
C-A/AP/#283
August 2007

Spink User’s Manual. Version v.2-21-beta

A. U. Luccio

Collider-Accelerator Department
Brookhaven National Laboratory

Upton, NY 11973

Spink User’s Manual. Version v.2-21-beta ∗

A.U. Luccio

Brookhaven National Laboratory, Upton NY 11973

July 31, 2007

Abstract

spink is a spin tracking code for polarized spin 1/2 particles. The code tracks both trajectories
in 3D and spin. It works using thick element modeling from MAD to track trajectories and thin
element modeling based on the BMT equation to track spin. The code is written in Fortran77
and typically runs on a Linux platform, either sequentially or MPI-parallel.

∗Work performed under the auspices of the U.S.Department of Energy.

1

Acnowledgments

spink has been around for several years. We used and still extensively use it in Brookhaven for
polarized proton studies at the AGS and RHIC. The code has been exported and used in other
laboratories, notably Jülich in Germany and RIKEN and KEK-JPARC in Japan.

Many peoples have contributed with discussions and actual work on the code, notably Haixin Huang,
Nick Tsoupas, Mei Bai, Fanglei Lin at Brookhaven, Andreas Lehrach at Jülich and Meiqin Xiao at
RIKEN. Nick D’Imperio (BNL) contributed in a fundamental way to the implementation of the
GUI. Constant interest and support by Thomas Roser has been important for the success of the
code.

Tracking spin has been always an important tool to understand and to resolve problems of the
acceleration of polarized particles. For circular accelerators several code have been written to ad-
dress full or in part some of the issues, such as depol by Ernest Courant (BNL), snake by Jean Buon
(Saclay), sprint by MathiasVogt (DESY). Partly of fully implementation of spin tracking exist in
other codes, like MAD (CERN) and COSY-infinity (Michigan).

spink is just another contribution.

2

Contents

1 Physical Principles 5

1.1 Orbit and spin tracking . 5
1.2 Siberian Snakes and Spin Rotators . 6

2 Flowchart 6

3 Include files 6

4 spink routines 8

4.1 routine SpinkData . 8
4.2 routine FOpen . 8
4.3 routine NmlRead . 8
4.4 routine Tables . 8
4.5 routine TrackInit . 9

4.5.1 Betatron tune adjustment . 10
4.5.2 Discarded elements . 10

4.6 routine Track . 11
4.7 routine MiscInit . 12
4.8 routine Makepop . 13
4.9 routine Popul8 . 13
4.10 routine SyncParticle . 13
4.11 routine WorkParticle . 13
4.12 routine Orbit . 14

4.12.1 Treatment of lattice errors . 14
4.13 routine Acceleration . 15
4.14 routine RayTransfer . 16
4.15 routine MatrixUpdate . 16
4.16 routine OneTurnOrbitMatrix . 17
4.17 routine Sprot . 17
4.18 routine SpinMat . 18
4.19 routine Helix . 18
4.20 routine SpinGoodies . 19
4.21 routine Bumps . 20
4.22 routine Output . 20
4.23 routine RFDipole . 21
4.24 routine SpinFlipper . 22
4.25 routine Tunes . 22
4.26 routine Coup . 22

5 Diagnostics routines 23

5.1 routine Diagnostics . 23
5.2 routine Sequence . 23

6 Additional routines 23

6.1 routine FroissartStora . 23
6.2 routine BeamBeam . 23
6.3 routine OrbitFFT . 24
6.4 routine MPIOutput . 24
6.5 routine Clock . 24

3

7 Pre Processors 24

7.1 mad8 . 24
7.2 mad read . 25
7.3 GUI . 26

7.3.1 GUI: input files . 26
7.3.2 GUI: output files . 27
7.3.3 GUI: diagnostics files . 28
7.3.4 GUI: tables . 29
7.3.5 GUI: flags . 29
7.3.6 GUI: dynamics . 30
7.3.7 GUI: Orbit FFT . 30
7.3.8 GUI: Population . 31
7.3.9 GUI: Synthetic Snakes . 31
7.3.10 GUI: Synthetic Spin Rotators . 31
7.3.11 GUI: Helix . 32
7.3.12 GUI: Stable Axis . 32
7.3.13 GUI: Froissart-Stora . 32
7.3.14 GUI: Spin Flipper . 32
7.3.15 GUI: BeamBeam . 33
7.3.16 GUI: RF Dipole . 33
7.3.17 GUI: Cycle . 33

7.4 Compilation and Run . 34

8 Suggested improvements 34

List of Figures

1 Flowchart of spink and its preprocessors . 7
2 SPINK driving menu . 36
3 SPINK modules . 36
4 Left: input files, Right: output files. If a file name has a # as a first character, the

file will be ignored. The opening of some file is equivalent to a flag to do something . 37
5 Left: diagnostics files. Right: available files. If a file name has a # as a first character,

the file will be ignored. The opening of some file is equivalent to a flag to do something 38
6 Left: Tables. If a table name starts with #, the table will be ignored. The opening

of some table is equivalent to a flag to do something.
Right: Logical flags . 39

7 Left: Dynamic variables for tracking. Right: OrbitFFT variables 40
8 Left: Particle distribution variables. Right: Synthetic snakes parameters 41
9 Left: Synthetic snakes parameters. Right: Helix parameters 42
10 Left: Parameters for stable axis calculation. Right: Parameters for Froissart-Stora

calculation . 43
11 Left: Spin flippers parameters. Right: BeamBeam parameters 44
12 Left: Radio frequency dipole parameters. Right: Cycle parameters 45

4

1 Physical Principles

spink, that may stand for ‘Spin Tracking’, is a spin tracking code for spin 1/2 polarized particles [1].
The six phase space coordinates for the orbit and three coordinate representing the cartesian com-
ponents of the unitary spin vector are tracked. Orbit tracking is done by propagating the vector ~r
through first and second order maps generated by MAD [2]. These maps are for “thick” elements.
Spin tracking is done via “thin” elements spin rotation matrices.

The output of MAD is transformed by the pre-processor Mad read to an input file (lattice de-
scriptor) suitable for spink. Two versions of MAD are currently supported by mad read: mad8c
(CERN) and BNLMad (J.Niederer). Work is in progress to accept input from madX, which is the
only version of MAD presently supported by CERN, see 7.1.

spink sequentially tracks several particles, averaging the final results. This task can also be
performed “trivially” on a parallel computer since the code has been implemented using the MPI
library.

spink uses MKSA units and canonical orbital phase space variables as used by MAD, namely

r =

(

x, x′ =
px

p
, y, y′ =

py

p
, ∆φ = −c∆t, ∆E

pc

)

. (1)

The spin is treated as a 3-dimension real vector

S = (Sx, Sy, Sz) . (2)

We follow the ’US accelerator’ coordinate convention with x radial, y vertical, and z longitudinal,
while in the spin literature z is often taken as vertical.

Input and output of phase space are in [mm] and [mrad] for transverse coordinates, (x, x′), radial
and (y, y′), vertical. In input units are [rad] for the longitudinal coordinate ∆φ and [GeV] for the
energy coordinate ∆E. ∆φ and ∆E are evaluated with respect to the phase φs and energy Es of a
reference synchronous particle.

1.1 Orbit and spin tracking

spink uses MAD thick elements matrices to track particle orbits to first order. For second order
the code uses either second order MAD generated maps, or thin element representation of machine
elements that would require high order transfer map representation, such as multipoles.

MAD transfer maps are written for coordinate units [m] and [rad] in the transverse phase space,
[m] for the phase, since in MAD it is ∆φ → −c∆t, and [0] for the energy coordinate, since in that
code it is ∆E → ∆E/pc. In spink we use MAD coordinates.

The propagation of the transverse coordinates of the beam through the lattice is done using the
equation

r
(β)
i =

∑

j Rijr
(β)
j +

∑

jk Tijkr
(β)
j r

(β)
k , i, k = 1, 4 (3)

with Rij first order matrices, Tijk second order maps, and r(β) = r− r(COD) is the displacement in
space and angle of the particle from the closed orbit. The propagation of the longitudinal coordinates
is in particular discussed in Sec. 4.13.

The accelerator lattice used by spink can be static, i.e. read once from MAD and never modified,
or dynamic. Two ways are implemented in the code to dynamically modify the lattice using tables:
(a) reading from a table a list of MAD and mad read produced lattice descriptors for different
energies, in which case, once a given energy is reached during acceleration, the track initializer routine
TrackInit, Sec. 4.5, will read the next lattice; (b) reading tables of K1 values of all quadrupoles, etc.
and update the transport matrices accordingly, Sec. 4.15.

The propagation of the spin coordinates is done by 3×3 matrices for thin elements. Spin matrices
are simply derived from the BMT differential equation for spin motion [3], [4]

dS

dt
=

e

mc
S ×

[

1

γ
(Gγ + 1)B − Gγ

γ + 1
(~β · B)~β −

(

G+
1

γ + 1

)

~β ×E

]

(4)

5

as described in Sec.?? [5]. B is the magnetic field, E is the electric field in the laboratory frame,

and ~β = v/c is the relativistic velocity of the particle.

1.2 Siberian Snakes and Spin Rotators

Siberian snakes [6] rotate the spin by a fixed angle. They are essential devices in circular accelerators
for polarized beams to break the periodic condition that produces spin resonances and polarization
losses.

