NUREG/CR-1298 PNL-3158

Growth and Histological Effects to Protothaca staminea (Littleneck Clam) of Long-Term Exposure to Chlorinated Sea Water

Prepared by C. I. Gibson, R. E. Hillman, P. Wilkinson, D. L. Woodruff

Pacific Northwest Laboratory Operated by Battelle Memorial Institute

Prepared for U.S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Available from

GPO Sales Program Division of Technical Information and Document Control U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Printed copy price: \$3.75

and

National Technical Information Service Springfield, Virginia 22161

Growth and Histological Effects to *Protothaca staminea* (Littleneck Clam) of Long-Term Exposure to Chlorinated Sea Water

Manuscript Completed: June 1980 Date Published: August 1980

Prepared by C. I. Gibson, R. E. Hillman, P. Wilkinson, D. L. Woodruff

Pacific Northwest Laboratory Richland, WA 99352

Prepared for Division of Safeguards, Fuel Cycle and Environmental Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN No. B2098

ı. . -

ABSTRACT

There has been considerable concern about the potential for long-term effects to marine organisms from chlorinated sea water. As part of a larger study to investigate the effects of materials resulting from seawater chlorination on marine organisms, groups of littleneck clams, Protothaca staminea, were exposed to sea water that had been chlorinated. Two experiments were conducted. In one test, groups of littleneck clams were exposed to dilutions of chlorinated sea water that had average chlorine produced oxidant (CPO) concentrations of 16 $\mu q/\ell$ or less. In the second test, groups of clams were exposed to chlorinated seawaterunchlorinated seawater mixtures that had target CPO concentrations of 0, 6, 12, 25, 50 and 100 $\mu q/\ell$. In the first experiment, length measurements were made on all clams at approximately one-month intervals for three months. In the second test, length, weight, depth, width and edge etching were used to measure growth, and subsamples were harvested and measured at one-month intervals. In addition, clams were preserved for histological examination.

The clams in the first experiment all had negative growth. In the second test, growth was inhibited under all conditions through the first four months of exposure. During the last four months, there was positive signs of growth at the 0, 6 and 12 μ g/ ℓ CPO test conditions.

Histological examination indicates that <u>P</u>. <u>staminea</u> does not adapt well to being held in aquaria. Most clams, from all test and control conditions, showed evidence of necrosis at one month. This condition seemed to improve with longer exposure at lower CPO concentrations but persisted at CPO concentrations of 25 μ g/ ℓ and higher. Other histological effects were apparent at the higher exposure concentrations as the length of exposure increased.

. ,

SUMMARY

Studies of the effects of long-term exposure to chlorinated sea water on the growth of littleneck clams (Protothaca staminea) were initiated in 1977, as a subtask to the program on the synthesis and effects of halogenated organics created by the chlorination of cooling water at nuclear fueled steam electric stations. The objective of this subtask was to determine the effect on clam growth of exposure to chlorinated sea water. The initial experimental design had five groups of 60 clams being exposed to Sequim Bay sea water that had been chlorinated at a level of approximately 1.5 mgCl/L with sodium hypochlorite and then diluted with untreated sea water. A sixth tank containing 60 clams and receiving untreated sea water was used as a control. Total length measurements were made on the clams at approximately 1-month intervals for a period of three months.

Over the course of the exposure, the total average net growth for all clam groups was negative (-0.08 mm to -0.13 mm). The average CPO in the tanks during the period ranged from 0.016 mg/ ℓ to 0.00 mg/ ℓ . The cause of the negative growth in all tanks was not identified, but a number of factors were suggested, e.g., insufficient food supply, routine disturbance, chlorine produced oxidant effects, tank stress and lack of sensitivity of the length measurement over the test period.

A second series of growth experiments were conducted in the winter and spring of 1978, using a new delivery system and protocol. To alleviate what was thought to be factors that may have contributed to the negative growth in the earlier test, feeding with algal culture was planned for this test, and weight, width, thickness, and edge marking were done in addition to the length measurement. In addition, individual clams would be disturbed only at the initiation of the experiment and at harvest time. Finally, clams would be preserved for histological examination for any tissue abnormalities.

The new delivery system delivered a mixture of chlorinated and unchlorinated sea water to the test tanks so that the respective groups of clams had target CPO concentrations of 0, 6, 12, 25, 50 and 100 μ g/l. The 0 μ g/l test tank received only untreated sea water, and the 100 μ g/l test tank received only chlorinated sea water. The initial chlorination rate was approximately 1.5 mg/l chlorine per liter of sea water. Subsamples of clams were harvested from each test tank at approximately 30-day intervals for measurements and preservation for histological examination.

Shell deposition, measured by the etched edge markings, indicated that no growth took place in any of the test tanks until the fifth month at which time there were positive signs of growth in the control and in the 6 and 12 μ g/ ℓ test conditions. Positive growth was noted in these tanks after six and eight months also. No signs of positive growth occurred at the 25, 50 and 100 μg CPO/2. The other measurements supported the shell deposition finding but indicated that linear measurement is not a good parameter to use to measure growth in littleneck clams under these conditions.

Histological examination of the clams indicated that the clams were under some stress when collected from the field. However, the clams appeared to recover during the first month of testing, and then the organisms at the higher CPO concentrations (50 and 100 μ g/ ℓ) developed tissue abnormalities.

.

TABLE OF CONTENTS

Abstract	iii
Summary	v
List of Figures	ix
List of Tables	xi
Preface	xvii
Acknowledgments	xix
Introduction	1
Discussion	4
Conclusions and Recommendations	6
References	7

. . • . • ,

LIST OF FIGURES

.

Figure 1.	Exposure system used for <u>Protothaca</u> <u>staminea</u> in the first growth experiments	55
Figure 2.	Exposure system used for <u>Protothaca</u> <u>staminea</u> in the second growth experiments	56
Figure 3.	Photomicrographs of sections through the littleneck clam, Protothaca staminea	57

. .

LIST OF TABLES

Table 1.	Initial clam length in exposure tank receiving 100% control sea water. Date: 2/1/77	8
Table 2.	Initial clam length in exposure tank receiving 94% control sea water, 6% chlorinated sea water. Date: 2/1/77	8
Table 3.	Initial clam length in exposure tank receiving 88% control sea water, 12% chlorinated sea water. Date: 2/2/77	9
Table 4.	Initial clam length in exposure tank receiving 75% control sea water, 25% chlorinated sea water. Date: 2/2/77	9
Table 5.	Initial clam length in exposure tank receiving 50% control sea water, 50% chlorinated sea water. Date: 2/2/77	10
Table 6.	Initial clam length in exposure tank receiving 100% chlorinated sea water. Date: 2/3/77	10
Table 7.	Length of clams in tank receiving 100% control sea water after 1 month of exposure. Date: 3/1/77	11
Table 8.	Length of clams in tank receiving 94% control sea water, 6% chlorinated sea water after 1 month of exposure. Date: 3/1/77	11
Table 9.	Length of clams in tank receiving 88% control sea water, 12% chlorinated sea water after 1 month of exposure. Date: 3/2/77	12
Tab⊺e 10.	Length of clams in tank receiving 75% control sea water, 25% chlorinated sea water after 1 month of exposure. Date: 3/4/77	12
Table 11.	Length of clams in tank receiving 50% control sea water, 50% chlorinated sea water after 1 month of exposure. Date: 3/4/77	13
Table 12.	Length of clams in tank receiving 100% chlorinated sea water after 1 month of expsoure. Date: 3/4/77	13
Table 13.	Length of clams added to tanks to replace animals removed for chemical and histological examination.	14

Table 14.	Length of clams in tank receiving 100% control sea water after 2 months of exposure. Date: 4/4/77	14
Table 15.	Length of clams in tank receiving 94% control sea water, 6% chlorinated sea water after 2 months of exposure. Date: 4/5/77	15
Table 16.	Length of clams in tank receiving 88% control sea water, 12% chlorinated sea water after 2 months of exposure. Date: 4/5/77	15
Table 17.	Length of clams in tank receiving 75% control sea water, 25% chlorinated sea water after 2 months of exposure. Date: 4/5/77	16
Table 18.	Length of clams in tank receiving 50% control sea water, 50% chlorinated sea water after 2 months of exposure. Date: 4/6/77	16
Table 19.	Length of clams in tank receiving 100% chlorinated sea water after 2 months of exposure. Date: 4/6/77	17
Table 20.	Length of clams in tank receiving 100% control sea water after 3 months of exposure. Date: 5/2/77	17
Table 21.	Length of clams in tank receiving 94% control sea water, 6% chlorinated sea water after 3 months of exposure. Date: 5/3/77	18
Table 22.	Length of clams in tank receiving 88% control sea water, 12% chlorinated sea water after 3 months of exposure. Date: 5/4/77	18
Table 23.	Length of clams in tank receiving 75% control sea water, 25% chlorinated sea water after 3 months of exposure. Date 5/4/77	19
Table 24.	Length of clams in tank receiving 50% control sea water, 50% chlorinated sea water after 3 months of exposure. Date: 5/5/77	19
Table 25.	Length of clams in tank receiving 100% chlorinated sea water after 3 months of exposure. Date: 5/5/77	20
Table 26.	Dissolved oxygen, temperature, salinity and pH of sea water in tank receiving 75% control sea water and 25% chlorinated sea water.	20

Table 27.	Chlorine produced oxidant concentrations in clam exposure tanks (mg/l).	21
Table 28.	Length change in clams from tank receiving 100% control sea water after 3 months of exposure.	21
Table 29.	Length change in clams from tank receiving 94% control sea water, 6% chlorinated sea water after 3 months of exposure.	22
Table 30.	Length change in clams from tank receiving 88% control sea water, 12% chlorinated sea water after 3 months of exposure.	22
Table 31.	Length change in clams from tank receiving 75% control sea water, 25% chlorinated sea water after 3 months of exposure.	23
Table 32.	Length change in clams from tank receiving 50% control sea water, 50% chlorinated sea water after 3 months of exposure.	23
Table 33.	Length change in clams from tank receiving 100% chlorinated sea water after 3 months of exposure.	24
Table 34.	Summary of length changes at all test conditions after 3 months of exposure.	24
Table 35.	Length, width, thickness, and weight measurements of clams in control exposure tank. Date: 2/27/78	25
Table 36.	Length, width, thickness, and weight measurements of clams in 6 µg/l CPO exposure tank. Date: 2/27/78	26
Table 37.	Length, width, thickness, and weight measurements of clams in 12 µg/£ CPO exposure tank. Date: 2/27/78	27
Table 38.	Length, width, thickness, and weight measurements of clams in 25 $\mu g/\ell$ CPO exposure tank. Date: 2/27/78	28
Table 39.	Length, width, thickness, and weight measurements of clams in 50 $\mu g/\ell$ CPO exposure tank. Date: 2/27/78	29
Table 40.	Length, width, thickness, and weight measurements of clams in 100 $\mu g/\ell$ CPO exposure tank. Date: 2/27/78	30
Table 41.	Length, width, thickness, and weight measurements of clams after one month of exposure. Date: 4/3/78	31

٠

Table 42.	Length, width, thickness, and weight measurements of clams after two months of exposure. Date: 5/1/78	32
Table 43.	Length, width, thickness, and weight measurements of clams after three months of exposure. Date: 5/30/78	33
Table 44.	Length, width, thickness, and weight measurements of clams after four months of exposure. Date: 6/29/78	34
Table 45.	Length, width, thickness, and weight measurements of clams after five months of exposure. Date: 8/1/78	35
Tabłe 46.	Length, width, thickness, and weight measurements of clams after six months of exposure. Date: 9/5/78	36
Table 47.	Length, width, thickness, and weight measurements of clams after eight months of exposure. Date: 11/8/78	37
Table 48.	Measured CPO concentrations ($\mu g/\ell$) in exposure tanks.	38
Table 49.	Histopathological descriptions of <u>Protothaca staminea</u> from Sequim Bay, Washington <i>.</i>	39
Table 50.	Histopathological descriptions of <u>Protothaca</u> <u>staminea</u> used as controls in Tank No. 1 of Chlorine Bioassay Study.	40
Table 51.	Histopathological descriptions of <u>Protothaca staminea</u> exposed to 6 ppb chlorine in Tank No. 2 of Chlorine Bioassay Study.	41
Table 52.	Histopathological description of <u>Protothaca staminea</u> exposed to 12 ppb chlorine in Tank No. 3 of Chlorine Bioassay Study.	42
Table 53.	Histopathological description of <u>Protothaca</u> <u>staminea</u> exposed to 25 ppb chlorine in Tank No. 4 of Chlorine Bioassay Study.	43
Table 54.	Histopathological descriptions of <u>Protothaca staminea</u> exposed to 50 ppb chlorine in Tank No. 5 of Chlorine Bioassay Study.	44
Table 55.	Histopathological descriptions of <u>Protothaca staminea</u> exposed to 100 ppb chlorine in Tank No. 6 of Chlorine Bioassay Study.	45

Table 56.	Results of histopathological examination of initial sample of <u>Protothaca staminea</u> collected from Sequim Bay, Washington in March, 1978.	46
Table 57.	Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u> , exposed to various amounts of chlorine for one month.	47
Table 58.	Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u> , exposed to various amounts of chlorine for two months.	48
Table 59.	Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u> , exposed to various amounts of chlorine for three months.	49
Table 60.	Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u> , exposed to various amounts of chlorine for four months.	50
Table 61.	Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u> , exposed to various amounts of chlorine for five months.	51
Table 62.	Summary of histological descriptions of the littleneck clam, <u>Protothaca</u> <u>staminea</u> , exposed to various amounts of chlorine for six months.	52
Table 63.	Summary of histopathological observations of littleneck clams, <u>Protothaca staminea</u> , exposed to various CPO concentrations for up to six months.	53
Table 64.	8romoform concentrations in clams exposed to chlorinated sea water containing sublethal con- centrations of chlorine produced oxidants (CPO).	54

PREFACE

This report includes data and analysis for the Marine Biology Task of the program on Biocide By-Products in Aquatic Environments.

Reports prepared for the entire program are:

	Title	Author
•	Investigation of Halogenated Components Formed from Chlorination of Natural Waters: Preliminary Studies, NUREG/CR-1299	Roger M. Bean Robert G. Riley
•	Acute Toxicity and Bioaccumulation of Chloroform to Four Species of Fresh Water Fish <u>Salmo gairdneri</u> , Rainbow Trout <u>Lepomis macrochirus</u> , Bluegill <u>Micropterus salmoides</u> , Largemouth Bass <u>Ictalurus punctatus</u> , Channel Catfish, NUREG/CR-0893	David R. Anderson E. William Lusty
•	Chronic Effects of Chlorination By-Products on Rainbow Trout, <u>Salmo gairdneri</u> , NUREG/CR-0892	David R. Anderson Roger M. Bean Roger E. Schirmer
•	Toxicity, Bioaccumulation and Depuration of Bromo- form in Five Marine Species <u>Protothaca staminea</u> , Littleneck Clam <u>Mercenaria mercenaria</u> , Eastern Hard Clam, Quahog <u>Crassostrea virginica</u> , Eastern oyster <u>Penaeus aztecus</u> , Brown Shrimp <u>Brevoortia tyrannus</u> , Atlantic Menhaden, NUREG/CR-1297	Charles I. Gibson Fredrick C. Tone Peter Wilkinson J. W. Blaylock Roger E. Schirmer
•	Growth and Histological Effects to <u>Protothaca staminea</u> , (Littleneck Clam) of Long-Term Exposure to Chlorinated Sea Water, NUREG/CR-1298	Charles I. Gibson Robert E. Hillman Peter Wilkinson Dana L. Woodruff
•	Analysis of Organohalogen Products from Chlorination of Natural Waters Under Simulated Biofouling Control Conditions, NUREG/CR-1301	Roger M. Bean Dale C. Mann Robert G. Riley
•	Biocide By-Products in Aquatic Environments, Final Report Covering Period September 10, 1976 through September 30, 1979, NUREG/CR-1300	Roger M. Bean Charles I. Gibson David R. Anderson

.

ACKNOWLEDGEMENTS

This work was performed for the U.S. Nuclear Regulatory Commission (NRC) under a Related Services Agreement with the U.S. Department of Energy Contract DE-AC06-76RL0-1830. The author wishes to acknowledge the guidance and assistance provided by Or. Phillip R. Reed of NRC.

Contributors to this report are:

C.	I. Gibson	Principal Investigator, Manager, Marine Sciences Section
Ð	E Hillman	Saiantict
к.		SCIENCISC
Ρ.	Wilkinson	Technical Support Specialist
D.	L. Woodruff	Scientist
Τ.	0. Thatcher	Consultant
R.	W. Schirmer	Scientist
	of other mer	

Trade names and registered trademarks are used to assist the reader in replicating the experiments. Their use does not constitute endorsement by Battelle Memorial Institute or the U.S. NRC.

,

INTRODUCTION

Studies of the effects of long-term exposure to chlorinated sea water on the growth of littleneck clams (Protothaca staminea) were initiated in 1977 as a subtask to the program on the synthesis and effects of halogenated organics created by the chlorination of cooling water at nuclear fueled steam electric stations. Numerous studies had been conducted on the acute toxicity of chlorine and chlorine produced oxidants (CPO) to fish and other marine organisms (1,2,3,4,5,6). However, little information was available on the effects of long-term exposure (months) of organisms to CPO. In addition, findings of halogenated organics created by chlorination of fresh and marine waters presented another group of compounds that may cause deleterious effects to exposed organisms (7,8,9).

The objective of the research discussed here was to expose littleneck clams to sea water that had been chlorinated at a rate similar to expected rates at operating steam electric stations. To insure that the clams would not die from the acute toxic effects of CPO, the CPO concentration was reduced by aging (natural demand) and dilution with control sea water. Two tests were conducted.

The first experiment was designed to test the delivery system and look at the response of littleneck clams to long-term holding in laboratory tanks. This experiment was run with set dilutions of the chlorinated sea water delivered to the individual aquaria holding the clams, and only clam length was measured. Based on the results of the first test, a number of modifications were made to the delivery systems and the biological measurements to be collected. Using the modified delivery system, the second test was conducted using target concentrations of CPO of 0, 6, 12, 15, 50, and 100 $\mu g/\ell$.

First Experiment

Littleneck clams were collected from Kiapot Point, Sequim Bay, Washington on 11/28/76, and held in a large circular tank receiving raw Sequim Bay sea water. Additional food was provided to the clams daily in the form of a slurry of ground <u>Fusia</u> sp., <u>Ulva</u> sp. and alfalfa flour. On 12/15/76, 50 clams were randomly selected and placed in one of the six $120 \ \ell$ glass exposure aquaria (Figure 1). The aquaria contained 12-13 cm of sand as a substrate for the clams to bury in. The clams were observed for burying activity, and all but 2 were buried within 8 hours. On 12/19/76, 50 clams were introduced into each of the remaining five exposure tanks, and chlorination of the sea water was begun. Temperature was maintained at 15° C. The clams were observed daily and individuals that did not bury or ones that surfaced were replaced. From 12/19/76 through 2/1/77, a total of 12 clams were removed (from the 6 tanks) and replaced with new individuals.

On 2/1/77, the clams in each tank were removed for measuring and numbering. The procedure was to remove all the clams from a tank, and blow them

with an air gun until the shells appeared "bone dry." Length measurements were then made and the individuals numbered with Flecto[®] Varathane #101 orange paint. The paint was allowed to dry for six hours before the clams were returned to their respective tanks. The clams were out of the tank for approximately 8 hours.

The tanks were then observed daily for clams that surfaced and died. At monthly intervals the clams were removed and length measurements made (Tables 1 to 25). Also at monthly intervals, 5 clams were removed for future histopathological examination and chemical analysis. To maintain even densities throughout the exposure the removed clams were replaced with new individuals. CPO, temperature, salinity, pH and dissolved oxygen measurements were made approximately daily (Tables 26 & 27). CPO was measured by the potentiometric method (10).

The length measurements indicated that the clams were not growing and appeared to have been experiencing shell erosion or negative growth (Tables 28 to 34). Several factors could have contributed to this, including disturbance by the monthly measuring routine, lack of sufficient food, adverse reaction to being confined in the tank, and exposure to chlorinated sea water. Since the control showed the same negative length change, the chlorine exposure could not be singled out as the factor causing growth suppression.

However, the major objective of this experiment was satisfied. That is, it was found that littleneck clams could be held in aquaria for periods of up to 6 months without massive mortalities, and they also could survive in sea water that had been chlorinated at a rate of 1 to 2 mg/ ℓ but had low ($\leq 0.02 \text{ mg/}\ell$) CPO concentrations. The cause of the negative growth could not be related to a single factor, and, because of this, the second experiment included a number of modifications.

Second Experiment

The next experiment was designed to monitor more parameters that would be indicators of growth and to monitor their health by histological examination. To reduce some of the suspected compounding factors thought to exist in the first experiment, the following changes were made. The clams were not measured every month. Instead, only those individuals that were harvested for other purposes were measured. Additional food, in the form of cultured algae, was provided. Proportional dilutions of the chlorinated sea water were not used, instead, target CPO concentrations were maintained in each tank. The shell edge was etched to provide a more sensitive indicator of growth. Body measurements, in addition to the length, were taken.

