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[Abstract] The mechanism of steady-state microbunching (SSMB) has been proposed [D.F. Ratner, 
and A.W. Chao, Phys. Rev. Lett. 105, 154801 (2010)] to produce steady-state microbunched 
beams by using laser modulations in a storage ring for generating coherent radiation with high 
repetition rate at wavelengths from the sub-millimeter to EUV range. In the present paper, we 
analyze the dynamics of the SSMB system with a Hamiltonian and Jacobi matrix approach and 
identify the original proposal of SSMB as a mechanism with period-1 fixed point in phase space. 
We then propose an alternative SSMB mechanism with period-2 fixed point, which is able to 
produce microbunched beams with shorter bunch length and hence higher harmonic. Taking the 
SPEAR3 storage ring as an example, we illustrate the application of the period-2 SSMB to 
generate Tera-Hertz (THz) steady-state coherent radiation in a storage ring using an X-band radio 
frequency (rf) system instead of a more technically demanding laser system. Issues covered 
include choice of rf parameters, system errors, beam lifetime, collective effects and radiation 
power evaluation. Compared to the more traditional low-momentum-compaction operation 
mode, the proposed SSMB scheme potentially promises higher beam current, larger bunching 
factor, and hence brightness increase of at least one order of magnitude. 
PACS numbers: 29.20.Dh, 41.60.Ap, 07.57.Kp, 29.27.Bd 
 
I. Introduction 
High peak brilliance and high repetition rate are both of significant importance for light sources. 
Linac driven free electron laser (FEL) facilities usually have extremely high brilliance because their 
beam is highly microbunched during the FEL process, but have low repetition rate [see, e.g. 1]. 
On the other hand, storage ring-based light sources, typically the third generation light sources, 
have high repetition rate due to intrinsic rapid beam circulation, but have relatively low brilliance 
because storage rings generally do not support microbunched beams.  
 
Past schemes have proposed generating beams with both high repetition rate and high brilliance. 
For example, K.J. Kim, Y. Shvydko and S. Reiche proposed to use a CW superconducting linac to 
increase the FEL pulse repetition rate up to MHz [2]. Energy recovery linacs also promise high 
repetition rate [3-4]. Storage ring FELs were proposed to generate coherent, monochromatic 
radiations in storage rings [see, e.g. 5]. Recently, D. Ratner and A. Chao [6] proposed steady-state 
microbunching (SSMB) to establish a beam that has a fixed microbunching structure turn after 
turn at the location of a radiator in a storage ring to generate coherent radiation at a high 
repetition rate or in continuous wave mode. They illustrate the basic mechanism of the SSMB as 
follows.  
 
Consider a sine modulation V sin(2πz/λmod) of a beam in a storage ring. A particle with specific 
nonzero relative momentum deviation δ0 and z0 = 0 has a longitudinal displacement ∆z = R56δ0 
after one turn, where R56 = αC is the longitudinal dispersion with α the momentum compaction 
and C the circumference of the storage ring. If ∆z = λmod, the particle does not return to its initial 
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position but moves to an equivalent zero crossing (sin(2π∆z/λmod)=0) turn after turn due to the 
modulation’s periodicity. The points (0, nδ0), with n = 0, ±1, ±2, etc., are considered to be single 
turn (period-1) fixed points (modulus λmod). Thus, at each zero crossing, there will be a set of 
fixed points in phase space. After a fraction, 1/H, of a turn instead of a full turn, the fixed points 
and the particles around the fixed points will have different longitudinal displacements in phase 
space, nλmod/H. Consequently, strong microbunching is obtained with period of λmod/H. By 
placing a radiator (dipole or wiggler) at this position, SSMB generates high repetition rate, 
coherent radiation of wavelength λr = λmod/H. To maintain particles around H fixed points within 
one modulation wavelength, it requires large enough momentum aperture Aδ and/or short 
modulation wavelength, Aδ ∼ Ηδ0/2 = Ηλmod/2αC. As illustrated in Ref. [5], period-1 SSMB with 
laser modulations potentially promises high harmonic number. Because the laser modulation 
wavelength is typically small, the momentum aperture constraint is easily satisfied; taking the 
SPEAR3 storage ring [7] as example, C = 234.126 m, Aδ = 0.03 and α = 0.0011 for regular user 
operation mode, with a laser source of wavelength λmod = 1 µm, the momentum aperture is 
orders of magnitude larger than the energy spacing δ0. 
 
