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ABSTRACT

A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) Interactions
(PCI) failure model for estimating the probability of failure in transient
increases in power (PROFIT) was developed. PROFIT is based on 1) standard
statistical methods applied to available PCI fuel failure data and 2} a mecha-
nistic analysis of the environmental and strain-rate-dependent stress versus
strain characteristics of Zircaloy ¢ladding. The statistical analysis of fuel
failures attributable to PCI suggested that parameters in addition to power,
transient increase in power, and burnup are needed to define PCI fuel failures
in terms of probability estimates with known confidence limits. The PROFIT
model, therefore, introduces an environmental and strain-rate dependent strain
energy absorption to failure {SEAF) concept to account for the stress versus
strain anomalies attributable to interstitial-disloction interaction effects
in the Zircaloy cladding. Assuming that the power ramping rate is the oper-
ating corollary of strain-rate in the Zircaloy ¢ladding, then the variables of
first order importance in the PCI fuel failure phenomenon are postulated to be:

1. pre-transient fuel rod power, P].,
2. transient increase in fuel rod power, AP,
3. fuel burnup, Bu, and

4, the constitutive material property of the Zircaloy cladding, SEAF.
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MECHANISTIC CONSIDERATIONS USED IN THE DEVELOPMENT
OF THE PROFIT PCI FAILURE MODEL

by
P. J. Pankaskie

March 1980

1.0 INTRODUCTION

Fuel rod failures, although fractionally small under current core/plant
operating restrictions [1-6], continue to be one of the principal economic
restrictions on normal plant operations. The primary source of these fuel
failures is generally attributed to pellet-cladding interactions (PCI) of
thermo-mechanical and thermo-chemical origins [7-18]. Current operating
restrictions are an acknowledgment that fuel power increases and/or abnormal
operating transients pose a potential for a significant incidence of fuel
failures by PCI.

Considerable efforts have been applied over the past few years to inves-
tigate the origins and mechanisms of the PCI fuel failure phenomenon. From
these efforts, operating recommendations and several empirical fuel failure
models [12,19,20] have been developed. These PCI fuel failure models all are
based on a combination of pre-(Pi) and/or peak post-transient (Pf) power, the
transient increase in power (AP), burnup (Bu), and a time parameter usually
defined as the time to fail {(TTF} or the "dwell time" at Pf_ It is, however,
doubtful whether these models are universally applicable to the PCI fuel fail-
ure phenomenon in 1light water reactor (LWR) fuels.

A statistical examination [21] of all available PCI fuel failure data

from heavy water reactor (HWR) and LWR operating experience and much of the



one-of -a-kind irradiation experiments data suggests that the operating parame-
ters P (either Pi or Pf), AP, Bu and some time parameter (e.g., TTF) are inade-
guate for the development of a true statistical PCI fuel failure mode). An
examination of the experimental data derived from stress corrosion cracking
(SCC) and other deformation studies suggests the probable importance of strain
(e) and/or strain-rate (&) effects on the Zircaloy fuel cladding in both benign
and hostile environments as parameter{s) of significance in the PCI fuel fail-
ure phenomenon [21]. Based on these considerations, an empirical model for
estimating the probability of a fuel failure in power increasing transients

(PROFIT) was developed.



2.0 THE DATA BASE

2.1 INTRODUCTION

The data used in the PROFIT model development were derived from two
independent sources as follows:
1. PCI fuel failure observations from operating plants and one-of-a-kind
irradiation experiments, and
2. plastic deformation and failure observations from mechanical and
environmental effects experiments on Zircaloy and other metal alloys.
The second source was considered to be pertinent because statistical studies
[21] suggested that the operating variables P, AP, Bu, and some time parameter

were inadequate to describe and define the PCI fuel failure phenomenon.

2.2 FUEL FAILURE OBSERVATIONS

Five fuel failure data sets were available for examination. These five
data sets encompass fuels designed for duty in pressurized heavy water reactors
(PHWRs), pressurized light water reactors (PWRs), and boiling light water
reactors (BWRs). Many of the characteristic fuel design parameters, typical
of the fuels from which most of the PCI fuel failure data were derived, are
shown in Table 2.1. The common parameters reported for all five data sets are
P, Psy AP, and Bu.
Four of the five data sets, hereafter identified as Data Sets 1 through 4,

were derived from commercial PHWRs and LWRs. Data Set 5 consists primarily



TABLE 2.1.

Fuel Design Parameters

Reactor Types

Parameters PHWR PWR

Cladding

Material Zircaloy-4 Zircaloy-4

OQutside diameter D.60 1in. 0.42 1in,

Wall thickness 0.015 in. 0.024 in.

R/t 20 9
Fuel Pellet

Material UO2 UO2

Density 95% 95%

Diameters 0.56 in. 0.36 in,
Fuel Rod

Pellet-cladding gap 0.006 in. 0.007 in.

Active fuel length 20 144 in.
Pressurization {1 atm) (1 atm)

BWR

Zircaloy-2

D.5 1in.

0,037 in.
7

UO2
95%
0.48 in.

0.009 in,
144 in.

(1 atm)





































































































































































1.0 SUMMARY

PROFIT is the result of the application of standard statistical regression
methods to all available PCI fuel failure data and an analysis of the environ-
mental and strain rate dependent stress-strain properties of the Zircaloy clad-
ding. The PROFIT model introduces an environmental and strain rate dependent
strain energy absorption to failure {SEAF) concept to account for strain rate
effects in the interstitial-dislocation interaction sensitive Zircaloy fuel
cladding. Assuming that the rate of increase in power (P) is the operating
corollary of strain rate (¢}, then the variables of first order importance in
the PCI fuel failure phenomenon are postulated to be the pre-transient power
(Pi)’ the transient increase in power (AP), and burnup (Bu,) and the consti-
tutive material property of the Zircaloy cladding SEAF, Because the effects of
strain/power ramping rate on the SEAF characteristics of the Zircaloy cladding
have not yet been systematically investigated, no attempt was made to provide

any estimates of SEAF/0 to be used in the fuel failure model.
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