UNCLASSIFIED

ISC-906

UNITED STATES ATOMIC ENERGY COMMISSION

Tabulation, Bibliography, and Structure of Binary Intermetallic Compounds. III. Compounds of

Copper, Silver and Gold

by

H. H. Klepfer, H. E. Shoemaker, J. D. Greiner, M. L. Moller and J. F. Smith

September 9, 1957

Æ

....

Ames Laboratory at Iowa State College F. H. Spedding, Director Contract W-7405 eng-82

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ISC-906

This report is distributed according to the category Metallurgy and Ceramics, as listed in TID-4500, January 15, 1957.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

(3)

.

Printed in the U.S.A. Price 30 cents. Available from the

Office of Technical Services U. S. Department of Commerce Washington 25, D. C.

ISC-906

TABLE OF CONTENTS

								r																		Page
Part	I۳	Tabulation of	of	Com	ροι	ind	ls	•	•	•	•	•	•	•	٠	٠	0	•	•	٠	•	•	•	•	•	5
Part	II::	References	۰	• •	۰	•	•	۰	•	•	•	•	•	٥	•	•	•	•	•	٠	•	•	•	•	•	27
Part	III	structure	De	etai]	ls	•	۰	•	•	•	•	•	•	•	•	•	•	0	•	Ģ	•	•	•	•	•	37

· . .

IŠC-906

This report is the third in a series. ISC-795, the first in this 'series, listed the compounds of lithium, sodium, potassium, and rubidium; ISC-812, the second in the series, listed the compounds of beryllium, magnesium, and calcium.

4 -

PART I: TABULATION OF COMPOUNDS

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS $(\mathbf{\hat{A}})$	STRUCTUR	REFER- REMARKS ENCES
Cu		a _3. 61		Parameter at room tempera 240 ture; measurements were made using a high temperature vacuum camera.
Cu ₃ Au	cubic	a <u>m</u> 3.751 (25 a/o Au)	L1 2	Superlattice: ordered f.c.c. lattice below 396°C; from 18- ~37 a/o Au at 25°C. 1,2
CuAu	tetrag- onal	a <u>=</u> 3.964 c=3.671 (50 a/o Au)	L10	Superlattice: ordered f.c. lattice below 424°C; from ~37-70 a/o Au. 1,2,3
Cu ₂ Be	cubic	a _z 2.80 (750°C)	A 2	Exists above 575 ⁰ C; dis- 235 ordered atomic arrangement.
CuBe	cubic	a _≡ 2.703 ≵0.007	B2	X-ray powder data, with com- parison of observed and cal- culated intensities; some dis- ordering noted; after anneal- 7, ing at 830°C. for two hours 236, completely ordered. 237,238
CuBe	tetrag- onal	a <u></u> e2.79 c _≖ 2.54		Intermediate phases during precipitation; single crystal x-ray data. 236
CuBe	mono- clinic	a=2.54 b=2.54 c=3.24 af=850251	· .	" 236
CuBe3	cubic	a_5.952 (at CuBe ₂)	C15	Maximum solubility range CuBe ₂
Cu ₂ Mg	cubic	a=7.04	C15	Thermal analysis, x-ray powder and microscopic data; congruent m.p. 819°C. 9,213

6 Compound	CRYSTAL CLASS	LATTICE PARAMETERS (A)	STRUCTURI	E <u>REMARKS</u>	REFER- ENCES	
CuMg ₂	ortho- rhombic	a=5.284 b=9.07 c=18.25	/D24 Fddd7	Thermal analysis, x-ray and microscopic data; co m.p. 588°C.	powder ngruent 10,218	
Cu ₅ Ca	hexag - onal	a ్రా .092 c ఎ . 086	∠D _{6h} C6/mmm 7	Originally reported as C thermal analysis, x-ray and microscopic data.	u _{li} Ca; powder 11,12	-
CuZn	cubic	a s 2.951 (46.2 a/n Zn)	B2	Structure below 450°C; t analysis, x-ray powder a microscopic data.	hermal nd 13	
CuZn	cubic	a <u></u> 2.96	A2	Structure above 450°C.	37	
Cu5 ^{Zn} 8	cubic -	a#8.879 (64.7 a/o Zn)	D8 ₂	Decomposes peritectically at $\sim 830^{\circ}$ C; thermal anal x-ray powder and microsc data by many investigato	y 56 ysis, opic rs.	
CuZn ₃	cubic	a m3.016 (74.8 a/o Zn, 595°C)	A 2	Stable above 560°C; deco poses peritectically at 700°C; thermal analysis, x=ray powder, microscopi other data by many inves	m- c and t-	•
· · ·				igators.	13,14	
CuZn5	hexag- onal	a _m 2.75 c=4.30 (80 a/o Zn)	A3	Decomposes peritectically 600 [°] C; thermal analysis, powder, microscopic and data by many investigato	y at x-ray other rs. 13	
Cu2Cd	2 4	a⊒1.96 c≊7.99		X-ray powder data; line pound; decomposes perite cally at 549°C.	com- cti- 15	
Cu _{l4} Cd3				Decomposes peritectically at 547°C; phase diagram.	y 15	
Ou50dg	cubic	a=9.054	^{D8} 2	X-ray powder data.		
CuCd ₃	•			Decomposes peritectically at 397°C; phase diagram.	y 62	
Cu ₄ Hg ₃				Decomposes peritectically at 115°C.	y 17	
∼ Cu ₃ Hg				"X" phase, ~ Cu ₃ Hg; decon peritectically at 150°C.	mposes 68	

-

						7
•.	COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS(A)	STRUCTUR	E REMARKS	REFER- ENCES
•	CuHg	cubic	a=9. 425	D82	X-ray single crystal data	. 18
	Cu _{li} La.	hexag- onal	a=5.1179 c=4.124	_D _{6h} c6/mm_7	Actually La(Cu _{1,8} La _{0,2}) by structural work; ⁸ line ² com pound; congruent m.p. 902 ⁶	y .12 • c .
	` .	•		~	.	• •
	Cu ₃ La				Line compound; decomposes peritectically at 793°C.	70
	Cu ₂ La				Line compound; congruent r 834°C; thermal analysis ar microscopic data.	n.p. nd 70
	CuLa				Line compound; decomposes peritectically at 551°C; thermal analysis and micro scopic data.	7 0
•	Cu ₆ Ce	ortho- rhombic	a=8.08 b=5.09 c=10.17	<u>_</u> D _{2h} Pnma7	This space group is correct structure is centrosymmetric line compound; congruent m 940°C; phase diagram; x-ra powder data.	ct if ric; m.p. 57
-	Cu _l Ce	hexag- onal	a=5.151 c=4.140	/D ¹ _{6h} C6/mmm7	Ce(Cu _{4.8} Ce _{0.2}); line compo decomposes peritectically 780°C; phase diagram; x-ra powder data.	ound; at y 57,58
	Cu ₂ Ce	•			Line compound; congruent m 820°C; phase diagram.	n.p. 66
	CuCe				Line compound; decomposes peritectically at 515 ⁰ C; phase diagram.	66
	Cu ₆ Pr	· · · ·			Phase diagram; line compou congruent m.p. 962°C.	ind; 64
	Cu _{ll} Pr		· .		Phase diagram; decomposes peritectically at 824°C.	64
	Cu ₂ Pr				Phase diagram; congruent m.p. 841°C.	64
	χ.	,				

-

i .

8	CRYSTAL	LATTICE	: :	REFER-
COMPOUND	CLASS	PARAMETERS (Å)	STRUCTUR	E REMARKS ENCES
CuPr		·	м -	Phase diagram; decomposes peritectically at 563°C. 64
CuB ₂₂		, •		Thermal analysis and micro- 20 scopic data; complex structure.
β-Cu ₃ Al	cubic	a ₂ 2,95	A2	X-ray powder data; disorder-, 68, ed structure. 230,231
β -Cu ₃ Al	cubic	a 🕁 . 82		X-ray powder data; ordered structure; on further cooling of alloys < 13.1 w/o Al, β structure transforms to a β' structure which is a distort- 68, ed δ' structure(Cu ₂ Al); β' can 230, be converted to δ'' by mechan- 231, ical deformation. 232,233
X ¹ Cu ₃ Al	ortho- rhombic	a = 1,52 b = 5,21 c = 1,23	∠C ¹ 2v P2mm7	X-ray powder and single crystal data; samples quenched from 850-890°C; pseudohexagonal 68, cell with a=2.60,c=4.23. 232,233
Cu ₂ Al	cubic	a <u>-</u> 8.7		Decomposes peritectically at 873°C. 68
Cu ₉ A14	cubic	a <u>=</u> 8,.7040	^{D8} 3	Stable > 963° to ≈1030°C. 21,22
Cu ₃₂ A1 ₁₉	cubio	a_8.703-8.7 (for pseudo cubic cell)	22 D8 ₁₋₃	Structure can be described as a deformed V -brass type; de- composes peritectically at 690°C. 68,71
Cu ₄ A1 ₃	hexag- onali	a_8.10 c_10.00	d83	Decomposes peritectically at 590°C; x-ray powder data; phase diagram. 23
CuAl	ortho- rhombic	a=110 b=12.0 c=8.65	D83	Thermal analysis, powder x-ray and microscopic data; decom- 23 posoo peritectically at 626°C.
CuAl ₂	tetrag - onal	a_6.05 c_4.87	C16	Congruent m.p. 595°C; thermal analysis, x-ray powder and microscopic data

COMPOUND	CRYSTAL CLASS PA	LATTICE RAMETERS (Å)	STRUCTUR	E REMARKS	REFER- ENCES
Cu ₃ Ga	hexag- onal	a=2.599 c=4.238	A 3	Three modifications above 420°C; thermal analysis,	
Cu ₃ Ga	cubic		A2	data; no structure data of third modification.	n 25, 26,27
Cu ₉ Ga ₄	cubic	a <u>∎</u> 8.729	~ D8 ₂	Decomposes peritectically 836°C; orders on cooling ~ 490° C; thermal analysis x-ray powder and microscop data.	at at pic 25,27
CuGa2	tetrag- onal	a ₌ 2.836 c _≡ 5.843 (di	C38 .sordered)	Single crystal x-ray data phase diagram.	; 25
Cu _{lt} In	cubic		A 2	Stable at > $574^{\circ}C$; decomposite peritectically at $715^{\circ}C$; thermal analysis, x-ray post der and microscopic data.	oses ow - 26
Cu7In3	cubic		108 ₂	Maximum temperature at whistable is 682°C; goes to tetragonal form at 630°C.	on
Cu7In3	tetrag= onal	a=8.99 c=9.16	~ B8	Structure below 630°C; x-1 powder data; phase diagram	29 ray n. 26,29
Cu ₂ In	hexag ~ onal	a=1.29 c=5.26	в8	Decomposes peritectically 675°C; x-ray powder data; phase diagram.	at 30, 26,29
CuIn			~ B8	Decomposes peritectically 310°C; x-ray powder data; phase diagram.	at 26
Cu ₃ Ti	ortho- rhombic	a=5.06 b=1.36 c=1.53	∑D ¹³ Pmmn 7	Structure below 600°C; the mal analysis, x-ray powder and microscopic data.	ər- r 31,32
Cu ₃ Ti	ortho- rhombic	a=2.60 b=4.54 c=4.36	<u>_D</u> 17 Cmc m 7	Structure above 600°C; congruent m.p.905°C.'	31,32
CuTi	tetrag- onal	a=3.15 c=2.87	L 10	Low temperature structure; thermal analysis, x-ray powder data.	34 , 31,32