In the case that the momentum aperture is small and/or modulation wavelength is long (e.g. rf 
modulation), one can to some extent mitigate the limitation on the available harmonic number 
by applying modulations once every multiple turns (However, the modulation interval can not be 
too large, otherwise the longitudinal wake field and other effects will cause the microbunching 
structure to smear in phase space) and therefore increasing the equivalent α of the SSMB system. 
Moreover, based on the fact that the coherent radiation wavelength highly depends on the 
separation of the density peaks rather than the evenly distributed structure, one can still 
generate high harmonic coherent radiation even with a few microbunches (see Fig. 1). 

 
Fig. 1. Period-1 SSMB with H = 9, left figures show evenly distributed microbunches within one 
modulation wavelength, and right figures show three microbunches with separation of λmod/H. 
Both cases generate coherent radiation of wavelength λr = λmod/H. 
 
In the above discussion, the microbunched beam is assumed to have vanishing bunch length. 
However, the equilibrium rms bunch length (Gaussian distribution) σz due to the radiation 
damping and quantum excitation in a storage ring is not arbitrarily small. In reality, the available 



harmonic number is usually limited by the bunch length. It requires 

mod .
2 2 ln 2 z

H λ
σ

≤                (1.1) 

Otherwise the density peaks will overlap each other and destroy the expected microbunching 
structure at λmod/H. Thus, the key point for high harmonic SSMB is to minimize the length of the 
microbunched beam. A typical two-stage modulation system was analyzed in Ref. [6] using 
linearized one-turn map and generalized longitudinal Courant-Snyder parameters. It is found that 
using strong modulations (normalized amplitude |K|≲ 4, K is defined by Eq. (2.2) below), the 
bunch length can be significantly reduced (see [8-12] for other methods for short bunches). 
However, the linearized model becomes invalid for strong modulations, in which case the 
nonlinearity arisen from the sine function dominates the dynamics of the SSMB system. We 
therefore look into the detailed dynamics of such system using a Hamiltonian and Jacobi matrix 
approach in this paper. Our study shows that with slightly stronger modulations (|K|≳ 4), 
period-1 fixed points become unstable, however, period-2 fixed points emerge, repeating 
themselves (modulus λmod) every two turns in phase space. Based on the analysis, we propose a 
period-2 SSMB mechanism, i.e. SSMB based on period-2 fixed points, which doubles the number 
of the microbunches, and promises much smaller bunch length and thus potentially higher 
harmonic than period-1 SSMB. Even in the case that only conventional buckets are allowed in 
phase space (Aδ < λmod/αC), period-2 SSMB can produce two microbunches and hence two 
density peaks with tunable spacing within one modulation wavelength. Thus this proposed SSMB 
can be established using a rf system with relatively long wavelength, e.g. to generate THz 
coherent radiation in a storage ring using an X-band rf cavity instead of a more technically 
demanding laser beating technique which uses two laser sources with a small difference in 
wavelengths [6, 13]. Compared with the traditional THz light source working with low 
momentum compaction (see [14] and the references therein), period-2 SSMB reduces the bunch 
length by increasing the modulation amplitude, and operates with momentum compaction on 
the same order of magnitude as that of regular user operation mode. It therefore allows a 
relatively large longitudinal tune and promises high average beam current in a storage ring. 
(Strong focusing was proposed to improve the traditional THz light source, see e.g. [15-16], in 
which, however, the bunch length is mainly reduced by decreasing the momentum compaction.) 
Because the coherent radiation power is proportional to the square of the stored beam current, 
with period-2 SSMB scheme, one can expect an enhancement of brightness of at least one order 
of magnitude compared to the traditional THz light source. 
 