Spin Rotators are used to orient the spin in a given direction. They are important in polarized
beam colliders, to orient the beam polarization longitudinally or transversely at a collision point.

In spink, snakes and rotators are modeled in three ways:

• Synthetic

• Table driven

• Analytic

A synthetic snake or rotator is optically a thin element represented in the MAD lattice by a unit
transfer map. Angle of spin rotation µ and angles of the rotation axis φ, longitude, and θ, latitude
are given as input, Sec. 7.3.9, and Sec. 7.3.10.

A table driven synthetic snake is a thick element, optically represented by the elements of a 6×6
matrix, tables(11) and (12), and by the three angles, as a function of the relativistic energy γ.

Analytic snakes and rotators are represented by orbit and spin matrices obtained from analytic
expressions, Sec. 4.18.

2 Flowchart

The flowchart of spink and its pre-processors is shown in Fig.1. To run the code, three actions are
needed, in sequence:

1. Run MAD to generate the lattice descriptor. Presently it is mad8c, as described in Sec. 7.1.
mad8 generates three output files: runname.twiss, runname.echo, runname.madout. The first
two files are always needed; the third is only needed if there are lattice errors.

2. Whith the names of these files inserted in the input file mad read.in, run mad read. This
generates a lattice descriptor that combines the three files in one file runname.sy, Sec. 7.2.

3. Using the GUI build the input file spink.in to spink, and run spink. These operations are
conveniently done through a Unix script, Sec. 7.3.

The above flowchart only shows the main routines. Individual subprograms will be discussed in the
following sections.

3 Include files

Two include files are supplied, SpinkGlobal and SpinkName

• SpinkGlobal contains the definition of data types for all the variables, integer, boolean, real,
strings and also all the common blocks used in the program;

• SpinkName contains the namelist blocks, with the list of the input variables in the blocks.
Input to spink is through namelist, contained in the input file spink.in.

6

SpinkGlobal SpinkName

FOpen

.sy

.pop

input files

human

mad_read.in

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

mad_read

.conf

parallel

sequential

computer

tables

RayTransfer

spink.in

Sprot

Output

MPI

.twiss

.echo

.madout

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

spink
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

include

(3)

(1)

(2)
GUI

SpinMatrix

TrackInit

SyncPart

WorkPart

Track

Orbit

end

output files

MakePop

mad.in

mad8

Figure 1: Flowchart of spink and its preprocessors

7

4 spink routines

4.1 routine SpinkData

In this subroutine variables are initialized.

4.2 routine FOpen

Open files and tables.
In this subroutine the following functions are performed

• Namelist blocks are read and parsed through a call to NmlRead, Sec. 4.3

• Input and output files are opened. All file names are arbitrary.

• There is a convention here: if a file name has a # (in the GUI), or a blank ′ ′ (in spink.in),
as a first character, the file is ignored. The opening of a file is equivalent to set a flag, boolean
fstat(n)=.true. with n the number of the unit associated to the file. Some actions will be
performed or not according to a file being open or not, as we will see later. If a file name starts
with a ′+′ as a first character, the file is opened with access=append.

• Some actions of the code are driven by a table of values vs. turn number in the tracking or
vs. values of the energy, when there is acceleration in the synchrotron, as it will be described
later, Sec. 4.4. Tables are initialized (opened) in this routine, with the same conventions used
for the files. For tables the status boolean flag is tstat(n), with n the table number.

• Some initialization is performed in FOpen, in particular for subsequent averaging: entry Param,
and entry pInit. The program run ends also here: entry Finis.

4.3 routine NmlRead

Read namelist input.
This routine, called from FOpen, serves the dual purpose to accept a namelist driver (input file

spink.in) created by the GUI or a namelist file directly edited. The point is that in a namelist file
created by a GUI some namelist blocks are missing, when the corresponding module is checked off.
In this case, Fortran would signal an error in reading and stop execution. A solution to this problem1

is implemented in the present subroutine.
NmlRead has also a quick diagnostics to signal any error in reding a namelist, a very common

source of troubles, if spink.in is directly created by editing and not through the GUI.

4.4 routine Tables

Tables are being used in spink for functions or parameters that vary in the course of a run. Some
tables use the number of turns as the independent variable (first column), some use the relativistic
energy factor γ.

• The first line of a table contains an integer number: the number of columns after the first, for
the rest this line is available for comments or a header.

• A table is read (opened) in the subroutine FOpen, Sec. 4.2. For tables we use the same
convention as for files, namely if the first character of the table name is a # (GUI) or a blank
′ ′ the table is ignored. Table names included in [] brackets (GUI) are intended to be name
arrays.

• Tables are read in the entry Tables:TableRead, their content is temporarily put in a reserved
buffer file, unit(11), and then stored in memory.

1thanks to Len Slatest of BNL

8

• if the first column is turn number, table entries are stored as nTab(k, j), vTab(k, j, l) where k
is the table number, j is the row number, l is the column number.

• if the first column in the table is γ, table entries are stored as gamTab(k, j), vTab(k, j, l).

• A specific record in a table can be retrieved calling the entry Tables:TableReadRecord

• Interpolation (linear) in the tables is done by calling the entry Tables:TableInterp

• A variable value in the last row of the table can be retrieved calling the entry Tables:TableInterpLast

The GUI windows for tables is described in Sec. 7.3.4.

4.5 routine TrackInit

Track initialization.
The subroutine reads the runname.sy file created by the pre-processor mad read from MAD, as

described in Sec. 7.2, and stores in memory values of the parameters.

• read 1.st record, for the entire lattice:
1: version of MAD, order of tracking (1.st or 2.nd),

flag for errors in the lattice (0/1), total number of machine elements.

• for each machine element, read records 2, 3, 4
2: el name = element name, el keyw = keyword, or element type, a 4 character string

el len = elem. length [m],
3: el ang = bend angle, el k1 = quadrupole gradient = −(∂B/∂r)/Bρ, [m−1],
4: el k2 = sextupole gradient =−(∂2B/∂r2)/Bρ, [m−2, el tilt = tilt angle [rad],

el kickh= horizontal kick [rad], el kickv=vertical kick [rad]

• for each element, read records 5, 6 if there are lattice errors:
5: values of el der = displacement (δx, δy, δz [m]), angle errors (δφ, δθ, δψ [rad]),
6: values of field errors el dk.see MAD manual

• for each element, read record 7, if error, or 5:
7 [5]: values for the Distorted Closed Orbit, r cod = x,y,z [m], and the longitudinal position of
the element end, s cod [m].

• for each element, read records 8-13, if error, or 6-11:
6 × 6 orbit transport matrix R mat:,

• for each element, if track order = 2, and error, read records 9-43, if no error read records 6-41:
a 6 × 6 × 6 second order transport map T mat.

• finally, for the entire lattice:
values of mad tune = betatron tunes νx, νy, gamtr = transition gamma = γT ,

mad circ = total lenght of the ring [m], 6 × 6 one turn matrix OT mat

9

Some spink keywords are not recognized by MAD. In this case, TrackInit uses their name as
keyword. E.g. a (thin) Siberian Snake should be defined as a MARKER in MAD, with name SNAK
as follows:

SNAK: MARKER
In spink both name and keyword will be SNAK.

Keywords used for different machine elements are

Spink MAD type
keyword Spink type Spink translation

INIT marker MARKER
MARK marker MARKER
DRIF drift DRIFT
SBEN sector bend SBEND
QUAD quadrupole QUADRUPOLE
SEXT sextupole SEXTUPOLE
MULT multipole MULTIPOLE
RFCA RF Cavity RFCAVITY
SNAK Snake el name → el keywd defined as MARKER
SPIN Spin Rotator el name → el keywd defined as MARKER
HELI Helix el name → el keywd defined as MARKER
KICK Kicker KICKER
HKIC Hor. Kicker HKICK
VKIC Vert.Kicker VKICK
FLIP Spin Flipper el name → el keywd defined as MARKER
RFDH RF Dipole (H) el name → el keywd defined as MARKER
RFDV RF Dipole (V) el name → el keywd defined as MARKER
SOLE Solenoid SOLENOID
MATR Matrix MATRIX

4.5.1 Betatron tune adjustment

This is a special features of TrackInit.
Each quadrupole in the ring is padded by two thin addional quadrupoles, that provide a fine

adjustment of the machine tune. This is useful is some run when one may want to scan a small
interval of tunes with no need to run MAD again for each tune.

The algorithm is contained in the subroutine Tunes:Detune.

4.5.2 Discarded elements

Sometimes the lattice contains many machine elements that do not rotate the spin and that we want
to discard to expedite spink runs. TrackInit can find them on a file, unit(14), and just ignores them.
This may save substantial run time.

10

4.6 routine Track

This is the most important routine in SPINK. Track is based on three nested loops

call SyncParticle Initialize Synch. particle
{ Loop on particles

call WorkParticle Read Work Particle
call npInit Initialize per particle
{ Loop on turns

call ntInit Initialize per turn
{ Loop on components

call Orbit Orbit transfer
call Sprot Spin rotation

} End loop on components
call WriteOutput Write Output at turn nt pr

} End loop on turns
} End loop on particles

The propagation of the orbit vector r is done in Orbit, Sec. 4.12, based on MAD maps, and the
propagation of the spin vector S is done in Sprot, Sec. ?? with spin matrices based on the BMT
equation.