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (A)	STRUCTURI	RE <u>REMARKS</u> E	FER - NCES
CuTi	tetrag - onal	a <u>s</u> 3.12 c=5.90	Blİ	High temperature structure; congruent m.p. 982°C. 31,	32,34
CuTi ₂	cubic	a_11.24	Е9 ₃	<pre>(33) says there is no oxygen needed to stabilize this compound in the E93 type structure; congruent m.p. 1014 C; thermal analysis; x-ray powder and micros- copic data.</pre>	33
Cu ₂ Ti				Phase diagram; decomposes peritectically at 892°C. 31	
Cu ₃ Ti ₂			ž	Phase diagram; decomposes peritectically at 935°C. 31,	32.
Ūu ₃ Zr		• •	,	Phase diagram; congruent m.p. 1100°C. 35	
Cu5Zr2				Phase diagram; decomposes peritectically at 1070°C. 35	· ·
Cu ₃ Zr ₂				Phase diagram; congruent m.p. 895°C. 35,	36
cuZr	•		· •	Phase diagram; congruent m.p. 935°C. 35	
CuZr ₂	tetrag- onal	a ₌ 3.3 o=11.3	/D _{4h} 14/mmm7	Phase diagram; congruent m.p. 1065°C; x ray powdor data. 35,2	36
Cu _{lt} Th				At least three compounds in Cu-Th system; formula of this compound not well established; also reported as Cu ₆ Th. 24,6	55
Cu ₂ Th	hexag- onal	a=11.36 c=3.48	C32	Phase diagram; x-ray powder 6 data. 24,2	55, 28,
CuTh ₂	tetrag- onal	a _≡ 7.29 c _≡ 5.75	C1 6	Compound previously reported as Cu ₃ Th ₅ on basis of phase diagram studies is probably this compound; x-ray powder 65 data. 24,2	5 28

.

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (Å)	STRUCTUR	E <u>REMARKS</u> E	FER- NCES
Cu ₇ Si	hexag- ona l	a=2.58 c=1.19	A3	X-ray powder data. 59	
Cu5Si	cubic	a <u>≡</u> 6.22	A13	n 59	
$Cu_{15}Si_4$	cubic	a=9.71	D8 ₆	Single crystal x-ray data. 8	
Cu ₁₅ Si ₄	cubic		D8 ₁₋₃	Related to X -brass struc- ture; x-ray powder data. 59	
Cu ₅ Ge	hexag- onal	a=2.655 c=4.294 (19.4 a/o Ge)	A3	X-ray powder data; phase diagram; decomposes peri- tectically at 828°C. 38	
Cu ₃ Ge	mono- clinic	a=2.631 b=4.200 c=4.568 (3= 89°41'	$\sqrt{c_2^2}$ P2 ₁ 7 or $\sqrt{c_{2h}^2}$	Low temperature form; trans- forms to hexagonal form at 570-635°C; single crys- tal x-ray data. 38,	39
·· 2.	•	· · · · ·	^{P2} 1/m7		
Cu ₃ Ge	hexag- onal	a_4.20 c=5.04		Stable from 570-635°C. to ∼800°C. for < 25 a/o Ge; x-ray powder data; dis- torted A2 structure. 38	
Cu ₃ Ge	cubic		A2	Defect lattice; stable $612^{\circ}C$ to $700^{\circ}C$ at ~ 27 a/o Ge; thermal analysis, x-ray pow- der and microscopic data. 38	
Cu ₅ Sn	cubic	a <u>w</u> 2.978	A2	Stable at > 700°C; phase diagram, and high temperature x-ray data. 40	
Cu ₃₁ Sn ₈	cubic	a <u>=</u> 17.91	D8 ₂₋₃	Phase diagram, powder and single crystal x-ray data; stable ~ 350-640°C. 40	
Cu ₂₀ Sn ₆	hexag- onal	a=7.331 c=7.870	<u>/</u> D _{3d} H3m7	Possibly related to the D8 _{2_3} structures; thermal analysis and microscopic data; stable 580-640°C. 41	

. . . .

12°

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (Å)	STRUCTURE	REMARKS	REFER - ENCES
·	- · ·	- <u>-</u>			· ·
Cu ₃ Sn	ortho- rhombic	a=4.33 b=5.25 c=38.1		Single crystal x-ray data; superlattice based on A3 structure.	60
Cu ₆ Sn ₅	hexag - onal	a=4.20 c=5.10	в8	Powder, Laue, and rotation x-ray data.	40
Cu ₃ N	cubic	a=3.82	D0.9	X-ray powder data.	61
Cu ₃ P	hexag- onal	a ₌ 7;08 c ₌ 7,149	DO ST	it .	42,224
Cu ₃ As	cubic	a ₂ 9.612 '	∕T_d I43 <u>d</u> 7	X-ray powder data; natural domeykite.	42
Cu ₃ As	hexag- onal	a=7.103 c=7.247	Ď0 ₂₁	X-ray powder data; obtaine by heating natural domeyki at 225°C.	d .Le 42,43
Cu ₃ As	hexag- onal	a≝2.586 c⊒1.229		X-ray powder data; stable below 250°C; 2 atoms per unit cell; algodonite min- eral.	- 42
Cu _{ll} Sb ₂	ortho- rhombic	a=9.30 b=8.20 c=8.64		Stable 400-~488°C; deform cd A3 structure; phase dia ram; x-ray powder data.	i- g- 44,45
Cu ₉ Sb ₂	hexag- onal	a=10.858 c=8.629 (70.14 a/o Cu)	Decomposes peritectically 462°C; related to A3 struct phase diagram; x-ray powder data.	at ture; r 44,45
Cu _{ll} Sb ₄	hexag- onal	a =5 ₅505 c=8 ₀704		Decomposes at 375°C; relat to A3 structure; phase dia x-ray powder data.	ed gram; 44,45
Cu ₃ Sb	cubic	a _æ 5.00	DO3	X-ray powder and back- reflection data; samples quenched from 550°C.	221 ,222 223
Cu5Sb2	tetrag - onal	a=9.03 c ₌ 8.59	:	Stable 440-685°C; samples at 56.71 a/o Cu.	յու
Cu ₂ Sb	tetrag- onal	a=4.000 c=6.103	C 38	Decomposes peritectically 585°C; x-ray powder data.	at 44,46

Ý

	~				13
COMPOUND	CRYSTAL CLASS PA	LATTICE RAMETERS (A)	STRUCTUR	E REMARKS	REFER- ENCES
Cu ₅ U	cubic	a _≌ 7₀03	C15	Thermal analysis, microsc and single crystal x-ray	opic 47, data. 48
CuS	hexag- onal	a _m 3.76 cml6.2	B18	Covellite mineral.	62
Cu ₂ S	cubi c	a =5. 59	Cl	X-ray powder data	49
Cu ₂ Se	cubic	a=5.75	Cl	19	49 ,219, 220
CuSe	hexag- onal	a _æ 3.95 c _≘ 17.29	B18	Klockmannite mineral.	19
Cu ₂ Te	hexag - onal	a=1.237 c=7.274	<u>/</u> D _{6h} C6/mm m 7	Structure below 640°C; congruent m.p. 890°C.	50,51, 215
Cu ₂ Te	cubic	a _6. 10		High temperature phase, stable above 540°C; 12 atoms per unit cell.	50,51, 215
Cu ₄ Te ₃	tetrag- onal	a=3.98 c=6.12	С38	Line compound; decomposes peritectically at 623°C; vacant sites in structure.	51,63, 215
СиТе	ortho- rhombic	a=3.15 b=4.08 c=5.93	/D ¹³ Pmmr7	Decomposes peritectically 365°C; thermal analysis, x-ray powder, microscopic, and dilatometric data.	at.
Cu ₃ Rh				Hardness, microscopic, and	1
CuRh				these superlattices in	
CuRh3				alloys.	52
Cu ₁ Pd	tetrag- onal		<u>/с² µч₂/т7</u>	Stable below 478°C; x-ray powder data; phase diagram	53 n.
Cu3Pd	cubic	· · .	L12	Ordered f.c.c. below 525°C	. 54
CuPd	cubic	a=3.00	B2 >	X-ray powder data; phase diagram.	54

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS(Å)	STRUCTURI	E REMARKS	REFER- ENCES
Cu ₃ Pt	•		L12	Electrical conductivity measurements and x-ray diffraction diagrams.	54,55, 69,225
CuPt	rhombo- hedral	a=7.57 x=90°541	L11	Stable for composition 40-55 a/o Pt below 810 ⁰ C.	54
Cu3Pt5		•		Powder diagrams.	69,225
CuPt ₃	cubic		-113	Stable for composition 60 75 a/o Pl; powder diagram	- 69 s.
CuPt ₇	cubic		-113	Stable ~45 a/o Pt at ~7	00 ⁰ C;
•				lattice constants twice those of CuPt ₃ .	54,69
AgLi	cubic	a _z 3₀17	82	X-ray powder data.	105,108, 117
AgLi ₃	cubic	a _≌ 9.96	D8 ₁₋₃	Composition varies from Li ₃ Ag to Li ₁ Ag; thermal as ysis and x-ray powder dat formulae Li ₉ Ag ₁ , Li ₁₀ Ag ₃ Li ₁₂ Ag also reported and probably indicative of a region of solid solubility	nal- a; and are 105,108, y. 116
Ag	cubic	a=4.0778		X-ray powder data.	228,229
Ag-Au	· ·			Ag ₃ Au, Ag ₃ Au ₇ , Ag ₃ Au ₂ , Ag ₃ Ag ₄ Ag ₄ Ag ₄ Ag ₄ U, Ag ₄ U ₃ : these compositions in the second variations in the lattice constants; Norman and Warr have found that no compound should exist in the system above 160° K.	2Au3, unds s of ren nds n 80,81
AgBe ₂	cubic	a <u>=</u> 6.300	C15	X-ray powder data, thermal magnetic and micrographic analysis.	1, 84,85
Ag ₃ Mg	cubic	adu.111 (disordered) aduX4.108 (ordered)		Powder and Weissenberg x-n data.	ray 107

					•	
	COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (A)	STRUCTUR	REMARKS	15 REFER- ENCES
	AgMg	cubic	a _ 3.29	B2		106,108, 109,135
	AgMg ₃				Previously reported as hexagonal with a=4.93 an c=7.81; complicated stru ture of lower symmetry.	d 108,110, c- 109, 135,136
,	Ag _{li} Ca.				Thermal analysis.	86
• .	Ag ₃ Ca	tetrag - ona <u>l</u>	a _11. 3 c _ 9.96		Thermal analysis and x-r powder data.	ay 86,87
	Ag ₂ Ca	hexag- onal	a≠5•72 c <u>≠</u> 9•35	С14	19 -	86,87
	AgCa	cubic	a <u></u> _9₀071		n	86,87
	AgCa ₂	•			. · · · · · · · · · · · · · · · · · · ·	86
· ·	Ag ₅ Sr	hexag- onal	a ₌ 5.664 د <u></u> طب.610	<u>∕</u> D _{6h} c6/mmm7	n .	83
	AgiSr			• 	Thermal analysis.	118
	~4 AgrSro				n	118
	AgSr			• • •	11	118
	AgoSro	,	· ·		11:	118
	Ag ₅ Ba	hexag- onal	a=5.708 c=1.636	<u>∠</u> D _{Gh} C6//mmm_7	Thermal analysis and x-rapowder data.	ay 83
-	Ag _l Ba		• •		Thermal analysis.	82
		•	•		n	82
	Aig3Ba2				n	82
	AgZn	hexag- onal	a=7.6360 c=2.8197	∠c _{3i} p3 7	Stable below 260 ⁰ C.	134
	A g7n	cubi c	a=3.156	: A2	High temperature phase.	133,13),

