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Executive Summary 

Progress in the second year of this project is described by the series of technical reports and 

manuscripts that make up the content of this report. These documents summarize successes in our goals to 

develop our robust image-hash templating and material-discrimination techniques and apply them to test 

image data. 

Building on our efforts in FY2011 to survey radiological imaging technology, we convened a series 

of panel discussions with imaging and arms control verification experts at PNNL to define the set of 

attributes, and imaging technologies to confirm those attributes, on which this project will focus. Two 

manuscripts have been drafted on the outcomes, which emphasize the fact that imaging techniques can 

increase confidence in verification inspections by confirming additional attributes outside the reach of 

historically considered, aggregate methods such as gamma-ray spectroscopy. These manuscripts will be 

completed in FY2013 and delivered as technical reports. In the first manuscript we consider attributes 

specifically accessible by imaging for the declared AT400-R materials-storage configuration and list 

imaging methods capable of measuring these attributes. We estimate the ability of passive or active, 

neutron or photon imagers to measure different attributes and note complementary system combinations. 

We also identify several nominal and existing multi-modal systems for confirming an expanded set of 

attributes and suggest avenues of further hardware and algorithm development. The second, classified 

manuscript addresses the applicability of attributes specific to warheads rather than the AT400-R, and 

techniques for a nuclear warhead counting regime. Our informal ranking of technologies for confirming 

these attributes in both cases strengthened an emphasis on ORNL neutron imaging systems as a target for 

testing and further development of our algorithms. 

For templating, we developed and tested components of a general framework for robust image hash 

templates and demonstrated a high degree of robustness to variation in images of like objects and 

discriminative power between images of different objects. The approach was applied to x-ray image data 

collected at PNNL on a scale model of the AT400-R material storage container, and to a generic set of x-

ray data with spherical objects of varying material in a plastic container with a varied internal structure. 

Results on the scale model AT400-R container are summarized in an INMM paper, which is being 

extended to a manuscript for submission to an arms-control-related journal. Results on the generic images 

are summarized in a manuscript under revision for submission to a journal related to image processing 

and/or secure information transmission.  

For our attribute-based material-discrimination, an iterative regression technique was developed to 

address the challenge of similarity in attenuation coefficients for different materials. The technique was 

demonstrated on simulated x-ray images of the AT-400R container. Results can be used to verify declared 

material configurations as well as provide a mass estimate for SNM contained within the inspected object. 

Comparison with other mass estimates (e.g., Pu mass estimates provided by gamma spectroscopy or 

neutron multiplicity counting) behind an information barrier enable improved verification of material 

presence without disclosure of sensitive information. Results are summarized in an INMM paper. 

Our university collaborators include experts in inverse problems, and they are directing a PhD 

student, Andy Gilbert (U. Texas at Austin), on methods to improve the attribute-based, material-

discrimination techniques. Andy successfully presented his research proposal and relocated to PNNL 

where he is completing his research under this project. Accomplishments in FY12 include testing of 
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various minimization techniques to achieve the best performance and regularization of the objective 

function (a measure of goodness of fit) to improve results when attempting to find few materials using 

noisy image data. A manuscript is being completed on the application of inverse problems methods to 

baggage inspection using commercially available spectral detectors. (The baggage-inspection task is a 

surrogate for the treaty-verification task using the same mathematical and physical models, potentially 

easing classification concerns. All publications from this project will be properly reviewed by our ADC 

office.) The utility of these methods has also been tested for application to nuclear-material-container 

inspections and a complementary paper is to be written for this application. The inverse-problems-based 

approach will be applied to complementary forms of imaging data in the next year (e.g., photon and 

neutron radiography). Andy Gilbert’s PhD proposal contains further details, which will be provided to 

NA-22 as a separate report. 

A review of the project by an external panel took place on January 13, 2012. The panel consisted of 

Keith Tolk (Milagro Consulting), Helen White (AWE), Todd Peterson (Vanderbilt Univ.), and Dick 

Kroeger (SPAWAR). A report on the review has been provided through PMIS. 

In this final year of the project, our attribute-based material discrimination and template-based robust-

hashing techniques will be refined with a focus on application to additional image data that are 

representative of verification challenges. In particular, we will pursue application to relevant images from 

colleagues identified at ORNL (e.g. the Nuclear Materials Identification System) and LLNL (Compton 

camera) in addition to testing on x-ray images of mock storage and other scenarios. Ideally, our 

techniques will be applied to images collected under the recent NA-24 Weapons Measurement Campaign, 

if access to those images can be granted to PNNL. Otherwise, an alternative and benign test object should 

be identified for imaging with the systems to be used in the warhead counting campaign. One candidate, 

for example, would be the criticality safe cylinders used for system development at ORNL and Y-12.   

With guidance from University of Texas (Austin) advisor Dr. Mark Deinert and other University of 

Texas professors and in collaboration with PNNL project staff, Mr. Gilbert will continue work on 

algorithms for using energy-dependent x-ray data to noninvasively determine the presence of declared 

materials and extend the algorithms to multiple, complementary image data sources.
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Abstract 

Imaging systems can provide measurements that confidently assess characteristics of nuclear 

weapons and dismantled weapon components, and such assessment may be needed in future 

verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about 

the ability to protect sensitive information. In particular, the prospect of using image-based 

templates for verifying the presence or absence of a warhead, or of the declared configuration of 

fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of 

information barrier (IB) principles. Development of a rigorous approach for generating and 

comparing reduced-information templates from images, and assessing the security, sensitivity, 

and robustness of verification using such templates, are needed to address these concerns. We 

discuss our efforts to develop such a rigorous approach based on a combination of image-feature 

extraction and encryption-utilizing hash functions to confirm proffered declarations, providing 

strong sensitive data security while maintaining high confidence for verification. The proposed 

work is focused on developing automated techniques that may enable the comparison of non-

sensitive hashed image data outside an IB. We present an assessment of the performance of our 

techniques on the basis of a methodical and mathematically precise framework. 

 

Introduction 

Modern imaging technology provides an exceptional capability for providing and quantifying 

detailed properties of imaged objects. The challenge in the area of Nuclear Arms Control 

Verification for imaging, as with any measurement technology, is to collect necessary and 

sufficient evidence in such a way that it can be used to verify a proffered declaration about a 

weapon or a weapon component without compromising sensitive information [9, 10, 16]. In such 

settings, there is a host undergoing inspection and a monitor who carries out the inspection. The 

monitor must be able to trust that verification is accurate, and the host must be able to trust that 

no sensitive information is disclosed. Information barriers consisting of a combination of 

software and hardware mechanisms designed to protect sensitive information, are a crucial part 

of verification. See [3, 5, 11, 13, 14, 17, 18], for example, for more detailed definition and 

discussion on the roles of host and monitor, the concept of information barriers, and the 

challenges of certification, authentication, and trust.  

 

One approach to address this challenge is to use data templates. In template matching methods, a 

measurement of a trusted item serves as a reference to which measurements of inspected items 

are compared, and a match provides verification. Here we refer to a trusted item as one believed 

by the monitor to be consistent with the declaration to be verified. Storing detailed and thus 

highly sensitive reference data in non-volatile memory would likely present an unacceptable risk 

of disclosure, and data hashing methods have been used in the past to address this concern. For 

instance, the TRIS measurement system developed by Sandia National Laboratory relies on the 

generation of (non-imaging) template measurements that are hashed and test measurements are 

compared to the decrypted template behind a formal information barrier [15]. Similar approaches 
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could potentially be used for imagery, but images may heighten concern over sensitive 

information management. 

 

An alternative is to incorporate data reduction, feature extraction, and hashing techniques to 

isolate the content in images that is sufficient for verification as a template, while prohibiting the 

extraction of sensitive information from the template. Ideally, such a template might even be 

compared and stored outside an IB. In this paper we present procedures to support Nuclear Arms 

Control Verification based on coupling image data reduction with encryption-utilizing robust 

hash functions intended for use in template matching along with IBs. The work is focused on 

developing secure, robust, tamper-sensitive and automatic techniques that process all the 

sensitive measurements behind the information barrier and produce a non-invertible template to 

be used for comparisons outside of the IB (see also [4]). 

 

Robust (a.k.a. perceptual) hashing is a transformation that maps high-dimensional content of an 

object (e.g., image, document, biometric template) into a low-dimensional vector space of short 

bit strings to enable fast comparison and searches. In contrast to conventional purely 

cryptographic hash functions (e.g., MD5, SHA-2) which are highly sensitive to every bit of input 

data, robust hashing is sensitive to an object’s content rather than the integrity of all of the 

object’s data bits (see [2] for the review of major perceptual hashing algorithms). Many of these 

algorithms rely on the correspondence between perceptual similarity of images and coarse image 

representation based on several standard image processing techniques such as Discrete Cosine 

Transform, Fourier-Mellin Transform, and Singular Value Decomposition. However, the images 

of items subject to arms-control verification may preserve perceptual similarity even when items 

are altered, for instance, to cover up diversion of fissile material. The hashing techniques based 

on the image coarse representations applied to such tampering scenarios don’t have enough 

discriminative power to successfully support verification decision processes.  