It is important to recall that spink deals with low intensity polarized beams, so all particles
in the tracking are independent. The only interaction is done when averaging variables over all
particles in the beam. spink is essentially a sequentially structured code, where each particle is
treated separately, hence the outer ’particle’ loop.

Since tracking on a large accelerator with many lattice elements may take a considerable time,
the use of a multi process parallel platform is essential to determine enseble results. Processors can
be run independently, ’one case for each processor’. However, spink has also been implemented with
the MPI library [7] for parallel computation. For this ’trivial’ case MPI features must be enabled at
compilation time, Sec. 7.4.

• The first call of Track is to SyncParticle, subroutine where the parameters of the reference
(Synchronous) particle are set.

• The first call inside the particle loop (loop global variable np) is to WorkParticle, subroutine
where the parameters of each individual particle in the simulation are set. This routine reads
the coordinates of each Work Particle either defined on the contour of an ellipse of given
emittance (see the GUI, variables for the module Pop and relative help string) or produced
randomly by the subroutine MakePop, Sec. 4.8.

• Some variables are initialized per particle in the entry npInit in the subroutine MiscInit. If
active, tables are at this point initialized by a call to the entry TableInit of the subroutine
Tables, Sec. 4.4.

• Then, the loop on turns starts. In this loop the running variable is the nt turn number in the
synchrotron (a global variable). Another leading variable is Gγ, where G is the gyromagnetic
anomaly of the particles (G = 1.7928456 for the proton and =-0.14301 for the deuteron) and
γ is the relativistic energy factor, “energy”. A run is terminated at the maximum number of
turns n turn or, alternatively, by the initial and final value of Gγ, whichever is reached first.

• The first call in the turn loop is to Table(8). This table, if activated, contains a list of names
of MAD-created input lattice descriptors of the machine and is used to update the lattice at
intervals in energy, Sec. 4.4.

• Then, the One Turn Spin matrix is initialized by call to the entry SpinGoodies:OneTurnSpinMatInit
and quantities per turn are initialized by the entry MiscInit:ntInit, in particular the counters
for special lattice elements, like snakes, Sec. 4.7.

11

• Then the loops on lattice elements starts. Track explores the lattice and finds all the elements,
recognized by their keyword el keyw, Sec. 4.5.

• The phase space vector for the orbit is updated by the subroutine Orbit, Sec. 4.12, and the
spin is updated by the subroutine Sprot, Sec 4.17. Calls to the diagnostic entry Diagnos-
tics:PrintAtElement are done if the diagnostics file unit(99) is open.

• The output is written to records when machine elements, spcified in the input, are encountered,
by the entry Output:PrepareOtput. The record will be written to the specific files (units(51,
52, 53, ...) at turn end in the entry Output:WriteOutput.

• Many other operations are performed at the end of each turn, like performing averages or
calculate betatron tune and spin tune.

• Similar operations are performed at the end of the other two external loops, turn loop, and
particle loop.

4.7 routine MiscInit

Some variables must be initialized or re-initialized once per particle, once per turn and once per
machine elements in the three nested loops of Track. This is done in MiscInit that has three entries:

• entry MiscInit:npInit. Initialization per particle. RFDipoles (tables(3) and (4)), Sec. 4.23,
Froissart-Stora, Sec. 6.1, Spin Flipper, Sec. 4.24, and quantities to be averaged over many
particles.

• entry MiscInit:ntInit. Initialization per turn of counters for helices, snakes, rotators, bumps,
RF cavities, RF dipoles in the lattice.

HLX k, counter for helices
SNK k, counter for snakes
ROT k, counter for spin rotators
BMP k, counter for orbit bumps
RF k, counter for RadioFrequency cavities
RFDH k counter for horizontal RF Dipoles
RFDV k, counter for vertical RF Dipoles.

• entry MiscInit:jelInit. Initialize and re-initialize quantities per element, such that field com-
ponents and orbit curvature to zero.

12

4.8 routine Makepop

Generates a random beam with KV, Water Bag, Linear, or Gaussian distribution in 6D, matched
in transverse to alfa, beta, emittance (rms) 2.

Makepop writes a particle distribution to unit(13), input file to spink. If this unit is read,
it overwrites any distribution directly generated according to Sec. 7.3.8. Each record of the file
associated to unit(13) contains the phase space and spin coordinates of one particle

(r,S) ≡ (x, x′, y, y′,∆φ,∆E/pc, Sx, Sy, Sz) (5)

4.9 routine Popul8

Function Popul8 = poprec, where poprec is the string of Eq. (5) containing the phase space and spin
coordinate of a particle to be used in Track:WorkParticle.

If any of the external population files, unit(13), generated by Makepop, Sec. 4.8, or unit(12),
manually edited, is enabled, a record of the file is read into Popul8 = poprec.

Otherwise, particle un-normalized transverse coordinates on an ellipse of emittance specified by
input parameters, sec. 7.3.8 are created. The distribution is normalized to an invariant emittance
in WorkParticle, Sec. 4.11.

In this latter case, the algorithm to generate n particles on a phase space ellipse is to put
coordinates at equal angles of 2π/n, starting from the prescribed angle.

4.10 routine SyncParticle

Defines the synchronous (reference) particle in the beam. SyncParticle is the same for all particles,
so it it is called before a particle (outermost) loop of Track is initiated

Sets initial and final quantities for a track run. Calculates the synchronous phase on the basis of
the prescribed energy gain per turn, from input, Sec. 7.3.6, or from acceleration table(1), if enabled,
and from the total RF cavities’ accelerating voltage

φs = arcsin
E0γs

eVtot

(6)

4.11 routine WorkParticle

Reads the initial coordinates of a particle from Popul8, Sec. 4.9, and builds work particle parameters.
If the flag coup is true, coordinates are interpreted in the Edward-Teng couple mode, call Coup,
Sec. 4.26.

If a non zero closed distorted orbit (COD) is present, transverse coordinates rr, absolute coor-
dinate, and rβ coordinates with rispect to the COD are established

rri = r
(β)
i + r

(COD)
i , i = 1, 4 .

Pendulum coordinates for the longitudinal motion are also initialized, Sec. 4.13.

2After Giuliano Franchetti

13

4.12 routine Orbit

Orbital phase space propagation. The orbital motion of the particles in spink is controlled by
subroutine Orbit called by Track at each element encountered in the lattice.

Algorithms are applied in the following order:

• Define a new phase space variable r(β) = r − r(COD), i.e. the particle trajectory with respect
to the COD orbit. 5.th and 6.th components of the COD vector are zero.

• Look for the element keyword, Sec. 4.5, and act accordingly. There is an entry for each type
of element in the lattice.

keyword action subroutine: entry

QUAD call MatrixUpdate: QuadMat
BEN call MatrixUpdate: DipoleMat
RFCA call Acceleration
SNAK synth=return Sec 1.2

table=call MatrixUpdate: SnakeMat
MATR call MatrixUpdate: SnakeMat, Sec. 1.2
SPIN return Sec. 1.2
HELI return, or call Helix: HelixOrbit. Sec 1.2
RFDH call RFDipole: RFDOrbit
RFDV call RFDipole: RFDOrbit
KIC call Bumps: BumpOrbit
MARK return

• Call RayTransfer to propagate the phase space vector r to the next element according to
Eq. (3).

• Back transform the phase space vector r = r(β) + r(COD)

Beam-Beam is recognized by name rather than keyword and is dealt with differently, Sxec. 6.2.
So is SpinFlipper, Sec. 4.23

4.12.1 Treatment of lattice errors

If the machine lattice has errors, these errors are transmitted to spink via the MAD output file
runname.madout, Sec. 7.1, read and processed by mad read. Lattice errors are misalignments in the
three directions, x, y, z, and magnet errors, around axes oriented as x, y, z3. To deal with misaligment
(for spin dynamics vertical errors are especially important) the coordinates of a particle are displaced
in Orbit with the opposite sign of the misalignment upon entering the element, and restored at the
exit.

Similarly, the particle coordinate system should be rotated opposite to the rotation errors 4.

3There is an utility, doom of madX that automatically transfer measured magnet errors from a spreadsheet to
MAD. This is an additional reason to migrate from Mad8 to madX, Sec. 8

4Element rotation is not yet implemented in spink

14

4.13 routine Acceleration

Longitudianl orbital phase space
When Track find a machine element whose el keyw = RFCA, it increases the momentum of the

synchronous particle according to the specified acceleration rate and the momentum of a working
particle, proportionally to the applied RF voltage in the cavity. RFCA is an element type known to
MAD. There can be several RF stations in the lattice, each with its voltage and harmonic number,
as specified in the input, Sec. 7.3.6.

Acceleration can be done (1) at a constant rate (linear) by specifying in input the change of γ
per turn, or (2) reading a table(1) of γ vs. turn number (if such a table is open, the constant rate
is overwritten).