COMPOU ND	CRYSTAL CLASS	LATTICE PARAMETERS (A)	STRUCTURI	<u>REMARKS</u>	REFER- ENCES
AgZn	cubic	a _3 .16	B2	Metastable phase obtained through quenching.	137
Ag ₅ Zn ₈	cubic	a=9.33	D82		132,134
AgZn3	hexag- onal	a=2.81 c=4.42	A3		134
AgCd	cubic	a _z 3.32	A2	High temperature phase, exists above 450°C.	89,90
AgCd	hexag- onal	a=2.98 c=4.81	A3	Exists between 200 ⁰ and 450 [°] C.	89 , 90
AgCd	cubic	a=3.33	В2	Exists below 200 ^o C; from x-ray powder and electric resistivity versus temper ature.	al - 89,90
Ag ₅ Cd ₈	cubic	a <u>=</u> 9.93- 9.98	D8 _{2.}	b -brass structure; range composition variation; mis scopy, thermal and x-ray powder data.	of cro- 88,90, 91,92
AgCd3	hexag . onal	a ≂3 .06 c⊯1.84	A3	Extensive composition variation.	88,90, 92
^{Ag} 10 ^{Hg} 13	cubic	a <u>s</u> 10.033	D8 ₁₋₃	X-brass structure; therm analysis and x-ray powder data.	al 95,96
^{Ag} 5.5 ^{Hg} 4.5	hexag- onal	a=2.970 c=4.841 (44.8 a/o Hg)	A'3		96
Ag-Hg		, , , , , , , , , , , , , , , , , , ,		Vapor pressure measurement have indicated existence A_{gHg} and $A_{g_2}H_{g_1}$ (99); electron	ts of v-

					17
COMPOUND	CRYSTAL CLASS PA	LATTICE ARAMETERS (À)	STRUCTUR	E <u>REMARKS</u>	REFER- ENCES
Ag ₃ La		•		Thermal analysis; congrue melting.	nt 103,104
Ag ₂ La		•		Thermal analysis; incongr melting.	uent 103,104
AgLa	cubic	a _ 3.77	B2	Thermal analysis; congrue melting.	nt 103,104
Ag ₃ Ce	,			Thermal analysis and meta lography.	1- 128
Ag ₂ Ce	.			11	128
AgCe	cubic	a=3.74	B 2	89	128,104
Ag ₃ Pr				n	128,111
Ag ₂ Pr		· · ·		99	128,111
AgPr	cubic	a=3.73	B2	n n	128,111
Ag3Al	cubic	a_3.24	A 2	Thermal analysis, micros- copic and x-ray powder data.	72,73, 75,76, 77
Ag ₃ Al	cubic	a <u>=</u> 6.920	∠T ⁴ P2-37	X-ray powder data.	234
Ag ₃ Al ₂	hexag- onal	a=2.86 c=4.57-4.65	1.17%	Thermal analysis and x-r powder data; also reporte ap Ag ₂ Al.	ay 72, d 73,75, 76,78
Ag ₃ Ga	hexag- onal	a=2.93 c=4.75	A 3	Stable from 378-611°C.	141:.
Ag ₅ Ga ₂	hexag- onal			Thermal analysis, microsc powder x-ray data; low-ter ature (δ) phase structural related to δ -phase of Ag system; transforms ~ 380°C high temperature (β) phase which is hexagonal closes packed; both high and low perature phases exist over region of composition.	opy, mper- lly -In to e t- tem- a 94,141

. **مد**م

: .

18					
COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (Å)	STRUCTUR	E <u>REMARKS</u>	REFER - ENCES
Ag ₃ In	hexag- onal	a=2.95-2.98 c=4.77-4.79	A3 or D0 ₁₉	The former structure exis > 300° C, the latter < 200° variable composition; thi phase reported > 660° C.	sts) ⁰ C; .rd 100, 101,102
Ag ₂ In	cubic	a _≈ 9.885	D8 ₁₋₃	& -brass structure, exists < 200 [°] C; thermal analysis powder x-ray data; some of position variation.	; om- 100
AgIn ₂	tetrag- onal	a _≠ 6₅869 c≥5₅604	C16	Thormal analysis, powder x-ray data; some composit variation.	ion 100,102
AgTi	tetrag- onal	a=4.104 c=4.077	L1 0	Isomorphous with CuAu; x- powder data with comparis of observed and calculate intensities.	-ray son d 130,131
AgZr	tetrag- onal	a=3.468 c=6.603	B11	X-ray powder data.	115
AgZr ₃	tetrag∞ onal	a≓1.566 c _≡ 3.986	<u>/</u> □] µµ µ4/mmm7	şq .	115 .
Ag5 Th 3				Thermal analysis, micro- scopic and x=ray investi= gations.	129
Agj Th				11	129
Ag ₆ Sn	hexag- onal	a _≕ 2.931-2.959 c⊒1.784-4.781		Lattice parameters are indi- cated for composition extremes; composition varies from 13.3-144 19.7 a/o Sn at 400°C; thermal, 14 dilatometric, electrical resist- ivity and x-ray powder data.	
Ag ₃ Sn	ortho- rhombic	a ₌ 2.991-3.00 b=5.155-5.16 c=4.781-4.78	00 65 31	Lattice parameters are in cated for composition ext diffraction patterns indi that this structure is cl related to the above hexa one; composition varies f $24-25.5$ a/o Sn at $400^{\circ}C$.	di- remes; cate osely gonal rom 124, 142,143

					•	19
•	COMPOUND	CRYSTAL CLASS PA	LATTICE ARAMETERS (Å)	STRUCTUR	E REMARKS	REFER - ENCES
ʻ.	Ag ₉ As	hexag- onal	a <u>=</u> 2.89 c=4.722	A3	X-ray powder data.	79
	Ag ₃ Sb	hexag- onal	a≘3.044 c=4.913	A 3	n	121,143
	Ag ₃ Sb	ortho- rhombic	a జ2 .990 రజ్ర .225 రజౖ1 .820		Single crystal and x-ray powder data.	226,227
	Ag ₂ Sb	ortho- rhombic	a≘7.77 b±12.35 c=8.44	•	X-ray powder data.	119, 120, 227
	Ag ₂ Se	cubic	a=4.993	Cl	n	114
	Ag ₂ Te	cubic	a <u>s</u> 87	Cl	X-ray powder data; stable at > 155°C.	127, 50,114
	Ag ₂ Te	ortho- rhombic		·	High temperature form.	127
	Ag ₂ Te	ortho- rhombic	a=16.27 b=26.68 c=7.55	Immm	X-ray powder data; low ter erature form; also reporte as monoclinic by (214).	np- ed 125, 127,214
	Ag ₁₂ Te ₇	hexag- onal	a=13.43 c=8.451	`∠Ddh C6/mmm7	Also reported as AgTe, Ag Ag _G Te ₃ , and Ag _{2-x} Te, evide indicating an extended cor position range for a homo- geneous phase; investigative were made on synthetic and natural occurring samples	Teg, ently - 125, Lons 1 126
	Ag ₃ Pt	cubic	a <u>s</u> 3.895 ≝0.004	Al	Close-packed structure bel 800°C; x-ray powder data a conductivity measurements.	Low and 112
	AgPt	cubic	a =3. 93	L13	X-ray powder data.	112,113
	AgPt	cubic		LL3	n .	112,113
	AgPt3	cubic	a=3.88	L12	"	112,113

20 COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (A.)	STRUCTUR	E <u>REMARKS</u>	REFER- ENCES	
,	· · · ·				e .	
Au ₂ Na .	cubic	a=7.7872 ±0.0023	C1 5	X-ray powder data	144,145, 146,147	
AuNag	tetrag- onal	a=7.402 c≠5.511	010	Rotation, Weissenberg, and x-ray powder data.	146	
AujK				Ault and Au2K were post- ulated on grounds of their	L r	
Au ₂ K				x-ray powder spectra, whi were distinctly different from pure K and Au; No	ich C	
				structures or parameters were determined.	148	
Au	cubic	ad1.0781	Ali.	Gold leaf electron diffraction.	149	
Au ₃ Be			·	X-ray powder and back- reflection data; p ara- meters not reported	150.	· ·
Au ₂ Be				n	150	
AuBe	cubic	a_4.668 ±0.001	B20	X-ray powder data with comparison of calculated and observed intensities.	150 , 151	۰
AuBe ₃	•	•		X-ray data indicates this compound exists; structur not dctcrmincd.	re 150,152	
AuBe ₅	cubic	a ₂ 6.083	C15	X-ray powder data with co parison of calculated and observed intensities; par meter also reported as a=6.699 by 152.	om- 1 150,152, 153	
AuMg	cubic	a _₩ 3.265	B2		154	· . ,
AuMg3	hexag- onal	a <u>ط</u> ار ₀64 د ‱ ₀46	D0 ₁₈	powder and single crystal x=ray data; Mg ₂ Au reporte by (156,158) and Mg ₅ Au ₂ r ported by(157), both on basis of thermal analysis are probably this compour	ed "e= 10,156, s, 157,158 nd.	
		,	·			

. . .

1

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (A)	STRUCTUR	REMARKS	REFER- ENCES
Au ₆ Ba	hexag- onal	a_5.67 cel58	∑ ¹ _{6h} c6/mm <u>m7</u>	X-ray powder data; exist as (Ba _{O.86} Au _{O.1)})Au ₅ in CaCu ₅ type structure.	83
Au ₃ Zn (4)	cubic	a <u>4</u> .039	Al	X-ray data and thermal a ysis;stable above 420°C. disordered phase; parame from sample quenched fro 500°C.	nnal- ; ters om 160,161, 162
Au ₃ Zn (&')	tetrag- onal	aᆋ.034 cᆋ.115		Possibly weakly ordered; parameters at 300°C.; stable 270-420°C; confli ing evidence about this compound.	ct- 160,161, 162
Au ₃ Zn (≺")	tetrag- onal	a=3.956 ±0.003 c=8.323 ±0.0012		Stable below 260° C.; or structure; approximately doubled c axis; x-ray po data.	dered wder 160,161, 162
Au ₅ Zn ₈	cubic	a <u>-</u> 9.242	D81	X-ray powder data.	155,165, 56
AuZn	cubic	a _3.1 52	B2	X-ray powder data; super lattice present in samp- les quenched from 400-57	- 163,165, 155,106 7°C.
~AuZn2	cubic	a <u>=</u> 11.17		X-ray study of super- lattice; > 90 atoms per unit cell.	155 , 164
AuZn ₃	cubic	a <u>=</u> 7.88		X-ray powder data; 32 at per unit cell.	oms 155,164, 165
AuZn ₆	hexag- onal	a <u>=</u> 2.82 c=4.38	A3	X-ray powder data; exact composition and structur open to question; report as differently as AuZng.	e ed 155, 164,165
Au ₃ Cd	tetrag- onal	a=4.107- 4.1177 c=4.138- 4.1298	<u>∕</u> □ _{4h} ₽4/mmm7	Deformed Cu ₃ Au structure x-ray powder and back reflection data; paramet ers from samples quenche at 350°C. and 22.8-25.5 atomic percent Cd.	;; d 166,167, 168

÷,

?