The Mount-Brungs type delivery system used in the first test was replaced by a manifold type system shown in Figure 2. The clam exposure tanks were the same 1202 aquaria used in the initial test and the bottom was covered with 12-13 cm of sand. The sea water on the chlorinated side was chlorinated at a rate of approximately 1.5 mg/ ℓ Cl₂. The exposure tanks received chlorinated and control sea water in proportions that produced the target in tank CPO concentrations. The control tank received 100% control water, and the 100 μ g/ ℓ CPO tank received only chlorinated sea water. The flows to the individual tanks varied in order to maintain the appropriate CPO. The control tank received 450 to 500 m ℓ /min and the other tanks received at least that amount. In general, the flows remained between 500 and 1000 m ℓ /min.

Clams were collected from Pitship Point, Sequim Bay, Washington and held for marking in running, raw sea water. Clams were randomly selected, marked with a motorized engraver, edge-etched, weighed, measured for length, width and thickness, and placed into the individual exposure tanks. Initial tank loading was 60 clams. Ten clams were preserved for histopathological examination, and 10 clams were frozen for chemical analysis.

Feeding was provided by first drawing the water level in the tanks down by removing the stand pipe, then replacing the stand pipe and adding <u>Monochrysis</u> sp. culture to provide a cell density of approximately 200,000/m2 in the full tank. The exposure tank was then allowed to fill gradually with its normal mixture of control and chlorinated sea water. The control and chlorinated sea water was filtered (100 µm) so that the only food received by the clams was through the feeding. After three months, problems developed with the filter apparatus and in the phytoplankton culture, and the exposure system was switched to raw sea water and no feeding.

At approximately one-month intervals, 8 clams were harvested from each tank. The harvesting was done in a manner that caused miminal disturbance to the remaining individuals. The harvested clams were measured and weighed, and checked for positive signs of shell deposition on the etched edge. Four were frozen in glass jars for chemical analysis, and 4 were preserved in Davidson's fixative for histological examination. The measurement and weights are presented in Tables 35 to 47. The measured CPO concentrations in the tanks are presented in Table 48.

The clams that were fixed in Davidson's fixative were shipped to Battelle's William F. Clapp Laboratories, Duxbury, Massachusetts where they were embedded in paraplast, sectioned at 6 μ m and stained with hemotoxilin and eosin. The sections were then examined by Dr. Robert E. Hillman. The results of these examinations are presented in Tables 49 to 63. A summary of these results is provided in Table 63.

The clams that were frozen for chemical examination were shipped frozen to the Battelle Northwest Richland Laboratories for analyses by Dr. Roger Schirmer. As a result of the work done under the analytical portion of this program, these tissues were analyzed for bromoform. Other compounds were checked for but only bromoform results are presented in Table 64. Analysis of tissues was done by homogenizing the tissue in water at 0°C and diluting with enough water to obtain a concentration of approximately one gram of tissue per 10 mL of tissue suspension. Ten to 20 mL aliquots of the aqueous tissue suspension were extracted with two 5 mL portions of hexane containing 1-, 3-dibromopropane as an internal standard. The microliter samples of the hexane solution were injected into a gas chromatograph fitted with an 18" Porapak Q[®] column and a ⁶³Ni electron capture detector. The column was operated isothermally at 185°C. The limit of detection of this procedure was 0.0005 μ g/g, and the coefficient of variation ranged from 1% at the 1 to 8 μ g/g level to 3% at levels below 0.1 μ g/g. The coefficient of variation was calculated from 16 replicate analyses of each of 9 tissue samples.

DISCUSSION

A summary of histological observations is given in Table 63. Of the 10 clams fixed prior to the start of exposure, 6 had some necrotic tissue. and 2, including one of the necrotic specimens, had metaplastic digestive tubules, with the normally columnar epithelium being reduced to a low cuboidal form (Figure 2). This condition persisted in the 1-month exposure series with most of the clams showing evidence of necrosis; half of them having general necrosis throughout the viscera. Improvement in tissue condition was noted with longer exposure at lower chlorine concentrations, but necrosis persisted at 25 μ g/2 and higher after 2 and 3 months exposure. At 4 months exposure, metaplasia of the digestive tubules increased at 12, 25, and 50 $\mu q/\ell$. This condition improved after 5 months but returned after 6 months. Leukocytic infiltration into the tissues increased during the first 2 months and remained at about the same level throughout the 6 months of exposure. There was general necrosis and autolysis of connective tissues after 6 months exposure at 50 and 100 µg/2. Vacuolization of stomach and intestinal epithelium (Figure 3) was common in the clams exposed to 50 and 100 $\mu q/\ell$ CPO after the first 2 months of exposure.

The growth data indicates that under the conditions of the test, clams were not in a very active growth mode. Vanderhorst and Wilkinson (MRL unpublished data) found, in field studies with <u>Protothaca staminea</u> during the active growing season in spring and summer, that the initiation of new shell growth can be very sporadic once the clams are disturbed. It appears that during the study, the clams were slow to initiate new growth and, in fact, by the last harvest date (8 months of holding) only 36% (4 of 11) in the control had laid down new shell. In the two previous harvest dates (5 and 6 months), only 1 of 8 (13%) had shell deposition. However, there appears to be a pattern with growth evident at the control and lower two test levels (6 μ g/l and 12 μ g/l CPO) and no growth at the higher three test concentrations (25 μ g/l, 50 μ g/l and 100 μ g/l). This same pattern is evident from the width and weight data. The weight data could be considered the most indicative measure with the fact that shell growth can be very sporadic, particularly after handling. Of interest here is the fact that at the control and lower two concentrations there was some positive weight gain in each test and no individuals with weight loss, whereas, at the high concentrations $(25 \ \mu g/\ell, 50 \ \mu g/\ell)$ and $100 \ \mu g/\ell$) the opposite was true. The histological data indicates that at these higher CPO concentrations the amount of tissue damage, particularly in the stomach, intestine and digestive tubules, is significant and could have reduced the clams' ability to feed and digest food. In addition, the amount of necrosis and autolysis evident at the higher concentrations could lead to premature death.

In the higher CPO concentrations the proportion of food (planktonic organisms) exposed to chlorine was higher than at the lower concentrations and, therefore, could have served as an additional stress on the organisms. If phytoplankton was destroyed by the chlorination process, these clams would have received less food in the last five months which could be a factor in their growth.

Since the clams were collected in March, the initial samples might have been stressed by winter conditions, which could account for the pathological conditions observed in those specimens and the 1-month exposures. Recovery was slower at higher concentrations and considerably inhibited at 50 and 100 $\mu g/\ell$.

The tissue analysis data for bromoform must be viewed with caution because of suspected contamination in the exposure system. During the period of March through June, bromoform was being used in the same room as the long-term chlorinated seawater exposure was being conducted. In another series of tests, we found that it was difficult to obtain a bromoform/seawater solution. Therefore, the possibility of cross contamination by bromoform vapor from the chlorine test system was not considered. The results of the tissue analyses indicate that our assumption was wrong. However, these data do indicate that if bromoform is present, it will be accumulated by the clams.

The results of the second experiment indicate that long-term exposure of littleneck clams to chlorinated sea water with CPO concentrations above $50 \ \mu g/\ell$ has an effect. The effects observed in this test were inhibition of growth, as determined by new shell deposition and weight change, and tissue damage observed by histological examination. From the results it appears that the length measurement used in the first study is the least reliable parameter to use when determining the growth of littleneck clams. The width measurements showed a more consistent trend than the length measurements showed a more consistent trend than the length measurement, for, as the concentration of CPO increased, there was a decrease in the number of clams which increased in width over the 8-month exposure period. The weight measurement provides the most consistent trend, with the number of individuals that were larger at the end of the exposure period being 0 at the three higher CPO concentrations, while the number which decreased in weight was 0 in the control and lowest two concentrations and was 1, 6, and 2 in the three higher exposure

conditions. It must be noted, however, that the sample size was limited, and further testing is needed to refine the results.

Shell deposition, as indicated by edge etching, appears to be the best sign of positive growth. However, it needs to be coupled with weight gain to provide an indication that the clam was not using stored energy to repair a damaged shell but was healthy and able to add tissue at the same time.

The histological examination of the clams provided the most detailed data for determining their health. However, because of the limited data base on normal clam tissue and the variety of factors that can cause specific histological changes, it is difficult to definitely identify cause and effect at this time. From the results of this study it appears that the higher CPO concentrations had an adverse effect on the clam, and the tissue damage observed could be the reason for no growth at these exposure concentrations. In addition to this apparent effect, the tissue pathology that was present early in the testing in much of the clam population indicates that attention needs to be paid to the initial health of test organisms. Laboratory experiments that are attempting to determine the long-term effect of man-produced stress must be aware of all the compounding factors that can affect the results, and that traditional methods of assessing health may not be enough to tell the whole story.

The histological data from these studies provides a good basis for field validation of effects from chlorinated sea water. To determine if a chlorinated discharge is having an effect, the histological condition of organisms being impinged upon by the discharge could be compared to a population outside the discharge's influence but still within the same natural physical, chemical and biological environment.

CONCLUSIONS AND RECOMMENDATIONS

Under the test conditions used, CPO concentrations of 50 and 100 μ g/2 had an adverse effect on the growth of littleneck clams.

Under the test conditions used, the control group and groups exposed to target CPO concentrations of 6, 12, and $25 \ \mu g/\ell$ had positive growth.

Histological examination of the clams showed stress conditions at the beginning of the exposure, but the clams in the control and lower CPO concentrations (6, 12 and 25 μ g/l) recovered while those at the higher concentrations (50 and 100 μ g/l) had significant tissue damage at the end of the test period (6 months).

The ultimate consequences of the lack of growth and tissue damage on the ability of the clams to survive and reproduce was not determined. However, the data indicates that clam populations that are continually exposed to CPO concentrations of 50 $\mu g/\ell$ or higher will be under greater stress than those exposed to concentrations of 25 $\mu g/\ell$ or less.

Field sampling of mollusk populations exposed to CPO should be undertaken to verify the existence of similar tissue damage in the natural environment. REFERENCES

- Brungs, W. A. "Effects of Residual Chlorine on Aquatic Life," <u>J. Water</u> Pollut. Control Fed. 45(10):2180-2193 (1973).
- Brungs, W. A. "Effects of Wastewater and Cooling Water Chlorination on Aquatic Life," EPA-600/3-76-098 (Washington, D. C.: U. S. Environmental Protection Agency, 1976).
- Gibson, C. I., T.O. Thatcher and C. W. Apts. "Some Effects of Temperature, Chlorine and Copper on the Survival and Growth of the Coon Stripe Shrimp," in <u>Thermal Ecology II.</u> Proceedings of 1975 Symposium, Augusta, Georgia, G. W. Esch and R. W. McFarlane, Eds. U. S. ERDA Report No. CONF-750425 (Arlington, Virginia: National Technical Information Service, 1976).
- 4. Roberts, M. H., Jr., R. Diaz, M. E. Bender and R. Huggett. "Acute Toxicity of Chlorine to Selected Estuarine Species," J. Fish. Res. Board of Can., 32(12):2525-2528 (1975).
- Goldman, J. C., J. M. Capuzzo, and G.T.F. Wong. "Biological and Chemical Effects of Chlorination of Coastal Power Plants," in <u>Water Chlorination Environmental Impact and Health Effects, Vol. 2</u>, R. L. Jolley, H. Grochev and D. H. Hamilton, Jr., Eds. (Ann Arbor, Michigan: Ann Arbor Science Publishers, Inc., 1978), pp. 291-305.
- Thatcher, T. O. "The Relative Sensitivity of Pacific Northwest Fishes and Invertebrates to Chlorinated Sea Water," in <u>Water</u> <u>Chlorination--Environmental Impact and Health Effects, Vol. 2</u>, R.L. Jolley, Ed. (Ann Arbor, Michigan: Ann Arbor Science Publishers, Inc., 1978), pp. 341-350.
- Jolley, R. L., G. Jones, W. W. Pitt and J. E. Thompson. "Chlorination of organics in cooling waters and process effluents," in <u>Water</u> <u>Chlorination: Environmental Impact and Health Effects, Vol. 1</u>, R. L. Jolley, Ed. (Ann Arbor, Michigan: Ann Arbor Science Publishers, Inc., 1978), pp. 105-138.
- 8. Bean, R. M., R. G. Riley and P. W. Ryan. "Investigation of halogenated components formed from chlorination of marine water," in <u>Water Chlorination--Environmental Impact and Health Effects, Vol. 2,</u> R. L. Jolley, H. Gorchev, D. H. Hamilton, Jr., Eds. (Ann Arbor, Michigan: Ann Arbor Science Publishers, Inc., 1978), pp.223-234.
- Carpenter, J. H. and C. A. Smith. "Reactions in Chlorinated sea water," in <u>Water Chlorination--Environmental Impact and Health Effects,</u> <u>Vol. 2</u>, R. L. Jolley, H. Gorchev, D. H. Hamilton, Jr., Eds. (Ann Arbor, Michigan: Ann Arbor Science Publishers, 1978), pp. 195-208.
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 13th ed. (New York: APHA, 1971), pp. 834-845.

Clam #	Length (inches)	Clam #	Length (inches)
1	2,216		1 391
2	1.886	27	1,501
Э	1.791	28	1.564
4	1,469	29	1.774
5	1.724	30	1.662
6	1.958	31	1.598
7	1.659	32	1, 785
В	2.045	33	1, 804
9	1.413	34	1.896
10	1.503	35	1.604
11	1.943	36	1.643
12	1.558	37	2.014
13	1.660	38	1,911
14	1.942	39	2,061
15	2.298	40	2, 142
16	1.715	41	1.892
17	1.857	42	2 111
18	1.675	43	1.866
19	1.524	44	1.853
20	1.681	45	2 031
21	1.338	46	1,826
22	1.403	47	1 882
23	1.653	48	1 561
24	1. 328	49	1.797
25	1.462	50	1.861

Table 1. Initial clam length in exposure tank receiving 100% control sea water. Date: 2/1/77

Table 2. Initial clam length in exposure tank receiving 94% control sea water, 6% chlorinated sea water. Date: 2/1/77

C)am #	Length (inches)	Clam #	Length (inches)
1	1.244	26	1.829
2	1.302	27	2.835
3	1.354	28	2.027
4	1.365	29	2.078
5	1.391	30	2.031
6	1.437	31	1.794
7	1.402	32	1.921
8	1.412	33	1.831
9	1,504	34	2.059
10	1.462	35	1.903
11	1.496	36	1.868
12	1,540	37	1.980
13	1.659	38	1.855
14	1.647	39	2.040
15	1.694	40	2.049
16	1.685	41	2.131
17	1.745	42	1.909
18	1.710	43	2.028
19	1.845	44	2.100
20	1,832	45	2.089
21	1.852	46	2.188
22	1,869	47	2.208
23	1.946	48	2.138
24	1.897	49	2.176
25	1.842	50	1.566

Clam 🖡	Length (inches)	Clam #	Length (inches)
1	1.142	26	1,875
2	1 212	27	1.919
3	1,235	28	1.802
4	1, 166	29	1.945
5	1 208	30	1.997
6	1,317	31	2.065
7	1 345	32	2.065
8	1.341	33	1.945
9	1 309	34	2.039
10	1 456	35	2.106
11	3 416	36	2.020
12	1 414	37	2,102
13	1 463	38	1.992
14	1 492	39	1,905
15	1 508	40	2,011
16	1 634	41	2.068
17	1 586	42	2,112
18	1.585	43	2, 107
19	3 530	44	2.089
20 .	1 673	45	2, 180
21	1 543	46	2.144
22	1 744	47	1.648
23	1 696	48	2,720
24	1 774	49	2.309
25	1 794	50	2 259

Table 3. Initial clam length in exposure tank receiving 88% control sea water, 12% chlorinated sea water. Date: 2/2/77

Table 4. Initial clam length in exposure tank receiving 75% control sea water, 25% chlorinated sea water. Date: 2/2/77

C1am #	Length (inches)	Clam 🖉	Length (inches)
1	1,005	26	1.994
2	1.044	27	1.918
3	1.093	28	1.904
4	1.093	29	2.040
5	1, 125	30	1.986
6	1.144	31	1.807
7	1.331	32	1,905
8	1.396	33	1.999
9	1, 345	34	2.074
10	1,399	35	2.007
11	1.492	36	2.020
12	1.429	37	2.007
13	1.498	38	2.075
14	1.581	39	2.209
15	1.572	40	2.053
16	1.571	41	2.001
17	1.545	42	1.977
18	1.562	43	2.105
19	1.615	44	2.095
20	1.469	45	2,063
21	1.604	46	2.303
22	1.769	47	2,201
23	1.736	48	2.206
24	1.817	49	2,202
25	1.850	50	1 500

Table 5.	Initial clam length in exposure tank receiving 50	1%
	control sea water, 50% chlorinated sea water.	
	Date: 2/2/77	

Clam #	Length (inches)	Clam 🖉	Length (inches)
1	1.249	26	1.831
2	1.337	27	1.909
3	1.337	28	1.888
4	1.398	29	1.893
5	1.412	30	1.899
6	1.490	31	1.910
7	1.568	32	1.964
6	1,565	33	1.844
9	1.596	34	2.125
10	1,563	35	1.967
11	1.518	36	1.951
12	1.504	37	2.048
13	1.610	38	2.079
14	1.580	39	2.000
15	1,675	40	2, 106
16	1.619	41	2,105
17	1.638	42	2.079
18	1.589	43	2.188
19	1.596	44	2.195
20	1.723	45	.2.153
21	1,695	46	2.127
22	1.708	47	2.289
23	1.788	48	2.105
24	1,854	49	2.233
25	1.780	50	2.189

Table 6. Initial clam length in exposure tank receiving 100% chlorinated sea water. Date: 2/3/77

Člamr#f	Length (inches)	Clam #	Length (inches)
1	1,118	26	1.83/
2	1.242	27	1.800
3	1.325	28	1.739
4	1.297	29	1.858
5	1.357	30	1.964
6	1.402	31	1.877
7	1.570	32	1.845
8	1.629	33	1.940
9	1.600	34	1.969
10	1.585	35	1.961
11	1,380	36	1.985
12	1.598	37	2.070
13	1.626	38	2.001
14	1.609	39	2.155
15	1,663	40	2.121
16	1.638	41	1.952
17	1.645	42	2,169
18	1.570	43	2.004
19	1.660	44	2.044
20	1.658	45	2.105
21	1.693	46	2.169
22	1.714	47	2.000
23	1.693	48	2,112
24	1.837	49	2.051
25	1. 789	50	2.173

Clam 🖡	Length (inches)	Clam #	Length (inches)
1	2,215	26	1.387
2	1.884	27	1.496
3	1.787	28	1.564
4	1.468	29	1.770
5	1,723	30	1.656
6	1.952	31	1.593
7	1,654	32	1.784
8	2.042	33	1.800
9	1.407	34	1.915
10	1.500	35	1.590
n	1,933	36	1.636
12	1,555	37	2.030
13	1.658	38	1.914
14	1,937	39	2.054
15	2.295	40	2.140
16	1.716	41	1.889
17	1,850	42	2,110
18	1.675	43	1.857
19	1.522	44	1.850
20	1.678	45	2.027
21	1.333	46	1.822
22	1.400	47	1.877
23	1.651	48	1.561
24	1. 326	49	1,796
25	1.461	50	1.857

Table 7. Length of clams in tank receiving 100% control sea water after 1 month of exposure. Date: 3/1/77

Table 8. Length of clams in tank receiving 94% control sea water, 6% chlorinated sea water after 1 month of exposure. Date: 3/1/77