In section II-A, we present the Hamiltonian of the SSMB system and view the variation of the 
dynamics with modulation amplitude K, from which we re-identify the condition for period-1 
SSMB that was studied in Ref. [6] and extend the parameter range to include period-2 fixed 
points. An alternative SSMB mechanism based on period-2 fixed points is then proposed. 
Subsequently, the fixed points, local instability condition and synchrotron tune of the motions 
around the fixed points are investigated with Jacobi matrix in Section II-B. The relative area and 
relative length of the stable islands around the period-1 and period-2 fixed points are derived in 
Section II-C. The numerical results confirm the analytical predictions. In Section II-D, the 
dynamics of the SSMB system including the effects of radiation damping and quantum excitation 



is discussed. 
 
Taking the SPEAR3 storage ring as an example, we illustrate the application of the proposed 
period-2 SSMB using an X-band rf cavity. In Section III-A, we discuss the requirements for the 
X-band rf system, and then implement numerical simulations, including the radiation damping, 
quantum excitation effects, and random errors, to verify the parameter choice. Collective effects, 
such as coherent synchrotron radiation (CSR) wake field, X-band longitudinal short range wake 
field and heating from the interaction of beam with small discontinuities of the storage ring are 
evaluated in Section III-B. It appears there is no insurmountable difficulty for a proof-of-principle 
experiment of period-2 SSMB in the SPEAR3 storage ring. The steady-state THz coherent radiation 
power produced by the proposed SSMB scheme is calculated in Section III-C. Discussion on 
further improving the coherent radiation power is present in Section III-D. Conclusions are given 
in Section IV. 
 
II. SSMB system dynamics 
 
The steady-state microbunch length sets the highest achievable harmonic according to Eq. (1.1). 
In general, the microbunch length is determined by the smaller of the stable island size (set by 
the Hamiltonian of the modulation and dispersion) and the equilibrium bunch length (set by the 
damping and excitation of the ring). Ref. [6] used a linearized analysis to study the two-stage 
modulation SSMB mechanism. To provide a more complete picture of the dynamics, we have 
studied both one-stage and two-stage modulation systems using a Hamiltonian and Jacobi matrix 
approach.  This more complete approach illustrates the transition from period-1 to period-2 
SSMB, and allows us to calculate the phase space dimensions of the stable islands. In this section, 
we first use Hamiltonian and Jacobi matrix methods to study the stable islands, and then 
compare the results to the equilibrium island length due to damping and excitation. For brevity, 
we only present the analysis of the one-stage modulation system here. Extension to two-stage 
modulation system is straightforward. 
 
A. Hamiltonian of SSMB system 
 
The SSMB system with one-stage modulation can be described as 
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= = +
= + =

          (2.1) 

where z and δ are the longitudinal displacement and relative momentum deviation of a particle 
relative to the synchronous particle, respectively. Each particle experiences a modulation kick,  
V sin(kz) with V = eVmod/E0 (E0 is the nominal beam energy, Vmod is the modulation voltage) and k 
= 2π/λmod, and then passes through a longitudinal dispersive region before it returns to the 
modulation source. 
 
It is convenient to transform the variables z, δ and V to dimensionless quantities, 



56

56

,
,
.

kz
I R k
K VR k

θ
δ

=
=
=

                (2.2) 

Accordingly, the map (2.1) becomes 
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θ
θ θ

= +
= +

              (2.3) 

where I and θ are both periodic in 2π. 
 
Note that map (2. 3) is the well known “standard map” (see, e.g. [17]), whose Hamiltonian 
dynamics has been systematically studied by B.V. Chirikov with regard to chaotic phenomena 
from the sine nonlinearity. In what follows, we summarize the variation of the SSMB system 
dynamics with the modulation amplitude K, and concentrate on the condition of small stable 
island length which is closely related to the available SSMB harmonic. 
 
Following Ref. [17], map (2.3) can be described with the pendulum Hamiltonian driven by a 
periodic perturbation, 

21( , , ) cos( ),
2 n

H J t J ntθ κ θ
∞

=−∞

= + −∑           (2.4) 

where J = I/2π and κ = K/4π2. 
 