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS(A)	STRUCTU	RE REMARKS	REFER- ENCES
Au2Cd	hexag- onal	a=2.9085- 2.9224 c=4.7719- 4.8377	A3	X-ray powder and back- reflection data; stackin faults at less than 30% Cd; parameters from samp les of 25.30-35.51 atomi percent Cd.	eg .c 166, 167,168
Au55Cd ₄₅	rhombo- hedral	a=5.484 c=12.618		Conflicting evidence abo the existence of this compound.	out 166,167, 168
<i>B</i> AuCd	cubic	a_3.3224- 3.3181	B2	X-ray powder and back- reflection data; param- eters from samples of 50.8-55.0 atomic percent Cd.	167,169; 170,166; 168,171
β'A uCd	ortho- rhombic	a=3.141- 3.164 bs4.879- 4.855 c=4.767- 4.768	B19>	At $64 \pm 6^{\circ}$ C., the β' for goes to the β form; poss another transition at 28 300° C. with no structur change;; fiber camera use for structure and self-f using camera for paramet range: $16, 3-18, 1$ atomic n	rm ibly 0- e d 166,167, oc- 168, ers; 169,170 ercent 6d
AuCd ₂	hexag- onal		A3	* and of the state and and the	212
AuOdz	cubic	adi.11	L15		212,172, 173,174, 175
Au5Hg	cubic	a_4.122 、	A3	Parameters measured at 175 ⁰ C.	176,177, 178
Au ₃ Hg	hexag- onal	a 2.906- 2.921 c=4.780- 4.812	A3	Formula approximates Au ₃ parameters from samples 19.1-32.7 weight percent	Hg; of 176,177, Hg. 178
Au ₂ Hg3	. • •				177

AuHg₂

	•			· ``	23
COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (A)	STRUCTURI	E <u>REMARKS</u>	REFER - ENCES
Au ₃ La				Thermal analysis and metallography; Ce-Au, La-Au and Pr-Au systems reported to be analogous.	128, 144
AuzLa				11	128
AuLa				n	128,144
AuLa ₂				ŧ	128
Au ₃ Ce				n	128
Au ₂ Ce			·	· • • • • •	128
AuCe	-	· · · ·		Ħ	128
AuCe ₂	• . • •	· .		H .	128
Au ₃ Pr				Reported as Au ₄ Pr by (189).	128,189
Au ₂ Pr				Same as Au ₃ La.	128
AuPr	· .			n	128
AuPr ₂		·		· II	128
Au ₄ A1	cubic	a <u>=</u> 6.916	∠T ⁴ P2 <u>13</u> 7	X-ray powder data.	179,180, 181
Au5Al2			·	Thermal analysis and met- allography; compound may be Au ₈ Al ₃ .	179, 159, 180,181
Au2AI				Thermal analysis and met- allography.	159,179, 180,182
AuAl	cubic	a <u>=</u> 5.05	B3	· · ·	159,179, 180,182
AuAl ₂	cubic	a <u>=</u> 6.00	Cl	Formed by reaction of elements in liquid phase with evolution of heat; solidifies at 1060°C. to a purple solid.	159,179, 180,182, 183,184

COMPOUND	CRÝSTAL CLASS	LATTICE PARAMETERS (A)	STRUCTUR	E <u>REMARKS</u>	REFER- ENCES
Au ₃ Ga				Thermal analysis and metallography.	26,185
Au7 ^{Ga} 3				11	26,185
AuGa	ortho- rhombic	a=6.397 b=6.267 c=3.421	B31	Thermal analysis, met- allography and x-ray powder data.	26.185
٠ <i></i>	·· ··				
AuGa2	cubic	a <u>=</u> 6.086	Cl	11) -	184,185
Au ₉ In	hexag~ onal	a ₂ 2,91 c=4,75		Schubert et. al. have mad additional structure stud ies on the Au-In-Cd syste refer to abstract #5.19, International Congress, I tornational Union of Cryo lography, Montreal 10-19,	e m; 4th n- tal-
				July 1957,	186
Au8In2	hexag- onal		A3	• • • •	26
Au ₅ In	-	• · · ·			186
Au7 ^{In} 3	cubic	aæ9.80	·	Related to Y-brass struc ture.	- 76,186 (
Au⊥n	triclinic	a=4.30 b=10.59 c=3.56 &=90.540 B=90.000 Y=90.170		rseudo-orthorhombic	186, 187
AuIn ₂	cubic	a <u>s</u> 6.502	Cl	: :	186,187, 188
∾ Au ₆ Ti	tetrag- onal	a=4.07 c=3.94		Compound may be as high as 96 a/o Au.	131, 190, 191
Au ₃ Ti	hexag- onal			Reported by (191) to be isomorphous with TiCu ₃ ; not observed by (131).	131,190, 191
Au ₂ Ti	hexag- onal	a=2.79 c=4.77	A3 .	X-ray data and thermal analysis; invariant com- position.	131,190, 191

ì

			· .		
	· .	· .			<u>م</u> ۲
COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (X)	STRUCTUR	E REMARKS :ATE	REFER- ENCES
AuTi ₃	cubic	a _ 5₊096	A15	X-ray powder data.	131,190,
		• .			191,192
Au ₃ Zr					193
Au ₃ Th				No crystallography work done; phase diagrams.	24
Au5Th3		,	•	M.	24
Au ₆ Sn	hexag- onal	a=2.93 c=4.78	A3	. •	194
Au5.13 ^{Sn}				X-ray dāta.	195
Au2.4 ^{Sn}	hexag- onal		•	X-ray data;; close- packed crystal.	195
AuSn	hexag- ona <u>li</u>	a=4314 c=5.512	B8	Electron diffraction and x -ray data.	195,196
AuSn ₂	ortho- rhombic	a=6.85 b=7.00 c=11.78		Electron diffraction data.	. 196,187
AuSn	ortho- rhombic	عین اللو 6 میں 12 میں 10 میں 12 میں	<u>7</u> Aba27/	Structure related to Cl6 type;; x=ray powder data.	196,216, 217
Au ₂ Pb	cubic	a=7.98 =0.01	C 15	X-ray diffraction data,	197,198, 200
AuPb ₂	tetrag- onal	a≝7,310 - €0.003	C 16	FT '	197,198, 199,200
, · · .	19	- <u>+</u> 0.003		· · · · · · · · · · · · · · · · · · ·	
AuNo3	cųbic	a±5.21 ±0.01	A15	` .	201
^{AuV} 3	cubic	a=4.88 ±0.01	A15		201
AuSb ₂	cubic	a=6.63	C2.	Electron diffraction data.	196,202
Au ₂ Bi	cubic	a ≞ 7.958	C115		200,203
			•		

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (2)	STRUCTURE	REMARKS	REFER-
·	011100				
Au ₃ U		· ·	•	Thermal analysis and met- tallography and x-ray diffraction.	206
Au3 ^U 2				Thermal analysis and met- tallography and x-ray diffraction; forms from peritectic at 216 c	206
-				beilfectic at 210 0.	200
Au2 ^{Te} 3	triclinic	a=12.10 b=13.46 c=10.80 a=104°30.5' g=97°34.5' g=107°53.5'		Pseudocubic; x-ray powder data.	204 , 205
AuTe ₂	ortho- rhombic	a=16.51 b=3.80 c=4.45	СЦС	X-ray powder data.	239
Au ₃ Mn		· · · ·		Structure not known;; apparently nearly tetrag- onal with complicated cuporstructure.	207
Aນ 2Mn	·		· ·	Major lines on x-ray patterns belong to body- centered tetragonal struct ure; a great number of wea interference lines make the indexing questionable. a=3.36, c/a=0.87	t- ak ne 207
AuMn	cubic	a <u>s</u> 3.249	B2	β phase decomposes into b'or β'' which do not coexis (below 615°C)	st. 207
Au <u>M</u> n				Same as Au ₂ Mn except a _z 3.310, c/a =0.85	207
AuFez				Compound reported by (208) denied by (209,210).), 208,209, 210
				· · ·	

PART II: REFERENCES

· 1.	Harker, D., Trans. Am. Soc. Metals <u>32</u> , 210 (1944).
2.	Borelius, Johansson, and Linde, Ann. phys. <u>86</u> , 291-318 (1928).
3.	Ohshima and Sachs, Z. Physik <u>63</u> , 210-223 (1930).
4.	Losana and Venturello, Alluminio 11, 8-16 (1942).
5.	Iwasé and Okamoto, Nippon Kinzoku Gakkai-Shi <u>5</u> , 82 (1941).
6.	Dahl, Holm, and Masing, Wiss. Veröffentl. Siemens-Konzern 8, 154-186 (1929).
7.	Misch, L., Z. physik. Chem. <u>B29</u> , 42-58 (1935).
8.	Morral and Westgren, Arkiv Kemi, Mineral. Geol. <u>11B</u> , No. 37 (1934).
9.	Friauf, J., J. Am. Chem. Soc. <u>49</u> , 3017 (1927).
10.	Schubert and Anderko, Z. Metallkunde 42, 321 (1951).
11.	Haucke, W., Z. anorg. Chem. <u>244</u> , 17-22 (1940).
12.	Nowotny, H., Z. Metallkunde <u>34</u> , 247-253 (1942).
13.	Owen and Preston, Proc. Roy. Soc. (London) 36, 49-66 (1923).
14.	Schubert and Wall, Z. Metallkunde 40, 383-385 (1949)
15.	Kripyakevich, Gladyshevskii, and Cherkashin, Doklady Akad. Nauk S. S. S. R. 82, 253-256 (1952).
16.	Bradley and Gregory, Phil. Mag. <u>12</u> , 143-162 (1931).
 17.	Lihl, F., Z. Metallkunde 44, 160-166 (1953).
18.	Schoszberger, F., Z. physik. Chem. <u>B29</u> , 65-78 (1935).
19.	Early, J., Am. Mineralogist <u>33</u> , 194 (1948).
20.	Lihl and Feischl, Metall $\underline{8}$, 11 (1954).
21.	Nelson and Riley, Proc. Roy. Soc. (London) 57, 160-177 (1945).
22.	Bradley, A., Phil. Mag. <u>6</u> , 878-888 (1928).
23.	Preston, G., Phil. Mag. <u>12</u> , 980-995 (1931).