The algorithms that are applied, are, in this order:

• Increase the energy of the syncronous particle

Es := Es + δγs,iE0,

where δγs,i is the increase of γs per turn in the i−th cavity;

• Calculate the synchronous phase

φs = arcsin
E0δγs

eV
,

where δγs =
∑

δγs,i total variation of γs per turn, and eV =
∑

eVi total voltage in the cavities
(vector sum);

• Transform the phase of the working particle being considered from the unit of r(5) = −c∆t,
meters, to a unit of angle, radians

∆φ = −2π
hiβs

L
r(5), (7)

where hi is the harmonic number of the i−th cavity, βs is the relativistic velocity of the synch.
particle, L is the entire length of the accelerator;

• Check if the energy is above transition. In this case, apply a phase jump

φs := π − φs, andφ := π − φ

.

• Apply a step increase to the energy of the working particle, calculated as

r(6) := r(6) +
eVi

pcs
(sinφ− sinφs) , (8)

where the sixth phase space coordinate is r(6) = ∆E/pc.

• Apply a kick to the transverse momenta of the particle5

px :=
px

1 + δp/p
, and py :=

py

1 + δp/p
, (9)

where δp/p = δγs/(γsβ
2
s)

The increment of energy per turn is subdivided in parts proportional to the voltage in each cavity

δγi = δγs

eVi
∑

eVi

5This kick produces a change in the amplitude of the transverse oscillation of the beam, so that the Courant-Snyder

emittance of the beam changes by a factor 1/
√

βγ and the normalized emittance stays constant

15

4.14 routine RayTransfer

This routine actually propagate the 6D phase space vector r(β) across a machine element. The
equation implemented here is Eq. (3), to first and second order tracking.

Since second order tracking may be rather lengthy for large lattices, we may want to execute
it only for certain machine elements, e.g. sextupoles. An input string corresponding to a class of
elements, Sec. 7.3.17, switches on this action for that class. The string could be: NONE (no element
tracked to second order), ALL (all elements to second), SEXT (only sextupoles to second), etc.

4.15 routine MatrixUpdate

Update matrices for a dynamical representation of the lattice using tables.
The general form of a first order transfer matrix with no coupling6 is

R =

cx sx 0 0 0 D
c′x s′x 0 0 0 D′

0 0 cy sy 0 0
0 0 c′y s′y 0 0
E E′ 0 0 1 G
0 0 0 0 0 1

, (10)

with c, c′, s, s′ matrix elements for the transverse motion, D,D′ dispersion terms, E,E′ synchro-
betatron terms, and G the transition term, that can be defined through the momentum compaction.
For a symplectic matrix it is E ′ = −D,E = −D′.

Entries of MatrixUpdate for different type of matrices are

• Entry MatrixUpdate:QuadMat. For a quadrupole whose name is found in table(9), the K1
strength vs. γ is interpolated in the table and the 4×4 matrix transverse elements are updated.
Note that to first order a quadrupole matrix has no dispersion terms, then no coupling between
phase space variables φ and ∆E/pc.

• Entry MatrixUpdate:DipoleMat. For a dipole with combined functions whose name is found
in table(10), the K1 strength vs. γ is interpolated in the table. The 4 × 4 matrix transverse
elements are updated. this way. A dipole matrix has dispersion terms that are a function of
energy, and also the transition element is a function of energy, namely

D = A/γ2, D′ = B/γ2, G = C −H/γ2.

with A, B, C, H quantities defined in MAD [8].

• Entry MatrixUpdate:SnakeMat. For Siberian Snakes whose name is found in tables(11) and
(12), two for the moment, the optics is changing with energy, so all the matrix elements should
be updated according with the tables.

6and for the most common case of a synchrotron entirely laying on a horizontal plane

16

4.16 routine OneTurnOrbitMatrix

Update the OneTurnOrbitMatrix to calculate betatron tunes turn by turn.
Betatron tunes are calculate in spink with three methods, two of them based on counting orbit

betatron oscillation, Sec. 4.25 or by an FFTof the orbit, Sec. 6.3. In the present routine betatron
tunes (the fractional part of) are calculated from the eigenvalues of the one turn orbit matrix, so
they are available turn-by-turn.

The routine has three entries:

• entry OneTurnOrbitMatrix:OTMatrixInit. Here, the one turn matrix is initialized at the be-
ginning of a turn.

• entry OneTurnOrbitMatrix:OTMatrixUpdate. Here, the one turn matrix is calculated at each
machine element by progressive multiplication of the element orbit matrices.

• entry OneTurnOrbitMatrix:FracTuneFromOTMat. Here, the fractional part of the betatron
tunes is calculated from the trace of the one turn matrix.

4.17 routine Sprot

Spin rotation,
At variance with orbital phase space propagation, spin rotation 3 × 3 matrices are built on the

fly, because spin rotation is a function of the magnetic field found at the instantaneous position of
the particle. Spin matrices are constructed starting from the BMT Eq. (4), for thin elements [9]

dS

dt
= ~ω × S

where ~ω is a function of the magnetic field calculated at the instantaneous position of the particle.

Sn = sinµ, Cs = 1 − cosµ

The Spin rotation matrix S mat is

M(S) =

1 −
(

a2
2 + a2

3

)

Cs a1a2Cs + a3Sn a1a3Cs − a2Sn

a2a1Cs − a3Sn 1 −
(

a2
1 + a2

3

)

Cs a2a3Cs + a1Sn

a3a1Cs + a2Sn a3a2Cs − a1Sn 1 −
(

a2
1 + a2

2

)

Cs

 , (11)

with

a1 = C [(1 +Gγ)Bx −G(γ − 1)(r′ ·B)x′]
a2 = C [(1 +Gγ)By −G(γ − 1)(r′ · B)y′]
a3 = C [(1 +Gγ)Bz −G(γ − 1)(r′ · B)]

,

ω2 = a2
1 + (a2 − 1/ρ)2 + a2

3, µ = ωL .

C = 1
Bρ

(1 + x/ρ), L is the length of a machine element, and the field components are calculated
midway through the element.

Sprot is called by Track after Orbit and calls in turn SpinMat that produces matrices for different
type of machine elements, Sec. 4.18. In the case of elements that do not rotate spin, like DRIFT or
MARKER Sprot returns immediately to Track.

17

4.18 routine SpinMat

Spin Matrices.
The routine has many entries, for different types of machine elements. In this routine the

magnetic field at the particle transverse position and in the middle of the machine element, rW is
calculated and returned to Sprot.

• entry SpinMat:UnitSprot. Initialize a spin matrix as unitary.

• entry SpinMat:BendSprot. Spin rotation in a bend. If a bend is pure, i.e. has no gradient
nor sextupole, its magnetic field is simply vertical and the entry returns with that component
of the field. If the bend has multipoles, it returns to Sprot but subsequently multipole spin
rotation is called.

• entry SpinMat:MultipoleSprot. Magnetic field at the particle’, for quadrupoles, tilt quadrupoles
and sextupoles.

• entry SpinMat: SolenoidSprot. In good approximation the magnetic field of a solenoid is purely
longitudinal.

• entry SpinMat:SnakeSynthSprot. For each Synthetic Siberian Snake in the lattice, in sequence
(Snake counter SNK k, with rotation angles given as input, Sec. 7.3.9, all coefficients for the
spin matrix of Sprot are calculated and returned.

• entry SpinMat:SnakeTabSprot. For a snake represented by a table, coefficients for spin matrix
are calculated from angles in the table and returned to Sprot

• entry SpinMat:SpinrSynthSprot. Spin rotators, treated as for synthetic snakes, with rotation
angles given as input, Sec. 7.3.10

• entry SpinMat:SprotInKicker. Calculate and return spin matrix elements in kickers, horizontal
and vertical kicks.

For each element the global variable spin rotation angle µ ≡ mu is calculated.

4.19 routine Helix

Orbit and spin matrix for a helix based on some analytical description.
Some Siberaian snakes and spin rotators are made with a sequence of helical dipoles [10]. Input

parameters for a helix are the helix field, the helix pitch, the helicity sign (right- or left-handed), and
the orientation of the field.with the vertical. Parameters are entered through the GUI, Sec. 7.3.11,
for their description. A counter HLX k numbers helices accordindg to their occurrence while visiting
the accelerator.

Helix has two entries:

• entry Helix:HelixOrbit. E.Courant model [11]. Here the beam transfer matrix elements are
calculated, then the routine returns to Orbit.

• entry Helix:HelixSprotAnalyt. M.Syphers model [12]. Here the spin matrix alements are cal-
culated, the the routine returns to Sprot.

18

4.20 routine SpinGoodies

Some spin related quantities.
Entries are:

• entry SpinGoodies:SpinInit. Called from WorkParticle Initializes spin components, after two
of them (out of three) have been read from input, Sec. 7.3.8, or from unit(12) or (13) associated
with the population file.. Initializes One Turn Spin Matrix quantities for spin tune calculation.

• entry SpinGoodies:SpinAngles. Called from Track. Calculates and print on unit(33) (diagnos-
tics file) the spin components and the anles of longitude and latitude of the spin vector along
the orbit.

• entry SpinGoodies:SpinSum. Called from Track. For spin average over many particles, builds

∑

np

S(i), and
∑

np

S(i)2, i = 1, 3

.