 

Thus, while perceptual or robust image hashing provides a starting point, we must extend the 

concept to find a proper balance between robustness, discriminability and security, as well as 

simplicity. To be precise we define robustness, as above, to be an insensitivity to non-content 

variation in the data; discriminability to be accurate differentiation between objects that are as 

declared and objects that are not; and security to be the inability to obtain sensitive information 

from the output of image hashing. Discriminability here is considered in terms of two possible 

cases of host tampering with the imaged object. The first case is represented by simple removal 

or replacement of a portion of the object. The second tampering case is represented by a more 

elaborate attempt to replicate the ―correct‖ image hash by learning from observation and 

knowledge of the hash algorithm one or more variations on the objects that produce essentially 

the same image hash. To achieve the robustness, discriminability, and security objectives we 

have proposed histogram-based techniques which exploit the invariance of the relative 

frequencies of pixel intensities in histograms [4]. To reduce further the risk of disclosure of 

sensitive information to the monitor, we introduce relation-based data reduction and a joint key 

strategy (a codebook construction) that relies on random permutations of histogram bins and 

reduction to short bit strings.  This process increases irreversibility and unpredictability of the 

histogram-based hash values. The goal is to develop a procedure which minimizes the ability of a 

potential attacker to learn details of the full image and thus the imaged item from the observed 

hash values. 
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Hash-Template-Based Verification Process 

A schematic of a hash-template-based verification concept is presented in Fig. 1. 

 

 
 

Figure 1. Basic elements of the hash-based verification concept. 

 

In this proposed system, all sensitive processes such as imaging an inspected item, discriminative 

feature extraction and processing, and generation of a hash value (a relatively short binary string) 

are performed behind an Information Barrier. For verification, the hash of the image data from a 

trusted item is pre-computed using a joint key, stored as a template, and compared with the hash 

of an inspected item’s image. Details of joint key construction are beyond the scope of this 

paper; an example can be found in [15]. In practice, the hash value produced for two images of 

exactly the same object would not be identical, due to typical distortions in image acquisition and 

processing. A distance metric between the hash of the inspected item’s image and the original 

template is computed and compared with a threshold as a test for compliance with declaration. 

Since the hash values are binary strings we use the standard Hamming distance (bit error rate) as 

the distance metric.  

 

Secure, Robust, and Discriminative Hashing: Definition and Desired Properties 

By hash function here we mean the combination of transformation of measurements (e.g. feature 

extraction, here represented by histograms) followed by reduction to a short bit string. In general, 

the hash function that we propose takes two inputs, an image and a key to produce (preferably at 

low complexity) a binary string of length q (preferably relatively small). That is, denoting a set 

of images by I and a set of keys by K, the hash function H is defined as 

(I, K) ϶ (i, k) → h = H(i, k) ϵ {0, 1}
q
.    (1) 

To support arms control verification the hash functions need to satisfy several desired properties. 

To formally define these properties let iident ϵ I denote the image of an item essentially identical 

to the trusted item, whose image is i ϵ I. In other words, iident is a slightly distorted (rotated, 

compressed, noisy, etc.) version of i. We will also use the notation iident ≈ i. Moreover, let idiff ϵ I 

denote an image of an item that is distinct from the trusted item. That is, idiff  ≠ i may be the 

image of an altered item. An example would be a material storage container with the correct 

material but in different chemical form than declared.  
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The robustness property requires that the hash values of images (subjected to insignificant or 

legitimate global distortions) that represent the same item are close to each other or, in other 

words, identical with high probability: 

Prob{ H(i, k) = H(iident , k ) } ≥1 – θ1, for all i, iident ϵ I, iident ≈ i, k ϵ K, 0 < θ1 < 1. (2) 

The discriminability (collision-resistant) property requires that the hash values of any pair of 

images in I for distinctive (e.g., tampered) items must be different with high probability: 

Prob{ H(i, k) ≠ H(idiff , k) } ≥ 1 – θ2, for all i, idiff ϵ I, idiff ≠ i, k ϵ K, 0 < θ2 < 1. (3) 

The property (3) is very important since it must extremely difficult for the host to tamper with 

the inspected item and yet obtain a hash value very close to that of the trusted item. Another 

property supporting tamper resistance as well as information security of the hash function is its 

unpredictability, requiring that the output hash value must be approximately uniformly 

distributed among all possible q-bit outputs when the key varies over K for a fixed input image i: 

Prob{ H(i, k) = h } ≈ 1/2
q
, for all h ϵ {0, 1}

q
. 

   
(4) 

Also for hash security, i.e., inability of the monitor to deduce detailed knowledge about the items 

being imaged based on the observed hash values needs to include the one-way hashing or non-

invertibility property: a high degree of computational difficulty in identifying image data i that 

produce a given hash value h of an imaged item. This property can be expressed as follows, 

borrowing from the literature on cryptographic hashing. First, it must be difficult to find a pre-

image i
*
 that produces a given hash value: 

Prob{ find i* ϵ I such that H(i*, k) ≈ h } ≤ θ3, for a given h ϵ {0, 1}
q
, 0 < θ3 < 1. (5) 

Second, it must be difficult to find a pre-image i
#
, strictly different from the image of the trusted 

item, that produces a hash value matching that produced by the trusted item: 

  Prob{ find i
#
 ϵ I, i

#
 ≠ i such that H(i

#
, k) ≈ H(i, k) } ≤ θ4, for a given i ϵ I, 0 < θ4 < 1. (6) 

The required hash properties (2) – (6) clearly conflict with each other. For example, property (2) 

calls for robustness under insignificant image data perturbations while (3) requires minimization 

of collision (matching hashes) probabilities for distinctive images. As an illustration, using very 

crude features can yield high robustness but also high probability of encountering matches 

(collisions) between images of distinct items. Conversely, perfect randomization of the hash 

values would virtually eliminate collisions, but also makes the hash much less robust. Depending 

on particular applications secure hash functions need to satisfy these conflicting properties to 

some extent and/or facilitate the trade-offs [8, 21]. The accuracy parameters θ1, θ2, θ3, and θ4 

defined in (1-6) provide a quantitative measure for overall performance and must be made as 

small as possible, optimized with respect to requirements of a given verification scenario. 

 

Histogram-Based Image Feature Hashing Procedures 

In order to resolve the trade-off between discriminability and noninvertibility of the hash 

function, we implement and analyze hash procedures generated using the relative quantities 

extracted from gray-level (pixel intensity) image histograms [19, 20]. The image histograms are 

invariant to scaling (up to a multiplicative factor), rotation, and translation, and they should 

preserve their basic shape under other moderate image distortions (noise, compression, etc.) 

Defining an image histogram as: 
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  Gq = { gq(j) such that j = 1,…, q}, where gq(j) ≥ 0 is the number of pixels in the j
th

 bin (7) 

(with bins formed in the usual manner of ranges of pixel intensity) we compute a hash value by 

comparing numbers of pixels in consecutive histogram bins: 

  h(j) = 1 if gq(j) > gq(j+1) for j = 1,…,q-1, h(q) = 1 if gq(q) < gq(1), h(j) = 0 otherwise. (8) 

A binary string with length equal to the total number of bins results. This procedure is 

generalized to include concatenation of hash values evaluated for subimages of a partition of the 

original image. An implementation of a keyed encryption scheme may involve a random 

permutation of the histogram bins as well as random shuffling of the subimages. Many other 

keying techniques (e.g., random projections or dithering and distributed source coding) can be 

also utilized [6]. A schematic of the process of generating values of a keyed hash function is 

presented in Fig. 2. First an image is partitioned into a number of subimages, on each of which a 

histogram is formed; then the bins are rearranged and combined and a hash is generated on the 

results according to the number of pixels counted in each adjacent bin. 

 

 
 

Figure 2. Process of generating values of a keyed hash function (random tiling of image data, 

histogram calculation, random bin permutation, binary hash extraction). 

 

Experimental Setting 

To illustrate application of the proposed image hash template techniques and analysis of the 

desired properties, we use a set of 300 x-ray images of a container designed to mimic a scale 

model of a special nuclear material storage container. The AT400R container was designed for 

use at the Mayak Fissile Material Storage Facility and in that purpose is declared to contain 2 2-

kg spheres of plutonium. In our example, spheres of glass and ceramic are placed in the mock 

AT400R to represent nominal as-declared and simple diversion scenarios. This model is placed 

between a strong x-ray source and a large-area imaging detector. An image is then formed from 

the transmitted photon flux. The image is representative of the attenuation of the x-ray source 

through the intervening materials (including the container and contents). The digital images are 

formed with pixel values ranging from 0 to 255 (8 bits) and belong to 3 groups (each with 100 

slightly different images) divided according to their content: group A, representing images of ―as 

declared‖ items, consists of images representing a container with 2 ceramic balls; groups B and 

C, representing diversion, have images of a container with two glass balls and one ceramic and 

one glass ball, respectively. In order to obtain slight variations of single images of the same 

object for comparison, the 100 images within each group were created while rotating a 
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roundtable with the container. Figure 3 shows the mock AT400R with a few objects that can be 

placed inside, and an example image from each group using a color scale from blue, 

corresponding to low attenuation, to red, corresponding to high attenuation. Greater translation 

of each item was evident among the full set of original images; a very simple automated 

cropping step was used to produce the images in the figure. Note that with the bare eye the 

difference between the images in Fig. 3 is hardly noticeable; perceptually we might say they are 

the same. 