With the method of canonical perturbation analysis [17-18], one can derive the location Jr and 
island height (∆J) of the resonances, 
Integer resonance: 
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( ) 2 / .
rJ n

J Kκ π

=

∆ = =
              (2.5) 

Half integer resonance: 
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              (2.6) 

Third order resonance: 

3
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( ) 9.3 .
rJ q
J κ

=

∆ =
               (2.7) 

In Eqs. (2.5)-(2.7), n, p, q are arbitrary integers. 
 
The resonance island heights depend on κ = K/4π2 and increase with increasing K. Once the 
separatrices of two adjacent resonances overlap each other, the frequency of the motion in the 
overlapping region will jump randomly from one resonance to the other; therefore the motion 
loses periodicity and becomes chaotic or stochastic [16]. As a straightforward inference, if the 
center (fixed point) of one resonance island touches the separatrix of the adjacent resonance, all 



the motions inside this resonance island will be irregular and the stable island will disappear in 
phase space. For example, the condition for the half integer resonance island disappearing can be 
estimated by 

1 3
1 1( ) , ( ) ,
2 6

J or J∆ = ∆ =             (2.8) 

which yields K = 2.46 or 2.70, not far from the obtained critical value K ≈ 2.2 from numerical 
simulations for the disappearance of the half integer resonance island. 
 
We simulate the motions described by the map (2.3) for different positive K values (the dynamics 
is the same for negative K, only with the fixed points changed in phase space, see Section II-B), 
with geometry shown in Fig. 2 and particle coordinates in phase space of (θ, I) at the entrance of 
the modulation source shown in Fig. 3. For 0 < K < 1, the motions are regular and the resonance 
islands are stable. The central integer resonance islands ((Jr)1 = 0) correspond to conventional 
buckets in a storage ring provided the modulation source is an rf cavity. At K around 1, stochastic 
motions emerge neighboring the separatrices of the resonances. As K increases, the stable 
islands will shrink or even disappear due to resonance overlapping. For 3 < K < 4, only integer 
resonance islands remain. Of particular interest are the cases with 4 < K < 2π. Each integer 
resonance island splits into two islands (around period-2 fixed points) with much smaller length. 
When K is close to 2π, the stable island size will tend to zero (very small but not zero). When K > 
2π, the coordinate I (or δ) will increase continuously each turn, corresponding to particle loss in a 
storage ring with a finite momentum aperture. 

 

Fig. 2. One-stage modulation SSMB system. Green box indicates the modulation source. OP1 and 
OP2 indicate the observation points at the entrance and the opposite of the modulation source, 
respectively. 

OP2

OP1





 
Fig. 3. The motions described by the map (2.3) in phase space with K = 0.5, 1, 2, 2.5, 3, 3.5, 4, 5, 
5.5 and 6.2, and with observation point at the entrance of the modulation (OP1 in Fig. 2). 
 
The islands will rotate in phase space when particles pass through a dispersive section. Assuming 
R56 varies monotonically along the ring, for a given K, the island length reaches its minimum on 
the opposite of the modulation source (OP2 in Fig. 2), as shown in Fig. 4 with cases of K = 3.5 and 
5 as examples. The fixed points of the integer resonance islands change to (θ0 – I0/2, I0) in phase 
space. 
 

 
Fig. 4. The motions described by the map (2.3) in phase space with K = 3.5 and 5, and with 
observation point on the opposite of the modulation (OP2 in Fig. 2). 
 
From the above analysis, we learn that, the modulation amplitude should be large enough, e.g. 
|K| ≥ 3, so that one can obtain clear stable island structure in phase space and hence clear 
density modulation at the radiator; the stable integer resonance island length reaches its 
minimum when K is below and close to 4; finally, with |K| slightly larger than 4, motions around 
period-1 fixed points are unstable, but they bifurcate into stable islands around period-2 fixed 
points with islands number doubled and much smaller island length compared to that around 
period-1 fixed points. Combining conditions (1.1), with a slightly stronger modulation than that 
required by period-1 SSMB, the SSMB based on period-2 fixed points, is capable of generating 
shorter microbunched beams associated with higher harmonic compared to period-1 SSMB. Even 
in the case that the modulation source is rf system with relatively long wavelength and only 
conventional buckets ((Jr)1 = 0) are allowed by the momentum aperture, one can still produce 
two short microbunches with different energy deviations using a strong modulation (|K| ≳ 4); 



with an optimal R56 between the modulation source and the radiator, one can obtain a sharply 
double-peaked longitudinal density distribution at the radiator, which helps generate coherent 
radiation at wavelength equal to the separation between the two density peaks.  
 