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h (inches	Clam # L	Length (inches)	Clam #
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.825		1.242	1
31.352282. 4 1.362292 5 1.389302. 6 1.432311 7 1.400321. 8 1.412331. 9 1.501342 10 1.480351. 11 1.494361. 12 1.539371. 13 1.657381. 14 1.643392 15 1.689402 16 1.684412 17 1.741421 18 1.712432 20 1.830452 21 1.890462 23 1.944482 24 1.890492	2.829	27	1.300	2
4 1.362 29 2 5 1.389 30 2 6 1.432 31 1 7 1.400 32 1 8 1.412 33 1 9 1.501 34 2 10 1.480 35 1 11 1.494 36 1 12 1.539 37 1 13 1.657 38 1 14 1.643 39 2 15 1.684 41 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	2.019	28	1.352	3
5 1.389 30 2 6 1.432 31 1 7 1.400 32 1 8 1.412 33 1 9 1.501 34 2 10 1.480 35 1 11 1.494 36 1 12 1.539 37 1 13 1.657 38 1 14 1.643 39 2 15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.830 45 2 21 1.890 46 2 21 1.866 47 2 23 1.944 48 2 24 1.890 49 2	2.073	29	1.362	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.080	30	1.389	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.791	31	1.432	6
8 1.412 33 1. 9 1.501 34 2. 10 1.480 35 1. 11 1.494 36 1. 12 1.539 37 1. 13 1.657 38 1. 14 1.643 39 2 15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.639 44 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	1.922	32	1.400	7
9 1.501 34 2. 10 1.480 35 1. 11 1.494 36 1. 12 1.539 37 1. 13 1.657 38 1. 14 1.643 39 2 15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.839 44 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	1.835	33	1.412	8
10 1.480 35 1. 11 1.494 36 1. 12 1.539 37 1. 13 1.657 38 1. 14 1.643 39 2 15 1.689 40 2 16 1.694 41 2 17 1.741 42 1 18 1.712 43 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	2.055	34	1.501	9
11 1.494 36 1. 12 1.539 37 1. 13 1.657 38 1. 14 1.643 39 2 15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.639 44 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	1.900	35	1.480	10
12 1.539 37 1. 13 1.657 38 1. 14 1.643 39 2 15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.839 44 2 20 1.666 47 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	1.863	36	1.494	11
13 1.657 38 1. 14 1.643 39 2 15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.839 44 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	1.977	37	1.539	12
14 1.643 39 2 15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.639 44 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	1.851	38	1.657	13
15 1.689 40 2 16 1.684 41 2 17 1.741 42 1 18 1.712 43 2 19 1.639 44 2 20 1.830 45 2 21 1.890 46 2 23 1.944 48 2 24 1.890 49 2	2.036	39	1.643	14
16 1.684 41 2. 17 1.741 42 1 18 1.712 43 2. 19 1.839 44 2 20 1.830 45 2. 21 1.890 46 2. 23 1.944 48 2. 24 1.890 49 2.	2.048	40	1,689	15
17 1.741 42 1. 18 1.712 43 2. 19 1.839 44 2. 20 1.830 45 2. 21 1.890 46 2. 23 1.944 48 2. 24 1.890 49 2.	2.124	41	1.684	16
18 1.712 43 2 19 1.639 44 2 20 1.830 45 2 21 1.690 46 2 22 1.866 47 2 23 1.944 48 2 24 1.890 49 2	1.903	42	1.741	17
19 1.839 44 2 20 1.830 45 2 21 1.890 46 2 22 1.866 47 2 23 1.944 48 2 24 1.890 49 2	2.035	43	1.712	18
20 1.830 45 2. 21 1.890 46 2. 22 1.866 47 2. 23 1.944 48 2. 24 1.890 49 2.	2.097	44	1.839	19
21 1.890 46 2 22 1.866 47 2 23 1.944 48 2 24 1.890 49 2	2.086	45	1.830	20
22 1.866 47 2 23 1.944 48 2 24 1.890 49 2	2.185	46	1.890	21
Z3 1.944 48 2 24 1.890 49 2	2.208	47	1.866	22
24 1.890 49 2	2.134	48	1.944	23
	2.173	49	1.890	24
25 1.836 50 1.	1.586	50	1.836	25

Clam #	Length (inches)	Clam #	Length (inches)
1	1,139	26	1.870
2	1,216	27	1.916
3	1.234	28	1.800
4	1,163	29	1.939
5	1.206	30	1.996
6	1.315	31	2.061
7	1.342	32	2.062
8	1.338	33	1.943
9	1.307	34	2.037
10	1.453	35	2.100
11	1.412	36	2.018
12	1.411	37	2.100
13	1,460	38	1.988
14	1.490	39	1.900
15	1.507	40	2.013
16	1.632	41	2.064
17	1.583	42	2.109
18	1.586	43	2.108
19	1.532	44	2.085
20	1,670	45	2.178
21	1.540	46	2.143
22	1.742	47	1.846
23	1.694	48	2,218
24	1.772	49	2.308
25	1.793	50	2.257

Table 9. Length of clams in tank receiving 88% control sea water, 12% chlorinated sea water after 1 month of exposure. Date: 3/2/77

Table 10. Length of clams in tank receiving 75% control sea water, 25% chlorinated sea water after 1 month of exposure. Date: 3/4/77

Clam #	Length (inches)	Clam #	Length (inches)
1	1.003	25	1,893
2	1.042	27	1.918
3	1.090	28	1.904
4	1.092	29	2.036
5	1, 123	30	1.985
6	1,141	31	1.805
7	1.330	32	1.904
B	1.382	33	1.995
9	1.343	34	2.072
10	1,396	35	2.005
11	1.490	36	2.015
12	1.422	37	2.004
13	1.495	38	2.073
14	1.576	39	2,203
15	1.576	40	2.049
16	1.568	41	1.999
17	1.543	42	1.969
18	1.562	43	2.113
19	1.610	44	2.095
20	2.230	45	2.065
21	1.600	46	2.305
22	1.760	47	2.206
23	1.730	48	2.205
24	1.812	49	2,200
25	1,845	50	1,498

Clam #	Length (inches)	Clam #	Length (inches)
<u> </u>	1.250	26	1,828
2	1.335	27	1,908
3	1.336	28	1.688
Ă	1, 398	29	1,898
5	1,410	30	1.892
ъ́.	1.468	31	1.909
ž	1,569	32	1.962
Ŕ	1.563	33	1.842
9	1.596	34	2.124
10	1.561	35	1.965
11	1.517	36	1.949
12	1.500	37	2.042
13	1.610	38	2.076
14	1.579	39	1,999
15	1.673	40	2.100
16	1.618	41	2.105
17	1.636	42	2.079
18	1.588	43	2.183
19	1.595	44	2.196
20	1.722	45	2.153
21	1.695	46	2.128
22	1,707	47	2.287
23	1,788	48	2.105
24	1.859	49	2.233
Z 5	1.778	50	2.188

Table 11. Length of clams in tank receiving 50% control sea water, 50% chlorinated sea water after 1 month of exposure. Date: 3/4/77

,

Table 12. Length of clams in tank receiving 100% chlorinated sea water after 1 month of expsoure. Date: 3/4/77

C)am #	Length (inches)	Clam #	Length (inches)
1	1.118	26	1.836
2	1.240	27	1.798
3	1.324	28	1,738
Ă.	1.296	29	1.857
ś	1.356	30	1.964
6	1.400	31	1.876
7	1,565	32	1.844
à	1.628	33	1.933
ğ	1.598	34	1.967
10	1.584	35	1.960
11	1.380	36	1.985
12	1 593	37	2.069
23	1 625	38	2,100
14	1 607	34	2 153
35	1 663	40	2 120
36	1.605	41	1.950
17	1 644	42	2, 168
18	1 670	43	2,003
19	1 658	44	2 043
20	1.000	45	2 104
20	1.000	45	2 175
22	1 713	47	2 202
22	1.713	47	2 311
£3	1.074	40	2.111
24	1.83/	49	2.035
25	1.768	50	2.1/5

	Length (Inches)	Clam #	Length (inches)	Clam #	Length (inches)
		68 % SEA 1	WATER.	50% SEA 1	ATER.
CONTROL		12% CH	LORINATED SEA WATER	50% Ci	ILORINATED SEA WATE
51	1,923	51	1.880	51	1 764
52	1,979	52	1 868	52	1 903
53	1.893	53	1 879	53	1 845
54	1,968	54	2.008	54	1 736
55	3 788	55	1 924	55	1 771
56	3 770	56	1.627	56	1 924
57	3 857	57	1.035	57	1.034
58	1 884	50	1.913	58	1,740
59	2 056	50	1.921	50	1.707
60	1 012		1.909	59	1.781
SEA WATER	ATED SEA WATER	75% SEA WAT 25% CHLO	<u>ER.</u> RINATED SEA WATER	100% CHL	ORINATED SEA WATER
<u>SEA WATER</u> 6% CHLORIN	ÂTED SEA WATER	75% SEA WAT 25% CHLO 51	<u>ER,</u> RINATED SEA WATER 1.698	<u>100% CHL</u> 51	ORINATED SEA WATER
<u>SEA WATER</u> 6% CHLORIN 51 52	ATED SEA WATER 1.916 1.919	75% SEA WAT 25% CHLO 51 52	<u>ER,</u> <u>RINATED SEA WATER</u> 1.698 3.890	<u>100% CHL</u> 51 52	ORINATED SEA WATER 1.664 1.556
SEA WATER 6% CHLORIN 51 52 53	ATED SEA WATER 1.916 1.919 1.893	75% SEA WAT 25% CHLO 51 52 53	<u>ER.</u> RINATED SEA WATER 1.690 1.890 1.892	100% CHL 51 52 53	ORINATED SEA WATER 1. 564 1. 556 1. 767
51 52 53 54	ÂTED SEA WATER 1.916 1.919 1.893 1.879	75% SEA WAT 25% CHLO 51 52 53 54	<u>ER.</u> RINATED SEA WATER 1.690 1.890 1.892 1.692	100% CHL 51 52 53 54	ORINATED SEA WATER 1.664 1.556 1.767 1.783
<u>SEA WATER</u> 6% CHLORIN 51 52 53 54 55	ATED SEA WATER 1.916 1.919 1.893 1.879 1.709	75% SEA WAT 25% CHLO 51 52 53 54 55	ER, RINATED SEA WATER 1.698 1.890 1.892 1.692 1.902	<u>100% CHL</u> 51 52 53 54 55	ORINATED SEA WATER 1.564 1.556 1.767 1.783 1.659
51 52 53 54 55 55	ATED SEA WATER 1.916 1.919 1.893 1.879 1.709 1.813	75% SEA WAT 25% CHLO 51 52 53 54 55 56	ER. RINATED SEA WATER 1.690 1.890 1.692 1.692 1.902 1.911	<u>100% CHL</u> 51 52 53 54 55 55	ORINATED SEA WATER 1.564 1.556 1.767 1.783 1.659 1.544
SEA WATER 6% CHLORIN 51 52 53 54 55 56 57	ATED SEA WATER 1.916 1.919 1.893 1.879 1.709 1.813 1.610	75% SEA WAT 25% CHLO 51 52 53 54 55 56 57	ER. RINATED SEA WATER 1.698 1.890 1.892 1.692 1.902 1.911 1.789	100% CHL 51 52 53 54 55 56 57	ORINATED SEA WATER 1.664 1.556 1.767 1.783 1.659 1.544 1.607
51 52 53 54 55 55 55 55 56 58	ATED SEA WATER 1.916 1.919 1.893 1.879 1.709 1.813 1.610 1.722	75% SEA WAT 25% CHLO 51 52 53 54 55 56 57 58	ER, RINATED SEA WATER 1.698 1.890 1.892 1.692 1.902 1.911 1.789 1.921	<u>100% CHL</u> 51 52 53 54 55 56 57 59	ORINATED SEA WATER 1.664 1.556 1.767 1.783 1.659 1.544 1.607 1.721
51 52 53 54 55 55 55 55 55 55 55 55 55 55 56 57 58 59	ATED SEA WATER 1.916 1.919 1.893 1.879 1.709 1.813 1.610 1.722 1.950	75% SEA WAT 25% CHLO 51 52 53 54 55 56 57 58 59	ER, RINATED SEA WATER 1.698 1.890 1.892 1.692 1.902 1.911 1.789 1.921 2.054	<u>100% CHL</u> 51 52 53 54 55 56 56 57 58 58	ORINATED SEA WATER 1.664 1.556 1.767 1.783 1.659 1.544 1.607 1.771 1.879
<u>5 SEA WATER</u> <u>6% CHLORIN</u> 51 52 53 54 55 56 57 58 59 59 50	ATED SEA WATER 1.916 1.919 1.893 1.879 1.709 1.813 1.610 1.722 1.950 1.724	75% SEA WAT 25% CHLO 51 52 53 54 55 56 57 58 59 60	ER. RINATED SEA WATER 1.598 1.890 1.892 1.692 1.902 1.911 1.789 1.921 2.054 2.011	100% CHL 51 52 53 54 55 56 57 58 59 60	ORINATED SEA WATER 1.664 1.556 1.767 1.783 1.659 1.544 1.607 1.771 1.879 2.004
<u>51</u> 51 52 53 54 55 56 57 58 59 60	ÂTED SEA WATER 1.916 1.919 1.893 1.879 1.709 1.813 1.610 1.722 1.950 1.724	75% SEA WAT 25% CHLO 51 52 53 54 55 56 57 58 59 60	ER. RINATED SEA WATER 1.698 1.890 1.892 1.692 1.902 1.911 1.789 1.921 2.054 2.011	100% CHL 51 52 53 54 55 56 57 58 59 60 61	ORINATED SEA WATER 1.664 1.556 1.767 1.783 1.659 1.544 1.607 1.771 1.879 2.004 1.529

Table 13. Length of clams added to tanks to replace animals removed for chemical and histological examination.

Table 14. Length of clams in tank receiving 100% control sea water after 2 months of exposure. Date: 4/4/77

Clam #	Length (inches)	Clam #	Length (inches)
1	2, 215	31	1.592
2	1.884	32	1.781
3	Removed*	33	1.800
4	1.465	34	1.913
5	Removed*	35	1.598
6	1.951	36	Removed*
7	Removed*	37	2.029
8	Removed*	38	1.912
9	1.406	39	Removed*
10	1.501	40	2.140
11	1.932	41	1.889
12	1.556	42	2.108
13	1.656	43	1.857
14	1.936	44	1,849
15	2.294	45	Removed*
16	1.713	46	1.822
17	1.849	47	Removed*
18	1.674	48	1.561
19	1.521	49	1.796
20	Removed*	50	1.857
21	1.332	51	1.922
22	1.400	52	1.977
23	1.650	53	1.890
24	1.326	54	1.965
25	1.460	55	1.787
26	1.386	56	1.768
27	Removed*	57	1.865
28	1 562	58	1.883
29	1 770	59	2.054
30	1 654	60	1 911

* Removed for Chemical or Histological Analysis.
| lam # | Length (inches) | Clam # | Length (inches) | Clam 🖡 | Length (inches) |
|-------|-----------------|--------|-----------------|--------|-----------------|
| 1 | 1.242 | 21 | Removed* | 41 | 2.123 |
| 2 | 1.298 | 22 | 1.867 | 42 | 1.903 |
| 3 | 1.352 | 23 | 1.943 | 43 | 2.034 |
| 4 | 1.361 | 24 | 1.891 | 44 | 2.098 |
| 5 | 1,389 | 25 | Removed* | 45 | Removed* |
| 6 | 1.430 | 26 | 1.825 | 46 | 2.185 |
| 7 | 1.401 | 27 | 1.829 | 47 | Removed |
| 8 | 1.411 | 28 | Removed* | 48 | Removed* |
| 9 | 1.501 | 29 | 2.072 | 49 | Removed* |
| 10 | 1.460 | 30 | 2.081 | 50 | 1.565 |
| 11 | 1,487 | 31 | 1.791 | 51 | 1.916 |
| 12 | Removed* | 32 | 1.925 | 52 | 1.919 |
| 13 | 1.656 | 33 | 1.834 | 53 | 1.892 |
| 14 | 1.543 | 34 | 2.057 | 54 | 1.879 |
| 15 | 1.688 | 35 | 1,898 | 55 | 1.709 |
| 16 | 1.685 | 36 | 1.874 | 56 | 1.811 |
| 17 | 1.740 | 37 | 1.977 | 57 | 1.609 |
| 18 | 1.711 | 38 | 1.850 | 58 | 1.722 |
| 19 | Removed* | 39 | 2.035 | 59 | 1.950 |
| 20 | Removed* | 40 | 2.047 | 60 | 1.726 |

Table 15. Length of clams in tank receiving 94% control sea water, 6% chlorinated sea water after 2 months of exposure. Date: 4/5/77

* Removed for Chemical or Histological Analysis.

Table 16. Length of clams in tank receiving 88% control sea water, 12% chlorinated sea water after 2 months of exposure. Date: 4/5/77

Clam #	Length (inches)	Clam #	Length (inches)
1	1 139	31	2.062
2	1 216	32	2.061
3	1 234	33	1.942
Ă	1 164	34	2.034
5	1, 205	35	2.100
ě	1.315	36	2.013
ž	Removed*	37	Removed*
8	1 337	38	1.968
ğ	Removed*	39	1.901
10	1 452	40	2.022
11	Renoved®	41	2.064
12	1.410	42	2.108
13	1.460	43	2.107
14	1.490	44	2.094
15	1.507	45	Removed*
16	1.632	46	Removed*
17	1.583	47	1,846
18	Removed*	48	2.216
19	1.525	49	2.309
20	1,670	50	Removed*
21	1.539	51	1.880
22	1.741	52	1.868
23	1.695	53	1.876
24	Removed*	54	2.008
25	Removed*	55	1.823
26	1.870	56	1,656
27	1.915	57	1.904
28	1,800	58	1.921
29	1.939	59	1,909
30	1.995	60	1,709

Clam #	Length (inches)	Clam #	Length (inches)
1	1.003	31	1.604
2	1.040	32	Removed*
3	1.090	33	1.994
4	1.090	34	2.071
5	1.123	35	2.005
6	1.141	36	2.011
7	Removed*	37	Renoved*
8	1.381	38	2.073
9	1.344	39	2.206
10	1,396	40	Removed*
11	1.488	41	1,999
12	1.422	42	1.980
13	1.496	43	Removed*
14	1.576	44	2,096
15	1.570	45	2.069
16	1.569	46	Removed*
17	Removed	47	Removed*
18	1.562	48	2.204
19	1.610	49	2,200
20	2.229	50	1.500
21	1,600	51	1.699
22	1,760	52	1.890
23	1.734	53	1.894
24	1.814	54	1,692
25	Removed*	55	1,901
26	1,892	56	1.912
27	Removed*	57	1,783
28	Removed*	58	1.921
29	2.035	59	2.067
30	1.985	50	2.010

Table 17. Length of clams in tank receiving 75% control sea water, 25% chlorinated sea water after 2 months of exposure. Date: 4/5/77

Table 18. Length of clams in tank receiving 50% control sea water, 50% chlorinated sea water after 2 months of exposure. Date: 4/6/77

Clam 🖡	Length (inches)	Clam #	Length (inches)
1	1.246	31	1.908
2	1.335	32	1.960
3	Removed*	33	1.841
4	1.392	34	2.121
5	1.408	35	1.968
6	1.485	36	Removed*
7	Removed*	37	Removed*
8	1.562	38	Removed*
9	Removed*	39	Removed*
10	1.559	40	2.100
11	1.514	41	2.102
12	1,499	42	2.077
13	1.609	43	2.180
14	1.575	44	2.191
15	1,671	45	2.152
16	1.612	46	2.125
17	1.634	47	2.286
18	1.587	48	2.110
19	Removed*	49	Removed*
20	1.722	50	2.190
21	1.692	51	1.763
22	1,705	52	1.902
23	1.786	53	1.844
24	1.852	54	1.735
25	1.778	55	1.770
26	1.827	56	Removed 3/30/77
27	1.907	57	1,743
28	1.885	58	1.767
29	Removed*	59	1.760
30	1.890	50	2.065

Clam #	Length (inches)	Clam #	Length (inches)
1	1.116	31	1.875
2	Removed*	32	Removed*
3	1.315	33	1.936
4	1.295	34	1.966
5	1.355	35	1,963
6	1.400	36	1.984
7	1,566	37	Removed*
8	1.627	38	2.097
9	1.597	39	2.153
10	1.582	40	2.117
11	Removed*	41	Removed*
12	Removed*	42	Removed*
13	1.625	43	Removed*
14	1.604	44	2.042
15	1.662	45	2.104
16	1.637	46	2.170
17	1.644	47	2.002
18	1.673	48	2.115
19	Removed*	49	2.055
20	1.656	50	2.173
21	1.690	51	1.664
22	Removed*	52	1.555
23	1.694	53	1.764
24	1,836	54	1.782
25	1,789	55	1.660
26	Removed*	56	1.562
27	1.799	57	1.605
28	Removed*	58	1.770
29	1.856	59	1.879
30	1.963	60	2,005

Table 19. Length of clams in tank receiving 100% chlorinated sea water after 2 months of exposure. Date: 4/6/77

Table 20. Length of clams in tank receiving 100% control sea water after 3 months of exposure. Date: 5/2/77

C1aun # [°]	Length (inches)	Clam #	Length (inches)	Clam #	Length (inches)
1	2,213		1 560	55	
2	1.683	29	1 769	33 52	1.704
3	Removed*	30	1.651	50	1.703
4	Removed*	31	Removed*	50	1.003
5	Removed*	32	1.778	50	2.073
6	1.950	22	1 799	50	1 910
7	Removed*	34	Removed*	50 51	1.510
8	Removed*	35	Removed*	71	1.432
9	1.404	26	Removed #	71	1.2/3
10	Removed*	30	Removed"	72	1,1/3
11	1.930	38	1 G12	73	1 203
12	Removed*	30	L, JIC Removed*	75	1 250
13	1.655	40	2 120	75	1.333
14	1.934	41	1 000	70	1,1//
15	2.293	42	Removad*	78	1,200
16	1.711	47	1 954	70	1.370
17	1.847	AA	1.034	RÓ	1 200
18	1.673	45	Removed*		1.200
19	1.519	46	1 820		
20	Removed*	47	Removed®		
21	Removed*	48	Removed*		
22	1.398	49	1 795		
23	Removed*	50	1 855		
24	1.324	51	1 920		
25	1.454	52	1.920		
26	1.385	53	1 988		
27	Removed*	54	1.954		