• entry SpinGoodies:SpinTuneDo, called from Track. Writes on unit(34) (diagnostics file) spin
and spin cone data at the beginning of a turn and then collects and writes to (34) spin tune
calculated from spin precession. Deprecated

• entry SpinGoodies:SpinAverage, called from Track. Calculates spin averaged by stroboscopic
mean and variance over all particles at the end of each turn. Calculates and prints at the end
of the run the angles of spin cone. If we want to center the input spin cone on the stable axis,
we use

the input spin cone of beam on stable axis, the stroboscopic averaged spin components are
written on the input population file, unit(13), next to the phase space coordinates7.

In this entry also the average spin tune from the eigenvalues of the One Turn Spin matrix are
calculated and printed to stdout at the end of the run.

• entry SpinGoodies:SpinFileWrite. Deprecated

• entry SpinGoodies: OneTurnSpinMatInit, called from Track. Initialize one turn spin matrix at
the beginning of each turn. If unit(44) (diagnostics) is alive the stable axis is also initialized.

• entry SpinGoodies:OneTurnSpinMatAtTurnEnd, called from Track. If unit(30) (diagnostics),
is alive, Calculate Spin One Turn matrix trace and stable axis components at turn end

• entry SpinGoodies:SpinTune3. Called at turn end. Calculate spin One-Turn variables be-
tweenn points of same phase space by averaging spin tune over turns (stroboscopic average).
There is an approximation to calculate spin tune in one spin one-turn and re-normalize the
One Turn Spin Matrix 8.

• entry SpinGoodies:StoreSpinSum. Store spin and tune sums at marker #1 for sequential aver-
age over particles. Write and read spin to unit(24), use unit(91) (disposable) as buffer. Write
and read spin tune to unit(25), use unit(92) (disposable) as buffer.

• entry SpinGoodies:MultiPartAverage. Averages spin and tune values at marker #1 over all
npart particles at run end. Writes results for spin average to unit(24) and spin tune average
to unit(25).

7this file will be used in a next run
8An exact one-turn for spin is when the particle is back in phase space where it started. It may take many

accelerator turns because of betatron motion

19

4.21 routine Bumps

Orbit Bumps
Orbit bumps are sometimes used on circular machines for special purposes. An example are the

horizontal orbit bumps to offset the orbit in an helical Siberian Snake[13]. Orbit bumps must be
represented by RayTransfer matrices for the orbital motion as well as by Spin matrices, because
they generate a spin rotation. Bumps are called in sequence, with counter BMP k

Bumps has two entries

• entry Bumps:BumpOrbit. Bumps effect on orbit. Called from Orbit for the orbital motion. Uses
bump table(7). Bumps may be horizontal and vertical. Angle kicks on px or py, respectively.

• entry Bumps:BumpSprot. Bump effect on spin. Called from Sprot for the spin motion. Bumps
may be horizontal and vertical. Spin matrix elements are calculated and returned.

4.22 routine Output

Prepares and prints out tracking output files.
spink can generate several output files, for orbit and spin coordinates at given location around

the ring. Each location (here a MARKER) is tagged by the el name of an element in the lattice.
The list of print location is an input to the code.

• The entry Output:PrepareOutput is called at each one of the markers as they are found in the
lattice during the element loop in Track and a record containing the variables at the marker is
written for each marker (up to 9). In this entry, also the transverse Courant-Snyder invariants
for the beam are calculated and recorded9

εn =
γTu

2 + 2αTuv + βT v
2

√
βγ

, with u, v = x, x′, or y, y′,

with αT , βT , γT Twiss parameters, and β, γ relativistic factors

• In the entry Output:WriteAtMarkers spin information can be written to a special file, unit(29).

• The entry Output:WriteOutput is called at give print intervals, Sec. 7.3.6, where output files,
units(51),..(59) are written, one for each marker.

• Other files are written by the latter entry:
unit(40), spin rotation in the snakes,
unit(20), containing betatron tune and spin tune,
unit(30), containing stable spin axis components, calculated from the One Turn Spin Matrix,
and the projection of the spin vector on that axis.

9These quantities must remain constant if the tracking is corret, or equivalently the emittances must decrease as
(βγ)−1/2

20

4.23 routine RFDipole

Radio frequency dipoles
The formalism is due to Mei Bai [14]. An RF Dipole gives a RF kick to the beam and produces

both an orbit bump and a spin rotation. Input parameters are the integrated magnetic field strength
Bdl, in [Tesla.meter] and the RFD tune νm. The orbit kick and phase are given by

K = B dl
Bρ

cosφ+ phase, φ = 2π
∫

νm.

The kick is applied to the beam, either in the horizontal or vertical direction, as

px := px −K, or py := py −K.

The spin rotation angle is
µ = (1 +Gγ)K

and the spin rotation matrices are

σH =

cosµ 0 sinµ
0 1 0

− sinµ 0 cosµ

 , σV =

1 0 0
0 cosµ sinµ
0 − sinµ cosµ

 ,

for the horizontal and vertical plane, respectively.
Each RF Dipole must appear in the MAD description as elements with name RFDH or RFDV

and type MARKER. Since MAD doesn’t have those element types, the routine TrackInit recognizes
the name (el name) and convert it into a keyword (el keyw) RFDH or RFDV, Sec. 4.5 .

When Track find in the lattice a machine element with el keyw = RFD, the RFD action is
modeled in two routine entries: RFDipole:RFDOrbit, that calculates and applies a kick to the orbit,
and RFDipoleRFDSprot, that calculates and applies a kick to the spin.

Reference value for B dl and νm and phase are given as input, Sec. 7.3.16. The arrays of value
refer to the first, second, ... RFD found in the lattice. In the example, only the second RFD found
is active.

RF Dipoles are activated by enabling table(3) and (4). for an horizontal field RFD, and for a
vertical field RFD, respectively After a first row containing the number of columns-1 to be read by
TableRead, an RFD table contains, for each dipole

turn number, a multiplier for RFD BdlMax, a multiplier for RFD tune m0
....

An example of table for two RFDV’s (RFDV.tab, for the example above) is the following

1.st dipole 2.nd dipole
6 turn Bdl tune phase Bdl tune phase

0 0.000000 1.000000 90. ...
300 0.000000 1.000000 90. ...
3300 1.000000 1.000000 90. ...
9300 1.000000 1.000000 90. ...
12300 0.000000 1. 90. ...
13300 0.000000 1. 90. ...
20000 0.000000 1. 90. ...

In the example, the kick is linearly built between turns 300 and 3300, stays constant between
3300 and 9300, and linearly decays to zero between 9300 and 12300. Any shape is possible, since
TableInterp interpolates between values in the table.

If activated, two files are written, for RFDH, unit(35), and for RFDV, unit(36), containing
columns of

nt Bdl νm φ Kick

21

4.24 routine SpinFlipper

This is for a Radio Frequency spin flipper. A Rf field is applied to the beam and generates a rotation
of spin around an axis in the horizontal x-z plane, or the axis of a RF solenoid. The frequency may
sweep through the resonant condition or, in the case of the solenoid may remain constant. The
temporal shape of the applied field can be prescribed my means of table(13).

SpinFlipper has one entry

• SpinFlipper:SFSprot, called from Sprot. Specify as input, Sec. 7.3.14, at what turn to start
action, the value of the integrated field Bdl, the spin flipper frequency, the frequency variation
per turn, and how the field is applied, whether rotating or transverse, in x or y. or oscillating
longitudinally (solenoid).

SpinFlipper calculates and returns to Sprot the spin matrix elements.

4.25 routine Tunes

Calculate tune and detune from betatron oscillations zero counts.
It is one of the methods to calculate betatron tunes. A better one, turn-by-turn, is to calculate

betatron tunes (fractional part of) from the eigenvalue of the orbital one turn metrix.
Tunes has 5 entries:

• entry Tunes:TuneInit. Initialize tune average over particles.

• entry Tunes:CountBetaZero. Count orbit zero crossings for tune evaluation, or comparing a
tune oscillation wavelengt with the circumferende of the ring.

• entry Tunes:BetaTuneDo. Calculate betatron tune for each particle at end of run.

• entry Tunes:TuneAverage. Average tune for many particles

• entry Tunes:Detune, called by TrackInit, Sec. 4.5. Padding quadrupoles with two thin quads
to obtain detuning. Every quadrupole transport matrix is transformed as follows

Rx =

(

R1,1 − 1
4R1,2δq R1,2

R2,1 −R1,1δq + 1
4R1,2δq

2 R2,2 − 1
2R1,2δq

)

Ry =

(

R3,3 + 1
2R3,4δq R3,4

R4,3 +R3,3δq + 1
4R3,4δq

2 R4,4 + 1
2R3,4δq

)

.

with δq a (small) detuning parameter given in input, Sec. 7.3.6.

4.26 routine Coup

After the formalism of Edwards and Teng [15] [16]
If the boolean flag couple = .true. after the introduction of a few matrices based on the One

Turn Matrix (OTM), we end up building a 4 × 4 matrix EDR that is being used in WorkParticle
to transform the coupled input phase space coordinates u to r

r = EDR · u.

The latter equation is in WorkParticle

22

5 Diagnostics routines

5.1 routine Diagnostics

Various debugging diagnostics.
Diagnostics has three entries:

• entry Diagnostics:PrintAtElement. Print at element for turns between nt pr 0 and nt pr 1,
given as input, Sec. 7.3.6. If unit(99) is open many relevant dynamic quantities, including

phase space particle position ~r and spin ~S, are printed element by element for a limited
number of turns (1) before Orbit, (2) before Sprot, (3) after Sprot.