 

  
 

Figure 3. Mock AT400R container and three categories of images used to assess the quality of 

proposed hashing techniques. Two ceramic balls, two glass balls, and one ceramic and one glass 

ball (second, third, and fourth panels, respectively). 

 

Robustness and Discriminative Power 

We computed hash values for all the images using the procedure (7-8) and computed intra- and 

intergroup Hamming distances between each pair of hash values. For this test we use q1 = 32 

histogram bins and 4 subimages (tiles) which yield hash binary strings of length q = 4q1 = 128. 

This is a significant reduction of information that can greatly reduce the ability to extract 

sensitive details of the original image. The results of the comparison are presented in Fig. 4.  

 

 
Figure 4. Graphical representation of high discriminative and reconstructive (robustness) power 

of the proposed hashing technique applied on sample data (300 images). 

 

The displayed 300-by-300 array represents intra- and intergroup Hamming distances (bit error 

rates) between the computed hashes for 300 tested images, i.e., each ( i, j ) – element of this array 

is a color representation of the distance between hashes of the i
th

 and j
th

 images. In this figure, 
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images numbered from 1 to 100 belong to group A, images numbered from 101 to 200 to group 

B, and images numbered from 201 to 300 to group C. There are apparently strong dissimilarities 

between the ―as declared‖ group A and ―diversion‖ group B (blue color in the figure 

corresponding to strong similarity and red to strong dissimilarity). Greater similarity is evident 

between groups A and C, indicating higher likelihood of error in distinguishing between items in 

these two groups. 

 

The test indicates both robustness and high discriminative power of the proposed hashing 

scheme applied to the mock AT400R container and its content. A decision on the consistency of 

an inspected item with declaration is made by comparing the distance between hash values with 

a threshold. Therefore, the quality of the decision depends on the separation between the hash 

distances of the same object and hash distances of different objects. The overall robustness of the 

procedure can be measured by the maximum intragroup distance between hash values derived 

from different images of the same object. The maximal intragroup distances are dmaxA = 0.1719, 

dmaxB = 0.2266, and dmaxC = 0.2031. The overall discriminative power of the hashing technique 

can be derived from the minimal intergroup distances which are dminAB = 0.2891, dminAC = 

0.1016, and dminBC = 0.2500. The only overlap is between hash distances for images in group A 

and C. To provide a quantitative assessment in the verification decision problem, we may use the 

False Accept Rate (FAR) and False Reject Rate (FRR). Here, FAR represents the fraction of 

inspected items that are falsely determined to be ―as declared,‖ and FRR represents the fraction 

of inspected items that are falsely determined to be ―not as declared‖. Selecting a threshold 

between 0.1719 and 0.2891 leads to zero error in discriminating between group A and B items. 

 

 
 

Figure 5. Error curves for image hashes of items in Groups A and C. 

 

The FRR approximates the probability that two images of the nominal item are determined to be 

different, providing an estimate of θ1 in formula (2). Similarly, the FAR provides an estimate of 

θ2 in formula (3). The probability of falsely categorizing items in the decision process involving 

groups A and C can be estimated as a function of a threshold c by plotting the ordered pair 

(FAR(c), FRR(c)) when each item in group A is verified against the remaining items A and all 

the items of group C. The resulting 100 curves (a version of Receiver Operating Characteristic 

curves) provide a basis for choosing a threshold to balance robustness and discriminability 

through a corresponding choice of θ1 and θ2. A standard trade-off is to select a threshold that 
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leads to similar FAR and FRR. The curves displayed in Fig. 5 indicate that this trade-off yields 

θ1 ≈ θ2 < 0.1 and the average error rates over 100 tests are approximately equal to 0.02. 

 

Unpredictability of the Image Hash Template 

In this section we assess unpredictability. This relates to both the risk described above of a host 

altering an inspected item in such a manner as to closely match the template hash value, and to 

the risk of a monitor ―inverting‖ the hash value to obtain sensitive information. In our proposed 

scheme, both parties could have knowledge of the hashing algorithm and the image hash value, 

and the host has knowledge of the items being inspected. A joint key, unknown to both parties, 

may be generated by combining a host-selected key and a monitor-selected key, for example 

[15]. An altered item could be rearranged in such a way that the gray-level histogram of a new 

image is close to one produced from the declared item and simultaneously attempting to deceive 

the complementary verification procedure (e.g., gamma spectrum). Thus, under this scenario, 

tamper resistance depends on a level of changeability of the scrambled histogram bin values 

(and, more importantly, their ratios) when the joint key varies, i.e., when the histogram bins of a 

subimage’s random shuffling are randomly permuted.   

 

The factorial growth characteristic of permutations suggests their potential for increased 

unpredictability of the produced hash values, thereby providing greater defense against this type 

of attack [1]. However, the unpredictability property of the hash requires that the output hash 

value must be approximately uniformly distributed among all 2
q
 possible q-bit outputs when the 

histogram bins are permuted and the bins ratios yield the bits distribution.  

 

Figure 6 shows an example analysis of unpredictability. In each panel, all 8! (40,320) 

permutations of the bins of an example 8-bin histogram are generated, and from each result the 

hash is computed (based on the relative magnitude in permuted bins as described previously); the 

number of each possible 8-bit hash value is then plotted. The ideal result would be that each hash 

value is equally likely, which would be indicated by a uniform distribution (the red line). The 

first panel (left) represents the most typical case of different numbers of pixels in each pixel 

intensity histogram bin, and the other panels represent less likely cases in which either two or 

four of the bins have exactly the same number of pixels. Note that it is only the relative 

magnitude (number of pixels) in each adjacent bin that matters in calculating the hash value, so 

the result will be the same as in the first panel for any image histogram with the same relative 

histogram pattern. From the figure it is clear that the hash outputs are not uniformly distributed. 

Further analysis is needed to quantify how far from uniform the distributions are, and more 

importantly, how that impacts the hash unpredictability. 

 

This analysis does not account for partitioning the image randomly into subimages, which 

increases unpredictability. To further improve the theoretical security of the hashing technique, 

partitioning and/or bin distribution for each subimage may be optimized to obtain the highest 

variability of the hash values measured by an information measure such as differential (Shannon) 

entropy. Differential entropy is a well-established measure of the complexity of the relationship 

between the image, its features (in our case, histograms), and the key [6, 7, 12]. Although we 

have not performed formal optimization of the differential entropy associated with the proposed 

hashing technique, ad-hoc computations suggest that the 128-bit histogram/random tiling/bin 

permutation-based hash function used in our computations yields relatively high entropy values.  
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Figure 6. Distribution of hash values under permutations of the 8 bin values, for three cases. 

Left: different number of pixels in each bin; middle: same number of pixels in exactly two bins; 

right: same number of pixels in exactly four bins. The red line indicates the uniform distribution 

( 40320 / 256 = 157.5  possible outcomes per permutation). 

 

 

Conclusions 

The main contribution of this work is a design and implementation of a simple histogram-based 

hash scheme for templating based on image data for arms control verification tasks. The scheme 

is designed to address the key criteria of robustness, discriminability, and security, for which we 

provided formal mathematical definitions. Analysis methods for evaluating performance in terms 

of these criteria were demonstrated and applied. Further analysis is needed to complete a 

framework for evaluating the security of image templates. The success of the approach on the 

example studied here is by virtue of the insensitivity of the histogram shape and its bin ratios to 

moderate image distortion as well as high sensitivity to even minor gray-level image variation 

indicative of item alteration. As the approach is developed for practical application, formal 

vulnerability assessment beyond purely mathematical arguments will be needed to test the ability 

to protect sensitive information against a variety of attacks. 

 

The general concept of non-cryptographic image hashing for generating secure templates differs 

from previous verification techniques in several ways. Primarily, the goal is a template that can 

be stored and used outside of an IB. This is a significant advance over previously developed 

template techniques if it can be achieved. Second, the general concept applies, with modification 

of the hashing algorithm, to any type of imaging, not just ionizing-radiation-based imaging as in 

the example used here. Third, the level of feature extraction—here represented by histograms—

that is applied prior to hashing could be modified to allow more or less detail in extracted 

features to suit specific agreements between host and monitor.   
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 

Abstract—Imaging systems can provide measurements that 

confidently assess characteristics of objects under a process of 

secure verification. Secure verification is defined as a 

confirmation that the object is in agreement with the provided 

declaration without compromising sensitive information. Yet 

imaging is often viewed as too intrusive, raising concern about the 

ability to protect sensitive information. For example, the prospect 

of using image-based templates for arms control treaty 

verification, personal identity management systems or airport 

security may be rejected out-of-hand as being too vulnerable to 

violation of information barrier (IB) principles. Development of a 

rigorous approach for generating and comparing reduced-

information templates from images, and assessing the security, 

sensitivity, and robustness of verification using such templates, 

are needed to address these concerns. We discuss our efforts to 

develop such a rigorous approach based on a combination of 

image-feature extraction and encryption-utilizing hash functions 

to confirm proffered declarations, providing strong sensitive data 

security while maintaining high confidence for verification. The 

proposed work is focused on developing automated techniques 

that may enable the comparison of non-sensitive hashed image 

data outside an IB. We present an assessment of the performance 

of our techniques on the basis of a methodical and mathematically 

precise framework. 