Clam #	Length (inches)	Clam #	Length (inches)
1	1. 240	36	1.860
2	1.297	37	1.974
3	1.349	38	Removed*
4	Removed*	39	2.034
5	Removed*	40	2.045
6	1.428	41	2.122
7	1,399	42	Removed*
8	1,409	43	Removed*
9	1.499	44	2.094
10	1.458	45	Removed*
11	Removed*	46	2.185
12	Removed*	47	Removed*
13	1.654	48	Removed*
14	Removed*	49	Removed*
15	1.687	50	1.563
16	1.683	51	1.913
17	1.739	52	1,916
18	1.710	53	1.889
19	Removed*	54	1.876
20	Removed*	55	1.707
21	Removed*	56	1,800
22	1.865	57	1.607
23	1.942	58	1.717
24	Removed*	59	1.948
25	Removed*	60	1.722
26	1.823	71	1.430
27	1,825	72	1.390
28	Removed*	73	1.339
29	Removed*	74	1.216
30	2.029	75	1.173
31	Removed*	76	1.338
32	1.923	77	1.529
33	1,831	78	1.416
34	2.053	79	1.158
35	1.897	80	1.314

Table 21. Length of clams in tank receiving 94% control sea water, 6% chlorinated sea water after 3 months of exposure. Date: 5/3/77

Table 22. Length of clams in tank receiving 88% control sea water, 12% chlorinated sea water after 3 months of exposure. Date: 5/4/77

Clam #	Length (inches)	Clam #	Length (inches)	Clam #	Length (inches)
1	1, 137	27	1.914	 5 3	1 873
2	Removed®	28	1.796	53	2 008
3	1.232	29	Removed*	55	1 821
Ă	1 160	30	1.992	50	1.658
5	Removed*	31	2.059	50	1.000
6	1 314	32	Remo∨ed*	J/ 50	1 910
7	Removed*	33	Removed*	20	1.923
8	1 335	34	2.035	59	1.706
9	Removed*	35	2.098	60	1 134
10	1 450	36	2.015	10	1 535
11	Removed*	37	Removed*	71	1.313
12	1 408	38	1.985	72	1 413
13	1 457	39	1,899	73	1.116
14	1 488	40	2.003	74	1,110
15	1 504	41	2.063	75	1 207
16	Removed*	42	Removed*	70	1.207
17	1 591	43	2 108	70	1.303
18	Removed*	44	2.084	78	1,410
10	Removed*	45	Removed*	79	1.323
20	1 220	46	Removed*	80	1, 543
20	1.005	47	Removed*		
22	1.007 Benguadi	AR .	2 215		
22	Removed	49	2 305		
2.3	kemoveq"	50	Removed*		
24	removed"	51	1 979		
20	Kemovéd"	52	1.070		
20	1,868	25	1.004		

Clam #	Length (inches)	. Clam 🖡	Length (inches)
1	1,000	36	2.019
2	1.039	37	Removed*
3	1,087	38	Removed*
4	Removed*	39	Removed*
5	1.120	40	Removed*
6	Removed*	41	1.998
7	Removed*	42	Removed*
в	Removed*	43	Removed*
9	1.342	44	2.093
10	1.395	45	2.073
11	Removed*	46	Removed*
12	1.420	47	Removed*
13	1.493	48	Removed*
14	1,574	49	Removed*
15	1.568	50	1.496
16	1.567	51	1.696
17	Removed*	52	1.887
18	1,560	53	1.892
19	Removed*	54	1.692
20	Removed*	55	1.896
21	Removed*	56	1.909
22	1.758	57	1.780
23	1,735	58	1.919
24	1.812	59	2.068
25	Removed*	60	2.017
26	1.889	61	1.197
27	Removed*	71	1. 442
28	Removed*	72	1.329
29	2.037	73	1.215
30	1, 983	74	1.307
31	1.803	75	1.204
32	Removed*	76	1.355
33	1.992	77	1.293
34	2.070	78	1.404
35	2,004	79	1.318
- *		80	1.128

Table 23. Length of clams in tank receiving 75% control sea water, 25% chlorinated sea water after 3 months of exposure. Date 5/4/77

Table 24. Length of clams in tank receiving 50% control sea water, 50% chlorinated sea water after 3 months of exposure. Date: 5/5/77

.

÷

Clam #	Length (inches)	Clam #	Length (inches)	Clam #	Length (inches)
1	1.245	27	Romound*	<u> </u>	1 847
2	Removed*	28	Removed	53	1 731
3	Renoved*	29	Proved*	55	1 769
4	Removed*	30	1 900	55	Removed*
5	1.407	31	1,000	50	1 742
6	1.484	32	Pomovod*	58	1 766
7	Removed*	37	1 840	50	1 778
8	1.560	14	1,640	50	2 063
9	Removed*	35	Z. 117 Domawardt	60 61	1 302
10	1.557	36	Removed	71	1 425
11	1,513	27	Removed Removed	71	1 225
12	1.498	37	Removed"	72	1 216
13	1,607	30	Removed	73	1 410
14	1.575	40	2 600	76	1 196
15	1.669	47	2.090	75	1 119
16	Removed	42	2.100	/0 tr	1.117
17	Removed*	42	2.073	70	1.300
18	1.585	43	2.1/6	70	1 365
19	Removed*	44	REMOVED"	73	1.330
20	1.725	46	2,150	¢υ	1.442
21	1.690	40	2.123		
22	1.703	47	Kemoved [*]		
23	1.785	40	2.109		
24	1.649	9 9	*emoved*		
25	1 776	50	2.189		
26	1 825	51	1.762		
	1.020	52	1.900		

C)am #	Length (inches)	Clam #	Length (inches)	Clam #	Length (inches)
1	Removed*	25	1 787	49	2.044
2	Removed*	26	Removed*	50	2.168
3	1.313	27	Semoved*	51	1.662
4	Removed*	28	Renoved*	52	1.554
5	1.354	29	1.855	53	1.762
6	1.398	30	1, 961	54	1.780
7	1.569	31	1.874	55	1.659
8	1,625	32	Removed ^A	56	1.559
9	1.595	33	1.934	57	1.604
10	1.583	34	1.964	58	1,768
11	Renoved*	35	1,961	59	1.677
12	Removed*	36	Removed*	60	2.004
13	1.623	37	Removed	61	1.526
14	Removed*	38	2.098	52	1.874
15	Removed*	39	Removed*	71	1.464
16	1.635	40	2,117	72	1.319
17	1.642	41	Removed®	73	1.343
18	1.668	42	Removed*	74	1.126
19	Removed*	43	Removed*	75	1.362
50	1.654	44	2.039	76	1.156
21	1.689	45	Removed*	77	1.400
22	Removed*	46	2,169	78	1.349
23	Removed*	47	Removed*	79	1.254
24	1.835	48	2.109	80	1. 344

Table 25. Length of clams in tank receiving 100% chlorinated sea water after 3 months of exposure. Date: 5/5/77

Table 26. Dissolved oxygen, temperature, salinity and pH of sea water in tank receiving 75% control sea water and 25% chlorinated sea water.

Date	Temperature	Salinity	Dissolved Dxygen	рн
	-0	-/-	Ng/x	7.0
2/2/11	15.0	31.0	8.15	7.5
2/4/1/	14.9	30.3	8.04	7.3
2/6/11	15.0	31.0	3.10	9.0
2/8/77	15.1	31.0	7.98	2.0
2/9///	15.0	30.3	7.74 9.05	7.0
2/11/77	15.1	30.8	8.05	0.U 9.0
2/13/77	15.1	30.0	8.12	0.0
2/14///	14.8	31.0	8.04	7.0
2/16///	15.2	30,6	7.45	7.5
2/18/77	15.1	30.4	8.10	B.U
2/21/77	15.2	30.4	8.07	8.0
2/23/77	15.0	30.8	7.78	7.7
2/25/77	15.0	30.7	7.88	7.9
2/28/77	15.3	30.0	7.94	8.0
3/2/77	15.3	29.8	8.00	0.U 7.9
3/4/77	15.6	30.1	8.10	/.0
3/7/77	15.2	30.0	7.98	8.0
3/9/77	15.1	30.3	8.20	8.0
3/11/77	15.3	30.4	8.30	7.9
3/14/77	15.1	30.7	8.20	D. 1 7 0
3/16/77	15.0	30.6	8.15	7.9
3/18/77	15.0	30.7	8.18	7.9
3/21/77	15.0	30.0	8.14	8.0
3/23/77	15.2	29.5	8.04	7.0
3/25/77	14.8	30.0	8.28	7.9
3/28/77	14.8	30.4	8.34	7.9
3/30/77	14.5	30.4	8.35	7.9
4/1/77	15.0	30.3	8,40	7.9
4/4/77	15.0	29.9	8.10	8.0
4/5/77	15.0	30.0	8.04	7.8
4/8/77	15.1	30.D	8.14	8.0
4/11/77	15.2	30.4	8.20	7.9
4/13/77	15.2	30.4	8.25	8.0
4/15/77	15.0	30.5	8.25	8.0
4/18/77	14.8	30.2	9.04	8.0
4/20/77	14.9	30.2	8.68	8.0
4/22/77	14.7	30.3	8.16	8.0
4/25/77	14.8	30.3	8.16	8.0
4/27/77	14.8	30.2	8.30	8.0
4/29/77	14.9	30.6	8.25	8.1
5/2/77	14.8	30.2	8.23	8.1
5/4/77	14.2	30.4	8.26	8.1
5/6/77	15.0	30.0	8.10	8.1
5/9/77	14.7	30 3	8.24	8.1

	Control Sea Water/Chlorinated Sea Water						
Date	100%/ _{0%}	94X/ _{6X}	88X/12X	75% / _{25%}	50%/50%	^{0%} /100%	
2/2/77	. 00				. 01	. 01	
2/4/77	.00				.01	. 02	
2/8/77	.00				.01	. 01	
2/9/77	. 00				.01	. 01	
2/11/77	.00		•-		01	.01	
2/14/77	00				01	.01	
2/16/77	00				01	. 02	
2/18/77	00		•		01	02	
2/21/77	00				01	. 01	
2/23/77					01	01	
2/25/77	00				01	01	
2/28/77	.00				01	01	
2/20//1	. 00				. 01	.01	
3/2/1/	.00				. 01	.01	
3/4///	.00				.01	. 51	
3/1/11	. 00				.01	. 01	
3/9///	.00		•-		. 01	. 01	
3/11///	. 01				. 01	.01	
3/14/7/	.00				. 01	. 02	
3/16/77	. 00			•-	. 01		
3/18/77	. 00				.01	. 02	
3/21/77	. 00				.01	. 02	
3/23/77	. 00				. 01	. 02	
3/25/77	. 00	. –		• •	. 01	. 02	
3/28/77	. 00				.01	. 02	
3/30/77	. 00				. 01	. 02	
4/1/77	. 00				. 01	. 02	
4/4/77	. 00				. 01	. 01	
4/6/77	. 00				. 00	.01	
4/8/77	. 00				. 01	. 02	
4/11/77	. 00				. 01	. 02	
4/13/77	. 00				. 01	. 02	
4/18/77	. 00				. 01	. 02	
4/20/77	. 00				. 01	. 02	
4/22/77	. 01				. 02	. 02	
4/25/77	01	. 01	. 01	. 01	. 02		
4/27/77	. 00	01	01	.01	.01	. 02	
4/29/77	00	01	01	01	.02	. 03	
5/2/77	.00	01	01	01	.01	. 02	
5/4/77	.01	.01	01	01	01	03	
5/5/77	. 01	. 01	.01	01	. 01	03	
5/0/77	.01	. 01	.01	01	.01	.03	
3/ 3/ 11	. 00	.01	.01	.01	.01	.03	

Table 27. Chlorine produced oxidant concentrations in clam exposure tanks (mg/l).

Table 28. Length change in clams from tank receiving 100% control sea water after 3 months of exposure.

Clam #	$\Delta Length$ (inches) x 10^{-3}	Clam #	$\Delta Length$ (inches) x 10 ⁻³
1	-3		
2	-3	26	-6
6	-8	28	-4
9	-9	29	-5
11	-13	30	-9
13	-5	32	-7
14	-8	33	-5
15	-5	38	+1
16	-4	40	-4
17	-10	41	-4
18	-3	43	-12
19	-5	44	-6
22	-5	46	-6
24	-4	49	-2
25	-8	50	-6

Clan #	$\Delta length (inches) \times 10^{-3}$	
1	-4	
2	-5	
3	-5	
6	-9	
7	-3	
8	-3	
9	-5	
10	-4	
13	-5	
15	-7	
16	-2	
17	-6	
18	0	
22	- 4	
23	- 4	
26	-6	
27	- 10	
30	-2	
32	+2	
33	0	
34	-6	
35	-6	
36	-8	
37	-6	
39	-6	
40	-4	
41	- 9	
44	-6	
46	- 3	
50	- 3	

Table 29. Length change in clams from tank receiving 94% control sea water, 6% chlorinated sea water after 3 months of exposure.

Table 30. Length change in clams from tank receiving 88% control sea water, 12% chlorinated sea water after 3 months of exposure.

Clam #	ΔLength (inches) x 10 ⁻³	
1	-5	
3	-3	
4	- 6	
6	-3	
e	-6	
10	-6	
12	-6	
13	-6	
14	-4	
15	-4	
17	-5	
20	-4	
21	-6	
26	-7	
27	-5	
28	-6	
30	-5	
31	-6	
34	- 4	
35	-8	
36	-5	
38	-7	
39	-6	
40	-8	
41	-5	
43	+1	
44	- 5	
48	-5	
40	-4	

Çlam 🗰	ΔLength (inches) x 10^{-3}
1	-5
2	-5
3	-6
5	-5
9	- 3
10	-4
12	-9
13	-5
14	-7
15	-4
16	-4
18	-2
22	-11
23	-1
24	-5
29	-3
30	- 3
31	-4
33	-7
34	- 4
35	- 3
36	-1
41	- 3
44	-2
45	+10
50	-4

Table 31. Length change in clams from tank receiving 75% control sea water, 25% chlorinated sea water after 3 months of exposure.

•

Table 32. Length change in clams from tank receiving 50% control sea water, 50% chlorinated sea water after 3 months of exposure.

Clam #	$\Delta Length$ (inches) x 10^{-3}	
1	-4	
5	-5	
6	-6	
8	-5	
10	-6	
11	-5	
12	-6	
13	-3	
14	-5	
15	-6	
18	-4	
20	+2	
21	-6	
22	-5	
23	-3	
24	-5	
25	-4	
26	-6	
30	-11	
31	-4	
33	-4	
34	-6	
40	-8	
41	-5	
42	-4	
43	-10	
45	-3	
45	-4	
48	+4	
50	0	

Clam #	$\Delta Length$ (inches) x 10 ⁻³	
3	-12	
5	-3	
6	-4	
7	-1	
8	-4	
9	-5	
10	-2	
13	-3	
16	-3	
17	-3	
18	-2	
20	-4	
21	-4	
24	-2	
25	-2	
29	-3	
30	-3	
31	-3	
33	-6	
34	- 5	
35	0	
38	- 3	
40	-4	
44	-5	
46	0	
48	-3	
49	-7	
50	-5	

Table 33. Length change in clams from tank receiving 100% chlorinated sea water after 3 months of exposure.

Table 34. Summary of length changes at all test conditions after 3 months of exposure.

ontrol/ Chlorinated	Average Difference (inches x 10 ⁻³)	5.D <u>.</u> (x 10 ⁻³)	Number
00% 0%	-6	3	29
4%/ _{5%}	-5	3	30
¹³¹ /123	-5	2	29
25%	-5	2	27
^{7/} 50%	- 4	3	30
⁷ 100%	-4	2	28