• entry Diagnostics:PrintAllMatrices. Print all orbit matrices at a certain energy on unit(42).
Deprecated.

• entry Diagnostics:PrintStatusAtTrackEnd. Write phase space and spin at end of track on
unit(43).

5.2 routine Sequence

Track and profile call sequence and spink flow.
Activate at compilation time with the directive SEQ=true.

6 Additional routines

6.1 routine FroissartStora

Polarization loss crossing an isolated spin resonance is well modeled by the Froissart-Stora for-
mula [17]

P2 = P1

[

exp−πε
2
k

2α
− 1

]

, (12)

where P2 is the polarization after the resonance and P1 is the pol. before the resonance, ε is the
resonance strenght and α the speed of resonance crossing.. Conversely, the formula can be used to
calculate the resonance strenght by knowing P2/P1.

This is what is done in this routine. We specify in input, Sec. 7.3.13, at what energy FroSto Ggam
we want to do this, and after how many turn we want to look at P2 and the routine calculates the
resonance εk and writes it to stdout.

6.2 routine BeamBeam

In a collision between two beams of polarized hadrons, the particles in both beams suffer a deflection
and also the polarization may change due to the motion of a polarized particle in the field of the
other beam. In BeamBeam these effects are simulated by studying the kicks on orbit and spin of a
particle in the field generated by a distribution, assumed Gaussian, of the other counterstreaming
beam [18]. It is the so-called ’weak-strong beam-beam scenario’. Collision happen at a location
specified in input, Sec. 7.3.15, coincident with one of the lattice elements, e.g. a marker. We specify
also at what energy we want BeamBeam to occur and the number of particles in the beam.

BeamBeam contains three entries:

• entry BeamBeam:BBCoast. Slow down acceleration. Gradually turn on beam-beam. We want
to see the effect on a coasting beam.

• entry BeamBeam:BBOrbit. Calculate Beam-beam orbit matrix -angle kick.

• entry BeamBeam:BBSprot. Beam-beam spin matrix. Calculate Beam-beam spin matrix.

23

6.3 routine OrbitFFT

Betatron tune an orbit harmonics content is calculated by FFT. First, sample orbit at equal intervals,
then calculates tune using routines four1.fft and twofft.f from ’Numerical Recipes in Fortran’ [19]
that are included..

6.4 routine MPIOutput

Output for parallel computing with the MPI (Message Passing Interface) library.
To use MPI the boolean at compilation time is USEMPI = true. Each particle in the simulation

is assigned a rank number my rank, is individually tracked, and the results are averaged on the fly,
at variance with sequential averaging were the averages are completed at run end. It is a trivial
parallelization10. If there is only one particle and one process, as for sequential average, the rank of
the particle is my rank=0.

After a first block where spin averages are done, the routine presents two entries

• entry MPIOutput:MPILogRec. Write to Internal records initial and final parameters for each
macro.

• entry MPIOutput:MPILogOut. Retrieve and write to log file 7 initial and final parameters for
each macro

6.5 routine Clock

Set clock to measure run time for the first particle in a run. Enable in input, with cclock=.true.
Sec. 7.3.5.

7 Pre Processors

7.1 mad8

At present use mad8. Work is in progress to accept input from madX.
Run with the command

=> mad8c runname.mad
The driver file runname.mad will produce the following

• A runname.twiss file containing the Twiss functions calculated at the physical end of each
machine component and the distorted closed orbit COD, generated by the mad8 command
TWISS, tape=’runname.twiss’

• A runname.echo file11, that contains the first and second order orbit transfer maps, generated
by the command
SELECT, FLAG=first [second], RANGE=#S/#E

• A runname.madout file, containing tables of misalignment and field errors in the machine
elements (if any), generated with the commands
PRINT, RANGE=#S/#E
SELECT, ERROR ; EPRINT, RANGE=#S#E

runname.twiss, runname.echo runname.madout constitute the input to mad read.

10A better use of a parallel computer is in the parallelization of some algorithm or, in particular in the case of high
intensity beams, in the study of space charge effects on beam dynamics and polarization

11The echo file was originally meant for diagnostics. Luckily it can contain the transport maps

24

7.2 mad read

mad read reads and combines the three MAD output files to create a single file runname.sy that
contains Twiss functions, transfer maps, COD and information about machine component misalign-
ment or field errors. If there are no errors, only the first two files are needed. All namefiles must be
included in the driver file for mad read.in.

The program is run with
=> mad read < mad read.in

The symplecticity of the matrices translated from MAD to runname.sy is improved with the use
of an iterative algorithm and routine due to F.Neri.

The arrangement of runname.sy is as follows:

First record contains:

1 Mad vers., track order [=1 or 2] errors [= 0 or 1] n# of elementss [= jel]

If track order = 1, and no errors, for each machine element a block of 12 lines follows:

2 el. # name keyword length
3 angle K1 K2 tilt Hkick Vkick
4 orbit - 4 values (deprecated)
5 αx βx mux Dx D′

x

6 αy βy muy Dy D′

y

7 COD - 4 values s coord.
8-13 6 × 6 transfer matrix R mat

If track order = 2, and no errors, 36 lines follow for each block, containing the elements of T mat:

14-50 6 × 6 × 6 second order transfer map elements

If there are errors, after line 3 there are two lines containing position and angle errors, and field
errors (see MAD for the description)

3a δx δy δz δφ [pitch] δθ [yawl] δψ [roll]
3b δB δK1 δK2 δK3

25

7.3 GUI

SPINK is launched through a motif-window based GUI. The GUI is a convenient interface to set
values for the variables in the program, and to minimize errors of transcription

At the prompt, the GUI is started with the command
=> uspink [runname]

where uspink is a C-shell Unix script and runname is an arbitrary name for the run. If a
configuration file runname.conf exists because it has been previously created, a menu window with
3 buttons shows up, as in Fig. 2. If the conf file does not exist you will be warned.

To edit the configuration file, click on Setup : a windows containing a list of the modules of

SPINK will appear, Figs. 3, for 18 modules.

On this, and on each of the other module editing windows there is a help button ? that
commentss the meaning of each variable, string or Boolean parameter. The variable names are the
same used in the actual code. When finished with editing, go back to the start GUI window of Fig. 2

(still open on the screen) and select Store .

There is also another button, Load , that allows the user to load into the GUI the values of
another configuration file previously created .

When finished with the GUI, close the window with the upper right cross X . The script will
convert the conf file to a namelist input runname spink.inand run SPINK.

One can also run directly SPINK, if you have already the spink.in file as follows
=> spink < spink.in

We will now visit all modules (GUI windows) that will be opened by clicking on edit , with
detailed explanation of the meaning of all variables

7.3.1 GUI: input files

The GUI windows for input files is shown in Fig. 4, left. Some filenames in the example have a #
as a first character. These files will not be opened. An array of values is indicated by a [...]

File names are arbitrary. Files whose first character is # are ignored.

file example description ?
ffile(6) terminal This ”file” is the stdout (the screen)
ffile(12) pop manual.dat To manually input population data

The file contains a series of strings Popul8
each containing the 6+3 coordinates of a particle
x ,px ,y ,py ,cDt ,∆E/pc ,spino

ffile(13) pop auto.dat Contains generated population
This file is automatically built and used if it is enabled
In this case, it contains a population of npart particles
randomly generated with the parameters prescribed in Pop
each record contains
x ,px ,y ,py ,cDt ,∆E/pc ,spino

ffile(14) blue.sy Input lattice descriptor
This file is created first by MAD and then by
the pre-processor mad read

ffile(17) DiscardedElements.dat Contains machine elements not to be used
in order to decrease the size of the lattice file
If enabled, the file is read by TrackInit
each record contains the name of a discarded element

26

7.3.2 GUI: output files

The GUI windows for output files is shown in Fig. 4, right. Some filenames in the example have a
as a first character. These files will not be opened. An array of values is indicated by a [...]

file example description ?
ffile(7) spink.log Log file.

It is a copy of the screen plus some more info on the run
For many particles run, it contains only the 1.st particle

ffile(8) orbit.dat Detailed orbit of the first particle in the simulation
ffile(15) #COD short.dat Closed Distorted Orbit.

Contains:elem no, s, x COD, y COD
ffile(20) #tunes.dat File contains

Gγ, γ, beta-tune(fraction), spin-tune
ffile(21) #fine orbit.dat Orbit at each location in the machine.