 
Index Terms— robust object verification and authentication, 

image hashing, data security 

 

I. INTRODUCTION 

HEN protection of sensitive information is critical, the 

detection, characterization, or prediction of phenomena 

of interest requires methods for hiding the very information 

that produces a signature of those phenomena. Concurrently, 

the potential for illicit manipulation of information demands 

methods for detection, characterization, or prediction that can 

withstand and detect various attack strategies. Often these two 

problems occur in tandem. In our work we focus on techniques 

for the secure object verification defined as measurements and 
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procedures providing confidence that the declarations 

concerning the object under consideration are true. The 

security of this verification refers to the fact that no sensitive 

information can be revealed to the inspector or a third party. 

Settings include arms control treaty verification (e.g. using 

radiation detection equipment to verify that dismantled nuclear 

weapons components in storage without revealing sensitive 

design information) [3], airport security (e.g. masking portions 

of millimeter-wave images used to detect concealed weapons, 

and destroying the images afterward), identity management 

systems (e.g. biometric templates for access to personal 

information), satellite data downloads, and illicit radiological 

material detection at U.S. ports of entry (e.g. stripping 

personally identifiable information [PII] from archived data 

for analysis). Other applications of signatures such as the use 

of financial records for loan or credit card applications could 

benefit from the introduction of secure, tamper-detecting 

transformations of sensitive information. Simple security 

approaches like checksums, data sensoring (e.g. providing 

binary rather than feature value output based on thresholding) 

or data masking (mainly replacement of real data with fake 

data for testing and development) are insufficient. Traditional 

secure transmission through encryption is not enough, as 

decryption is precluded in many cases. Requiring all analysis 

to take behind formal software and hardware tamper-sensitive 

information barriers (IBs), and thus never viewed by a human, 

can address the need in some applications, but is severely 

limiting. The ideal use of newly discovered and/or dynamic 

signatures would be outside IBs. What is needed is a 

methodology for constructing signatures from raw data or 

derived features that (1) hide sensitive information, (2) 

communicate crucial information, (3) can be analyzed outside 

formal IBs, and (4) are resistant to and detect tampering with 

the features, data, or underlying phenomena. In the paper we 

present this methodology using image-based hash templates, a 

process in which a choice of feature extraction methods and 

cryptographic hashing techniques are combined to produce a 

signature that is secure, tamper-resistant, and robust according 

to and guided by the specific scenario and phenomena of 

interest, within a rigorous mathematical formulation and 

evaluation framework. 

Modern imaging technology offers an exceptional capability 

for providing and quantifying detailed properties of imaged 

objects which can be used for their verification [8]. The 

challenge in many application areas is to collect necessary and 
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sufficient evidence in such a way that it can be used to verify a 

proffered declaration about an object or its component without 

compromising sensitive information. One approach to address 

this challenge is to use data templates. In template matching 

methods, a measurement of a trusted item serves as a reference 

to which measurements of inspected items are compared, and a 

match provides positive and objective evidence in the 

verification process. To protect sensitive information we 

propose to incorporate data reduction, feature extraction, and 

hashing techniques to isolate the content in images that is 

sufficient for verification as a template, while prohibiting the 

extraction of sensitive information from the template. The 

work is focused on developing secure, robust, tamper-sensitive 

and automatic techniques that process all the sensitive 

measurements behind the information barrier and produce a 

non-invertible template to be used for comparisons outside of 

the IB. 

Robust (a.k.a. perceptual) hashing is a transformation that 

maps high-dimensional content of an object (e.g., image, 

document, biometric template) into a low-dimensional vector 

space of short bit strings to enable fast comparison and 

searches. In contrast to conventional purely cryptographic hash 

functions (e.g., MD5, SHA-2) which are highly sensitive to 

every bit of input data, robust hashing is sensitive to an 

object’s content rather than the integrity of all of the object’s 

data bits (see [2] for the review of major perceptual hashing 

algorithms). Many of these algorithms rely on the 

correspondence between perceptual similarity of images and 

coarse image representation based on several standard image 

processing techniques such as Discrete Cosine Transform, 

Fourier-Mellin Transform, and Singular Value Decomposition. 

However, the images of items subject to real-life object 

verification may preserve perceptual similarity even when 

items are altered, for instance, to cover up diversion of used 

material. The hashing techniques based on the image coarse 

representations applied to such tampering scenarios don’t have 

enough discriminative power to successfully support decision 

processes of verification. 

Thus, while perceptual or robust image hashing provides a 

starting point, we must extend the concept to find a proper 

balance between robustness, discriminability and security, as 

well as simplicity. To be precise we define robustness, as 

above, to be an insensitivity to non-content variation in the 

data; discriminability to be accurate differentiation between 

objects that are as declared and objects that are not; and 

security to be the inability to obtain sensitive information from 

the output of image hashing. Discriminability here is 

considered in terms of two possible cases of host tampering 

with the imaged object. The first case is represented by simple 

removal or replacement of a portion of the object. The second 

tampering case is represented by a more elaborate attempt to 

replicate the “correct” image hash by learning from 

observation and knowledge of the hash algorithm one or more 

variations on the objects that produce essentially the same 

image hash. To achieve the robustness, discriminability, and 

security objectives we have proposed histogram-based 

techniques which exploit the invariance of the relative 

frequencies of pixel intensities in histograms [4]. To reduce 

further the risk of disclosure of sensitive information to the 

monitor or the third party, we introduce relation-based data 

reduction and a joint key strategy (a codebook construction) 

that relies on random permutations of histogram bins and 

reduction to short bit strings.  This process increases 

irreversibility and unpredictability of the histogram-based hash 

values. The goal is to develop a procedure which minimizes 

the ability of a potential attacker to learn details of the full 

image and thus the imaged item from the observed hash 

values. 

 

II. HASH-TEMPLATE-BASED VERIFICATION PROCESS 

A. Overview of the Concept 

A schematic of a hash-template-based verification concept 

is presented in Fig. 1. 

In the proposed system, all sensitive processes such as 

imaging an inspected item, discriminative feature extraction 

and processing, and generation of a hash value (a relatively 

short binary string) are performed behind an Information 

Barrier. 

 

 
 
Figure 1.  Basic elements of the hash-template-based verification concept. 

 

For verification, the hash of the image data from a trusted 

item is pre-computed using a joint key, stored as a template, 

and compared with the hash of an inspected item’s image. 

Details of joint key construction are beyond the scope of this 

paper; an example can be found in [10]. In practice, the hash 

value produced for two images of exactly the same object 

would not be identical, due to typical distortions in image 

acquisition and processing. A distance metric between the hash 

of the inspected item’s image and the original template is 

computed and compared with a threshold as a test for 

compliance with declaration. Since the hash values are binary 

strings we use the standard Hamming distance (bit error rate) 

as the distance metric. 
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B. Secure, Robust, and Discriminative Hashing: Definition 

and Desired Properties 

By hash function here we mean the combination of 

transformation of measurements (e.g. feature extraction, here 

represented by histograms) followed by reduction to a short bit 

string. In general, the hash function that we propose takes two 

inputs, an image and a key to produce (preferably at low 

complexity) a binary string of length q (preferably relatively 

small). That is, denoting a set of images by I and a set of keys 

by K, the hash function H is defined as 

(I, K) ϶ (i, k) → h = H(i, k) ϵ {0, 1}
q
.    (1) 

To support verification process the hash functions need to 

satisfy several desired properties. To formally define these 

properties let iident ϵ I denote the image of an item essentially 

identical to the trusted item, whose image is i ϵ I. In other 

words, iident is a slightly distorted (rotated, compressed, noisy, 

etc.) version of i. We will also use the notation iident ≈ i. 

Moreover, let idiff ϵ I denote an image of an item that is distinct 

from the trusted item. That is, idiff  ≠ i may be the image of an 

altered item. An example would be a material storage 

container with the correct material but in different chemical 

form than declared. The robustness property requires that the 

hash values of images (subjected to insignificant or legitimate 

global distortions) that represent the same item are close to 

each other or, in other words, identical with high probability: 

Prob{ H(i, k) = H(iident , k ) } ≥ 1 – θ1, 

for all i, iident ϵ I, iident ≈ i, k ϵ K, 0 < θ1 < 1.    (2) 

The discriminability (collision-resistant) property requires 

that the hash values of any pair of images in I for distinctive 

(e.g., tampered) items must be different with high probability: 

Prob{ H(i, k) ≠ H(idiff , k) } ≥ 1 – θ2, 

for all i, idiff ϵ I, idiff ≠ i, k ϵ K, 0 < θ2 < 1.    (3) 

The property (3) is very important since it must extremely 

difficult for the host to tamper with the inspected item and yet 

obtain a hash value very close to that of the trusted item. 