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clam #	Length (mm)	Width (mm)	Thickness (mm)	Weight (grams)
2403723191134037231911340372312.2442725145.93532301810.2952926146.6472824145.3283128178.6592622124.05103028178.15112724145.66123229179.24132724145.63142926157.24153329179.501640372219.601838342115.701934311810.902139352018.082236321912.562336331912.56243027157.122538332014.802640352116.602733301812.0228166.603036332013.503140362116.603241372219.74333229178.944437342115.5	1	39	35	21	16,35
3 40 37 23 21, 24 4 27 25 14 5, 93 5 32 30 18 10, 29 6 29 26 14 6, 64 7 28 24 14 5, 32 8 31 28 17 8, 65 9 26 22 12 4, 05 10 30 28 17 8, 15 11 27 24 14 5, 65 13 27 24 14 5, 65 14 29 26 15 7, 24 15 33 29 17 9, 50 16 40 37 22 19, 09 17 40 36 22 19, 09 17 40 36 22 19, 09 17 40 36 21 16, 80 20 34 31 18 11, 80 21 39 35 20 18, 08 <	2	40	37	23	19.11
4 27 25 14 $6, 64$ 5 32 30 18 $10, 29$ 6 29 26 14 $6, 64$ 7 28 24 14 $5, 32$ 8 31 28 17 $8, 65$ 9 25 22 12 $4, 05$ 11 27 24 14 $5, 66$ 12 32 29 17 $9, 26$ 13 27 24 14 $5, 63$ 14 29 26 15 $7, 24$ 15 33 29 17 $9, 50$ 16 40 37 22 $19, 03$ 17 40 36 22 $18, 40$ 20 34 31 18 $10, 90$ 21 39 35 20 $18, 08$ 22 36 32 19 $12, 55$ 23 36 32 19 $12, 58$	3	40	37	23	21.24
5 32 30 18 10.23 6 29 26 14 6.64 7 28 24 14 5.32 8 31 28 17 8.65 9 26 22 12 4.05 11 27 24 14 5.66 12 32 29 17 9.24 13 27 24 14 5.66 14 29 26 15 7.24 15 33 29 17 9.50 16 40 37 22 19.09 17 40 36 22 19.09 17 40 36 22 19.09 17 40 36 22 19.09 17 40 36 22 19.09 17 40 36 22 19.09 21 39 35 20 18.8	4	27	25	14	5.93
\circ 29 20 14 \circ \circ 7 28 24 14 5.32 8 31 28 17 8.65 9 25 22 12 4.05 10 30 28 17 8.15 11 27 24 14 5.65 12 32 29 17 9.24 13 27 24 14 5.65 14 29 26 15 7.24 15 33 29 17 9.50 16 40 37 22 19.03 17 40 36 22 19.03 18 38 34 21 15.70 19 34 31 18 10.90 21 39 35 20 18.08 22 36 32 19 12.55 23 36 33 20 14.60 26 40 35 21 16.69 <	5	32	30	18	10.29
i i	7	29	25	14	6.64
3 26 22 12 4.05 10 30 28 17 8.15 11 27 24 14 5.65 13 27 24 14 5.63 14 29 26 15 7.24 15 33 29 17 9.50 16 40 37 22 19.09 17 40 36 22 19.40 18 38 34 21 15.70 19 34 31 18 10.90 20 34 30 18 10.90 21 39 35 20 18.08 24 30 27 15 7.12 25 36 32 19 12.56 23 36 33 20 14.80 26 40 35 21 16.89 27 33 30 18	Ŕ	20	24	17	D. 32 9 55
10 30 28 17 8.15 11 27 24 14 5.65 12 32 29 17 9.24 13 27 24 14 5.63 14 29 26 15 7.24 15 33 29 17 9.50 16 40 37 22 19.09 17 40 36 22 13.40 18 38 34 21 15.70 19 34 31 18 11.80 20 34 30 18 10.90 21 39 35 20 18.06 22 36 33 19 12.55 23 36 33 20 14.60 24 30 27 15 7.12 25 38 33 20 14.80 26 40 35 21 16.6 30 36 33 20 13.50 31 <td>9</td> <td>26</td> <td>20</td> <td>12</td> <td>4.05</td>	9	26	20	12	4.05
11 27 24 14 $5, 56$ 12 32 29 17 9, 24 13 27 24 14 5, 56 14 29 26 15 7, 24 15 33 29 17 9, 50 16 40 37 22 19, 03 17 40 36 22 19, 40 18 38 34 21 15, 70 19 34 31 18 10, 90, 20 34 30 18 10, 90, 21 39 35 20 18, 08 22 36 32 19 12, 55 23 36 33 19 12, 58 24 30 27 15 7, 12 25 30 33 20 14, 80 26 40 35 32 18 10, 38 28 35 32 18 12, 02 29 30 28 16 8, 04	10	30	28	17	8,15
123229179,24132724145,63142926157,24153329179,501640372219.091740362219.401838342115.701934311811.802034301810.902139352018.082236331912.552336331912.58243027157.122538332014.802640352116.892733301812.02293028168.083036332013.503140362116.603241372219.74333229178.94343129169.7835321811.864437332014.7347322824145.533645422728.663732281912.464035321811.864437332014.73453129179.18463733	11	27	24	14	5.66
132724145.63142926157.24153329179.501640372219.091740362219.401838342115.701934311811.802034301810.902139352018.082236321912.552336332014.80243027157.122538332014.802640352116.892733301812.02293028168.083036332013.503140362116.603241372219.74333229178.94343129178.9435321811.864136331914.214241362117.743935321912.663732281912.664437342119.134336321912.664437332014.73453129179.3846373320 <td>12</td> <td>32</td> <td>29</td> <td>17</td> <td>9.24</td>	12	32	29	17	9.24
142926157.24153329179.501640372219.091740362219.401838342115.701934311811.802034301810.902139352018.082236321912.552336331912.58243027157.122538332014.802640352116.892733301810.382835321812.02293028168.093036332013.503140362116.603241372219.74333229178.94343129169.78352824145.533645422728.66373228168.964437332014.73453129179.154437332014.734437332014.73453129179.154637332014.73473228	13	27	24	14	5.63
153329179.501640372219.091740362219.401838342115.701934311811.802034301810.902139352018.082236321912.552336331912.55243027157.122538332014.802640352116.892733301610.382835321812.02293028168.083036332013.503140362116.603241372219.74333229178.943431291811.8644373228145.533645422728.663732281912.464035321912.4641362119.134336321912.664437332014.73453129179.384637332014.73473228168.96483129 </td <td>14</td> <td>29</td> <td>26</td> <td>15</td> <td>7.24</td>	14	29	26	15	7.24
16 40 37 22 19.09 17 40 36 22 19.40 18 38 34 21 15.70 19 34 31 18 10.90 20 34 30 18 10.90 21 39 35 20 18.08 22 36 32 19 12.55 23 36 33 19 12.55 24 30 27 15 7.12 25 36 32 18 10.90 26 40 35 21 16.69 27 33 30 18 12.02 29 30 28 16 8.08 30 36 33 20 13.50 31 40 36 21 16.60 32 41 37 22 19.74 33 32 29 17 8.94 34 31 29 18 9.78 35	15	33	29	17	9.50
17 40 36 22 $19, 40$ 18 38 34 21 $15, 70$ 19 34 31 18 $11, 60$ 20 34 30 18 $10, 90$ 21 39 35 20 $18, 08$ 22 36 32 19 $12, 55$ 23 36 33 19 $12, 58$ 24 30 27 15 $7, 12$ 25 30 27 15 $7, 12$ 25 30 28 16 8.08 26 40 35 21 16.69 27 33 30 10 $10, 39$ 28 35 32 18 $12, 02$ 29 30 28 16 8.08 30 36 33 20 $13, 50$ 31 40 36 21 $17, 8.94$ 33 32 29 17 8.94 34 31 29 16 9.78 35 22 19 17 8.76 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 19 12.46 41 36 33 19 14.21 42 41 36 33 19 14.21 44 37 34 21 15.57 45 31 29 17 9.38 46 <td>16</td> <td>40</td> <td>37</td> <td>22</td> <td>19.09</td>	16	40	37	22	19.09
18 38 34 21 $15, 70$ 19 34 31 18 $11, 80$ 20 34 30 18 $10, 90$ 21 39 35 20 $18, 08$ 22 36 32 19 $12, 55$ 23 36 33 19 $12, 55$ 24 30 27 15 $7, 12$ 25 38 33 20 14, 80 26 40 35 21 16, 89 27 33 30 18 10, 39 28 35 32 18 12, 02 29 30 28 16 8.08 30 36 33 20 13, 50 31 40 36 21 16, 60 32 41 37 22 19, 74 33 32 29 16 9, 78 35 28 24 14 5, 53 36 45 42 27 28, 66 <td>17</td> <td>40</td> <td>36</td> <td>22</td> <td>19.40</td>	17	40	36	22	19.40
1934311811.802034301810.902139352018.082236321912.552336331912.55243027157.122539332014.802640352116.692733301810.382835321812.02293028168.083036332013.503140362116.603241372219.74333229178.94343129189.78352824145.533645422728.663732291912.464035321912.464136331914.214241362117.743839362117.744336321912.684437332014.73473228168.96483129179.154437332014.73473228168.96483129179.15494035 <td>18</td> <td>38</td> <td>34</td> <td>21</td> <td>15.70</td>	18	38	34	21	15.70
20 34 30 18 $10, 30$ 21 39 35 20 $18, 08$ 22 36 32 19 $12, 55$ 23 36 33 19 $12, 55$ 23 36 33 19 $12, 55$ 24 30 27 15 $7, 12$ 25 38 33 20 $14, 60$ 26 40 35 21 $16, 69$ 27 33 30 18 $12, 02$ 29 30 28 16 $8, 08$ 30 36 33 20 $13, 50$ 31 40 36 21 $16, 60$ 32 41 37 22 $19, 74$ 33 32 29 17 $8, 94$ 34 31 29 18 $9, 78$ 35 28 24 14 $5, 53$ 36 45 42 27 $28, 66$ 37 32 28 17 $8, 78$ 38 39 36 21 $17, 74$ 39 35 32 19 $12, 46$ 40 35 32 19 $12, 46$ 41 36 33 19 $14, 21$ 44 37 33 20 $14, 73$ 44 37 33 20 $14, 73$ 45 31 29 17 $9, 15$ 49 40 35 21 $17, 36$ 49 <td>19</td> <td>34</td> <td>31</td> <td>18</td> <td>11.80</td>	19	34	31	18	11.80
22 36 32 20 18.08 22 36 32 19 12.55 23 36 33 19 12.58 24 30 27 15 7.12 25 38 33 20 14.80 26 40 35 21 16.89 27 33 30 18 12.02 29 30 28 16 8.08 30 36 33 20 13.50 31 40 36 21 16.60 32 41 37 22 19.74 33 32 29 17 8.94 34 31 29 18 9.78 35 226 24 14 5.53 36 45 42 27 28.66 37 32 29 17 8.94 34 31 29 18 $1.2.46$ 40 35 32 19 12.46 40 35 32 19 12.46 41 36 33 19 14.21 43 36 32 19 12.66 44 37 33 20 14.73 44 37 33 20 14.73 44 37 33 20 14.73 47 32 28 16 8.96 31 29 17 9.15 44 37 33 20 <td>20</td> <td>34 30</td> <td>30</td> <td>18</td> <td>10.90</td>	20	3 4 30	30	18	10.90
12 35 32 15 12 35 23 36 33 19 12 58 24 30 27 15 7 12 25 38 33 20 14 80 26 40 35 21 16 69 27 33 30 18 12 02 29 30 28 16 8.08 30 36 33 20 13 50 31 40 36 21 16 60 32 41 37 22 19 74 33 32 29 17 8.94 34 31 29 18 978 36 45 42 27 28.66 37 32 28 17 8.76 36 45 42 27 28.66 37 32 28 17 8.76 36 33 19 14.21 40 35 32 19 12.46 40 35 32 19 14.21 42 41 36 21 17 9.38 46 37 33 20 14.73 44 37 34 21 15.57 45 31 29 17 9.15 49 40 35 21 17.36 46 37 33 20 14.73 47 32 <	22	39	32	20	18.08
24 30 27 15 7.12 25 38 33 20 14.80 26 40 35 21 16.89 27 33 30 18 12.02 29 30 28 16 8.08 30 36 33 20 13.50 31 40 36 21 16.60 32 41 37 22 19.74 33 32 29 17 8.94 34 31 29 18 9.78 35 28 24 14 5.53 36 45 42 27 28.66 37 32 26 17 8.76 38 39 36 21 17.74 39 35 32 19 12.46 41 36 33 19 14.21 42 41 36 21 17.74 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.15 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 51 26 23 14 5.15 52 35 30 27 16 47 32 28 16 8.96 45 31 29 1	23	36	32	19	12.33
25 36 27 13 $1, 12$ 26 40 35 21 $16, 69$ 27 33 30 18 $12, 02$ 29 30 28 16 $8, 08$ 30 36 33 20 $13, 50$ 31 40 36 21 $16, 60$ 32 41 37 22 $19, 74$ 33 32 29 17 $8, 94$ 34 31 29 18 $9, 78$ 35 28 24 14 $5, 53$ 36 45 42 27 $28, 66$ 37 32 28 17 $8, 78$ 38 39 36 21 $17, 74$ 39 35 32 19 $12, 46$ 41 36 33 19 $14, 21$ 42 41 36 32 19 $12, 68$ 44 37 34 21 $15, 57$ 45 31 29 17 $9, 38$ 46 37 33 20 $14, 73$ 47 32 28 16 $8, 96$ 48 31 29 17 $9, 15$ 51 26 23 14 $5, 15$ 52 35 30 27 16 $7, 55$ 51 26 23 13 $4, 42$ 55 40 35 20 $13, 69$ 57 27 25 14 $5, 33$ <	24	30	27	15	7 12
25 40 35 21 16.09 27 33 30 18 10.38 28 35 32 18 12.02 29 30 28 16 8.08 30 36 33 20 13.50 31 40 36 21 16.60 32 41 37 22 19.74 33 32 29 17 8.94 34 31 29 18 9.78 35 28 24 14 5.53 36 45 42 27 28.66 37 32 28 17 8.78 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 19 14.21 42 41 36 21 19.13 43 36 32 19 14.21 42 41 36 21 19.13 43 36 32 19 14.21 42 41 36 22 19 44 37 33 20 14.73 47 32 28 16 8.96 44 37 33 20 14.73 47 32 23 14 5.15 51 26 23 14 5.15 52 35 30 20 11.65 53 37 33 <td< td=""><td>25</td><td>38</td><td>33</td><td>20</td><td>14 80</td></td<>	25	38	33	20	14 80
27 33 30 16 10.38 28 35 32 18 12.02 29 30 28 16 8.08 30 36 33 20 13.50 31 40 36 21 16.60 32 41 37 22 19.74 33 32 29 17 8.94 34 31 29 18 9.78 35 28 24 14 5.53 36 45 42 27 28.66 37 32 28 17 8.78 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 19 12.46 41 36 33 19 14.21 42 41 36 21 19.13 43 36 32 19 12.66 44 37 34 21 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.38 46 37 33 20 14.73 47 32 23 14 5.15 51 26 23 14 5.15 52 35 30 20 15.73 56 37 33 20 15.73 56 37 33 <t< td=""><td>26</td><td>40</td><td>35</td><td>21</td><td>16.89</td></t<>	26	40	35	21	16.89
28 35 32 18 12.02 29 30 28 16 8.08 30 36 33 20 13.50 31 40 36 21 16.60 32 41 37 22 19.74 33 32 29 17 8.94 34 31 29 18 9.78 35 28 24 14 5.53 36 45 42 27 28.66 37 32 26 17 8.76 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 19 12.46 41 36 21 19.13 43 36 32 19 14.21 42 41 36 21 9.15 44 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 51 26 23 14 5.15 52 35 30 20 11.65 53 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13	27	33	30	10	10, 38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	35	32	18	12.02
30 36 33 20 $13, 50$ 31 40 36 21 $16, 60$ 32 41 37 22 $19, 74$ 33 32 29 17 $8, 94$ 34 31 29 18 $9, 78$ 35 28 24 14 $5, 53$ 36 45 42 27 $28, 66$ 37 32 28 21 $17, 74$ 39 35 32 19 $12, 46$ 40 35 32 19 $14, 21$ 40 35 32 19 $12, 46$ 41 36 33 19 $14, 21$ 42 41 36 21 $9, 13$ 43 36 32 19 $12, 68$ 44 37 34 21 $9, 38$ 46 37 33 20 $14, 73$ 47 32 28 16 $8, 96$ 48 31 29 17 $9, 15$ 46 37 33 20 $11, 65$ 53 37 34 21 $15, 04$ 54 25 23 13 $4, 42$ 55 40 35 20 $15, 73$ 56 37 33 20 $13, 89$ 57 27 25 14 $5, 33$ 58 29 24 13 $6, 38$ 59 27 25 15 $5, 92$ 50 <td< td=""><td>29</td><td>30</td><td>28</td><td>16</td><td>8.08</td></td<>	29	30	28	16	8.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	36	33	20	13.50
32 41 37 22 19.74 33 32 29 17 8.94 34 31 29 18 9.78 35 28 24 14 5.53 36 45 42 27 28.66 37 32 26 17 8.78 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 19 12.46 41 36 21 19.13 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 49 40 35 21 17.36 50 30 27 16 7.55 51 26 23 14 5.15 52 35 30 20 11.65 53 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	31	40	36	21	16.60
33 32 29 17 8.94 34 31 29 18 9.78 35 28 24 14 5.53 36 45 42 27 28.66 37 32 28 17 8.78 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 19 12.46 41 36 33 19 14.21 42 41 36 21 19.13 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 49 40 35 21 17.36 50 30 27 16 7.55 51 26 23 14 5.15 52 35 30 20 11.65 53 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 50 33 31 18 10.81	32	41	37	22	19.74
34 31 29 16 $9, 78$ 35 28 24 14 $5, 53$ 36 45 42 27 $28, 66$ 37 32 28 17 $8, 78$ 38 39 36 21 $17, 74$ 39 35 32 19 $12, 46$ 40 35 32 19 $14, 21$ 40 35 32 19 $14, 21$ 41 36 33 19 $14, 21$ 43 36 32 19 $12, 68$ 44 37 34 21 $15, 57$ 45 31 29 17 $9, 38$ 46 37 33 20 $14, 73$ 47 32 28 16 $8, 96$ 48 31 29 17 $9, 15$ 49 40 35 21 $17, 36$ 50 30 27 16 $7, 55$ 51 26 23 14 $5, 15$ 52 35 30 20 $11, 65$ 53 37 34 21 $15, 04$ 54 25 23 13 $4, 42$ 55 40 35 20 $13, 89$ 57 27 25 14 $5, 33$ 58 29 24 13 $6, 38$ 59 27 25 15 $5, 92$ 60 33 31 18 $10, 81$	33	32	29	17	8.94
35 28 24 14 5.53 36 45 42 27 28.66 37 32 28 17 8.78 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 18 11.68 41 36 33 19 14.21 42 41 36 21 19.13 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 49 40 35 21 17.36 50 30 27 16 7.55 51 26 23 14 5.15 52 35 30 20 11.65 53 37 34 21 15.04 54 25 23 13 4.42 55 40 35 20 13.73 56 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 50 33 31 18 10.81	34	31	29	18	9.78
36 45 42 27 28.66 37 32 28 17 8.78 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 18 11.86 41 36 33 19 14.21 42 41 36 21 19.13 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 49 40 35 21 17.36 50 30 27 16 7.55 51 26 23 14 5.15 52 35 30 20 11.65 53 37 34 21 15.04 54 25 23 13 4.42 55 40 35 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	35	28	24	14	5.53
37 32 26 17 8.76 38 39 36 21 17.74 39 35 32 19 12.46 40 35 32 19 12.46 41 36 33 19 14.21 42 41 36 21 19.13 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 49 40 35 21 17.36 50 30 27 16 7.55 51 26 23 14 5.15 52 35 30 20 11.65 53 37 34 21 15.04 54 25 23 13 4.42 55 40 35 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	30	45	42	27	28.66
35 36 21 17.74 39 35 32 19 12.46 40 35 32 18 11.68 41 36 33 19 14.21 42 41 36 21 19.13 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 49 40 35 21 17.36 50 30 27 16 7.55 51 26 23 14 5.15 52 35 30 20 11.65 53 37 34 21 15.04 54 25 23 13 4.42 55 40 35 20 15.73 56 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	37	32	20	21	0.70 17.74
35 35 32 15 12.70 40 35 32 18 11.88 41 36 33 19 14.21 42 41 36 21 19.13 43 36 32 19 12.68 44 37 34 21 15.57 45 31 29 17 9.38 46 37 33 20 14.73 47 32 28 16 8.96 48 31 29 17 9.15 49 40 35 21 17.36 50 30 27 16 7.55 51 26 23 14 5.15 52 35 30 20 11.65 53 37 34 21 15.04 54 25 23 13 4.42 55 40 35 20 15.73 56 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	39	35	30	12	12 46
4136331914.214241362119.134336321912.684437342115.57453129179.384637332014.73473228168.96483129179.154940352117.36503027167.55512623145.155235302011.655337342115.04542523134.425540352015.735637332013.89572725145.33582924136.38592725155.926033311810.81	40	35	32	18	11 88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	36	33	19	14.21
$ \begin{array}{ccccccccccccccccccccccccccccccc$	42	41	36	21	19,13
44 37 34 21 $15, 57$ 45 31 29 17 $9, 38$ 46 37 33 20 $14, 73$ 47 32 28 16 $8, 96$ 48 31 29 17 $9, 15$ 4940 35 21 $17, 36$ 50 30 27 16 $7, 55$ 51 26 23 14 $5, 15$ 52 35 30 20 11.65 53 37 34 21 $15. 04$ 54 25 23 13 $4, 42$ 55 40 35 20 $15. 73$ 56 37 33 20 $13. 89$ 57 27 25 14 $5. 33$ 58 29 24 13 $6. 38$ 59 27 25 15 $5. 92$ 60 33 31 18 10.81	43	36	32	19	12.68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	37	34	21	15, 57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	31	29	17	9.38
	46	37	33	20	14.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	32	28	16	8.96
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48	31	29	17	9,15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	40	35	21	17.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	26	27	10	/.55
53 37 34 21 15.04 54 25 23 13 4.42 55 40 35 20 15.73 56 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	52	35	30	20	11 65
54 25 23 13 4.42 55 40 35 20 15.73 56 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	53	37	34	21	15.04
55 40 35 20 15, 73 56 37 33 20 13, 89 57 27 25 14 5, 33 58 29 24 13 6, 38 59 27 25 15 5, 92 60 33 31 18 10,81	54	25	23	13	4,42
56 37 33 20 13.89 57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	55	40	35	20	15, 73
57 27 25 14 5.33 58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	56	37	33	20	13.89
58 29 24 13 6.38 59 27 25 15 5.92 60 33 31 18 10.81	57	27	25	14	5.33
59 27 25 15 5.92 60 33 31 18 10.81	58	29	24	13	6.38
by 33 31 18 10.81	59	27	25	15	5.92
	ЪŲ	33	31	18	10.81

Table 35. Length, width, thickness, and weight measurements of clams in control exposure tank. Date: 2/27/78

Clam #	Length (mm)	Width (mm)	Thickness.(mm)	Weight (grams)
101	30	29	17	9, 25
102	28	25	14	6.10
103	25	22	13	4.22
104	32	29	17	9.57
105	38	35	21	16.40
100	28	26	15	22.06
108	42	37	24	0.15
109	25	21	13	4 74
110	35	32	20	13 42
111	29	25	14	6.03
112	25	22	12	4.17
113	26	23	13	4.75
114	26	23	12	4.49
115	34	32	17	9.66
116	30	27	15	8.07
11/	37	34	20	13.89
118	38	35	20	15.65
120	37	54 27	21	16.13
120	36	37	22	19.77
122	40	37	22	19.26
123	26	23	13	4 67
124	29	26	15	6.23
125	34	30	18	10, 98
126	31	28	16	8.23
127	27	24	15	5.43
128	30	26	16	7.41
129	25	22	12	4.13
130	27	25	15	5.91
131	28	25	14	5.89
122	29	27	15	7.63
134	29	25	15	5.63
135	34	20	15	5.96
136	34	30	19	12.22
137	32	29	17	0.35
138	32	29	17	9,33
139	35	33	20	13.76
140	33	31	18	10.84
141	30	26	16	7.96
142	29	27	16	7,72
143	36	33	21	14.85
144	25	23	12	4.28
145	38	35	21	16.43
145	34	29	18	9,91
148	36	23	20	9.91
149	35	31	17	14.82
150	32	29	17	9.61
151	34	30	17	10, 35
152	35	32	18	11,95
153	35	32	20	13.49
154	33	30	17	10.07
122	39	36	20	17.22
150	37	34	19	14.48
159	39	30	21	15.76
159	50 4T	35	23	20.90
160	35	31	20	14.72
				16.36

Table 36. Length, width, thickness, and weight measurements of clams in 6 μ g/ ℓ CPO exposure tank. Date: 2/27/78