It should be mentioned that there exist period-3 or even higher-order periodic fixed points and 
stable islands [17, 19]. However, the corresponding stable islands have such small size that they 
have little practical value. Thus, here we concentrate only on the period-1 and period-2 
trajectories and stable islands. 
 
B. Period-1 and period-2 fixed points 
 
Based on the Hamiltonian dynamics of the SSMB system, we derive the stability condition and 
the synchrotron tune of the motion around period-1 and period-2 fixed points. 
 
For the single turn map (2.3), the period-1 fixed points are determined by 

1 0

1 0

0,
0(mod 2 ),
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θ θ θ π

∆ = − =
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            (2.9) 

which results in (θ0, I0) = (πn, 2πn), n = 0, ±1, ±2, etc.  
 
Let us consider the particle motion with initial condition (θ0 + δθ, I0 + δI). From map (2.3), one can 
obtain a linearized map, 
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where M1 is the period-1 Jacobi matrix.  
 
The synchrotron tune of the motion around a period-1 fixed point is given by 

1 0
1cos( ) 1 cos / 2,
2s TrM Kν θ= = +            (2.11) 

To keep the motion bounded, it requires |TrM1|< 2, which results in 

04 cos 0.K θ− < <                (2.12) 

 
From Eqs. (2.9) and (2.12), the period-1 fixed points are (0, 0) (mod 2π) for −4 < K < 0, and (π, 0) 
(mod 2π) for 0 < K < 4. 
 
To study the period-2 fixed points, we write the map of two iterations of the one-stage 
modulation system as 
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The period-2 fixed points are determined by 
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There are two solutions for Eq. (2.14), θ0 + θ1 = 0 (mod 2π) or θ0 - θ1 = π (mod 2π). However, only 
the first solution is available in practice, corresponding to Kcosθ0 = Kcosθ1. By combining Eqs. 
(2.13) and (2.14), we obtain 
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           (2.15) 

from which, we have 

1 14 sin 2 ,K nθ θ π+ =               (2.16) 

One can numerically solve Eq. (2.16) to obtain θ1, and then calculate θ0, I0, I1 from Eq. (2.15). 
 
The period-2 Jacobi matrix can be derived from the map (2. 13), 

01
2

01

1 cos 11 cos 1
.

cos 1cos 1
KK

M
KK

θθ
θθ

++   
=   

  
         (2.17) 

With the known condition Kcosθ0 = Kcosθ1, we obtain the expression of the synchrotron tune and 
the stability condition, 

2 2
1 1

1

cos(2 ) 1 2 cos cos / 2,
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K
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θ
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where vs is the equivalent “one-turn” synchrotron tune of the motion around period-2 fixed 
points. 
 
From the stability condition, we can approximate θ1 = θ10 + δθ10 with θ10 = cos-1(-2/K) (mod 2π) 
and δθ10 << θ10. Using Eq. (2.16), we obtain an approximate expression of θ1 to the first order of 
δθ10, 

2 1
1 4 / 2 cos (2 / ) (mod 2 ).K Kθ π π−= − − +         (2.19) 

 
Fig. 5 shows the synchrotron tune vs and fixed point θ0 (or θ1) of the SSMB system with the 
modulation amplitude K ranging from 0 to 2π. The longitudinal tunes with 0 < K < 4 and 4 < K < 2π 
correspond to that of the motions around period-1 and period-2 fixed points, respectively. So 
they are not continuous at K = 4. The accuracy of Eq. (2.19) degrades when K is close to 4 or 2π, 



in which cases the assumption δθ10 << θ10 is not well satisfied. 