- 24. Raub and Engle, Z. Elektrochem. 49, 487-493 (1943).
- 25. Zintl and Treush, Z. physik. Chem. <u>B34</u>, 225-237 (1936).
- 26. Hellner and Laves, Z. Naturforsch. 2A, 177-183 (1947)...
- 27. Betterton and Hume-Rothery, J. Inst. Metals 80, 459-468 (1951-1952).
- 28. Baenziger, Rundle, and Snow, Acta Cryst. 9, 93 (1956).
- 29. Reynolds, Wiseman, and Hume-Rothery, J. Inst. Metals <u>80</u>, 637-640 (1951-1952).
- 30. Makarov, E., Izvest. Akad. Nauk S. S. S. H., Utdel. Knim. Nauk <u>1943</u> 269-270 (1943).
- 31. Trzebiatowski, Berak, and Romotowski, Roczniki Chem. 27, 426 (1953).
- 32. Joukainen, Grant, and Floe, Trans. Am. Inst. Mining Met. Engrs. <u>194</u>, 766 (1952).
- 33. Rostoker, W., J. Metals 4, 209-210 (1952).
- 34. Karlsson, N., J. Inst. Metals 79, 391-405 (1951).
- 35. Lundin, McPherson, and Hansen, J. Metals 5, 273-278 (1953).
- 36. Augustson, R., U. S. Atomic Energy Comm. Report No. AECD 3456 (1950).
- 37. Raynor, G., Inst. Metals (London), Annotated Equil. Diagram, No. 3 (1944).
- 38. Schubert and Brandauer, Z. Metallkunde 43, 262-268 (1952).
- 39. Nowotny and Bachmayer, Monatsh. Chem. 81, 669-678 (1950).
- 40. Westgren and Phragmen, Z. anorg. Chem. 175, 80 (1928).
- 41. Carlsson and Hägg, Z. Krist. <u>83</u>, 308-317 (1932).
- 42. Steenberg, B., Arkiv Kemi, Mineral. Geol. 12A, No. 26 (1938).
- 43. Owen and Rowlands, J. Inst. Motals, 66, 367 (1940).
- 44. Osawa and Shibata, Science Repts. Tôhoku Imp. Univ. 28, 1-19 (1939).
- 45. Schubert and Ilschner, Z. Metallkunde 45, 366-370 (1954).
- 46. Elander, Hägg, and Westgren, Arkiv Kemi, Mineral. Geol. <u>12B</u>, No. 1, 65, (1935).

Wilhelm and Carlson, Trans. Am. Soc. Metals, 42, 1311-1325 (1950).
Baenziger, Rundle, Snow, and Wilson, Acta Cryst. 3, 34-40 (1950).
Hartwig, W., Z. Krist. <u>64</u> , 503-504 (1926).
Nowotny, H., Metallforschung 1, 40-42 (1946).
Anderko and Schubert, Z. Metallkunde 45, 371-378 (1954).
Zviagintev and Brunoskiy, Izvest. Inst. Izucheniyu Platiny i Drug. Bladorod. Metal. <u>12</u> , 37-66 (1935).
Geisler and Newkirk, J. Metals <u>6</u> , 1076-1082 (1954).
Johansson and Linde, Ann. phys. <u>82</u> , 449-478 (1927).
You-Chi Tang, Acta Cryst. 4, 377-378 (1951).
Bradley and Thewlis, Proc. Roy. Soc. (London) All2, 678-692 (1926).
Byström, Kierkegaard, and Knop, Acta Chem. Scand. 6, 709-719 (1952).
Heumann, T., Nachr. Ges. Wiss. Göttingen <u>1</u> , 21-26 (1948).
Sautner, K., Forschungsarb. Metallkunde u. Röntgenmetallog. <u>9</u> , 31 pp. (1931).
Bernal, J., Nature <u>122</u> , 54 (1928).
Fitzgerald, F., J. Am. Chem. Soc. 29, 656 (1907).
Oftedal, I., Z. Krist. 83, 9-25 (1932).
^C hikashige, M., Z. anorg. u. allgem. Chem. <u>54</u> , 50-57 (1907).
Canneri, G., Metallurgia ital. <u>26</u> , 869-871 (1934).
Grube and Botzenhardt, Z. Elektrochem. <u>48</u> , 418-425 (1942).
Hanaman, F., Intern. Z. Metallog. 7, 174-212 (1915).
Tammann and Stassfurth, Z. anorg. u. allgem. Chem. 143, 357-369 (1925).
Bradley and Jones, J. Inst. Metals 51, 131-161 (1933).
Schneider and Esch, Z. Elektrochem. 50, 290-301 (1944).
Canneri, G., Metallurgia ital. 23, 813-815 (1931).
Bradley, J., Nature <u>168</u> , 661 (1951).

- 72. Hansen, M., "Aufbau der Zweistofflegierungen," p. 1 (Edwards Brothers, Inc., Ann Arbor, Michigan, 1943).
- 73. Hume-Rothery, Mabbott, and Evans, Trans. Roy. Soc. (London) <u>A233</u>, 1-97 (1934).
- 74. Gautier, H., C. R. Acad. Sci., Paris 123, 109 (1896).
- 75. Petrenko, G., Z. anorg. u. allgem. Chem. 46, 49-59 (1905).
- 76. Kokubo, S., Science Repts. Tôhoku Imp. Univ. 33, 45-51 (1934).
- 77. Faberberg and Westgren, Metallwirtschaft 14, 265-267 (1935).
- 78. Westgren and Bradley, Phil. Mag. 6, 280-288 (1928).
- 79. Broderick and Ehret, J. Phys. Chem. 35, 3322-3329 (1931).
- 80. Phragmen, G., Fysisk Tids. 24, 40-41 (1926).
- 81. Norman and Warren, J. Appl. Phys. 22, 483 (1951).
- 82. Hansen, M., op. cit., p. 10.
- 83. Heumann, T., Nachr. Ges. Wiss. Göttingen 2A(1), 1-6 (1950).
- 84. Winkler, O., Z. Metallkunde 30, 162 (1938).
- 85. Misch, L., Metallwirtschaft <u>15</u>, 163-166 (1936).
- 86. Hansen, M., op. cit., p. 16.
- 87. Degard, C., Z. Krist. 90, 399 (1935).
- 88. Hansen, M., op. cit., p. 17.
- 89. Muldwer, Amsterdam, and Rothwarf, J. Metals 11, 1458-1459 (1953).
- 90. Owen, Rogers, and Guthrie, J. Inst. Metals 65, 457 (1939).
- 91. Perlitz and Aavakivi, Acta Comment. Univ. Tartuensis (Dorpatensis) <u>A35=2</u>, 1=13 (1939).
- 92. Bain, E., Chem. & Met. Eng. 28, 21-24 (1923).
- 93. Owens and Morris, J. Inst. Metals 76, 160 (1949-1950).
- 94. Weibke, Meisel, and Wiegels, Z. anorg. u. allgem. Chem. 226, 201-208 (1936).

- 95. Weryha, A., Z. Krist. A86, 335-339 (1933).
- 96. Murphy, A., J. Inst. Metals <u>46</u>, 507 (1931).
- 97. Myers, H., Proc. Phys. Soc. (London) 66, 495-499 (1953).
- 98. Swammy and Shammana, Current Sci. (India) 21, 7-8 (1952).
- 99. Ogg, A., Z physik. Chem. 27, 290 (1898).
- 100. Hellner, E., Z. Metallkunde <u>42</u>, 17-19 (1951).
- 101. Goldschmidt, V., Z. physik. Chem. <u>133</u>, 397-419 (1928).
- 102. Frevel and Ott, J. Am. Chem. Soc, <u>57</u>, 228 (1935).
- 103. Hansen, M., op. cit., p. 36.
- 104. Vogel and Klose, Z. Metallkunde <u>45</u>, 670 (1954).
- 105. Pastorello, S., Gazz. chim. ital. <u>50</u>, 493-501 (1930).
- 106. Owen and Preston, Phil. Mag. 2, 1266 (1926).
- 107. Clarebrough and Nicholas, Anst. J. Sci. Res. <u>3A</u>, 284-289 (1950).
- 108. Freeth and Raynor, J. Inst. Metals 82, 575-580 (1954).
- 109. Stanislas, Goldstamb, and Michel, Compt. rend. 232, 1843-1845 (1951).
- 110. Dow Chemical Co., private communications.
- 111. Canneri, G., Met. ital. <u>26</u>, 794 (1934).
- 112. Schneider and Esch, Z. Elektrochem. 49, 72 (1943).
- 113. Johansson and Linde, Ann. Physik. 6, 458-486 (1930).
- 114. Rahlfs, P., Z. physik Chem. <u>31</u>, 157-159 (1935-1936).
- 115. Karlsson, N., Acta. Chem. Scand. (6, 1424-1430 (1952).
- 116. Perlitz, H., Z. Krist. 86, 155 (1933).
- 117. Zintl and Brauer, Z. physik Chem. 20, 245-271 (1933).

118. Hansen, M., op. cit,, p. 64.

- 119. Peacock, M., Am. Mineralogist, <u>23</u>, 176 (1938).
- 120. Peacock, M., Am. Mineralogist, <u>24</u>, 227-241 (1939).
- 121. Machatski, L., Z. Krist., <u>67</u>, 171 (1928).
- 122. Broderick and Ehret, J. Phys. Chem., <u>35</u>, 2635 (1931).
- 123. Homer and Plummer, J. Inst. Metals, 64, 191 (1939).
- 124. Michel, P., Compt. rend., <u>235</u>, 377-379 (1952).
- 125. Koern, V., Naturwissenschaften, 27, 432 (1939).
- 126. Thompson, R., et. al., Am. Mineralogist, 36, 468 (1951).
- 127. Rowland and Berry, Am. Mineralogist, 36, 478 (1951).
- 128. Rolla, Jendelli, Canneri and Vogel, Z. Metallkunde, 35, 24-42 (1943).
- 129. Raub and Engell, Z. Metallikunde, 40, 431 (1949).
- 130. Van Thyne, Rostoker, and Kessler, J. Metals, 5, 670-671 (1953).
- 131. Raub, Walter, and Engel, Z. Metallkunde, 43, 112-118 (1952).
- 132. Owen and Pickup, Proc. Roy. Soc. (London), A137, 397-417 (1932).
- 133. Edmunds and Zurashi, Acta Cryst., 4, 417-425 (1951).
- 134. Andrews, Davis, Hume-Rothery, and Oswin, Proc. Roy. Soc.(London), <u>A177</u>, 149 (1941).
- 135. Letner and Sidhu, J. Appl. Phys., 18, 833 (1947).
- 136., Ageew and Kuznezow, Bull. Acad. Sci. U. R. S. S., Classe sci. math. nat., Ser. chem., 289-309 (1937).
- 137. Shawlo and Alaverdov, J. Exp. Theoret. Phys. (U.S.S.R.), 9, 59 (1939).
- 138, Reinders, W., Z. physik. Chem. 54, 609 (1906).
- 139. Aylmer, Finch, and Fordham, Trans. Faraday Soc. 32, 864-71 (1936).
- 140. Pinsker and Talarinova, Acta. Physicochim. U.R.S.S. 14, 193-200 (1941).
- 141. Hume-Rothery and Andens, J. Inst. Metals, <u>68</u>, 133 (1942).
- 142. Niall, Alni, and Westgren, Z. physik. Chem. B14, 85 (1937).