Clam #	Length (mm)	Width (mm)	Thickness (mm)	Weight (grams)
201	29	25	14	6,40
202	29	25	14	5.34
203	38	34	21	16.38
204	31	27	16	7.81
205	29	24	14	5.69
206	41	38	23	21.91
207	39	36	22	17.89
208	34	30	18	10.86
209	37	33	20	14.68
210	33	30	18	10.90
211	26	24	14	5.30
212	31	28	17	8.42
213	28	26	14	5.39
214	31	28	16	8.35
215	31	28	16	7.9€
216	31	27	16	7.33
217	26	23	13	4.54
218	33	30	17	9.82
219	38	35	22	15.93
220	33	30	17	9.35
221	31	28	17	8.90
222	33	31	17	11.16
223	35	33	20	13.15
224	35	31	17	11.72
225	41	37	23	21.94
226	39	34	21	16.57
227	44	38	23	22.53
228	34	30	18	11.12
229	35	32	19	12.77
230	39	35	21	16.75
231	39	35	35	17.45
232	38	33	21	16.59
233	40	36	21	18.13
234	39	36	21	17.14
235	39	36	21	16.99
23b	42	38	22	19.61
23/	42	37	22	19.59
238	33	30	18	10.44
239	37	35	21	15.97
240	32	2B	16	8.65
241	34	31	18	11.50
242	35	32	20	13.50
243	32	31	17	10.50
249	30	32	20	14.40
247 785	30	32	19	12.70
240	40	30	20	17.80
247	43	40	23	23.90
240	39	35	21	16.40
250	92	38	24	21.80
250	35	30	21	17.90
252	33	32	19	13.45
252	33	30	18	10.95
254	30	35	21	16.55
255	41	30	20	16.59
256	75	30	23	20.98
257	37	35	23	13.30
258	35	30	10	15.40
259	30	31	13	12.60
260	30	35	22	16.90
200	37	. 35	21	15.90

Table 37. Length, width, thickness, and weight measurements of clams in 12 $\mu g/\ell$ CPO exposure tank. Date: 2/27/78

Clan #	Length (ma)	Width (mm)	Thickness (man)	Weight (grams)
301	29	26	15	6.8
302	38	34	21	16.6
303	37	33	19	13.4
304	32	29	17	9.6
305	30	31	10	12.4
307	34	37	20 +9	10./
308	42	38	22	21 3
309	44	41	24	25.4
310	42	49	23	21.8
311	25	22	12	4.0
312	28	26	15	6.8
313	30	28	17	8.6
314	34	30	17	10.0
315	35	31	18	12.1
31b 217	35	31	18	11.1
31/ 210	36	33	20	14.3
310	41 30	3/ 24	22	19, 3
320	30	34 36	21	17.0
321	26	26	21	17.0
322	29	26	15	5,5 7 A
323	37	34	20	15.0
324	34	31	17	10.7
325	32	29	17	9.4
326	32	30	18	10.0
327	36	33	21	15.0
328	41	38	22	19.1
329	41	37	23	21.6
330	3/	33	20	15.5
331	42	38	23	22.8
3J2	36	32	19	12.8
333	37	33	20	14.2
339	30 74	41	51 91	11.7
333	34	30	23	20.5
337	38	11	20	14 0
338	38	34	21	15 1
339	40	36	22	18.1
340	40	36	22	19.6
341	27	24	14	6.0
342	35	32	19	13.0
343	38	35	20	16.1
344	31	27	17	8.9
345	32	29	18	9.8
346	36	33	19	13.8
34/	41	38	22	19.3
348	35	31	1/	10.8
350	30 41	32	22	19 3
351	30	26	15	7.2
352	32	28	16	8.6
353	34	31	18	10.4
354	38	34	21	15.8
355	40	35	22	18.2
356	42	39	23	21.9
357	42	39	23	21.9
358	43	39	24	23.2
359	35	33	19	13.3
360	35	31	19	11.2

Table 38. Length, width, thickness, and weight measurements of clams in 25 $\mu g/\ell$ CPO exposure tank. Date: 2/27/78

C)am #	length (mm)	Width (mm)	Thickness (MM)	₩eight (grams)
401	26	23	13	5.0
402	33	30	18	10.4
403	30	26	16	8.0
104	39	37	23	18.5
405	33	30	18	10.3
406	37	33	20	14.5
407	34	32	18	11.6
408	31	28	17	8.6
409	33	31	17	10.8
10	41	37	23	19.9
411	29	25	14	6.0
412	41	36	23	18,7
413	33	29	18	11.0
414	40	36	22	18.2
415	33	30	18	10.9
416	37	34	19	12.6
417	39	35	22	18.0
418	42	38	23	20.9
419	29	26	15	6.9
420	32	29	17	9.5
421	41	36	21	18.5
422	40	36	22	18.9
423	42	38	22	20.3
424	36	33	20	14.2
425	40	36	22	19.2
426	29	27	16	7.7
427	41	36	22	18.9
428	35	32	19	12.7
429	39	36	20	17.5
430	37	33	20	14.4
431	35	32	20	13.1
432	41	37	22	19.2
433	39	35	21	16.9
434	37	33	20	14.6
435	41	39	25	25.1
436	41	38	22	18.6
437	28	26	15	5.0
438	43	39	23	21.5
439	40	37	22	18.9
440	38	35	22	16.0
441	27	25	13	5.6
442	27	23	14	5.1
443	34	30	18	10.9
444	37	32	19	13.3
445	37	35	21	17.1
146	31	27	16	8.5
447	41	38	23	21.1
148	34	31	17	10.6
49	40	37	22	19.4
150	36	32	20	14.3
51	32	28	17	9.0
152	35	33	20	14.4
153	41	38	22	20.8
454	41	37	22	19.3
155	42	39	25	24.7
56	40	37	22	19.6
157	34	30	18	12.0
58	37	33	20	14.2
59	38	34	20	15.4
160	40	35	22	177

Table 39. Length, width, thickness, and weight measurements of clams in 50 $\mu g/\ell$ CPO exposure tank. Date: 2/27/78

Clam #	Length (em)	Width (mm)	Thickness (mm)	Weight (grams)
501	44	41	25	24.5
502	39	37	22	18.6
503	35	32	19	12.8
504	33	30	18	10.7
505	38	35	20	15.7
508	3/	34	19	14.0
509	30 76	33	20	15.0
509	37	33	20	13.0
510	34	31	19	12.0
511	30	26	15	6 4
512	33	30	17	9.3
513	32	29	17	10.0
514	34	31	18	11.1
515	34	31	17	10.6
516	30	26	16	7.1
517	31	28	17	9.7
518	31	28	17	8.7
519	35	32	19	12.6
520	37	33	21	15.0
521	32	30	18	11,1
522	40	37	23	20.1
523	32	30	17	10.2
524	42	37	21	19.7
525	42	40	22	21.8
525	36	32	19	13.0
527	38	34	19	14.4
528	44	39	25	24.9
525	90	41	29	16.5
530	30	34	21	10.4
532	41	31	18	11.4
532	41	37	22	19.6
534	39	35	21	13.2
535	37	33	20	18 7
536	34	32	20	12.2
537	38	34	20	14 5
538	40	36	22	18.9
539	33	30	17	10.3
540	39	36	22	18.3
541	40	36	22	17.7
542	40	36	22	19.6
543	32	28	18	9.4
544	37	33	20	14.4
545	37	32	20	13.3
240 E47	42	38	23	20.3
54/ EAG	34	31	18	11.8
546	30	35	20	15.0
550	44	33	24	13.9
551	34	31	18	24.3
552	39	36	22	19.0
553	37	35	21	15.5
554	41	37	22	19.3
555	33	29	18	10.8
556	31	27	16	8.6
557	33	30	17	9,6
558	39	36	21	16.0
559	36	32	19	13.3
	**			

Table 40. Length, width, thickness, and weight measurements of clams in 100 $\mu g/\ell$ CPO exposure tank. Date: 2/27/78

Clan #	Length (mm)	Width (mm)	Thickness (mm)	Weight (grams)
CONTROL				
- 8 -	31	29	17	9.1
46	36	33	20	14.8
18	37	34	21	15.7
3	40	37	24	21.4
41	35	33	20	14.4
30	36	33	20	13.8
22	36	32	19	12.7
39	35	32	19	12.8
6 µg/£ CP	0			10.5
108	35	32	19	12.5
14/	32	30	18	10.0
156	37	34	20	14.5
158	41	38	23	20.8
114	26	23	12	4.7
116	30	25	17	8.2
119	37	34	21	16.4
122	41	37	23	19.3
12 µg/2 C	PO		10	12.2
208	34	30	18	11.1
226	39	34	-	19.8
236	41	38	22	20.2
250	40	36	21	18.0
224	41	38	24	22.0
232	38	34	22	15.8
247	43	39	24	23.9
249	42	38	23	22.1
25 µg/£ C	PO			
346	36	33	19	13.8
355	40	36	-	22.4
332	36	32	19	12.7
311	24	22	12	4.1
306	38	34	20	15.7
317	37	33	20	14.4
334	36	31	18	11.6
340	40	36	22	19.6
50 µg/2 C	<u>P0</u>			10.0
422	40	36	22	18.9
425	39	36	22	19.0
444	36	32	-	15.2
453	41	38	21	20.8
418	42	38	23	20.7
421	41	37	21	18.6
434	37	33	20	14.6
460	39	35	22	17.6
100 µg/2	CPO		25	26.0
529	45	41	25	20.0
539	33	30	17	10.3
547	35	31	18	11.7
505	39	35	20	15.7
522	40	37	23	20.0
526	36	32	19	15.2
542	40	36	22	13.0

Table 41. Length, width, thickness, and weight measurements of clams after one month of exposure. Date: 4/3/78

Clam #	Length (mm)	Width (mm)	Thickness (mm)	Weight (grams)
CONTROL				
17	40	36	22	195
21	38	35	20	15.5
27	32	30	18	10.4
42	41	37	22	19.1
26	40	35	21	17.1
1	38	36	21	16.3
28	35	32	19	12.5
55	39	35	19	15.8
6 μg/2 CP	<u>o</u>	20		
100	92 20	39	24	22.0
133	39	30	21	17.1
100	30	35	21	15.6
169	20	23	13	4.9
110	30	34	20	15.0
143	33	32	20	13.6
138	32	29	17	9.1
12 µg/£ Ci	PO			
216	29	27	16	7.6
234	39	36	21	17.1
248	39	35	20	16.3
257	38	35	22	16.4
240	31	28	16	8.7
211	26	24	14	5.3
218	32	30	17	9.8
217	26	23	13	5.0
25 10 /4 5	PÓ.			
23 0 0 1 2 2 1	<u>ru</u> 42	20	24	22 9
331	27	23	19	14.2
333	30	27	17	8.9
348	35	11	18	10.7
309	44	41	24	25.5
305	35	31	19	12.5
304	32	29	17	9.7
323	37	34	21	14.9
50 µg/£ C	PO			
455	42	39	25	24.3
454	41	37	22	19.1
428	36	32	19	12.6
445	38	36	21	16.9
438	43	38	23	21.7
452	36	34	20	14.4
459 427	38 41	34 36	20 22	15.4 19.0
	74			
100 µg/1	<u>CPU</u>	26	22	18.9
538	41	30	17	10.0
515	34	31	21	15 4
553	3/	35	21	8.6
556	31	20	10	12 0
510	J 4	31	17	9.6
51/	32	20	20	14.6
535	37	24	20	15.1
548	30	34	20	

Table 42. Length, width, thickness, and weight measurements of clams after two months of exposure. Date: 5/1/78

Clam #	Length (mm)	Width (mm)	Thickness (mm)	Weight (grams)
CONTROL			· · · · · · · · · · · · · · · · · · ·	
9	26	22	13	4.2
31	40	35	21	16.9
35	28	25	14	5.6
49	40	35	22	17.7
12	32	29	17	9.5
33	32	29	17	9.3
25	38	37	20	15.0
23	36	32	19	12.7
6 µg/2 CPO				
102	28	25	15	6.3
120	40	37	22	19.8
144	25	23	13	4.4
150	32	30	17	10.0
113	26	23	13	5.0
148	36	33	21	14.7
115	34	31	16	9.7
130	27	25	15	6.2
1 <u>2 µg/£ CP</u>	0			
258	35	31	19	12.7
220	33	30	17	9.6
219	38	34	21	16.2
229	35	32	19	12.7
256	36	22	19	13.4
240	25	33	20	13 7
292	35	32	20	15.7
235	40	36	21	15.9
239	37	34	21	15.9
25 µg/£ CP	0	25	16	
341	21	25	15	0.4
350	41	36	22	19.4
318	41	36	22	19.3
349	36	32	19	12.1
345.,	32	29	18	9.9
357	42	39	23	22.2
327	36	33	21	15.0
330	37	34	21	15.7
50 µg/2 CP	0			
458	37	33	20	14.1
432	41	36	22	19.1
429	39	37	20	17.5
449	40	37	22	19.3
446	31	28	17	8.4
426	29	27	16	7.6
408	31	28	17	8.7
417	39	36	22	17.9
<u>ع/ور 100</u>	PO			
527	38	34	19	14.4
537	38	34	20	14.8
524	43	38	21	19.5
541	40	36	22	17.5
503	35	22	10	12.9
505	33	32	17	14 1
544	3/	33	20	14.1
534	38	35	22	17-1
- C D	30	75		16 6

Table 43. Length, width, thickness, and weight measurements of clams after three months of exposure. Date: 5/30/78

Clam #	Length (mm) Width (mm) Thickness (mm)		Thickness (mm)	Weight (grams)
CONTROL				
58	29	25	15	6.5
11	27	24	14	5.9
20	34	30	18	11 3
53	36	34	21	15 2
20	30	37	21	13.2
29	30	27	1/ .	8.0
2	40	35	23	19.2
51	26	23	14	5.6
60	33	30	18	11.0
6 µg/£ CPO				
117	37	34	20	13.9
135	34	31	19	12.2
126	31	27	16	8.6
145	38	35	21	16.6
132	29	27	17	8.4
112	25	23	12	4.3
123	26	23	13	4,7
136	34	30	19	11.5
12 µg/£ CP()			
255	41	37	24	20.9
222	33	30	18	11.4
237	41	37	22	19.7
254	38	35	21	16.7
201	14	39	23	22 5
214	21	20	16	8.6
214	21	20	10	13.0
223	30	32	20	13.0
205	29	25	14	b. 3
25 µg/x CPI	2			
303	37	33	19	13.5
358	43	39	24	23.2
313	30	27	17	8.5
342	35	32	20	13.1
337	38	33	20	14 9
335	34	30	18	10.4
50 µg/£ CPI	0			
414	40	36	22	18.1
456	40	36	22	19.6
435	41	38	25	26.0
A47	42	36	23	21 0
A10	20	26	16	7.0
413	2.2	20	10	6.0
411	29	23	14	B. U
440 404	38 40	34	22	16.1
100 00/0 0	PÒ			
501	45	43	24	24 A
546	7.5	37	19	13 3
343 EA0	37	32	13	13-3
540	39	35	23	16.3
554	41	37	22	19.2
519	35	31	19	12.6
557	33	30	17	9.6
E 30	37	33	21	16.4
230		~~	***	

Table 44. Length, width, thickness, and weight measurements of clams after four months of exposure. Date: 6/29/78

Clam #	Length (mm)	Width (mm)	lhickness (mm)	Weight (grams)
CONTROL				
15	33	29	17	9.6
47	32	29	17	9.6
44	37	34	21	15.7
48	32	29	18	9.8
57	30	26	15	7 0
10	30	28	17	8.8
59	37	25	15	6.2
50	30	27	17	7.9
6 µg/£ CPO				
141	30	27	17	B.4
139	35	32	20	13.9
104	12	29	18	9.9
128	30	25	16	79
120	20	27	36	6.9
124	29	27	15	0.0
140	12	30	12	11.1
111	29	25	15	b.2
133	29	25	14	5.8
12 µg/# CP	<u>0</u>	35	~~	17.0
259	40	35	22	17.0
233	40	35	22	18.2
230	39	35	21	17.3
231	39	35	22	17.5
252	34	31	19	12.2
202	29	25	15	6.5
251	35	32	20	13.5
253	38	35	22	17.0
25 µg/£ CP6	2			
320	38	35	21	17.2
319	38	35	22	17.4
302	38	34	21	16.8
347	41	37	22	19.3
301	10	26	15	7.0
207	34	20	19	12.6
252	39	32	16	12.0
332	32	26	16	0.3
312	30	31	13	12.5
50 µg/l CP	0 33	20	10	17 7
473	33	30	10	20.3
423	42	38	22	20.3
41Z	41	36	23	18.6
436	41	37	22	18.7
431	35	32	20	13.1
441	28	25	14	5.8
402	34	30	18	10.5
443	34	31	18	10.9
100 µg/£ C	PO			
509	37	33	20	14.5
546	42	38	23	20.2
550	44	40	24	24 1
520	44 37	40	24	15 0
520	31	22	20	13.0
030	36	32	20	12.1
514	34	31	18	11.0
314				
523	33	30	18	10.1

Table 45. Length, width, thickness, and weight measurements of clams after five months of exposure. Date: 8/1/78

Clam #	Length (mm)	Width (mm)	Thickness (mm)	Weight (grams)
CONTROL				
16	40	36	22	19.2
32	40	37	22	20.1
38	40	35	21	18.0
40	36	32	18	12.0
14	30	26	16	7.6
5	32	30	18	10.5
6	30	27	15	7.6
45	31	29	17	9.6
6 µg/1 CPC	2	35	21)6 A
105	38	35	21	10.4
125	34	30	19	11.3
151	35	31	18	11.2
160	35	31	19	12.3
131	28	25	14	6.2
134	27	25	15	0.4
107	30	28	16	8.3
140	33	31	18	11.2
12 µg/2 Cl	<u>P0</u> 36	32	19	12.8
241	36	32	20	14.6
244	30	32	19	13.0
242	37	20	19	11 7
210	33	30	15	6.8
201	29	20	16	8.0
204	31	20	17	8.6
212	20	27	21	16.3
260	30	34	21	20.0
25 µg/£ C	<u>P0</u>		••	71.2
308	43	38	22	21.3
336	41	38	23	21.3
339	40	35	22	10.0
356	35	30	20	12.2
314	34	30	17	3.5
316	35	31	18	11.2
353	34	31	18	10.4
360	35	32	18	11.3
50 µg/£ C	<u>.PO</u> 20	* 2	20	14 9
406	38	33	20	19.8
410	41	37	20	14.2
430	37	34	20	19.0
439	4U	.17	12	5.0
401	20	23	19	14.2
413	33	30	18	11.9
100	CB0			
506 hg/2	39	34	19	14.1
500	42	40	23	21.7
525	42	40	24	24.8
528	43	40	21	15.7
558	38	30	21	14.9
507	38	34	15	6.4
511	30	20	17	9.6
513	32	29	19	11.0
571	1/	30	*3	

Table 46. Length, width, thickness, and weight measurements of clams after six months of exposure. Date: 9/5/78

Clam #	Length (mm)	Width (mm)	Thickness (mm)	Weight (grams)
CONTROL				
24	30	27	15	7.3
7	28	24	14	6.1
19	34	31	19	12.7
43	36	32	19	12.8
37	31	28	17	8.9
34	33	30	18	11.6
54	29	26	15	7.1
13	29	26	16	7.6
52	34	31	20	11 9
4	27	25	15	6 2
56	36	33	20	13.9
6 µg/2 CPC	2			
154	37	32	20	14.2
153	36	32	20	13.7
127	26	23	15	5.5
157	39	36	21	16.9
137	32	29	17	9.9
142	30	27	16	7 8
101	30	28	17	9.6
129	25	22	13	4 4
121	36	32	18	12 9
149	35	31	19	13 5
12	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	51	10	11.5
230	<u>v</u> ,,	20	10	12.7
230	33	30	18	11.7
221	31	29	1/	9.4
243	34	15	17	10.7
213	28	26	14	5.7
246	41	36	20	18.1
215	31	27	16	8.4
224	35	31	18	12.2
25 µg/£ CF	20			
351	<u> </u>	26	16	9.0
338	18	34	21	16.2
322	30	26	15	7 2
324	34	30	10	10.0
325	32	20	10	10.6
364	37	23	17	3.7
143	37	24	21	13.8
328	41	37	21	10.1
212	71	37	22	19.0
326	20	20	15	6.9
520	32	23	18	10.0
50 µg/2 CP	20			
409	34	30	17	10.6
442	26	23	14	5.0
403	29	26	16	8.0
420	32	29	17	9.3
433	38	35	21	16.8
437	27	25	14	5.9
451	32	28	17	8.9
100 µg/£ (PO			
508	37	32	20	13.7
549	35	33	21	13.9
502	39	36	22	18.5
543	32	28	18	9.5
532	42	37	22	19.6
518	31	28	17	8.6
531	34	31	18	11.5
559	36	32	19	13.3
551	35	31	18	11.3
		-		

Table 47. Length, width, thickness, and weight measurements of clams after eight months of exposure. Date: 11/8/78