Another property supporting tamper resistance as well as 

information security of the hash function is its 

unpredictability, requiring that the output hash value must be 

approximately uniformly distributed among all possible q-bit 

outputs when the key varies over K for a fixed input image i: 

Prob{ H(i, k) = h } ≈ 1/2
q
, for all h ϵ {0, 1}

q
.   (4) 

When the keyed hashing algorithm is used as an object 

verification code, the hash value needs to be highly dependent 

on the key [13]. If two different keys are used for the same 

image, the corresponding hash values should be completely 

different as if they correspond to different content. 

Also for hash security, i.e., inability of the monitor or a third 

party to deduce detailed knowledge about the items being 

imaged based on the observed hash values needs to include the 

one-way hashing or non-invertibility property: a high degree of 

computational difficulty in identifying image data i that 

produce a given hash value h of an imaged item. This property 

can be expressed as follows, borrowing from the literature on 

cryptographic hashing. First, it must be difficult to find a pre-

image i
*
 that produces a given hash value: 

Prob{ find i* ϵ I such that H(i*, k) ≈ h } ≤ θ3, 

for a given h ϵ {0, 1}
q
, 0 < θ3 < 1.     (5) 

Second, it must be difficult to find a pre-image i
#
, strictly 

different from the image of the trusted item that produces a 

hash value matching that produced by the trusted item: 

Prob{ find i
#
 ϵ I, i

#
 ≠ i such that H(i

#
, k) ≈ H(i, k) } ≤ θ4, 

for a given i ϵ I, 0 < θ4 < 1.        (6) 

The required hash properties (2) – (6) clearly conflict with 

each other. For example, property (2) calls for robustness 

under insignificant image data perturbations while (3) requires 

minimization of collision (matching hashes) probabilities for 

distinctive images. As an illustration, using very crude features 

can yield high robustness but also high probability of 

encountering matches (collisions) between images of distinct 

items. Conversely, perfect randomization of the hash values 

would virtually eliminate collisions, but also makes the hash 

much less robust. Depending on particular applications secure 

hash functions need to satisfy these conflicting properties to 

some extent and/or facilitate the trade-offs [7, 14]. The 

accuracy parameters θ1, θ2, θ3, and θ4 defined in (1-6) provide 

a quantitative measure for overall performance and must be 

made as small as possible, optimized with respect to 

requirements of a given verification scenario. 

C. Histogram-Based Image Feature Hashing Procedures 

In order to resolve the trade-off between discriminability and 

noninvertibility of the hash function, we implement and 

analyze hash procedures generated using the relative quantities 

extracted from gray-level (pixel intensity) image histograms 

[11, 12]. The image histograms are invariant to scaling (up to a 

multiplicative factor), rotation, and translation, and they 

should preserve their basic shape under other moderate image 

distortions (noise, compression, etc.) Defining an image 

histogram as: 

Gq = { gq(j): gq(j) is the pixel number in j
th

 bin, j = 1,…,q } (7) 

(with bins formed in the usual manner of ranges of pixel 

intensity) we compute a hash value by comparing numbers of 

pixels in consecutive histogram bins: 

h(j) = 1 if gq(j) > gq(j+1) for j = 1,…,q-1, 

h(q) = 1 if gq(q) < gq(1),        (8) 

h(j) = 0 otherwise. 

A binary string with length equal to the total number of bins 

results. This procedure is generalized to include concatenation 

of hash values evaluated for subimages of a partition of the 

original image. An implementation of a keyed encryption 

scheme may involve a random permutation of the optimally 
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distributed histogram bins (to maximize Shannon entropy) as 

well as random shuffling of the subimages. Many other keying 

techniques (e.g., random projections or dithering and 

distributed source coding) can be also utilized [5]. A 

schematic of the process of generating values of a keyed hash 

function is presented in Fig. 2. 

 

 
 
Figure 2.  Process of generating values of a keyed hash function (1. random 

tiling of image data, 2. histogram calculation, 3. random bin permutation,      

4. binary hash extraction). 

 

First an image is partitioned into a number of subimages, on 

each of which a histogram is formed; then the bins are 

rearranged and combined and a hash is generated on the results 

according to the number of pixels counted in each adjacent 

bin. 

III. HASH-TEMPLATE-BASED VERIFICATION PROCESS 

In this section we present experiments to illustrate 

application of the proposed image hash template techniques 

and analysis of the desired properties. 

A. Experimental Setting 

We use a set of 150 x-ray images of a container designed to 

mimic a scaled-down special material storage container. In our 

example, 4 spheres of plastic, ruby, aluminum, and jasper are 

placed in the mock container to represent nominal as-declared 

and simple diversion scenarios (Fig. 3). 

 

 
 
Figure 3.  Components to build a mock special container. From left to right: 

sprinkler head and the plastic, jasper, ruby, and aluminum spheres. The first 

three are beads and have holes through the center. Detector can be seen in the 

background. 

 

This model is placed between a strong x-ray source 

(160kVp) and a large-area imaging detector. An image is then 

formed from the transmitted photon flux. The image is 

representative of the attenuation of the x-ray source through 

the intervening materials (including the container and 

contents). The digital images are formed with pixel values 

ranging from 0 to 255 (8 bits) and belong to 3 groups (each 

with 50 slightly different images) divided according to their 

content: group A, representing images of “as declared” items, 

consists of images representing a container with 3 balls 

(plastic, ruby, aluminum); groups B (4 balls: plastic, jasper, 

ruby, aluminum) and C (3 balls as in A with swapped order of 

ruby and aluminum spheres) represent diversion. In order to 

obtain slight variations of single images of the same object for 

comparison, the 50 images within each group were created 

while rotating a roundtable with the container. Table 1 

summarizes the distortion level occurring within the images of 

group A. 

TABLE I.  IMAGE DISTORTION LEVELS IN GROUP A 

Distortion Type Distortion Level 

 Range Average St. Dev. 

Container Translation [pixels] 0 – 6 2.1 1.4 

Container Rotation [degrees] 0 – 2.4 1.4 0.7 

Relative Distance  2 Top Balls [pixels] 0 – 15 7.9 4.5 

Relative Rotation 2 Top Balls [degrees] 0 – 40.7 12.5 10.9 

Pixel Variability [gray levels] 0 – 5 2.6 1.7 

 

Figure 4 shows an example image from each group using a 

gray scale from white, corresponding to low attenuation, to 

black, corresponding to high attenuation. Greater translation of 

each item was evident among the full set of original images; a 

very simple automated cropping step was used to produce the 

images in the figure. Note that with the bare eye the difference 
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between the images in Fig. 4 (especially between group A and 

C) is hardly noticeable; perceptually we might say they are the 

same. 

 

 
Figure 4.  Three categories of images used to assess the quality of proposed 

hashing techniques. Left: a container with 3 balls (from top to bottom: 

aluminum, ruby, plastic), middle: the same container with 4 balls (t-b: 

aluminum, ruby, jasper, plastic) and right: the same container with 3 swaped 

balls (t-b: ruby, aluminum, plastic). 

B. Robustness and Discriminative Power 

We computed hash values for all the images using the 

procedure (7-8) and computed intra- and intergroup Hamming 

distances between each pair of hash values. For this test we use 

q1 = 32 histogram bins and 4 subimages (tiles) which yield 

hash binary strings of length q = 4q1 = 128. This is a 

significant reduction of information that can greatly decrease 

the ability to extract sensitive details of the original image. The 

image partitioning and bin distribution for each subimage have 

been optimized to obtain the highest variability of the hash 

values measured by the Shannon entropy (see also Section 

III.D.). The results of the comparison are presented in Fig. 5. 

  

 
Figure 5.  Graphical representation (confusion matrix) of high discriminative 

and reconstructive (robustness) of the proposed hashing technique applied on 

sample data (150 images). 

 

The displayed 50-by-150 array represents intra- and 

intergroup Hamming distances (bit error rates) between the 

computed hashes for 150 tested images, i.e., each (i, j) – 

element of this array is a color representation of the distance 

between hashes of the i
th

 and j
th

 images. In this figure, images 

numbered from 1 to 50 belong to group A, images numbered 

from 51 to 100 to group B, and images numbered from 101 to 

150 to group C. There are apparently stronger dissimilarities 

between the “as declared” group A and “diversion” group C 

(black color in the figure corresponding to strong similarity 

and white to strong dissimilarity). Greater similarity is evident 

between groups A and B, indicating higher likelihood of error 

in distinguishing between items in these two groups. 