- 143. John and Evans, Phil. Mag. 23, 1033 (1937).
- 144. Blitz and Weibke, Z. anorg. u. allgem. Chem. 236, 12-23 (1938).
- 145. Perlitz and Aruja, Z. Krist. A100, 157-166 (1938).
- 146. Haucke, W., Z. Elektrochem. <u>43</u>, 712-719 (1937).
- 147. Ethyl Corporation circular (1953).
- 148. Blitz and Weibke, Z. anorg. Chem. 232, 297 (1937).
- 149. Rymer and Buller, Proc. Phys. Soc. (London), <u>A59</u>, 541-554 (1947).
- 150. Chatterjee and Sidhu, Phys. Rev. 76, 175 (1949).
- 151. Cullity, B., Trans. Am. Inst. Mining Met. Engrs. <u>171</u>, 396-400 (1947).
- 152. Misch, L., Metallwirtschaft 14, 897-899 (1935).
- 153. Sidhu and Henry, J. Appl. Phys. <u>21</u>, 1037 (1950).
- 154. Brauer and Haucke, Z. physik. Chem. 33, 304-310 (1936).
- 155. Hansen, M., op. cit., pp. 266-269.
- 156. Urazov, G., Z. Metallkunde 42, 375-396 (1909).
- 157. Urazov and Vogel, Z. anorg. u. allgem Chem. 67, 442-447 (1910).
- 158. Vogel, r., Z. anorg. u. allgem. Chem. <u>63</u>, 169-183 (1909).
- 159. Coffinberry and Hultgren, Trans. Am. Inst. Mining Met. Engrs. <u>128</u>, 249 (1938).
- 160. Raub, Walter and Engel, Z. Metallkunde <u>40</u>, 401-405 (1949).
- 161. Soldau, P., J. Inst. Metals 30, 351 (1923).
- 162. Koster, W., Z. Metallkunde 32, 152 (1941).
- 163. Ageew and Shoykhet, Izvest. Sektor Fiz-Khim. Anal. 13, 165-170 (1940).
- 164. Owen and Edmunds, Proc. Phys. Soc. (London), A50, 389-397 (1938).
- 165. Westgren and Phragmen, Phil. Mag. 50, 311-341 (1925).
- 166. Owen and Roberts, J. Inst. Metals 66, 380-400 (1940).

- 167. Owen and Rees, J. Inst. Metals <u>67</u>, 141-151 (1941).
- 168. Bystrom, Anders and Almin, Acta. Chem. Scand. 1. 76-89 (1948).
- 169. Chang and Read, USAEC U-1552-(1951).
- 170. Chang, L., Acta. Cryst. 4, 320-324 (1951).
- 171. Olander, A., Z. Krist. 83, 145 (1932).
- 172. Vogel, R., Z. anorg. Chem. <u>48</u>, 333 (1906).
- 173. Durrant, P., J. Inst. Metals <u>41</u>, 139 (1929).
- 174. Koster and Schneider, Z. Metallkunde 32, 156 (1940).
- 175. Hansen, M., op. cit., pp 209-212.
- 176. Stenbeck, S., Z. anorg. u. allgem. Chem. 214, 16-24 (1933).
- 177. Pabst, A., Z. physik. Chem. 3B, 443-455 (1933).
- 178. Plaksin, I., Izvest. Sektora Fiz. Khim. Anal. 10, 129-159 (1938).
- 179. Heycock and Neville, Phil. Trans. Roy. Soc. (London) 194A, 201 (1900).
- 180. Heycock and Neville, Phil. Trans. Roy. Soc. (London) 214A, 267 (1914).
- 181. Ullner, O., Arkiv Kemi Mineral. Geol. <u>14A</u>, 20 (1940).
- 182. Eisenhut and Kaupp, Z. Elektrochem. 37, 466-473 (1931).
- 183. West and Peterson, Z. Krist. 88, 93 (1934).
- 184. Zintl, Haseler and Haucke, Z. physik. Chem. <u>35B</u>, 354 (1937).
- 185. Pfisterer and Schubert, Z. Metallkunde 41, 358-367 (1950).
- 186. Kubaschewski and Weibke, Z. Elektrochem. Щ, 870-877 (1938).
- 187. Schubert, Rosler, Kluge, Anderko and Harle, Naturwiss. 40, 437 (1953).
- 188. Pristerer and Schubert, Naturwiss. 37, 112-113 (1950).
- 189. Rossi, A., Gazz. chim. ital. 64, 748 (1934).
- 190. McQuillan and McQuillan, "Titanium," pp 209-211 (Academic Press, New York, 1956).
- 191. Wallbaum, H., Naturwiss. 31, 91-92 (1943).

- 192. Duwez and Jordan, Acta. Cryst. <u>5</u>, 213-214 (1952).
- 193. Raub and Engel, Z. Metallkunde 39, 172-177 (1948).
- 194. Stenback and Westgren, Z. physik. Chem. 14, 91 (1931).
- 195. Hendus, H., Z. Naturforschung 2A, 505-521 (1947).
- 196. Boettcher, Haase and Thun, Z. Metallkunde 46, 386-400 (1955).
- 197. Kleppa and Clifton, Acta. Cryst. 4, 74 (1951).
- 198. Mets and Torgren, Tallinna Tehnikaulikooli Toinetused 14A, 20 (1940).
- 199. Wallbaum, H., Z. Metallkunde 35, 218 (1943).
- 200. Owen and Roberts, J. Inst. Metals 71, 213 (1945).
- 201. Wood and Mathias, Acta. Cryst. 9, 534 (1956).
- 202. Graham and Kaiman, Am. Mineralogist 37, 461-469 (1952).
- 203. Juriaase, T., Z. Krist. 90, 323 (1935).
- 204. Peacock and Thompson, Bull. Geol. Soc. Amer. 56, 1189 (1945).
- 205. Peacock and Thompson, Am. Mineralogist 31, 204,515 (1946).
- 206. Buzzard and Park, AEC Bulletin NBS-D-127
- 207. Raub, Zwicker and Baur, Z. Metallkunde 44, 312-320 (1953).
- 208. Hansen, M., op. cit., p.224.
- 209. Jette, Foote and Bruner, Trans. Am. Inst. Mining Met. Engrs. <u>111</u>, 354 (1934).
- 210. Pan, Kaufmann and Bitter, J. Chem. Phys. 10, 318 (1942).
- 211. Darling, Mintern and Chaston, J. Inst. Metals 81, 125 (1952-53).
- 212. Smithells, C., "Metals Reference Book" 1, 194-211 (1955), Interscience Publishers Inc., New York.
- 213. Runquist, Arnfelt and Westgren, Z. anorg. Chem. 175, 43-48 (1928).
- 214. Tokody, L., Z. Krist. 89, 416 (1934).
- 215. Forman and Peacock, Am. Mineralogist 34, 441-451 (1949).

- 36
- 216. Schubert and Roslier, Z. Metallkunde 41, 298-300 (1950).
- 217. Schubert and Rosler, Z. Naturforsch. 5A, 127 (1950).
- 218. Ekwall and Westgren, Arkiv. Kemi, Mineral. Geol. 14B, 8 (1940).
- 219. Eborall, R., J. Inst. Metals 70, 435-436 (1944).
- 220. Goria, C., Gazz. chim. ital. 70, 461-471 (1940).
- 221. Ageev and Makarov, Izvest. Sektora Fiz. Khim. Anal. 13, 171-176 (1940).
- 222. Hofmann, W., Z. Metallkunde 33, 61-62 & 373 (1941).
- 223. Schrader and Hanemann, Z. Metallkunde 33, 49-60 (1941).
- 224. Nowotny and Henglein, Monatsh. Chem. 69, 385-393 (1948).
- 225. Linde, I., Ann. Physik 30, 151 (1937).
- 226. Peacock, M., Univ. Toronto Studies, Geol. Ser. 44, 31-46 (1940).
- 227. Weibke and Efinger, Z. Elektrochem. 46, 53-60 (1940).
- 228. Kuznecov, V., Izvest. Sektora Fiz. Khim. Anal. 20, 5-20 (1946).
- 229. Hultgren, I., Private communication in: The System of Mineralogy, Vol. I, 7th ed., p. 96, New York, (1944).
- 230. Ellwood and Bagley, J. Inst. Metals 76, 631-642 (1950).
- 231. Zakharova, M., Doklady Akad. Nauk.S.S.S.R. 70, 55-56 (1950).
- 232. Kurdjumov, Mireckij and Stelleckaja, Z. Tekh. Fiz. S.S.S.R. 8, 1959 (1938).
- 233. Knappwost and Nowotny, Z. Metallkunde 33, 153-157 (1941).
- 234. Roberts, B., Bull. Amer. Phys. Soc. 24, no. 3, 12 (1949).
- 235. Kossolapow and Trapesnikow, Metallwirtschaft 14, 45-46 (1935).
- 236. Geisler, Mallery and Steigert, J. Metals 4, 307-316 (1952).
- 237. Guiner and Jacquet, Rev. met. <u>41</u>, 1-16 (1944); Compt. rend. <u>217</u>, 22-24 (1943).
- 238. Bowles and Tegort, Acta. Met. 3, 590 (1955).
- 239. Tunell and Ksanda, J. Wash. Acad. Sci. 26, 507-509 (1936).
- 240. Eppelsheimer and Penman, Physica 16, 792-794 (1950).

STRUCTURE DETAILS PART III:

Reported compounds: Ag₃Pt, Au, *A*-Au₃Zn Remarks: Implied in this structure is a random distribution of the atomic species on the lattice sites. is not true at low temperatures. 0⁹---Im3m A 2: A=2: W structure $2 W (O_{h}): 000; \frac{111}{222}$ with Reported compounds: Cu₃Ge, CuZn, CuZn₃, &-Cu₃Al, Cu₃Ga,

 0_{h}^{5} -Fm3m

with

A=4: Cu structure

Cu_{ll}In, Cu₅Sn, Cu₂Be, AgZn, AgCd, Ag₃Al

Remarks: See remarks under A 1 structure.

A 3:

A 13:

A=2: Mg structure 2 Mg (D_{3h}): 2/3,1/3,0;1/3,2/3,1/2 with

Reported compounds: Cu₇Si, Cu₅Ge, CuZn₅, Cu₃Ga, Ag₀As, Ag₃Sb, Ag_{5,5}Hg_{4,5}, Ag₃Ga, Ag²ⁿ₃, AgCd, AgCd₃, ~Ag₃In, Au₂Cd, AuCd₂, $Au_3 Hg, Au_8 In_2, Au_2 Ti, Au_5 Sn, AuZn_6, Au_5 Hg$

Remarks: See remarks under A 1 structure.

$$0^{\circ} - P_{4_{3}}^{\circ} 3 \text{ and } 0^{\prime} - P_{4_{1}}^{\circ} 3$$

 $D_{6h}^4 - P_{63}/mmc$

A=20: β -Mn structure 8 Mn (C₃): xxx; (1/2 + x)(1/2 - x) x; 2; (3/4 - x)(3/4 - x)(3/4 - x); (1/4 - x)(3/4 + x)(1/4 + x); 2: x = 0.061with 12 Mn (C₂): $3/8, \bar{x}, (3/4 + x); \Im; 7/8, (1/2 + x)$ (1/4 - x); $\Im; 1/8, x, (1/4 + x); \Im; 5/8, (1/2 - x)(3/4 - x); \Im; x=0.206$

Reported compounds with related structure: Cu_cSi

This possibly

 0_{h}^{3} --Pm3n A 15: A=8: Cr₃Si structure 2 Si (T_h) : 000; $\frac{111}{222}$ 6 Cr (D_{2d}) : 1/2,0,1/4; Q; 1/2,0,3/4; Qwith Reported compounds: AuTi₃, AuNb₃, AuV₃ $0_{h}^{1} - Pm3m$ B 2: A=1: ordered β -brass or CsCl structure Cs (n_{h}) : 000 Cl (0_{h}) : $\frac{111}{222}$ with Reported compounds: CuBe, CuZn, CuPd, AgZn, AgCd, AgLa, AgCe, AgPr, AgLi, AgMg, AuMg, AuZn, β -AuCd, AuMn T²--FU3m В 3: A_8: Sphalerite structure, ZnS 4 Zn (T_d): 000 + F.C. 4 S (T_d): $\frac{111}{444}$ + F.C. with Reported compounds: AuAl D_{6h}--P63/mmc B 8: A -NiAs structure 2 Ni (D_{3d}) : 000;00 $\frac{1}{2}$ 2 As (D_{3h}) : 1/3,2/3,1/4; 2/3,1/3,3/4 with $D_{6n}^{4} = P_{63}/mmc$ A=6: B-NioIn structure 2 Ni (D_{3d}) : 000;00 $\frac{1}{2}$ 2 Ni (D_{3h}) : 1/3,2/3,3/4;2/3,1/3,1/4 2 In (D_{3h}) : 1/3,2/3,3/4;2/3,1/3,3/4 with Reported compounds: Cu₂In, Cu₆Sn₅, Cu₇In₃, CuIn, AuSn Remarks: The compounds listed have structures based on the d-NiAs and β -Ni In structures. Intermediate arrangement of the atoms allows deviations in stoichiometry. There exists a close relationship to the C6 structure. Cu6Sng, Cu7In3 and CuIn have approximately the B8 structure.