		TARG	ET CONCENT	RATIONS (10	707				TAP	CET CONCENT	RATIONS /	0/9)	
Date	0	6	12	25	50	100	Date	0	6	12	25	50	100
3/1/78	0	4	6	20	32	186		4	16	12	48	68	124
3/3/78	Ō	4	6	22	38	98	5/2/78	8	14	14	58	70	128
3/6/78	Ō	4	5	14	28	82	5/5/78	6	10	16	60	68	106
3/8/78	ō	4	8	20	52	116	5/8/78	12	10	16		_	
3/9/78	õ	4	8	18	32	100	5/22/78	0	6	12	42	52	102
3/10/78	ō	5	10	18	36	98	5/25/78	Ó	4	14	30	54	96
3/13/78	0	6	8	18	32	54	5/27/78	0	14	12	38	56	96
3/14/78	Ó	6	10	22	52	104	5/30/78	0	8	10	48	30	62
3/15/78	0	6	10	22	46	98	6/7/78	0	6	8	20	32	68
3/16/78	0	8	8	20	42	84	6/9/78	0	6	10	46	60	92
3/17/78	0	6	8	18	30	68	6/12/78	0	4	12	70	56	80
3/20/78	0	6	8	16	22	46	6/14/78	0	6	12	46	48	90
3/21/78	0	6	10	18	40	74	6/16/78	0	6	16	26	52	94
3/22/78	0	6	12	22	36	76	6/19/78	0	6	10	30	42	88
3/23/78	O	12	20	80	100	200	6/20/78	0	6	12	28	54	94
3/24/78	C	6	20	28	62	100	6/21/78	0	8	12	26	60	96
3/28/78	Û	14	16	10	96	192	6/23/78	0	6	10	22	54	90
3/29/78	0	6	14	66	88	188	6/26/78	0	6	10	24	46	90
3/30/78	0	8	16	26	98	232	6/28/78	0	6	12	26	52	94
3/31/78	0	6	15	28	110	256	5/30/78	0	6	12	24	56	102
4/3/78	0	2	6	8	20	64	7/5/78	0	8	10	24	36	100
4/4/78	0	2	ž	6	70	82	7/7/78	0	D C	12	20	90	02
4/5//8	U N	ź	6		56	50	7/3//8	, v	b ć	12	20	34 5.4	92
4/0//0	U	4		4	24	68	7/14/70	0	6	14	20	54	108
4////0	0	2 9	10	12	14	ÂA	7/14/70	0	12	26	20	50	156
4/11/79	Å	4	â	14	45	76	7/19/79	ň	6	14	30	56	128
4/12/28	ŏ	4	8	22	84	138	7/21/78	ŏ	å	16	28	58	112
4/13/78	ň	4	8	16	68	104	7/24/78	ň	ă	14	28	58	112
4/14/78	ŏ	6	10	18	38	96	7/26/78	õ	ĕ	14	30	58	96
4/18/78	ŏ	2	8	16	26	68	7/28/78	õ	6	14	28	62	98
4/19/78	ō	4	ē	22	26	58	8/1/78	ō	4	10	34	52	94
4/20/78	Q	8	10	20	42	74	8/4/78	0	6	12	34	54	98
4/21/78	0	4	12	24	42	72	8/7/78	0	6	12	28	54	102
4/24/78	4	8	14	30	42	80	8/9/78	0	6	14	28	56	104
4/25/78	4	8	12	34	48	100	8/11/78	0	6	12	28	54	106
4/26/78	4	8	14	30	46	92	8/15/78	0	6	12	26	48	96
4/27/78	4	10	12	32	44	92	8/18/78	0	8	16	28	54	106
4/28/78	4	10	12	24	46	92	8/21/78	0	6	10	16	36	112
							8/23/78	0	6	10	20	44	108
							8/25/78	Θ	8	12	24	48	110
							8/28/78	0	6	12	28	46	112

Table 48. Measured CPO concentrations ($\mu g/\ell$) in exposure tanks.

Table 49. Histopathological descriptions of <u>Protothaca</u> <u>staminea</u> from Sequim Bay, Washington.

Identi- fication	Specimen Number	Description
Initial	79-75	s ç
Sample	79-76	Ro, some metaplasia of digestive gland
	79-77	рSf
	79-78	PSP_i ; some necrosis of stomach; some metaplasia of digestive tubules
	79-79	PSd, metazoan parasite in gonad
	79-80	PS ⁹ ; gregarine-like parasite in mantle; some necrotic gill epithelium
	79-81	PS ⁹ ; metazoan parasite in kidney; gregarine-like parasite in gill; some necrosis in stomach
	79-82	PSd, generally necrotic
	79-83	PSC, generally pecrotic
	79-84	PS ² ; generally necrotic

R = ripe gonad; PS = partially spawmed gonad; S = spent gonad; δ = male; $\frac{9}{2}$ = female

Table 50. Histopathological descriptions of <u>Protothaca staminea</u> used as controls in Tank No. 1 of Chlorine Bioassay Study.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; $\delta = male; P = female$

Exposure Time	Specimen Numb er	Description
1-Nonth	79-85	LANÓ
Exposure	79- 86	PS ² ; portions of gill epithelium necrotic
	79-87	Rd, metazoan parasite in kidney; necrosis of portions of gill, stamach, intestime
	79-88	$PS^{\frac{1}{2}}$; gregarine parasite; necrosis of portions of stomach, digestive tubules
2-Month	79-89	PS ^Q
Exposure	79-90	PS ² ; metazoan parasite in kidney
	79-91	Ro'; metazoan parasite in digestive gland; slight leukocytic infiltration; some necrosis of digestive gland mear parasite cysts
	79-92	R ⁹ ; metazoan present in kidney
3-Month	79-93	PSď
txposure	79-94	٩S
	79-95	PSd; unidentified organism in kidney; metazoan parasite in kidney; leukocytic infiltration in area of cysts
	79-96	₽S₽
4-Month	79-97	Rđ
Exposure	79-98	PS^{Q}_{r} ; necrotic tissue in kidney, stamach; some digestive tubules metaplasia
	79-99	LAď; gregarine parasite in gill, some leukocytic infiltration
	79-100	$\ensuremath{^{\mbox{PS}^{\mbox{P}}}\xspace$; abscess in kidney; some necrosis of stomach epithelium
5-Month	79+101	PSd; some necrosis of digestive tubules; numerous abscesses
Exposure	79-102	PSd; some necrosis and metaplasia of digestive tubules
	79-103	PSd; some necrosis and metaplasia of digestive tubules
6-Month	79-105	PS ⁹ ; occasional metaplastic digestive tubules
Exposure	79-106	PS^{P} ; gregarine parasite in gill mantle; metazoan parasite in kidney
	79-107	$PS^{m Q};$ metazoan parasite in kidney; some metaplasia of digestive tubules
	79-108	Rd; gregarine parasite in gill

Table 51. Histopathological descriptions of <u>Protothaca</u> <u>staminea</u> exposed to 6 ppb of chlorine in Tank No. 2 of Chlorine Bioassay Study.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; δ = male; \hat{v} = female

Exposure Time	Specimen Number	Description
1-Month Exposure	79-109	LAd; some necrosis in gill; some metaplasia of digestive tubules; autolysis of Leydig cells
	79 -110	LAD; autolysis of Leydig cells; large eosinophilic leukocytes in kidney
	79-111	PS^{Q}_{F} ; metazoan parasite in kidney; abscess in kidney filled with large eosimophilic leukocytes; some necrosis of intestine
	79-112	$PS^{P};$ metazoan parasite in kidney; abscesses in kidney; large eosinophilic leukocytes; metaplastic digestive tubules; some necrosis of stomach epithelium
2-Month	79-113	sŧ
Exposure	79-114	₽S₽
	79-115	Rď
	79-116	LAd; metazoan parasite in kidney; leukocytic infiltration; cluster of eosinophilic leukocytes
3-Month	79-117	LAď
Exposure	79-118	PSď
	79-119	٩Sa
	79-120	Ro"; unidentified organism in gill; some leukocytic infiltration; small abscess in montle
4-Month	79-121	S^{Q} ; unidentified organism in gill; some leukocytic infiltration
Exposure	79-122	S^{g} ; unidentified organism(s) in glil, kidney; metazoan parasite in kidney
	79-123	S ² ; metazoan parasite in kidney; unidentified organisms; some metoplasia of digestive tubules; vacuolization of stomach epithelium
	79-124	Rd; gregarine-like parasite in foot; some metaplasia of digestive tubules; vacuolization of stomach epithelium
5-Honth Exposure	79-125	So; metazoan parasite in kidney (heavy infection); general leukocytosis; autolysis of Leydig cells; some metaplasia of digestive tubules
	79-126	PSd; some necrosis of stomach, kidney tubules; autolysis of Leydig cells
	79-127	S^{Q} ; metazoan parasit in kidney; leukocytic infiltration into kidney area; necrotic kidney tubules; vacualization of stomach and intestinal epithelium
	78-128	Sd [°] ; metazoan parasite in kidney; leukocytic infiltration into kidney; some eosinophilic leukocytes
6-Month Exposure	79-129	$S^{f Q}$; metazoan parasite in kidney; leukocytic infiltration; some necrosis
CAPOSULE	79+130	R ⁰ ; metazoan parasite in kidney; considerable necrosis of digestive tubules and kidney tubules; necrotic areas of stomach intestinal epithelium
	79-131	PS ⁹ ; necrosis of kidney tubules; autolysis of Leydig cells; some necrosis and metaplasia of digestive tubule epithelium
	79-132	S^{0}_{τ} ; metazoan parasite in kidney with some enlarged eosinophilic leukocytes; neurotic areas of stumach epithelium

Table 52. Histopathological description of <u>Protothaca</u> <u>staminea</u> exposed to 12 ppb chlorine in Tank No. 3 of Chlorine Bioassay Study.

LA = {ate active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad, o = male; $\frac{Q}{r} = female$

Exposure Time	Specimen Number	Description
1-Honth	79-133	LAd; all tissues generally necrotic, clam may have been dead
Exposure	79-134	LAd; same as above
	79-135	PS ^Q ; same as above
	79-136	PS ² ; same as above
2-Month	79-137	PS ² ; gregarine-like parasite in gill
Exposure	79-138	PS^{Q}_{F} ; some necrosis of gill and digestive tubules; autolysis of Leydig cells
	79-139	PS^{q} ; necrosis, metaplasia of digestive tubules; autolysis of Leydig cells
	79-140	Ró; metazoan parasite in gonad
3-Month	79-141	PSo; metazoan parasite_in kidney; leukocytic infiltration into kidney; gill
Exposure	79-142	PS ⁹ ; large abscess in gon a d
	79-143	Rď
	79-144	Rđ
4-Month Exposure	79-145	PSd; gregarine-like parasite in gill; metazoan parasite in kidney; leukocytic infiltration in viscera around cysts
	79-146	PSd; basophilic granular material in gills
	79-147	PS ⁹ ; gregarine-like parasite in gill; some metaphasia of digestive tubules; some necrosis
	79-148	$R^{\phi};$ metazoan parasite in kidney; metaplasia of digestive tubules; some necrosis in kidney, gill, digestive tubules, stomach and intestinal epithelium
5-Month	79-149	Sd; metazoan parasite (heavy infection) in kidney; leukocytic infiltration into kidne
Exposure	79-150	PSP; metazoan parasite in kidney; some metaplasia and necrosis of digestive tubules
	79-151	PS ⁹ ; generalized leukocytosis
	79-152	So, some necrosis of intestinal epithelium, stomach, digestive tubules
6-Month	79-153	$S^{2};$ some metaplasia, necrosis of digestive tubules; autolysis of Leydig cells
Exposure	79-154	PS ² ; some metaplasia, necrosis of digestive tubules
	79-155	S ² ; metazoan parasite in kidney, leukocytosis around cysts
	79-156	 no gonad; general leukocytosis, especially in digestive gland; fibrous deposition in digestive gland between tubules

Table 53. Histopathological description of <u>Protothaca</u> <u>staminea</u> exposed to 25 ppb chlorine in Tank No. 4 of Chlorine Bioassay Study.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; σ' = male; q = female EA = early active gonad

Exposure Time	Specimen Number	Description
]-Month	79-157	R ^Q ; complete necrosis; specimen probably dead when fixed
Exposure	79-158	PS ⁹ ; autolysis of Leydig cells; leukocytic infiltration into gills; some necrosis of digestive tubules
	79-159	R ^Q ; complete necrosis
	79-160	LAO; almost complete nècrosis
2-Month Exposure	79- 161	LAO; gregarine parasite in mantle and digestive gland; metazoan parasite in kidney; some leukocytic infiltration into parasitized areas; autolysis of Leydig cells
	79-162	LAd; some necrotic digestive tubule epithelium
	79-163	$S^{m Q}_{\pm};$ necrotic patches of gill, digestive tubules, stomach, intestine, kidney; sutolysis of Leydig cells
	79-164	LAd; metazoan parasite in kidney; some leukocytic infiltration, some necrosis of kidney
3-Month	79-165	EAd
txposure	79-166	PSo; metazoan parasite in kidney
	79-167	$S^{\underline{Q}};$ metaplasia of digestive tubules, some necrosis, some necrosis of intestinal epithelium
	79-168	PS¥; metazoan parasite in kidney; some necrosis; some necrosis of gill, intestinal epithelium, digestive tubules
4-Month Exposure	79 -169	PSP_i vacuolization of intestinal epithelium; some necrosis and metaplasis of digestive tubules
	79-170	- no gonad; generalized leukocytosis; metaplasia and necrosis of digestive tubules
	79-171	S ⁹ ; general leukocytosis; metaplasia and necrosis of digestive tubules
	79-172	ρςų
5-Month	79-173	\$ 9 ; metazoan parasite in kidney; generalized leukocytisis
Exposure	79-174	PS ² ; gregarine parasite in foot
	79-175	Sd; score slight metaplasia of digestive tubules
	79-176	PS ² ; some general leukocytosis
6-Month Exposure	79-177	S ⁰ ; metazoan parasite≃in kidney; some necrosis of kidney and digestive tubules; some metaplasia of digestive tubules
	79-178	s¥
	79-179	PS ⁹ ; metazoan parasite in kidney
	79-180	So; some metaplasia of digestive tubules; necrotic areas of stomach epithelium

Table 54. Histopathological descriptions of <u>Protothaca</u> <u>staminea</u> exposed to 50 ppb chlorine in Tank No. 5. of Chlorine Bioassay Study.

LA = late active gonad; R = ripe gonad; PA = partially spawned gonad; S = spent gonad; $\sigma' = male; \varphi = female$

Exposure Time	Specimen Number	Description
l-Month	79+181	Rd; general necrosis
Exposure	79-182	LAd; general leukocytisis; necrotic gills; digestive tubules, stomach, intestine
	79-183	LAG; gregarine-like parasite in gill; gill necrotic
	79-184	Rd; general necrosis
2-Month	79-185	PSG; metazoan parasite in kidney; some leukocytic inflitration around parasite
Exposure	79-186	LAO, some necrosis of digestive tubules; large abscess in gonad/digestive gland area; diminished basophilia
	79-187	PSP; considerable necrosis in digestive gland tubules; necrotic areas of intestine, leukocytic infiltration into gills
	79-188	LAÓ; necrotic areas of digestive gland tubules; stomach epithelium
3-Month Exposure	79-189	Sō; metazoan parasite in kidney; leukocytic infiltration into infected area; leukocytosis in gonad area
	79-1 90	PSo; metazoan parasite in kidney; leukocytic infiltration into infected area
	79-191	₽Ѕ₽
	79-19 2	PS ² ; metaplasia of digestive tubules
4-Month Exposure	79-193	PSo; metazoan parasite in kidney; necrosis of kidney tubules; leukocytosis in area around cyst; metaplasia of digestive tubules
	79-194	S?; no gametes, but follicles present; general leukocytosis; metaplasia of digestive tubules; kidneys necrotic
	79-195	PS ^Q ; some metaplasia of digestive tubules; necrotic areas of stomach and intestinal epithelium
	79-196	PS ⁹ ; metazoan parasite in kidney; vacuolization, necrosis of stomach epithelium; some metaplasia of digestive tubules; some necrotic tubules
5-Month	79-197	PSo; autolysis of Leydig tissue, some vacuolization of intestinal and stomach epithelium
exposure	79-198	PS ⁹ ; vacualization, some necrosis of digestive tubules
	79-199	PSo ^r *; metazoan parasite in kidney; leukocytic infiltration into kidney area; necrotic kidney tubules; extensive necrosis of digestive tubules
	79-200	PSd [*] ; metazoan parasite in kidney, extensive leukocytic infiltration with some intensely eosinophilic leukocytes; autolysis of Leydig cells; necrotic digestive tubules, portions of intestinal epithelium
6-Month Exposure	79-201	PSo ^{r*} ; metazoan parasite in kidney; gregarine-like parasite in mantle; autolysis of Leydig cells; necrotic kidney tubules, leukocytosis of kidney with eosinophilic leukocytes; necrotic digestive tubules, some metaplasia
	79-202	S^{Q}_{i} extensive necrosis of digestive tubules, some metaplasia; necrosis of stomach, intestinal epithelium; some vacuolization of stomach epithelium; autolysis of Leydig cells
	79-203	So; metazoan parasite in kidney; necrosis of kidney tubules; autolysis of Leydig cells; necrosis, metaplasia of digestive tubules; leukocytosis in viscera
	79-204	PSP; necrosis, metaplasia of digestive tubules, vacuolization, necrosis of stomach, intestinal epithelium; mild leukocytosis in gills; abscesses in foot muscle; autolysis of leydig cells

* Some follicles appear to be in late active state of development, but none look ripe.

Table 55. Histopathological descriptions of <u>Protothaca staminea</u> exposed to 100 ppb chlorine in Tank No. 6 of Chlorine Bioassay Study.

Exposure Specimen Time Number Description Rd; metazoan parasite in kidney, leukocytosis; large masses of basophilic granular material in gills; necrosis of large portion of gill; leukocytosis 1-Month 79-205 Exposure 79-206 LAÓ: general necrosis 79-207 LAd: general necrosis 79-208 Rd; metazoan parasite in kidney; general necrosis 2-Month 79-209 R⁹; leukocytic infiltration into gills, gonad, digestive area; vacuolization of Exposure stomach, intestinal epithelium with some necrosis 79-210 S^{2} : autolysis of Leydig cells; some leukocytic accumulation around stomach 79-211 PS^{Φ} ; metazoan parasite in gonad; autolysis of Leydig cells; necrosis of digestive tubules, portions of gills; vacuolization and some necrosis of intestinal epithelium LAG; autolysis of Leydig tissues; leukocytosis of gills; vacuolization of digestive 79-212 tube epithelium, same necrosis 3-Month 79-213 PSd; autolysis of Leydig cells; necrosis, metaplasia of digestive tubules; necrosis Exposure of stomach and intestinal epithelium 79-214 LAG: autolysis of Leydig cells; vacuolization of stomach epithelium; some necrosis of digestive tubules; intestinal epithelium 79-215 S²; abscess on gill; small amount of necrosis, metaplasia of digestive tubules 79-216 PS^Q; necrotic areas of digestive gland; vacualization, some necrosis of stomach epithelium 4-Month 79-217 LAd; metazoan parasite in kidney; slight leukocytosis in area of parasite Exposure LAď 79-218 s²; metazoan parasite in kidney; metaplasia, necrosis of digestive tubules 79-219 79-220 PS^Q; vacuolization of stomach and intestinal epithelium, some necrosis S⁰; autolysis of Leydig cells 79-221 5-Month Exposure PS^P: vacuolization of intestinal epithelium 79-222 sŶ 79-223 S²; vacualization of stomach, intestinal epithelium 79-224 $S^{\rm P}_{\rm T}$ autolysis of Leydig cells; general leukocytosis; metaplasia; necrosis of stomach, intestinal epithelium, kidney 6-Month 79-225 Exposure PSP; gills necrotic; vacuolization of stomach, intestinal epithelium; vacuolization, 79-226 some mecrosis of digestive tubules Ro_1^{\prime} necrotic areas along gills; digestive tubules almost completely necrotic; autolysis of Leydig cells; necrosis of stomach, intestine 79-227 79-228 LAG; vacualization of intestinal epithelium, some necrosis; general leukocytosis; necrotic areas of gill

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; σ = male; φ = female

Table 56. Results of histopathological examination of initial sample of <u>Protothaca staminea</u> collected from Sequim Bay, Washington in March, 1978.