The test indicates both robustness and high discriminative 

power of the proposed hashing scheme applied to the mock 

container and its content. A decision on the consistency of an 

authenticated item with declaration is made by comparing the 

distance between hash values with a threshold. Therefore, the 

quality of the decision depends on the separation between the 

hash distances of the same object and hash distances of 

different objects. The overall robustness of the procedure can 

be measured by the maximum intragroup distance between 

hash values derived from different images of the same object. 

The maximal intragroup distances are dmaxA = 0.2031, dmaxB = 

0.1875, and dmaxC = 0.2891. The overall discriminative power 

of the hashing technique can be derived from the minimal 

intergroup distances which are dminAB = 0.1281 and dminAC = 

0.1484. The overlaps in hash intra- and intergroup distances 

indicate possibility of errors in the verification process. To 

provide a quantitative assessment in the verification decision 

problem, we may use the False Accept Rate (FAR) and False 

Reject Rate (FRR). Here, FAR represents the fraction of 

inspected items that are falsely determined to be “as declared,” 

and FRR represents the fraction of inspected items that are 

falsely determined to be “not as declared”. 

 

 
 
Figure 6.  Error curves for image hashes of items in Groups A and B (left) 

and A and C (right). 

 

The FRR approximates the probability that two images of 

the nominal item are determined to be different, providing an 

estimate of θ1 in formula (2). Similarly, the FAR provides an 

estimate of θ2 in formula (3). The probability of falsely 

categorizing items in the decision process involving groups A 

and B (A and C) can be estimated as a function of a threshold 

c by plotting the ordered pair (FAR(c), FRR(c)) when each 

item in group A is verified against the remaining items A and 

all the items of group B (C). The resulting 50 curves (a version 

of Receiver Operating Characteristic curves) provide a basis 

for choosing a threshold to balance robustness and 

discriminability through a corresponding choice of θ1 and θ2. 

A standard trade-off is to select a threshold that leads to 

similar FAR and FRR. The curves displayed in Fig. 6 indicate 

that this trade-off yields θ1 ≈ θ2 < 0.08 for groups A and B, θ1 

≈ θ2 < 0.03 for A and C, and the average error rates over 50 

tests are approximately equal to 0.0085 for A and B and 

0.0015 for A and C. 
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C. Unpredictability of the Image Hash Template  

In this section we assess unpredictability. This relates to 

both the risk described above of a host altering an inspected 

item in such a manner as to closely match the template hash 

value, and to the risk of a monitor or third party “inverting” the 

hash value to obtain sensitive information. In our proposed 

scheme, all parties may have knowledge of the hashing 

algorithm and the image hash value, and the host has 

knowledge of the items being authenticated. A joint key, 

unknown to both parties, may be generated by combining a 

host-selected key and a monitor-selected key, for example 

[10]. An altered item could be rearranged in such a way that 

the gray-level histogram of a new image is close to one 

produced from the declared item and simultaneously 

attempting to deceive the complementary verification 

procedure (e.g., gamma spectrum). Thus, under this scenario, 

tamper resistance depends on a level of changeability of the 

scrambled histogram bin values (and, more importantly, their 

ratios) when the joint key varies, i.e., when the histogram bins 

of a subimage’s random shuffling are randomly permuted.  

The factorial growth characteristic of permutations suggests 

their potential for increased unpredictability of the produced 

hash values, thereby providing greater defense against this 

type of attack [1]. However, the unpredictability property of 

the hash requires that the output hash value must be 

approximately uniformly distributed among all 2
q
 possible q-

bit outputs when the histogram bins are permuted and the bins 

ratios yield the bits distribution. 

 

 
 
Figure 7.  Distribution of hash values under permutations of the 8 bin values, 

for three cases. Left: different number of pixels in each bin; middle: same 

number of pixels in exactly two bins; right: same number of pixels in exactly 

four bins. The horizontal  line indicates the uniform distribution ( 40320 / 256 

= 157.5 possible outcomes per permutation curves). 

 

Figure 7 shows an example analysis of unpredictability. In 

each panel, all 8! (40,320) permutations of the bins of an 

example 8-bin histogram are generated, and from each result 

the hash is computed (based on the relative magnitude in 

permuted bins as described previously); the number of each 

possible 8-bit hash value is then plotted. The ideal result 

would be that each hash value is equally likely, which would 

be indicated by a uniform distribution (the red line). The first 

panel (left) represents the most typical case of different 

numbers of pixels in each pixel intensity histogram bin, and 

the other panels represent less likely cases in which either two 

or four of the bins have exactly the same number of pixels. 

Note that it is only the relative magnitude (number of pixels) 

in each adjacent bin that matters in calculating the hash value, 

so the result will be the same as in the first panel for any image 

histogram with the same relative histogram pattern. From the 

figure it is clear that the hash outputs are not uniformly 

distributed. Further analysis is needed to quantify how far from 

uniform the distributions are, and more importantly, how that 

impacts the hash unpredictability. 

This above analysis does not account for partitioning the 

image randomly into subimages, which increases 

unpredictability. To further improve the theoretical security of 

the hashing technique, we have optimized the partitioning and 

bin distribution for each subimage to obtain the highest 

variability of the hash values measured by an information 

measure such as differential (Shannon) entropy. Differential 

entropy is a well-established measure of the complexity of the 

relationship between the image, its features (in our case, 

histograms), and the key [5, 6, 9]. The optimal 128-bit 

histogram/random tiling/bin permutation-based hash function 

used in our computations yields Shannon entropy equal to 

6.9143. 

D. Key Dependence test  

The discussed tests use a fixed key (a fixed seed for random 

tiling and permutations). When the keyed hashing algorithm is 

used to generate an object verification code, the hash value 

needs to be highly dependent on the key [13]. In this test, we 

use all 150 images to validate the key dependence property. 

For each image, we generate 100 hash values using different 

seeds for random histogram bin permutations. They are 

pairwise compared hence there are 4950 hash comparisons for 

each image and 742500 comparisons in total. For different 

keys, the corresponding hash values should be as different as 

possible (Hamming distance closed to 0.5) as if they 

correspond to different content [13]. The average hash 

distances for all 150 images are plotted in Fig. 8. All the 

average hash distances are localized around 0.5 with a very 

small dynamic range (0.4969, 0.5017). This demonstrates a 

good randomization mechanism of the proposed keyed hashing 

procedure. 

 
 

Figure 8.  Key dependence test. Average hash distance between hash values 

by different keys. 
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IV. CONCLUSIONS 

The main contribution of this work is a design and 

implementation of a simple histogram-based hash scheme for 

templating based on image data for various verification tasks. 

The scheme is designed to address the key criteria of 

robustness, discriminability, and security, for which we 

provided formal mathematical definitions. Analysis methods 

for evaluating performance in terms of these criteria were 

demonstrated and applied. Further analysis is needed to 

complete a framework for evaluating the security of image 

templates. The success of the approach on the example studied 

here is by virtue of the insensitivity of the histogram shape and 

its bin ratios to moderate image distortion as well as high 

sensitivity to even minor gray-level image variation indicative 

of item alteration. As the approach is developed for practical 

application, formal vulnerability assessment beyond purely 

mathematical arguments will be needed to test the ability to 

protect sensitive information against a variety of the of attacks. 

The general concept of non-cryptographic image hashing for 

generating secure templates differs from previous verification 

techniques in several ways. Primarily, the goal is a template 

that can be stored and used outside of an IB. This is a 

significant advance over previously developed template 

techniques if it can be achieved. Second, the general concept 

applies, with modification of the hashing algorithm, to any 

type of imaging, not just ionizing-radiation-based imaging as 

in the example used here. Third, the level of feature 

extraction—here represented by histograms—that is applied 

prior to hashing could be modified to allow more or less detail 

in extracted features to suit specific agreements between the 

interested parties.  
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ABSTRACT 
The Pacific Northwest National Laboratory is developing and evaluating active 

radiographic image analysis techniques for verifying sensitive objects in an arms control, 

material control, or warhead counting regime in which sensitive information may be 

processed.  Material discrimination algorithms which attempt to estimate the amount of 

specific materials present in each pixel of an image can be used to verify pertinent non-

sensitive or declared attributes (e.g., the presence of special nuclear material (SNM) 

within an object of interest) with all image analysis performed behind an information 

barrier stage, allowing for reporting and storage of non-sensitive attributes only.  

Techniques proposed here employ spectroscopic detectors to determine the materials 

present between the source and a single detector pixel, and operate by fitting the 

attenuated spectrum to a set of expected attenuation spectra for an ensemble of materials.  

Practical limits on single-pixel material discrimination are defined and suggestions for 

the optimal use of this technique within the context of arms control or cargo scanning is 

presented. A limited number of free parameters are expected for analysis on a single 

pixel, limiting the context of material discrimination to a few representative materials.  