 $D_{l_{1}h}^{7} = -P4/nmm$ B 11; Agu: Pb0 structure 2 Pb (C_{4v}) : $O_{\frac{1}{2}z}; \frac{1}{2}O_{\frac{1}{2}}$: z=0.242 O (C_{4v}) : the same with z=0.74with Reported compounds: CuTi with z(Ti)=0.65, z(Cu)=0.10; AgZr with z(Ag)=0.105, z(Zr)=0.645 $D_{5h}^{4} = P_{5}^{4}/mmc$ B 18: A=12: Covellite structure, CuS 2 Cu (D_{3h}) : $\pm (2/3, 1/3, 1/4)$ 4 Cu (C_{3y}) : $\pm (1/3, 2/3, z)$; $\pm (1/3, 2/3, 1/2 - z)$: z = 0.1072 S (D_{3h}) : $\pm (1/3, 2/3, 1/4)$ 4 S (C_{3v}) : $\pm (00z)$; $\pm (00 1/2 - z)$: z = 0.063with Reported compounds: CuS, CuSe Remarks: For CuSe, reflections (hkl) were present only for f_{m} 2n and reflections (hk5) were all absent due to a "structural peculiarity." D_{2h}^5 --Pmcm B 19: A=4: AuCd structure with 2 Au (C_{2v}): $\pm (0y\frac{1}{4})$: y=0.8052 Cd (C_{2v}): $\pm (\frac{1}{2}y\frac{1}{4})$: y=0.315Reported compounds: β' -AuCd T⁴---P2₁3 B 20% A=8: FeSi structure 4 Fe (C₃): $xxx;(\frac{1}{2} + x)(\frac{1}{2} - x) \bar{x};$: x=0.1374 Si (C₃): the same with x=-0.158with Reported compounds: AuBe with x(Au)=0.150,x(Be)=0.844 D_{2h}--Pcmn B 31: A_z8: MnP structure with 4 Mn (C_s): $\frac{1}{4}(x\frac{1}{4}z)$; $\frac{1}{4}(\frac{1}{2} - x, \frac{1}{4}, \frac{1}{2} + z)$: x=0.20,z=0.005 4 P (C_s): the same with x=0.57,z=0.19 Reported compounds: AuGa with x(Au)=0.184, z(Au)=0.010, x(Ga) = 0.590, z(Ga) = 0.195

39_

40 $0_{h}^{5} - Fm3m$ C 1: A=12: fluorite structure, CaF₂ with 4 Ca (O_h) : 000 + F.C. 8 F (T_d) : $\pm(\frac{111}{444})$ + F.C. Reported compounds: Cu_2S , Cu_2Se , Ag_2Se , $AuAl_2$, $AuGa_2$ $AuIn_2$ T_{h}^{6} --Pa3 C 2: A=12: FeS, structure with Reported compounds: AuSb2 $D_{l_1h}^{17} = T_{l_1/mm}$ C 118 A=6: CaC₂ structure with 2 Ca $(D_{\underline{l}\underline{h}\underline{h}})$: 000 + B.C. 4 C $(C_{\underline{l}\underline{v}})$: $\mathfrak{z}=0.38$ + B.C. Reported compounds: CuZr₂ with z=0.342 $D_{dh}^{\mu} = P_{d}^{\mu}/mmc$ C 14: Azl2: MgZn₂ structure-Laves phase $\begin{array}{rcl} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\$ with Reported compounds: Ag₂Ca $0_{h}^{7} = Fd3m$ 0 15: A=24: MgCu₂ structure --Laves phase with $8^{Mg}(T_{d})$: 000; $\frac{111}{444}$ + F.C. 16 Cu (D_{3d}) : 5/8; 5/8; 7/8, 7/8, 7/8, 5/8; 7/8, 7/8, 7/8, 7/8, 7/8, 7/8, 7/8 + F.C. Reported compounds: Cu₂Mg; CuBe₃: (7.15 Cu + 0.85 Be in 000; $\frac{111}{443}$; and 16 Be in 5/8,5/8,5/8; 3/8,3/8,5/8;) + F.C.; Cu₂U: (4 U in 000, 4 Cu in $\frac{111}{444}$, 16 Cu in 5/8,5/8,5/8;3/8, 3/8, 5/8;) + F.C.; AgBe₂, AuBe₅, Au₂Na, Au₂Pb, Au₂Bi. Remarks: Those compounds which deviate from the AB₂ formula evidently have some atomic sites which are occupied either statistically by both atomic species or there are some sites in which one type of atom preferentially replaces the other.

 D_{lib}^{18} --I4/mcm C 16: A=12: CuAl₂ structure 4 Cu (D_{\downarrow}) : $\pm (00\frac{1}{4}) + B.C.$ 8 Al (C_{2v}) : $\pm (x, \frac{1}{2} + x, 0; \frac{1}{2} + x, \overline{x}, 0) + B.C. x = 0.158$ with Reported compounds: CuTh₂, CuAl₂ with x=0.167, AgIn₂, AuNa₂, AuPb₂ with x=0.159. $D_{6h}^{1} - P6/mmm$ C 32: A=3: AlB₂ structure ¹ Al (D_{6h}) : 000 2 B (D_{3h}) : 1/3,2/3,1/2;2/3,1/3,1/2 with Reported compounds: Cu₂Th D_{lih}⁷--P4/nmm C 38: A=6: Cu₂Sb structure 2 Cu (D_{2d}): $\begin{array}{c} 000; \frac{1}{22} \\ 0\frac{1}{2}z; \frac{1}{2}0\overline{z}; z=0.27 \\ \end{array}$ with 2 Cu $(C_{\downarrow\nu})$: $0\frac{1}{2}z$; $\frac{3}{2}0\overline{z}$: z=0.272 Sb $(C_{\downarrow\nu})$: the same with z=0.70Reported compounds: Cu₂Sb, CuGa₂, Cu₁Te₃ Remarks: CuGa2 has a disordered structure; Some Cu sites are vacant in Cu_{ll}Te3. C_{2v}^{4} ---Pma С 46: A=24: AuTe₂ structure $2^{-}Au (C_2): 00z; \frac{1}{2}0z: z=0$ with 2 Au (C_s) : $\frac{1}{3}$ /4, \overline{y} ,z: y=0.319,z=0.014 4 Au (C_1) : xyz; \overline{xyz} ; $(\frac{1}{2} - x)$, y,z; $(\frac{1}{2} + x)$, \overline{y} ,z: x=0.124, y=0.666,z=0.500 2 Te (C_S): 2 Te (C₁): $\frac{1}{4}$ yz; 3/4, $\frac{1}{7}$, z: y=0.018, z=0.042 the same with y=0.617, z=0.042 4 Te (C_1) : as 4 Au (C_1) , with x=0.003, y=0.699, z=0.042 4 Te (C_1) : the same with x=0.132, y=0.364, z=0.500 4 Te (C_1) : the same with x=0.119, y=0.964, z=0.500 Reported compounds: AuTe2

 $D = 8_{1-3}$: $O_{h}^{9} - Im_{3}m_{3}$; $T_{d}^{3} - Il_{4}3m_{3}$; $T_{d}^{1} - Pl_{4}3m_{3}$

 $T_{d}^{6} - -I43d$

0<mark>h--F</mark>d3m

A=52: &-brass structures. The basic structure consists of a cubic unit cell whose edge is three times the edge of a simple body-centered cubic cell. From this large cell of 54 atomic sites is abstracted 2 atomic sites with small attendant shifts in parameters of some of the 52 occupied sites. The space group depends upon the formula of the compound and the atomic species occupying the various atomic sites.

- Reported compounds: Cu₃₂Al₁₉, Cu₆Al₁, Cu₁Al₃, Cu₉Ga₁, Cu₇In₃, Cu₅Zn₈, Cu₅Cd₈, CuHg, Cu₃₁Sn₈, Cu₁₅Si₄, Ag₁₀Hg₁₃, Ag₂In, AgLi₃, Ag₅Zng, Au₅Zng.
- Remarks: X-brass structures usually exhibit extensive composition variation. Those formulae indicating more than 52 atoms/ formula may be due to disorder or possibly they crystallize in closely related structures. Composition variation in $Cu_{9}Ga_{1}$ evidently occurs by defect structure reducing the number of Ga atoms per cell in such a way as to maintain a constant valence electron concentration.