R = ripe gonad; PS= partially spawned gonad; S - spent gonad; M = Metazoan parasite; G = gregarine-like parasite; of = male; 9 = female

Specimen Number	Gonad Condition	Parasite	Leukocytosis	Metaplasia	Necrosis	Other
79- 75	s¥			some; digestive tubules		
79-76	Rď			some; digestive tubules	some; stomach	
79-77	psq	M; gonad				
79-80	PS¥	G; mantle			some; gill	
79-81	ps¥	M; kidney			some; stomach	
79-82	PSd				general	
79-83	P5 6				general	
79-84	₽S₽				general	

Table 57. Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u>, exposed to various amounts of chlorine for one month.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; M - metazoan parasite; G = gregarine-like parasite; δ' = male; φ = female

Chlorine Concentration	Specimen Number	Gonad Condition	Parasite	Leukocytosis	Metaplasia	Necrosis	Other
Control	79-85	LAď					
	79-86	۶S				some; gill	
	79-87	Ro้	M; kidney			some; gill, stomach, intestine	1
	79-88	рţ¥	G; gill			some; stomach, digestive tubules	
6 ppb	79- 109	LAd"			some; digestive tubules	some; gill	autolysis of Leydig cells
	79-110	LAd		kidney; some large eosionphilic cells			autolysis of Leydig cells
	79-111	₽S₽	M; kidney			some; intestine	abscess in kidney; large eosinophilic leukocytes
	79-112	ps¥	M; kidney		some; digestive tubules	some; stomach epithelium	abscess in kidney: large eosionphilic leukocytes
12 ppb	79-133	LAď				general	
	79-134	LAd				general	
	79-135	PS ^Q				general	
	79-136	psq				general	
25 ppb	7 9- 157	₽₽				genera)	
	79- 158	рsq		gills		some; digestive tubules	autolysis of Leydig cells
	79-159	R₽				general	
	79-160	LAď				general	
50 ppb	79-181	Rđ				genera)	
	79 - 182	LAÓ		general		some; gills, diges- tive tubules, stomac intestine	ch,
	79-183	LAď	G; gill			some; gill	
	79-184	Rď				general	
100 ppb	79-205	Rď	M; kidney	kidney, gill		large portion of gill	large masses of baso- philic granular material in gill
	79-206	LAd				general	
	79-207	LAď				general	
	79-208	Ro	M; kidney			general	

Table 58. Summary of histological descriptions of the littleneck clam, <u>Protothaca</u> <u>staminea</u>, exposed to various amounts of chlorine for two months.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; N = metazoan parasite; G = grégarine-like parasite; d' = male; 🖁 = female

Chlorine Concentration	Specimen Number	Gonad Condition	Parasite	Leukocytosis	Metaplasia	Necrosis	Other
Control	79-89	₽S₽					
	79-90	PS¥	M; kidney				
	79-91	Rd	M; digestive gland	slight in diges- tive gland		some; near parasite in digestive gland	
	79-92	R¥	M; kidney				
6 ppb	79-113	s¥					
	79-114	₽S₽					
	79-115	Ro					
	79-116	LAď	M; kidney	kidney; clusters of eosinophilic leukocytes			
12 ррв	79-137	P5¥	G; gill				
	7 9 -1 3 8	₽S₽				some; gill, digestive tubules	autolysis of Leydig cells
	79-139	PS			digestive tubules	samé: digestive tubules	
	79-140	Rď	M; gonad				
25 ppb	79-161	LAÓ	G; mantle, digestive pland	some; digestive gland, kidnev			autolysis of Leydig cells
	79-162	LAS	angesene grano	grand, 41000)		some: digestive tubules	
	79-163	۶ę				some; gill, digestive tubules; stomach, intestines, kidney	autolysis of Leydig cells
	79-164	LAÓ	M; kidney	some; kidney		some; kidney	
50 pab	79-185	PSő	M; kidney	some; kidney			
	79-186	LAď				some; digestive tubules	large abscess in general digestive area
	79-187	٩S¥		some; gills		extensive; digestive tubules, intestine	
	79-168	LAď				some; digestive tubules, stomach	
		-0		romes cills conads.		some; stomach.	vacuolization of
100 ppb	79-209	K T		digestive gland		intestine	stomach, intestine autolysis of Leydig
	79-210	2¥		some; around stomach			çells
	79-211	₽S₽	M; gonad			some; digestive tubules, gill, intestinal epithelium	autolysis of Leydig cells; vacuplization of intestinal epithelium
	79-212	LAŐ		some; gills		some; digestive tubules	autolysis of Leydig cells, vacuoliz- ation of digestive tube epithelium

Table 59. Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u>, exposed to various amounts of chlorine for three months.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; M = metazoan parasite; G = gregarine-like parasite; σ^{4} = male; φ^{2} = female; EA = early active gonad

Chlorine Concentration	Specimen Number	Gonad Condition	Parasite	Leukocytosis	Metaplasia	Necrosis	Other
Control	79-93	PSď					
	79-94	₽S₽					
	79-95	PSď	M; kidney Unidentified; kidney	some; kidney			
	79-96	PS¥	kionej				
6 ppb	79-117	LAd					
	79-118	PSo					
	79-119	₽5 ₽					
	79-120	Rð	Unidentified; gill	some; gill			small abscess in mantle
12 ppb	79-141	PSď	M; kidney	some; kidney, g	i11		
	79-142	рsq					large abscess in gland
	79-143	Rď					
	79-144	Ro					
25 ppb	79-165	EAd					
	79-166	PSd	M; kidney				
	79-167	s¥			somet digestive tubules	some; digestive tubules, intestinal epithelium	
	79-168	₽S₽	M; kidney			some; kidney, gill, intestinal epitheli digestive tubules	um .
50 ppb	79-189	sď	M; kidney	some; kidney, gonad			
	79-190	PSd	™; kindey	some; kidney			
	79-191	₽S₽					
	79-192	₽S₽			some; digestive tubules		
100 ppb	7 9- 213	P\$ď			some; digestave tubules	some; digestive tubules, stomach, intestinal ep⊥- thelium	autolysis of Leydig cells
	79-214	LAO				some; digestive tubules; intestinal epithelium	autolysis of Leydig cells; vacuolization of stomach epithelium
	79-215	۶ţ			small amount: digestive tubules	small amount; diges- tive tubules	abscess on gill
	79-216	рsę				some: digestive gland, stomach	vacuolization of stomach epithelium

Table 60. Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u>, exposed to various amounts of chlorine for four months.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; M = metazoan parasite; G - gregarine-like parasite; d' = male; 🖁 = female

Chlorine Concentration	Specimen Number	Gonad Condition	Parasite	Leukocytosis	Metaplasia	Necrosis	Other
Cantrol	79-97	Rơ					
	79-98	\$2 \$			some; digestive tubules	some; kidney, stomach	
	79-99	LAď	G; gill	some; gill			
	79-100	PS ^Q				some; stomach epithelium	abscess in kidney
6 ppb	79-121	5 9	Unidentified in aill	some; gill			
	79-122	\$ \$	Unidentified in gill, kidney M; kidney				
	79-123	5 \$	M; kidney Unidentified in		some; digestive Tubules		vacuolization of stomach epithelium
	79-124	Rď	kidney G; foot		somė; digestive tubulės		vacuolization of stomach epithelium
12 ppb	79-145	೯ಽರ	G; gil] M: kidney	in viscera around			
	79-146	PSď	, kinaicy	.,,,,,			basophilic material in gill
	79-147	РSŞ	G; gill		some; digestive tubules	some; digest∔ve tubules	
	79 - 148	R ^Q	M; kidney		some; digestive tubules	some: kióney, giìì, digestive tubules, stomach, intestine	
25 ppb	79-169	PS Q			some; digestive tubules	some; digestiv e tubules	vacuolization of intestinal epithelium
	79-170	No gonad		general	some; digestive tubules	some; digestive tubules	
	79-171	sŧ		general	some; digestive tubules	some; digestive tubules	
	79-172	PS ^g					
50 ppb	79-193	PSő	M; kidney	some; around parasit e s	same; digestive tubules	some; kidney	
	79-1 94	2;		general	some; digestive tubules	kidney	gonad follicles present, but no gametes
	7 9 -195	P\$₽			some; digestive tubules	some: stomach. intestines	
	79-1 96	₽S₽	M; kidney		some; digestive tubules	some; digestive tubules	vacuolization of stomach epithelium
100 ppb	79-217	140	M; kidney	slight; in area of parasite			
	79-218	LAG ⁴	M. Lä.4		some: dicestive	some: digestive	
	79-219	54	M; klaney		tubules	tubules	
	29-220	₽S₽				some; stomach, intestine	vocuolization of stomach and intestine
Table 61. Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u>, exposed to various amounts of chlorine for five months.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; M = metazoan parasite; G = gregarine-like parasite; d' = male; 9 = female

Chlorine Concentration	Specimen Number	Gonad Condition	Parasite	Leukocytosis	Metaplasia	Necrasis	Other
Control	79-101	PSď				some; digestive tubules	numerous abscesses
	79-102	PSd			some; digestive tubules	some; digestive tubules	
	79-103	P50 ⁴			some: digestive tubules	some; digestive tubules	
6 ppb	7 9- 1 25	So .	M; kidney (heavy infection)	general	some; digestive tubules		autolysis of Leydig cells
	79-126	Psď				some; stomach, kidnev	autolysis of Leydig cells
	79-127	۶ŧ	H; kidney	kidney		some; kidney	vaculoization of stomach and intes- timal epithelium
	79-128	sď	M; kidney	kidney; some eosinophilic leukocytes			
12 ppb	79-149	sð	M: kidney (heavy)	kidney			
	79-150	₽ 5 ₽	M; kidney		some; digestive tubules	some; digestive tubules	
	79-151	₽S₽		general			
	79-152	Sď				some; intestinal epithelium, stomach digestive tubules	
25 ppb	79-173	5 \$	M; kidney	general			
	79-174	₽S₽	G; foot	-			
	79-175	sð			some; digestive		
	79-1 76	PS ^g		genera l	tubules		
50 ppb	79-197	PSď					autolysis of Leydig cells; some vacuoliz- ation of intestinal & stomach epithelium
	79-198	рs¥				some; digestive tubules	vacuolization of digestive tubules
	7 9-19 9	PSď	M; kidney	k idney		some; kidney, extensive; digestiv tubules	
	79-200	psð	M; kidnêy	kidney (extensive); eosinophilic leukocytes		some; digestive tubules, portions of intestine	autolysis of Leydig cells
100 ppb	79-221	sŧ					autolysis of Leydig
	79-222	₽S₽					vacuolization of
	70 100	-Q					interentiat epitoletion
	79-223 79-224	5 1 5 1					vacuplization of stomach and intestinal epithelium

Table 62. Summary of histological descriptions of the littleneck clam, <u>Protothaca staminea</u>, exposed to various amounts of chlorine for six months.

LA = late active gonad; R = ripe gonad; PS = partially spawned gonad; S = spent gonad; M = metazoan parasite; G = gregarine-like parasite; d' = male; 🖗 = female

Chlorine Concentration	Specimen Number	Gonad Condition	Parasite	Leukocytosis	Metaplasia	Necrosis	Other
						· · ·	
Control	79-105	₽ 5 ¥			occasional: digestive tubules		
	79-106	۶są	G; mantle, gill M: kidney				
	79-107	₽S₽	M; kidney		some; digestive		
	79-108	Rď	G; gill				
6 ppb	79-129	5 9	M; kidney	kidney		some, kidney	
	79-130	₽₽	M; kidney			consi derable; kidney, digestive tubules some; stomach, intestina} epitheliu	41
	79-131	₽S₽			some, digestive tubules	some: kidney, digestive tubules	mutolysis of Leydig cells
	79-132	S₽	N; kidney	kidney (some large eosinophilic leukocytes)		some: stomach	
12 ppb	79-153	s₽			some; digestive tubules	some; digestive tubules	autolysis of Leydig cells
	79-154	₽S₽			some; digestive tubules	some, digestive tabules	
	79-155	sŧ	M; kidney	kidney, around cysts			
	79-156	No gonad		general			fibrous deposits in
							digestive gland
25 ppb	79-177	5 \$	H; kidney		some; d⊧gestive	some: kidnev.	
	79-178	5 8			tubules -	digestive tubules	
	79-179	P5 ²	M: kidnev				
	79-180	Sď"			some; digestive tubules	Some; Stomach	
50 ppb	79-201	PSd"	M: kidney	kidney; some large	some; digestive	some; kidney,	autolysis of Leydig
	79-202	\$2	5, 116 1010	easingpointe certs	some: digestive	extensive: diges-	some vacuolization of
					tubules í	tive tubules; some, intestine, stomach	stomach epithelium; autolysis of Leydig cells
	79-203	So	M; kidney	viscera	somė: digestive tubules	kidney; some digestive tubules	autolysis of Leydig cells
	79-204	₽S₽		mild; gills	some; digestive tubules	some; stomach, intestine	autolysis of Leydig cells; abscesses in foot; vacuolization of stomach, intestinal epithelium
		-0			,		
IOU PPD	19-225	24		general	some; digestive cells	some: stomach, intestine, kidney	autolysis of Leydig cells
	79-226	P5¥				gills; some digestive tubules	vacuoliation of stomach, intestinal empithelium, digestive tubules
	79-227	Rď				portions of gill; extensive; digestive tubules; some, stomach, intestine	
	79-228	LAd		general		some; intestine, gill	vacuolization of intestinal epithelium

N			Number of clams with histopathological conditions						
Number of Months Exposed	CPU Concentrations (µg/l)	No. of Clams in-Sample	Leukocytosis	Metaplasia	Necrosis	Digestive Tissues	Autolysis, etc.		
Initial Sample	0	10	٥	2	5	0	0		
	0	4	0	0	3	0	0		
1	12	4	0	Ó	4	č	ō		
	25	4	1	0	4	0	1		
	50 100	4	1	0 0	4	C Q	0 1		
	··	4	1	0	1	0	0		
,	5 12	1	1	D 1	0	0	0		
•	25	4	2	ò	3	ů	2		
	50	4	2	٥	3	0	1		
	100	4	3	0	3	3	3		
	0 5	4	1	0	0	0	0		
3	12	4	ÿ	Ŏ	ō	Ō	1		
	25	4	0	1	2	0	ç		
	100	4	0	2	4	2	3		
·	0	4	1	1	Ź	0	1		
4	12	4	1	2	3	á	i		
	25	4	2	3	3	ī	Ō		
	50	4	2	4	3	1	1		
	100	4	1		2 		U 		
	0	3	0	2	3	0	1		
5	12	Ĩ.	2	i	2	ò	ō		
	25	4	2	1	0	0	0		
	50	1	ì	0	3	2	2		
<u> </u>		•		U			· · · · · · · · · · · · · · · · · · ·		
	0	4	2	2 1	0	0	0 1		
5	12	4	1	2	2	Ó	2		
	25	1	0	2	2	0	0		
	100	2	2	ī	2	2	i		
			-			-	-		

Table 63. Summary of histopathological observations of littleneck clams, <u>Protothaca</u> <u>staminea</u> exposed to various CPO concentrations for up to six months.

-

CPO			D	ATE OF H	IARVEST -			
µg/l	3/1	4/3	5/2 ng Bromo	5/30 form/gra	6/29 am tissue	8/1 wet wt	9/5 	11/8
Control	0*	0 226 107 55	0 6 0 0	12 5 0	g	g	0 10 0	1 9 0 ^a
6		97 166 0 140	20 15 0 0	0 0 0 11	0 0 0 0	2 0 0 0	0 0 0 0	0 ^b
12		33 183 238 296	56 9 0	2 169 0 9	0 0 0 0	0 10 14 18	1 9 3 20 0	2 40 0 ^c
25		24 123 74 42	72 13 80 39	348 26 20 9	17 0 0 35	18 14 14 17	0 0 208	3 2 2 0 ^d
50		107 34 97 352	21 16 6 82	7 11 1 8	13 44 25 41	4 0 0 14	0 0 0 0	2 0 ^e
100		72 95 103 89	150 153 64 60	14 43 46 32	g	0 22 26 8	6 2 0 2	18 18 22 33 0

Table 64. Bromoform concentrations in clams exposed to chlorinated sea water containing sublethal concentrations of chlorine produced oxidant (CPO).

* Represents 13 individuals

a Represents 9 individuals

b Represents 11 individuals

С Represents 4 individuals Represents 7 individuals d

е Represents 6 individuals

f Represents 4 individuals

g No sample

Figure 2. Exposure system used for <u>Protothaca staminea</u> in the second growth experiments.

A. NORMAL DIGESTIVE TUBULE EPITHELIUM

B. NORMAL STOMACH EPITHELIUM

C. NECROTIC STOMACH EPITHELIUM (LEFT) AND METAPLASTIC DIGESTIVE TUBULE [PITHELIUM (RIGHT) OF CLAM EXPOSED FOR 6 MONTHS AT 50 ppb CPO

- D. VACUOLIZATION OF INTESTINAL EPITHELIUM OF CLAM EXPOSED FOR 6 MONTHS AT 100 ppb CPO. NOTE LEUKOCYTIC INFILTRATION INTO EPITHELIUM.
- Figure 3. Photomicrographs of sections through the littleneck clam, <u>Protothaca staminea</u>.

NUREG/CR-1298 PNL-3158 RE

DISTRIBUTION

No. of Copies

OFFSITE

A. A. Churm DOE Patent Division 9800 S. Cass Avenue Argonne, IL 60439

- 10 Dr. Phillip R. Reed Bob Samworth John C. Lehr U.S. Nuclear Regulatory Commission 7915 Eastern Avenue Silver Springs, MD 20901
- 265 NRC Division of Technical Information and Document Control Washington, DC 20555
 - 2 DOE Technical Information Center

D. R. Anderson 2521 N. 40th, No. 1 Seattle, WA 98103

Dr. Robert Broxton Electric Power Research Institute PO Box 10412 Palo Alto, CA 94303

Dr. Dennis T. Burton Academy of Natural Sciences of Philadelphia Benedict Estuarine Research Laboratory Benedict, MD 20612

No. of Copies

Dr. Will Davis U.S.E.P.A. Gulf Breeze Environmental Research Laboratory Wadmalaw Island, SC 19487

Dr. R. E. Hillman W. F. Clapp Laboratories Washington Street, P.O. Box AH Duxbury, MA 02332

Or. Donald Johnson Dept. Environmental Sciences and Engineering School of Public Health University of North Carolina Chapel Hill, NC 27514

Dr. George R. Helz Chemistry Dept. University of Maryland College Park, MD 20742

Dr. Milton H. Lietzke PO Box X Oak Ridge National Laboratory Oak Ridge, TN 37830

Dr. J. S. Mattice PO Box X Oak Ridge National Laboratory Oak Ridge, TN 37830

Dr. John Lum U.S.E.P.A. 401 M Street S.W. WH552 Washington, DC 20460

No. of No. of Copies <u>Copies</u> ONSITE Or. Roy Nakatani Or. Quentin J. Stober FRI WH-10 50 Pacific Northwest Laboratory University of Washington Seattle, WA 98195 RM Bean (32) CI Gibson KE Harding (4) Dr. Thomas O. Thatcher DC Mann Rt 2 Box 113 Sequim, WA 98382 TL Page RG Riley RE Schirmer F. C. Tone Florida Marine Research Facility NM Sherer RE Wildung Sailfish Drive Publishing Coordination (2) Ponce Inlet Technical Information (5) Daytona Beach, FL 32019 Ronald L. Raschke U.S. EPA S.E. Water Laboratory Bailey Road

Athens, GA 30601

NRC FORM 335		1. REPORT NUMBER	(Assigned by DDC)				
BIBLIOGRAPHIC DATA SHEET	NUREG/CR-1298						
4. TITLE AND SUBTITLE (Add Volume No., if appropriate)							
Growth and Histological Effects to Protothaca st							
(Littleneck Clam) of Long-Term Exposure to Chlor Sea Water	3. RECIPIENT'S ACCESSION NO.						
7. AUTHORIS)		5. DATE REPORT CO	OMPLETED				
C.I. Gibson, R.E. Hillman, P. Wilkinson, D.L. Wo	момтн J une	чеан 1980					
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include 2	(ip Code)	DATE REPORT IS	SUED				
Pacific Northwest Laboratory	August 1980						
Kichiand, WK 99352		6. (Leave blank)					
		8. (Leave blank)					
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include	Zip Code)	10. PROJECT/TASK/WORK UNIT NO.					
Office of Nuclear Regulatory Research	ar Kesearch	11. CONTRACT NO.					
Washington, DC 20555		EIN No. B2098					
13 TYPE OF REPORT	PERIOD COVERE	D (Inclusive dates)					
15. SUPPLEMENTARY NOTES		14 lleave blankt					
16. ABSTRACT (200 words or less)							
of materials resulting from sea water chlorination on marine organisms, groups of littleneck clams, <u>Protothaca staminea</u> , were exposed to sea water that had been chlorinated. Two experiments were conducted. In one test, groups of littleneck clams were exposed to dilution of chlorinated sea water that had average chlorine produced oxidant (CPO) concentrations of 16 μ g/ ι or less. In the second test, groups of clams were exposed to chlorinated seawater- unchlorinated sea water mixtures that had target CPO concentrations of 0, 6, 12, 25, 50 and 100 μ g/ ι . In the first experiment, length measurements were made on all clams at approxi- mately one-month intervals for three months. In the second test, length, weight, depth, width and edge etching were used to measure growth, and subsamples were harvested and measured at one-month intervals. In addition, clams were preserved for histological examination.							
I. KEY WORDS AND DOCUMENT ANALYSIS	7a DESCRIPTORS						
17b. IOENTIFIERS/OPEN ENDED TERMS		CLASS (The second)					
lin limited		fied	ZI NU UEPAULA				
	20 SECURITY Unclassi	CLASS (This page) fied	22 PB/CE 5				

٠

.

.