SNM may be estimated by assuming that two materials lie along the ray from source to 

detector: one material is parameterized by the attenuation coefficient of plutonium, and 

the other material is chosen such that a best-fit metric to measured data is optimized. This 

discrimination method may be used to verify declared material configurations, as well as 

for mass estimates of SNM contained within an inspected object.  Results may be 

compared with other mass estimates (e.g., Pu mass estimates provided by gamma 

spectroscopy or neutron multiplicity) behind an information barrier. As only the 

agreement between mass estimates would be returned, this technique may allow for 

verification of material presence without disclosure of sensitive information.   

 

INTRODUCTION 

Verification of sensitive objects is important to a variety of nonproliferation tasks.  

Inspection regimes may require the verification that a given object is as expected, without 

revealing any specific information regarding the object in excess of previously agreed-

upon non-sensitive attributes. In this approach, object analysis is performed behind an 

information barrier, and only simplified information is retained, such as the presence or 

absence of an isotope or whether the estimated amount of a material passes a threshold 

[1, 2, 3].  Earlier work has included material discrimination approaches utilizing active 

radiographic imaging, based on fitting effective geometry and attenuation parameters to 

images generated for a known geometric shape behind an information barrier [4].  

Material discrimination approaches have been employed in which a physical model of 

photon attenuation provides an approximate means for estimating the physical properties 



(e.g., thickness or areal density) of materials along that path. These approaches are 

expected to allow for several metrics, such as Pu mass estimates, that could be very 

specific and useful in an arms control context. 

 

Further work has shown that an imaging system capable of producing images as a 

function of energy as well as position would have the additional capability of 

discrimination on a single-pixel basis by using those spectral differences [5]. In this 

technique, a nonnegative least squares (NNLS) regression method (in which solutions 

containing negative material quantities are excluded) is used to estimate the presence of 

materials within a physical object containing a variety of materials.  Here, we assume a 

detector that can discriminate by energy E, given a count spectrum C(E) in each pixel that 

corresponds to a line from the source through the object.  We consider a set of materials 

to be estimated in each pixel, denoted by the subscript i.  Our forward estimate of the 

count spectrum in a given pixel is given by: 

 ( ) ( ) ( )exp ( )i i

i
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where S is the source emission term, D is a detector response function, the µ terms are the 

mass attenuation coefficients for each material (cm
2
/g), and the ρ terms represent the 

areal density (g/cm
2
) of each material between the source and pixel.  Counts are 

accumulated in N energy bins with bin center jE . The baseline spectra  0 jC E  are 

estimated from the detector response in a pixel with no intervening materials.   The image 

is then evaluated pixel by pixel, estimating the areal densities for each material: 
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With some simplifying approximations, a linear regression model may suffice for roughly 

estimating densities. The results may be useful in themselves or as an initial guess for a 

fully nonlinear least squares approach. Given the material attenuation functions chosen 

(the “material set”), the vector of areal densities  1 2, , , n    for n materials are 

estimated using NNLS. This approximation enables relatively simple calculations for the 

estimation problem, and includes all contributions to the attenuation of a pencil beam of 

radiation, including attenuation due to photoelectric absorption and photons scattered out 

of the beam. 

 

The multi-energy, single-pixel approach allows for a determination of the presence of 

materials of interest regardless of location or shape.  In medical imaging [6] and some 

explosives detection applications, K-edges in the mass attenuation coefficients, which 

show up in the energy range from around 0.1 to around 125 keV [7], are highly 

dependent upon the material and so provide strong discriminatory power between imaged 

materials when they can be used.  Our test items of interest include high-Z objects, so 

although we do not include downscattering, it is expected that the limited penetration of 

counts in lower energy ranges will render information in that part of the spectrum not 



useful for these analyses.  The higher energy regions of the attenuation functions are less 

distinct, producing material confusion when many materials are included together in a fit. 

The lack of K-edge and low-energy information, as well as attenuation and down-

scattering in thick regions of an object [5], present a fundamental limitation to the 

material discrimination technique, as only limited variations due to Compton scattering 

and pair production at higher energies are observable [8].  

 

To illustrate this material confusion, the material discrimination methodology was 

previously applied to a real object under idealized conditions [5]. As a specific example 

relevant to material verification, the AT-400R Pu storage container furnished for use at 

the Mayak Fissile Material Storage Facility in a declared configuration is considered as 

an object for inspection. The AT-400R container holds 2-kg Pu spheres within a storage 

container primarily composed of Fe and Polyethylene (Figure 1). Throughout this work, 

this Pu storage object and elements of the AT-400R storage container are used to provide 

examples relevant to detection of potential material diversion.  For the purpose of 

spanning likely materials and effective Z values, polyethylene (poly), iron (Fe), 

aluminum (Al), and plutonium (Pu) are used as the material set for estimation.  A ray-

tracing approach in the MatLab® code [9] used Beer’s law for attenuation in each pixel 

to estimate the transmitted detected flux of a parallel-beam bremsstrahlung source 

incident on the configuration, with maximum energy of 450 keV, as measured by a 

detector with ideal energy resolution (i.e., the energy of incoming photons are always 

measured perfectly). MatLab results were validated against the Monte Carlo N-Particle 

radiation transport code (MCNP), and no significant differences were found between 

these two approaches [10]. 

 

Material density estimates were translated into estimated thicknesses in each pixel by the 

use of nominal densities for each material (Figure 1). In these figures, the grayscale 

represents the estimated density of each material.  Although very little Al is present in 

this configuration, the use of this material discrimination analysis shows significant 

material confusion when a complex configuration of materials is present.  Furthermore, 

the strong attenuation in the center of the Pu objects (coupled with the relatively low 

energy bremsstrahlung source) causes a number of energy bins with zero total counts in 

those pixels.  As a consequence, no results are available for those regions with 

sufficiently high density.  It is expected that a real system for interrogation of this sort of 

material configuration will require higher-energy gamma rays for interrogation, as 

considered later in this work. 
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Figure 1.  Top two plots: The AT-400R Pu storage container, containing two 2-kg Pu 

spheres, with total radiographic transmission image. Middle and bottom plots: Estimated 

material components for four materials (units are cm of estimated material, log scale). 

 

Even for this configuration, (where the materials exactly match the material functions 

chosen for analysis) the use of four materials produces results with significant material 

confusion in cases without noise. In particular, a substantial amount of Al is estimated in 

regions where it is not actually contained in the AT-400R.  In order to quantify the loss of 

discrimination capability as the number of materials increases, an investigation of the 

similarity of material attenuation functions is made. 

 

OPTIMAL DISCRIMINATION - PRINCIPAL COMPONENT ANALYSIS 

We attempt to quantify the information obtainable from a single pixel by the NNLS 

regression method by estimating the total number of different materials that could be 

differentiated by gamma radiography in an ideal case. Ideally, we could rigorously obtain 

this upper bound by simulating gamma radiography with a broad beam source, and 

considering only a single pixel at a time.  To provide a best case estimate for this sort of 

analysis, we assume an idealized bremsstrahlung source with a maximum energy of 9 

MeV, and a spectroscopic gamma imaging detector with energy spacing of 5 keV.  Loss 

of photons due to attenuation and scattering are assumed, but no downscattering is 

accounted for.   We consider mass attenuation coefficients for Z=3 to 100 across the 

measured energy range of 1 MeV to 9 MeV [7].   

 

We address the collinearity of the mass attenuation coefficients by using a standard 

principal component analysis (PCA) approach. PCA indicates that 85.70%, 99.84%, and 

99.99% of the variability in the mass attenuation coefficients is described by the first one, 

two, and three principle components, respectively. This provides a strong suggestion 

(though not a proof) that at most two materials can be discriminated using this estimation 

process. A primary conclusion from the PCA method is that no more than two 



components describe the variation in material attenuation where the noise from the data is 

above a few percent, in an otherwise ideal case.  This is a compelling argument for an 

extremely limited material set possible without material confusion, as additional 

limitations (higher image noise, reduced energy range, or the effect of downscattering) 

would tend to reduce rather than enhance overall discrimination power.   

 

Using the Principal Component functions instead of the individual material attenuation 

functions as bases could also produce a useful material discrimination method.  However, 

PCA often produces components that do not have any particular physical relevance, 

while the NNLS fit utilizing two components has the familiar “material depth” 

interpretation in each pixel.  We will therefore concentrate on an NNLS approach 

employing a two-material set for this investigation. 

 

The best material set to use is expected to be driven by the context of the investigation – 

for example, if the declared configuration is just a single material (e.g., only Fe is 

declared to be present), then the illicit presence of Pu might be tested for using ρ={ρPu, 

ρdeclared} (where ρdeclared represents the declared material) as a set of unknown parameters 

to be fit by the NNLS approach. This would form an effective technique for confirming 

the absence of Pu in the object.  However, a more complex or unknown object would be 

much more difficult to evaluate in this way. To address material discrimination in an 

arms control context, we frame the issue of material discrimination as the need to 

estimate the Pu present in an arbitrary object.  This allows for a comparison of 

approaches pertinent to an investigation of material diversion. 

