone, but at too low a concentration to 
be interconnected. Indeed, elevated tempera-
tures beneath the active volcanic center would 
result in greater permeability, allowing magma 
to ascend to shallower depths and pool in the 
crust, instead of collecting in the mantle litho-
sphere, as beneath the SRP. We thus speculate 
that little melt is entering the system from below 
at present, perhaps due to intermittency of sup-
ply (as suggested by the apparent discontinuity 
with depth of the seismically imaged plume; 
e.g., James et al., 2011), while melt from earlier 
plume activity has mostly already ascended into 
the shallow crust, leaving behind only isolated 
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pockets of residual melt in the mantle litho-
sphere and lower crust. These would be effec-
tive at reducing seismic shear wave velocities 
(in conjunction with elevated temperatures), but 
would not signifi cantly reduce resistivity.

High conductivities occur at mid-crustal lev-
els (e.g., Fig. 2A) almost exclusively around the 
edges of the SRP. In cross section, these shal-
lower features connect to the deeper conductive 
structure below the Moho (Fig. 3B), much as 
the shallow Yellowstone caldera conductor dips 
to the southwest and connects into the deeper 
anomaly (Fig. 3A). This suggests that melt, 
and perhaps also fl uids exsolved by magmatic 
underplating, ascend into the crust preferen-
tially around the edges of the generally imper-
meable SRP. We note the coincidence of these 
mid-crustal low resistivities with the “tectonic 
parabola” (e.g., Humphreys et al., 2000) of late 
Cenozoic normal faults, which may help to pro-
vide a preferred pathway for fl uid or melt migra-
tion. Note also that the highest heat fl ows in this 
region occur around the edges of the SRP, again 
coincident with the mid-crustal conductive 
anomalies (Pollack et al., 1991; see also Fig. 1), 
and that shear wave velocities are reduced in 
this area at 20 km depth (see Fig. 2F).

Finally, we emphasize that the MT data pro-
vide at best weak constraints on deeper struc-
ture. The vertical seismic anomaly inferred 
(Yuan and Dueker, 2005; Obrebski et al., 2010) 
to be the mantle plume would likely represent 
only a thermal anomaly of roughly 125–150 °C 
(Leeman et al., 2009), at depths below 100 km 
or so. This excess temperature would increase 
electrical conductivity of dry olivine, but only 
modestly compared to the effects of fl uids and 
melt. Such a relatively subtle signal would be 
challenging to resolve given the highly variable 
features we image at shallower depths.

In summary, our conductivity images suggest 
a more complex pattern of melt beneath the SRP 
and Yellowstone than would be expected from 
a continuously supplied, classical mantle plume 
with head sheared to the southwest by North 
American plate motion. Collection of partial 
melts at the base of the SRP province, inferred 
from the MT data, can perhaps explain some 
of the distinct features of SRP and Yellowstone 
magmatism.
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