Contains s(extended), x, y
ffile(23) #COD.dat closed distorted orbit from machine descriptor

el#, s, x COD, px COD, y COD, py COD
ffile(24) #spin ave.dat spin average over many particles

nt, Gγ, < Sx >, < Sy >, < Sz >, < Sx > −σ. ... < Sx > +σ, ...
ffile(25) #tune ave.dat tunes average over many particles

nt, Gγ, < Qx >, < Qy >, < Qz >, < Qx > −σ, ... < Qx > +σ, ...
ffile(28) #phs.dat phase space output
[ffile(31)] RFD spin1.dat array of strings

RFD spin2.dat outputs for radio frequency dipole.
... presently up to 2 files

units 31 and 32 for 1.st and 2.nd RFD, respectively.
Contains nt ,Bdl, tune, phase, kick

[ffile(35)] #RFD orb1.dat array of strings
RFD orb2.dat orbit outputs for radio frequency dipole
.... presently up to 2 files: units 35 and 36

for 1.st and 2.nd RFD, respectively. Contains:
nt, Bdl, tune, phase, kick
keep units 37 and 38 for extension

[ffile(51)] NE260 INIT.dat ... array of strings
output at markers one
presently for up to six markers
units 51, 52, 53, 54, 56, 57, respectively
nt, Gγ, Sx, Sy, Sz, x, px, y, py, frac(Q), S-tune

[ffile(71)] #process 1.dat ... array of strings
units 71 and up taken for MPI work

[ffile(81)] #process 1.dat ... array of strings
units 81 and up taken for MPI work

27

7.3.3 GUI: diagnostics files

The GUI windows for diagnostics files is shown in Fig. 5, left. Some filenames in the example have
a # as a first character. These files will not be opened. An array of values is indicated by a [...]

file example description ?
ffile(9) #sequence.dat sequence of subroutines visited

For diagnostics
ffile(29) #spin at markers.dat spin and spin norm at markers
ffile(30) #spin axis.dat evolution of spin axis and projection

of spin on SA
Gγ, Spin axis, spin·spin axis

ffile(33) #kick.dat details of kicks. For each kick:
KickH: elkick,mu=’,kickh,mu
KickV: elkick,mu=’,kickv,mu

ffile(34) #fine spin.dat details of: spino, theta cone, phi cone
ffile(40) #mu snk out.dat details of: SP Ggam,SP gam,mu snk out
ffile(41) #OTMat.dat One Turn Matrix
ffile(42) #Matrices.dat all orbit matrices

el#, Rmat
ffile(43) #StatAtTrackEnd.dat Print Status At Track End
ffile(44) #SpinMatrix.dat Spin Matrix and One Turn Spin matrix
ffile(91) #spin ave sum.dat auxiliary for spin average over particles

it accumulates spin sum and spin2 sum
for all turns

ffile(92) #tune ave aux.dat auxiliary for tune average
ffile(94) #r mat.dat print all orbit matrices
ffile(98) #FFT aux.dat writes:

s(continuous), x, y, field, element name
ffile(99) diagnostics.dat writes:

s(continuous), x, y, field, element name

28

7.3.4 GUI: tables

The GUI windows for tables is shown in Fig. 6, left. Some table names in the example have a # as
a first character. These tables will not be used. An array of values is indicated by a [...]

file example description ?
table(1) #gamma.tab Table of γ vs. turn no. Acceleration ramp
table(2) #detune.tab Table of detune parameter vs. turn no.
table(3) RFDH.tab Horizontal kick RF dipole table. Up to 6 RFDH

table contains
nturn, for first RFD:v1 v2, for second RFD:v1,v2,...

table(4) #RFDV.tab Vertical kick RF dipole table. Up to 6 RFDV
nturn, for first RFD:v1 v2, for second RFD:v1,v2,...

table(5) #SF.tab Spin Flipper table vs. turn no.
table(6) #Snake.tab Snake table

snake µ, φ(axis), θ(axis) vs. turn no.
table(7) #Movable Snake Bump.tab Snakes’ bump table vs. turn no.
table(8) #gamma step lattice.tab To update the machine descriptor during acceleration

contains the name of lattice files vs. γ
table(9) #quadK1.tab Table of quad K1 values vs. γ
table(10) #snake 1.tab Table of dipole K1 values vs. γ
table(11) #snake 1.tab Table of snake 1 matrix elements and mu vs. γ
table(12) #snake 2.tab Table of snake 2 matrix elements and mu vs. γ
table(13) #SolSpinFlipper.tab Table of solenoidal Spin Flipper Bdl vs. turn no.

7.3.5 GUI: flags

The GUI windows for logical flags is shown in Fig. 6, right. Some table names in the example have
a # as a first character. These tables will not be used. An array of values is indicated by a [...]

variables example description ?
Flags on Activate flags
no spin off No spin track, only orbit
show markers off Results at given markers in the lattice
cclock on Show clock run time
Ereno off Force renormalization of the Courant-Snyder invariant

to control emittance in acceleration
couple off Edwards-Teng coupled injection
stable spin off Automated calculation of stable spin direction

to inject spin on the stable axis via
stroboscopic average

Sprot dmp off Diagnostics dump at Sprot
use with small number of turns:
it dumps at all machine elements

field correction off Field correction in dipoles

29

7.3.6 GUI: dynamics

The GUI windows for dynamic variable setting for tracking is shown in Fig. 7, left. Some table
names in the example have a # as a first character. These tables will not be used. An array of
values is indicated by a [...]

variable type example description ?
Dyna boolean on This module must be on
nturn integer 100,000 Total number of turns (1)
dnt pr integer 117 Turn print step
nt pr 0 integer 1 Turn where print starts
nt pr 1 integer 1,000,000 Turn where prin stops
SP Ggam0 double 250. Sync Particle start Gγ
SP Ggamf double 270. Sync Particle end Gγ (1)
SP dgam0 double 3.2E-005 Rate of increase of γ per turn

if acceleration table is not used (2)
dq double 0. Quadrupole detuning factor(3)
err corr double 1. Correction factor for lattice errors

= 0. means: cancel all magnet errors
kick corr double 1. Corr. factor for kicks

= 0. means: cancel all kicks
cod corr double 1. Corr. factor for Closed Distorted Orbit

= 0. means: cancel distortions of orbit
particle sring p At present only protons (p) and deuterons (d)
[harm(1)] double array 280 9 .. Harmonic in each RF cavity
[volt(1)] double array 0.005 0.001 Voltage in each RF cavity [GV]

Notes: (1) track stop when nturn or SP Ggamf is reached
(2) Table(2), Sec. 4.4
(3) Sec. 4.5

7.3.7 GUI: Orbit FFT

GUI window in Fig.7, right.

variable type example description ?
OrbFFT boolean off FFT of the orbit
FFT ntOrb1 integer 200 Turn at which start FFT
FFT ntOrb2 integer 225 Turn at which end FFT
FFT nOrb integer 8192 Turns for FFT
FFT OrbDz double 1. Longitudinal step for orbit FFT
FFT Orbq1 double 2.7 Start frequency range
FFT Orbq2 double 3.2 End frequency range

30

7.3.8 GUI: Population

GUI window in Fig.8, left.

variable type example description ?
Pop boolean on Initial distribution of particles
npart integer 1 No. of particles in the simulation
popseed integer 1936 Seed for random extraction of population
deltaph double 0. ∆φ longit. coordinate
deltap double 0. ∆E/pc longit. coordinate
[emit(1)] double array 6.0E-006 6.0E-006 Emittance (H and V) [m-rad]
[angle(1)] double array 0. 0. Angles, if particles are generated on an ellipse(1)
[spino(1)] double array 0. 1. 0. Initial spin coordinates for one particle.

If a pop file is used, each particle may have
an individual set of spin coordinates
It is enough to give two coords.,
spink calculates the 3.rd

Notes: (1) Sec. 4.9

7.3.9 GUI: Synthetic Snakes

GUI window in Fig.8, right.

variable type example description ?
Synth Snakes boolean on Setting of synthetic snakes

a synth snake is a thin snake.
it is represented by a marker called SNAKE
in the MAD lattice descriptor.
up to 6 snakes

[snake mu(1)] double array 180. 180. Spin rotation angle in each snake [deg]
[snake ax phi(1)] double array 135. 45. Snake axis angle in the horizontal plane [deg]
[snake ax theta(1)] double array 0. 0. Snake axis angle of elevation [deg]

7.3.10 GUI: Synthetic Spin Rotators

GUI window in Fig.9, left.

variable type example description
Synth SpinRot boolean off Setting of synthetic spin rotator.

a synth snake is a thin snake.
it is represented by a marker called SPINR
in the MAD lattice descriptor.
normally, spin rotators go in pairs
up to 2 spin rotator pairs.

[spinr mu(1)] double array 90. -90. 90. -90. Spin rotation angle in each rotator [deg]
[spinr ax phi(1)] double array 4*90. Spin rotator axis angle

in the horizontal plane [deg]
[spinr ax theta(1)] double array 4*0. Spin rotator angle of elevation [deg]
[spinr bend(1)] double array 0.21 2*-0.21 0.21 Arc bend between rotators and the

encompassed center point
spin rotation is around an axis of angle
given by φ+ bend ·Gγ

31

7.3.11 GUI: Helix

GUI window in Fig.9, right.

variable type example/description ?
Helix boolean off

/Parameters of snakes and spin rotators helices
snake tab boolean off

/Use snake table
helix analyt boolean off

Analytical field of helices
(Luccio, Courant, Syphers)

[helix hand(1)] double array -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
[helix hand(13)] double array 1 -1 1 -1 -1 1 -1 1 1-1 1 -1

/Chirality of helix windings
[helix alfa(1)] double array 16*90. 0. 180. 0. 180. 180. 0. 180. 0.