 

OPTIMAL DISCRIMINATION – “BOX OF TOOLS” EXAMPLE 
As a first example of this discrimination technique, we consider a diversion scenario in 

which some material is diverted by being placed into an otherwise declared and benign 

object.  We consider a simple “box of tools” model, in which steel (modeled here as iron) 

tools are contained in an arrangement not ordinarily able to be investigated due to 

sensitivity issues.  The potential for material diversion suggests inspection of this 

configuration be performed behind an information barrier in order to verify the 

declaration. 

 

This scenario is modeled in the Matlab code as a simple “wedge” of iron (representing an 

unknown configuration) potentially containing one of the Pu objects from the AT-400R 

storage container shown in Figure 2.  The resulting radiographic images were simulated 

using the MatLab code [4] and validated with MCNP [10].  The MatLab approach used 

Beer’s law for attenuation in each pixel to estimate the transmitted detected flux of a 

parallel-beam bremsstrahlung source incident on the configuration, as measured by a 

detector with perfect energy resolution.  The resulting configuration is analyzed with the 

NNLS approach using a material set of ρ={ρPu, ρi} where i is either  Fe, polyethylene 

(Poly), or Pb (lead) (See Figures 2 and 3).  To simulate a detector with realistic but 

limited spatial resolution, we consider 50x50 pixel images (each pixel 0.2 cm in size), 

and an energy range between 1 MeV and 9 MeV, covered by linear energy bins 5 keV in 

width.  For the purpose of this exercise, the detector efficiency is simulated to be perfect, 



and the flux of a parallel-beam bremsstrahlung source incident on the configuration is 

simulated with a maximum energy of 9 MeV. 

 

 
 

Figure 2.  The “Box of Tools” physical model. 
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Figure 3.  The “box of tools” model, Pu estimation for three different material sets, 

noiseless case (color scale represents estimated material thickness in cm). Left: {Pu, Fe}, 

Middle: {Pu, Poly}, Right: {Pu, Pb}. 

 

Pu estimates for these three choices of second material were made by summing the 

estimated Pu in each pixel, and are as follows:  For {Pu,Fe}, 2.02 kg of Pu are estimated, 

for {Pu, Poly} 2.79 kg of Pu are estimated, and for {Pu,Pb}, 3.47 kg of Pu are estimated. 

In the {Pu, Fe} case, Pu is estimated to be present only where it actually is, and in the 

correct quantity (a 2 kg sphere, accurate to around 1%), while no Pu is estimated in 

regions not actually containing any.  In an otherwise ideal case, the use of an “incorrect” 

second material leads to material confusion, and an error in the estimate of Pu quantity. 

 

To generalize this result, we performed the same analysis with a second range of 

materials, and in each case noted the total estimated Pu present in the configuration 

(Figure 4).  This is compared with the real amount to determine the effectiveness of 

several choices of material for estimation.  As expected, the correct amount of Pu is 

estimated when the Z of the second material matches the actual second material (Fe) 

contained in the image, while the amount deviated strongly with an incorrect second 

material.  Use of a second material with a Z lower than iron causes some overestimate of 

Pu, as the method estimates the real Fe as being composed partly of Pu and partly of the 

light material.  Likewise, using the higher Z materials resulted in the pixels containing Pu 

and Fe being evaluated as more like the second material, ultimately underestimating Pu. 

However, when the second material is sufficiently close to Pu, the collinearity between 

material attenuation functions is sufficient to produce significant material confusion, 



leading to an overestimate of Pu, as slight variations in lower-energy attenuation 

dominate the material estimate.  With no foreknowledge of an appropriate second 

material to use (e.g., with an undeclared material configuration), estimates for Pu may be 

unreliable. 
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Figure 4. Estimated Pu vs. Z (second material set), actual mass of AT-400R object noted. 

 

ADAPTIVE SINGLE-PIXEL TECHNIQUE 
While a single material declaration would allow for a useful evaluation of Pu presence 

(and a confirmation that an inspected object is as declared), generally more complex 

situations may be expected from arms control scenarios.  In these cases significant 

material confusion may be expected with the NNLS method as described thus far. An 

optimal second material (i.e., the choice of a second material in the fit) to use for analysis 

is difficult to identify when no single material represents the entire configuration.  

However, the choice of Pu and a single second material in each pixel may allow for 

accurate Pu estimation if the second material is representative of the remaining 

attenuation.  A desirable result is therefore an estimate for the “effective” Z present in all 

the non-Pu materials present in a single pixel. 

 

The fitting error (the sum of square deviations between the best NNLS fit and observed 

attenuated spectra) offers a potential figure of merit for making a choice of effective Z in 

a single pixel material estimation.  As an example of this approach, the central pixel in 

the “box of tools” configuration (containing at most Pu and Fe) is analyzed using the 

material discrimination method.  The fitting error (that is, the root mean squared error 

between the fit and observed spectra) is displayed as a function of the Z of the second 

material (Figure 5).   
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Figure 5.  Fitting error (root mean squared error) vs. Z of second material, for the central 

pixel in the “box of tools” model.  

 

A minimum error is found at the appropriate second material (Fe), suggesting the fitting 

error as a metric to determine a best second material to use for the fit in each pixel, even 

without knowing the actual second material a priori. Extending this result, we form an 

adaptive technique by fixing one material for estimation to be Pu, iterating over the 

second material and optimizing the goodness of fit metric to choose a second material in 

each pixel.  This approach is expected to produce good results for Pu presence even in the 

presence of other more complex material configurations or scenarios containing noise. 

 

The issues of noise and complex attenuators will be approached by considering the effect 

on the estimated Pu present in each pixel of a noisy radiograph. A 3-slab model is 

implemented to represent a more complex structure that may not be declared before 

inspection.  In this model the goal of estimating Pu presence to detect material diversion 

is the same (Figure 6).   

 

 
Figure 6.  The 3-slab model with Pu object from AT-400R storage container (2 kg 

sphere).  

 

To test the adaptive fitting method, the “box of tools” model and the 3-slab model are 

both investigated with added noise.  The 3-slab Model results are shown in Figure 7.  To 

characterize the noise, we scale all the pixels such that the highest value in the highest 

background pixel (for a single 5 keV energy bin) is 100,000 total counts, representing the 

use of a realistic emission/detection system.  We then add Poisson distributed noise to 

each energy/spatial bin independently.  An approximately correct estimate for Pu 

presence is obtained, and errors in the estimated mass of Pu are relatively small (~10%).   

 



Simulated image, summed over all energies
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Figure 7.  Results of the method for 3-slab model, noisy case. Left:  total attenuation 

image (grayscale), units are counts per pixel.  Middle:  Estimated Pu, units are cm.  

Right:  Pu error, units are cm.  The estimated total Pu amount for this configuration is 

2.16 kg, close to the correct answer. 

 

CONCLUSIONS 

The use of the adaptive single-pixel technique (in which two materials are used as a 

material set) exploits the information present in a single image pixel to estimate the 

presence of Pu. This technique is capable of several useful tasks pertinent to an arms 

control regime.  First, it is capable of verifying a declared material configuration, even 

for overlapping or complex attenuating bodies.  Also, this technique can confirm the 

absence of SNM with a declared or undeclared configuration.  Finally, merging or 

comparing this Pu mass estimate with a passive radiation-measurement-based mass 

estimate behind an information barrier would allow for “yes/no” verification without the 

disclosure of sensitive information.  This approach does not strictly depend on spatial 

imaging resolution, and is expected to work with dual-energy or multi-endpoint 

radiography systems, provided that at least several energy bins/endpoints are available.   

 

The PCA result suggests that the adaptive single-pixel approach incorporates all useful 

information, as most or all of the available discriminating power is contained within the 

first two free parameters of the fit. The optimality of this method is not rigorously shown, 

but it is still expected that further work in regard to an optimal material set will not 

radically improve the results, given this outcome.  Other approaches are possible, such as 

letting both material bases vary, but these are not expected to further enhance results if 

SNM is the desired target of measurement.  Therefore, the methods by which this 

approach may be improved are expected to include some aspect of constraint on the 

fitting method used.  This sort of “constrained inversion” can be approached in a few 

ways.  Spatial constraints on object size or shape, as well as examination of the edge 

transition characteristics of objects may be used to enhance results.  The performance of 

material discrimination under limitations of the field of view near edges in an image may 

also be improved by utilizing an iterative technique for estimating similar regions within 

an image.  These will be the topic of further research. 

 

The relatively high energies assumed by this work (1 MeV to 9 MeV) are intended to 

represent requirements for the gamma ray generation and detection system necessary to 

achieve positive material discrimination with the dense and high-Z materials expected by 

an arms control inspection regime.  Beyond this requirement, materials sufficiently close 

in Z to Pu or heavy attenuation may still make Pu discrimination more difficult. The 



results from material discrimination approaches can be directly interrogated for the 

presence of nuclear materials (provided sufficient counting statistics in individual pixels).  

This allows for a simple “yes/no” metric for SNM detection to be developed. However, 

only Pu is considered in this work, and material confusion between U and Pu is a 

potential consideration.  With further study to address the challenges noted above, these 

methods may prove useful for the verification of objects in both warhead counting and 

dismantlement verification settings.  
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