A=76: Cu₁₅Si, structure with 12 Cu (S₁): 0,1/4, 3/8; D; 0,3/4,1/8; + B.C. 48 Cu (C₁): xyz; $2; x, \overline{y}, \frac{1}{2} - 2; D$; $\frac{1}{2} - x, y, \overline{2}; D$; $\overline{x}, \frac{1}{2} - y, z; D$; $\frac{1}{4} + y, \frac{1}{4} + z;$ $D; \frac{1}{4} - y, \frac{1}{4} + x, 3/4 - 2; D; \frac{1}{4} + y,$ $3/4 - x, \frac{1}{4} - z; ; 3/4 - y, \frac{1}{4} - x,$ $\frac{1}{4} + z; D; xxz; x, \overline{x}, \frac{1}{2} - x; D; \frac{1}{4} + x, \frac{1}{4} + x;$ 16 Si (C₃): $xxxz; x, \overline{x}, \frac{1}{2} - x; D; \frac{1}{4} + x, \frac{1}{4} + x;$ $\frac{1}{4} - x, \frac{1}{4} + x, 3/4 - x; D: xz0.208 + B.C.$

Reported compounds: Cul5Si,

E 93:

A=112: Fe₂W₂C structure $\begin{array}{rcl} & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ &$ with

Reported compounds: CuTi2

Remarks: There is some question as to whether or not it is necessary to have oxygen atoms present in order to stabilize CuTio in this structure. Presumably the oxygens if present would occupy the C positions anf Ti would occupy the 192 fold and 64 fold sets. $D_{l_{1}h}^{1} - C_{l_{1}/mmm}$ L 10: Ad: CuAu structure 2 Cu $(D_{l_{l_{h}}})$: 000 + B.C. 2 Au $(D_{l_{l_{h}}})$: $\frac{1}{2}O_{\frac{1}{2}}$ + B.C. with Reported compounds: AuCu, AgTi, CuTi Remarks: Parameters given for CuTi in the tabulation section are for $A_{\mathbb{B}^2}$ (1 Ti in 000 and 1 Cu in $\frac{111}{222}$); conversion to the above type structure can be accomplished by a 45° rotation of the a and b axes. $D_{3d}^5 - R_{3m}^5$ L 11: A=32: CuPt structure 16 Cu (D_{3d}) : 000; $\frac{111}{442}$; 2 + B.C.16 Pt (D_{3d}) : $\frac{111}{222}$; 3/4, 3/4, 0; 2with + B.C. Reported compounds: CuPt 0<mark>1</mark>--Pm3m L 12: A=4: Cu3Au structure 3 Cu (D_{4h}) ; $\frac{11}{22}0$; **2** 1 Au (O_{h}) : 000 with Reported compounds: Cu₃Au, Cu₃Pd, AgPt₃, AuCd₃, Cu₃Pt 0_{h}^{\prime} --Fd3m L 13: A=32: 16 Pt (D_{3d}) : 000; $\frac{11}{44}$ 0; ∂ + F.C. 16 Cu (D_{3d}) : $\frac{111}{222}$; 3/4, 3/4, 1/2; ∂ + F.C. Reported compounds: CuPt, AgPt Remarks: CuPt₃ and CuPt₇ are based on this structure. CuPt₃ has: 8 Cu in 000; $\frac{11}{440}$ and 24 Pt in $\frac{111}{222}$; 3/4,3/4,1/2; $1/2, 3/4, 3/4; 3/4, 1/2, 3/4; 0\frac{11}{44}; 3/4, 0, \frac{1}{4}; + F.C.$ CuPt₇ has: 4 Cu in 000 and 28 Pt in $\frac{11}{44}0; \frac{111}{222}; 3/4, 3/4, 1/2;$ $1/2, 3/4, 3/4; 3/4, 1/2, 3/4; 0\frac{11}{44}; 3/4, 0, 1/2; + F.C.$

 C_{2v}^{17} -Aba2 A=20: AuSn₁ structure with 4 Au (C₂): 00z; $\frac{11}{22}z$: z=0 + A.C. 8 Sn (C₁): xyz; \overline{xyz} ; $\frac{1}{2}$ - x, $\frac{1}{2}$ + y, z; $\frac{1}{2}$ + x, $\frac{1}{2}$ - y, z; x=0.173, y=0.327, z=0.125 $\stackrel{-}{+}$ A.C. 8 Sn (C₁): same with x=0.327, y=0.173, z=0.875 $\stackrel{-}{+}$ A.C. (A.C. = add $0\frac{12}{22}$ to all coordinates) Reported compounds: AuSn₁ Remarks: Related to the Cl6 structure. $C_{\mu h}^2 = P_{42}/m$ A=8: CullPd structure 2 Cu (C_{2h}) : 000; 00 $\frac{1}{2}$ 2 Cu (S_{1}) : $\frac{1}{22}$; $\frac{1}{2}$, \frac with Reported compounds: CulPd D²⁴-Fddd A=18: CuMg₂ structure 16 Cu (C₂): 00Z; 00Z; $\frac{1}{4}, \frac{1}{4}, \frac{1}{4} \neq Z; \frac{1}{4}, \frac{1}{4}, \frac{1}{4} = Z:$ with z=0.128 + F.C. 16 Cu (C₂): same with z=0.411 16 Mg (C_2) : 0y0; 0y0; $\frac{1}{4}, \frac{1}{4} + y, \frac{1}{4}; \frac{1}{2}, \frac{1}{2} - y, \frac{1}{4}$ y=0.161 + F.C. Reported compounds: CuMg₂ Td---I43d A=64: Cu3As structure 16 As (C_3) xxx; $\frac{1}{2} + x$, $\frac{1}{2} - x$, \overline{x} ; \overline{x} , $\frac{1}{2} + x$, $\frac{1}{2} - x$; $\frac{1}{2} - x$, \overline{x} , $\frac{1}{2} + x$; $\frac{1}{4} + x$, $\frac{1}{4} + x$; 3/4 + x, 1/4 - x, 3/4 - x; 3/4 - x, 3/4 + x, $\frac{1}{4} - x$; $\frac{1}{4} - x$, 3/4 - x, 3/4 + x, $\frac{1}{4} - x$; $\frac{1}{4} - x$, 3/4 - x, 3/4 + x, $\frac{1}{4} - x$; $\frac{1}{4} - x$, 3/4 - x, 3/4 + x, $\frac{1}{4} - x$; $\frac{1}{4} - x$, 3/4 - x, $x_{\Xi} - 0.03 + B_{\bullet}C_{\bullet}$ with 48 Cu (C_1) : xyz \neq full symmetry operations with x = -0.03, y = 0.12, z = 0.20 + B.C. Reported compounds: Cu3As

 D_{6h}^1 --C6/mmm

A=6: Cu₅Ca structure with 1 Ca (D₆h): 000 2 Cu (D₃h): 1/3,2/3,0; 2/3,1/3,0 3 Cu (D₂h): $\frac{1}{2}0\frac{1}{2};0\frac{11}{22};\frac{111}{222}$

Reported compounds: Cu₅Ca, Ag₅Ba, Ag₅Sr, Au₆Ba.

 D_{6h}^1 --C6//mmm

 $\begin{array}{cccccc} A=& & Cu_{1}Ce \ structure \\ with & l \ Ce \ (D_{6h}): \ 000 \\ & & 2 \ (Ce_{0.04}Cu_{0.96}) \ (D_{3h}): \ 1/3,2/3,0; \ 2/3,1/3,0 \\ & & 3 \ (Ce_{0.04}Cu_{0.96}) \ (D_{2h}): \ \frac{1}{2}0\frac{1}{2}; \ 0\frac{1}{2}\frac{111}{222} \end{array}$

Reported compounds: Cu_{ll}Ce, Cu_{ll}La

 $D_{lh}^{1} - P4/mmm$

A=4: AgZr₃ structure with 1 Ag $(D_{l_{1}h})$: 000 1 Zr $(D_{l_{1}h})$: $\frac{11}{2}$ 0 2 Zr (D_{2h}) : $0\frac{1}{2}\frac{1}{2}$; $\frac{1}{2}0\frac{1}{2}$

Reported compounds: $AgZr_3$, $\prec -Au_3Cd$

Remarks: Tetragonally deformed L12

 D_{6h}^1 --C6/mmm

A=6: Cu₂Te structure with 2 Te (C_{6v}): ±(00z): z=0.306 4 Cu (C_{3v}): ±(1/3,2/3,z; 2/3,1/3,z): z=0.160

Reported compounds: Cu₂Te

Reported compounds: CuTe

47 D_{2h}¹⁷---Cmcm Adı: Cu₃Ti structure (high temperature) with 4 Ti or Cu (C_{2v}) : $0y\frac{1}{4}$; $0,\overline{y},3/4$: $y=0.345 \neq (000; \frac{11}{22}0)$ Reported compounds: Cu₃Ti Remarks: Evidently there is a statistical occupancy of the sites. D_{2h}¹³--Pmmm A=8: Cu₃Ti structure (low temperature) with 2 Ti (C_{2v}) : 00z; $\frac{11}{22}$ z: z=0.655 2 Cu (C_{2v}) : 0 $\frac{1}{2}$ z; $\frac{1}{2}$ 0Z: z=0.395 4 Cu (C_s) : x0z; \overline{x} 0z; $\frac{1}{2}$ + x, $\frac{1}{2}$, z; $\frac{1}{2}$ - x, $\frac{1}{2}$, z: x=0.25, z=0.155 Reported compounds: Cu₃Ti \mathbb{D}_{3d}^{1} --H3m A=27: $Cu_{20}Sn_6$ structure with 2 Sn (D₃): $\pm(1/3, 2/3, 0)$ 4 Sn (C₃): $\pm(1/3,2/3,z; 2/3,1/3,z)$: z=1/32 Cu (C₃y): $\pm(00z)$: z=1/36 Cu (C₅): $\pm(xxz; 0\overline{x}z; \overline{x}0z)$: x=1/3, z=1/96 Cu (C₅): same with x=1/3, z=4/96 Cu (C_s) : same with x=1/3, z=7/9Reported compounds: Cu₂₀Sn₆ Remarks: Parameters calculated for a statistical distribution of atoms. C¹_{2v}---P2mm $A = \chi' - AlCu, structure$ with 1 Al (C_{2v}): x00: x=0 $1 Al (C_{2v}): <math>x\frac{11}{22}$: x=1/3 1 Cu (C_{2v}): $x\frac{1}{20}$: x=0 2 C: (Co) x x=1/3 1 Cu (C_{2y}) ; xO_{2}^{1} ; x=1/32 Cu (C_s): xy0; $x\overline{y}0$: $x=\frac{1}{2}$, $y=\frac{1}{4}$ 2 Cu (C_s): $x\overline{y}\frac{1}{2}$; $x\overline{y}\frac{1}{2}$: x=5/6, $y=\frac{1}{4}$ 2 Cu (C_s): Reported compounds: X! -AlCuz

T4--P213

A=20: Au₁Al structure
with 12 Au (C₁): xyz;
$$\mathcal{O}$$
; $\frac{1}{2}$ + x, $\frac{1}{2}$ - y, \overline{z} ; \mathcal{O} ; \overline{x} , $\frac{1}{2}$ + y,
 $\frac{1}{2}$ - z; \mathcal{O} ; $\frac{1}{2}$ - x, \overline{y} , $\frac{1}{2}$ + z; \mathcal{O} : x=0.785,
y=0.950, z=0.385
4 Au (C₃): xxx; $\frac{1}{2}$ + x, $\frac{1}{2}$ - x, \overline{x} ; \overline{x} , $\frac{1}{2}$ + x, $\frac{1}{2}$ - x;
 $\frac{1}{2}$ - x, \overline{x} , $\frac{1}{2}$ + x: x=0.690
4 Al (C₃): same with x=0.054

Reported compounds: Au, Al, Ag3Al

Remarks: β -Mn like phase. Ag₁Al has a statistical distribution of Ag and Al atoms.

$$C_{3i}^{1} = -C_{3}^{1}$$

As9: AgZn structure

with 1 (C_{3j}): 000
2 (C₃): 2/3,1/2,z; 1/3,2/3,z: z=0.250
6 (C₁): xyz; y, x-y,z; y-x,x,z; xyz; y,y-x,z; x-y,x,z:
x=0.35, y=0.32, z=0.75

Reported compounds: AgZn

Remarks: 1 and 2 fold positions are almost exclusively Zn; remaining Zn and Ag statistically distributed on 6-fold positions. The analysis of the second second

 $C_{2h}^2 - P_1^2 / m \text{ or } C_2^2 - P_1^2$

Alt: Cu₃Ge s tructure; coordinates for latter space group with 2(Cu,Ge): (C_1) : xyz; \overline{x} , $\frac{1}{2} + y$, \overline{z} ; x=0, y=0, z=1/6 2(Cu,Ge): (C_1) : same with $x=\frac{1}{2}$, y=0, z=1/3

Reported compounds: Cu₃Ge