/Angle of field at helix entrance. with the vertical
[helix B(1)] double array 2.047 2*2.654 2.047 2.047 2*2.654 2.047
[helix B(9)] double array 2.047 2*2.654 2.047 2.047 2*2.654 2.047
[helix B(17)] double array 1.25513 2*4.03239 1.25513 1.25513 2*4.03239 1.25513

/Field in the helices, snakes and rotators [T]

7.3.12 GUI: Stable Axis

GUI window in Fig.10, left.

variable type example description ?
Stable axis boolean on Spin stable axis search by stroboscopic average
spin eps double 2E-004 Accuracy of spin
ps ang.eps double 1E-002 Accuracy for location of phase space
OTSMtuneEps double 1E-006 Accuracy of tune from one turn spin matrix

7.3.13 GUI: Froissart-Stora

GUI window in Fig.10, right.

variable type example description ?
Froissart-Stora boolean off Froissart-Stora calculation of an isolated

Spin resonance strength from spin tracking
FroSto Ggam double 3.82E002 Gγ value where to calculate Froissart-Stora

7.3.14 GUI: Spin Flipper

GUI window in Fig.11, left.

variable type example description ?
SFlipper boolean off Activate Spin Flipper
SF nt integer 5000 How many turns SF is active
SF Bdl double 2.5E-002 Integrated field in Spin Flipper
SF freq0 double 3.8E004 Start frequency
SF dfreq double 1E-001 Frequency variation per turn
SF rot string x Direction of field, “x”, “y”, “r”, “s”

transverse, rotating, solenoidal

32

7.3.15 GUI: BeamBeam

GUI window in Fig.11.

variable type example description ?
BBeam boolean off Activate beam-beam
BB Npp0 double 2E011 No. of particles in beam
BB Ggam0 double 4.7E002 Start energy
BB Ggam double 4.8E002 Stop energy
BB loc string CLOCK8 Collision location name in the lattice

7.3.16 GUI: RF Dipole

GUI window in Fig.12, left.

variable type example description ?
RFD boolean off Activate radio frequency dipole

one needs tables. up to six
[RFDH BdlMax(1)] double array 0.02 0.02 Max Bdl in each horizontal RFD

The 2.nd, 4th.. column in Table(3) will be
multiplied by these values

[RFDH Tune0(1)] double array 0.49 0.49 Tune in each horizontal RFD
the 3.nd, 5th.. column in Table(3) will be
multiplied by these values

[RFDH Dphase(1)] double array 0. -90. Phase shift in each horizontal RFD [deg]
[RFDV BdlMax(1)] double array 0. 0. 0. 0. Max Bdl in each vertical RFD
[RFDV Tune0(1)] double array 0. 0. 0. 0. Tune in each vertical RFD
[RFDV Dphase(1)] double array 0. 0. 0. 0. Phase shift in each vertical RFD [deg]

7.3.17 GUI: Cycle

GUI window in Fig.12, right.

variable type example description ?
Cycle boolean on Activate cycle and diagnostics
gam diag double 1E002 Value of gamma for diagnostics
[marker(1)] string array INITIAL CLOCK6 List of lattice locations where to record data
[second(1)] string array SEXT SNAKE Machine elements to be tracked to second order

options: el names, NONE, ALL

33

7.4 Compilation and Run

For portability, SPINK has been written in Fortran77. The code makes use of include files that
contain Global and Local variables, Common and Namelist definitions, so it is very easy to add and
subtract variables.

The Spink source is being distributed through a directory that contains also a makefile for
compilation. The code has been run on different Unix platforms, but it is advisable to recompile it
when it is imported to a new computer.

The code is write protected through RCS, so a user who would like to modify or add to it should
first check out a routine with the command

=>co -l routinename.F
and after the file has been modified, check it in again with

=>ci -u routinename.F
For sequential run of the code, the compilation is done (in Linux) with the gnu compiler
g77

and for parallel code with the compiler and directive
mpif77 -DUSEMPI

Of course one can use other compilers in different machines.
To compile, do

=>[make cleanall] , for the first time, then =>make
To run the code through the GUI (recommended), invoke

=> uspink runname
To run the code directly

=>spink < spink.in
where spink.in is the driver file containing namelist blocks.

8 Suggested improvements

spink is still under development and probably will always stay in this state. Immediate and not-so
immediate improvements are

1. Since madX is currently supporetd at CERN, while mad8 is not any more, modifying mad read
to work with the former lattice generator seems a clear choice.

2. The present code works with thin spin rotation elements. This approximation seems well
adequate to deal with large storage rings, like RHIC. For smaller machines thick spin elements
are preferable. Already for tracking in the AGS we found that subdividing the bends in a few
parts give results more in accord with experimental data.

3. Dynamic representation of the lattice. This is already implemented in the code in two different
ways as explained in this manual. However, a real smooth implementation using tables is not
yet working as we would like.

4. More work is needed for a complete characterization of the spin stable axis, stroboscopic
averaging, and other spin goodies.

5. Tracking other particles and other spin states. Tracking vector and tensor polarization will
require dealing with spin matrices with more dimensions.

6. Spin motion in the self field of intense beams may become an important issue for high luminosi-
ties colliders. This problem is addressed in spink in the BeamBeam routine, but a real study
will require a large effort. For multi particle intense beam dynamics simulation an effective
non-trivial parallelization is a must.

34

References

[1] A.U.Luccio: Spin Tracking in RHIC- Code SPINK. In: Y.Onel, N.Paver, A.Penzo, editor:
Proc. Adriatico Research Conf on Trends in Collider Spin Physics. Trieste, Italy, 12/5-8, 1995.
World Scientific, p.235.

[2] H.Grote and F.Ch.Iselin: The MAD program, Vers.8.19. Technical Report CERN/SL/90-
13, European Organization for Nuclear Research, Geneva, CH, 1996.

[3] D.J.Jackson: Classical Electrodynamics. Wiley, New York, 1975. Second edition.

[4] S.Y.Lee: Spin Dynamics and Snakes in Synchrotrons. World Scientific. Singapore, 1997.

[5] A.U.Luccio: Angles from Spin Matrices. Technical Report AGS/RHIC/SN No.03, Brookhaven
National Laboratory. Upton, NY, October 8 1996.

[6] Ya.S.Derbenev and A.M.Kondratenko. Sov. Physics. Doklady, 20:562, 1976.

[7] W.Gropp, E.Lusk, A.Skjellum: Using MPI. MIT Press, 1998.

[8] Iselin, F.Christoph: The MAD Program. Physical Methods Manual. Technical Re-
port CERN/SL/92(AP), European Organization for Nuclear Research, Geneva, CH, Geneva,
Switzerland, September 15 1994.

[9] A.U.Luccio: Spin Rotation Matrices for Spin Tracking. Technical Report BNL-62371,
Brookhaven National Laboratory. Upton, NY, Oct.30 1995.

[10] V.I.Ptitsyn and Yu.M.Shatunov: Helical Siberian Snakes. In: Proc Third Workshop on
Siberian Snakes and Spin Rotators BNL-52453, Sept.12-13 1994.

[11] E.D.Courant. Technical Report AGS/RHIC/SN 004, Brookhaven National Laboratory. Up-
ton, NY, Upton, NY, Nov 8 1994.

[12] M.J.Syphers. Technical Report AGS/RHIC/SN 020, Brookhaven National Laboratory. Upton,
NY, Upton, NY, February 1996.

[13] A.U.Luccio, R.Gupta, W.MacKay and T.Roser: Cold AGS Snake Optimization by Mod-
eling. Technical Report C-A/AP/128, Brookhaven National Laboratory. Upton, NY, December
2003.

[14] M.Bai: Overcoming Intrinsic Spin Resonances Using an RF Dipole. PhD thesis, Indiana
University, 1999.

[15] D.A.Edwards and L.C.Teng: Parametrization of Linear Coupled Motion. In: IEEE Trans.
Nucl. Sci. 20, 885, 1973.

[16] T.Roser: Multiturn Injection with Coupling. Technical Report BNL AGS/AD/Tech. Note 354,
November 7 1991.

[17] M.Froissart and R.Stora. Nuclear Inst. and Meth., (7):297, 1960.

[18] A.Luccio, M.Syphers: Effects of beam-beam interaction on spin motion. Technical Report
Spin Note AGS/RHIC/SN No.068, Brookhaven National Laboratory. Upton, NY, 1998.

[19] W.H.Press, S.A.Teukolsky, W.T.Vetterling and B.P.Flannery: Numerical Recipes in
Fortran. Cambridge University Press, 1992. Second edition.

35

Figure 2: SPINK driving menu

Figure 3: SPINK modules

36

Figure 4: Left: input files, Right: output files. If a file name has a # as a first character, the file
will be ignored. The opening of some file is equivalent to a flag to do something

37

Figure 5: Left: diagnostics files. Right: available files. If a file name has a # as a first character,
the file will be ignored. The opening of some file is equivalent to a flag to do something

38

Figure 6: Left: Tables. If a table name starts with #, the table will be ignored. The opening of
some table is equivalent to a flag to do something.
Right: Logical flags

39

Figure 7: Left: Dynamic variables for tracking. Right: OrbitFFT variables

40

Figure 8: Left: Particle distribution variables. Right: Synthetic snakes parameters

41

Figure 9: Left: Synthetic snakes parameters. Right: Helix parameters

42

Figure 10: Left: Parameters for stable axis calculation. Right: Parameters for Froissart-Stora
calculation

43

Figure 11: Left: Spin flippers parameters. Right: BeamBeam parameters

44

Figure 12: Left: Radio frequency dipole parameters. Right: Cycle parameters

45