 
Fig. 5. Variation of vs and θ0 (or θ1) with respect to modulation amplitude K. 

 
C. Period-1 and period-2 stable islands 
 
As mentioned, along with increasing modulation amplitude K, the stable resonance islands will 
shrink due to resonance overlapping. In this section, we derive the relative stable island area S 
and relative stable island length R for the two cases of interest. The first case is when only integer 
resonance islands are stable in phase space (3 < K < 4) and the second case is when each integer 
resonance island splits into two smaller islands (4 < K < 2 π). Assuming the initial particles are 
uniformly distributed in phase space and there is not any damping mechanism, S and R are 
closely related to the percentage of the surviving particles and available bunch length. 
 
For 3 < K < 4, we consider the resonance overlapping between the integer and half integer 
resonance islands, assuming the islands are upright in phase space (see Fig. 6). For a given K, the 
maximum J of the half integer resonance island is, 
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∆ = =               (2.20) 

Because of resonance overlapping, the maximum height (with θ = π) of the stable integer 
resonance island is 
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Using the Hamiltonian of the integer resonance Jr = 0 (with positive K)  
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and J = J1,max, θ = π, we obtain the Hamiltonian of the motion at the boundary of the stable area, 
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From Eq. (2.22), θ arrives at the farthest point from π when J tends to 0, i.e. ∆θ = θ – π reaches 
the maximum value, 

max20 cos( ).
4b
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= − ∆              (2.24) 

By combine Eqs. (2.23) and (2.24), we obtain ∆θmax to the first order, 
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/ 2 .K

K
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∆ ≈               (2.25) 

In the range of -1/2 < J < 1/2 and 0 < θ < 2π, there exists only one stable integer resonance island. 
The relative length R and relative beam area S can be estimated by 
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where S is obtained assuming the stable island is in the shape of an ellipse with major and minor 
radii of ∆θmax and ∆Jmax. Note that S is approximately proportional to R2. Thus, to achieve a small 
relative bunch length, one has to pay with a larger particle loss rate. 
 

 
Fig. 6. Shrinkage of the stable integer resonance island due to resonance overlapping between 
the adjacent integer and half integer resonance islands. Green dashed lines and red dotted lines 
indicate the separatrices of the half integer and integer resonance islands in single resonance 
approach, respectively. Red solid line indicates the boundary of the integer resonance island 
stable area. 
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Now consider one of the islands around period-2 fixed point for 4 < K < 2π (see, e.g., the middle 
left island for K = 5 case in Fig. 2). For simplicity, the fixed point is approximated by θ10 = cos-1(-2/K) 
and J10 = -(K2-4)1/2/4π. 
 
The θ is limited by the stability condition in Eq. (2.18), therefore the minimum and maximum θ of 
the island boundary are given by 

1
11 12/ 2, cos ( 4 / ).Kθ π θ −= = −            (2.28) 

Then the relative length R of the stable island is obtained, 
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We write the Hamiltonian at the island boundary as 
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where J11, J12 are the action coordinates conjugate to θ11 and θ12 and ∆J11 = J11 – J10, ∆J12 = J12 – J10, 
are assumed to be much smaller than J10. We obtain 
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and then estimate J11 by 
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With the known J11 and θ11, we can evaluate the J = J10 + ∆J with θ = θ10 at the island boundary 
using the Hamiltonian, 
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which yields 
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Note that, the island is tilted in phase space, approximately in the shape of an ellipse with major 
radius approximately of ∆θ = (θ12-θ11)/2 and minor radius of ∆J. Then the relative area S of the 
stable islands (there are two such islands in the range of -1/2 < J < 1/2 and 0 < θ < 2π) can be 
estimated by 
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Table I lists the R and S from analytical formulas and numerical measurements. Considering the 
rather rough single resonance assumption used in the derivation, the agreement between the 
two approaches is fairly good, especially for the relative stable island area S.  
 

Table I. Comparison of analytical predictions with the numerical measurements 
K Sanalytical Ranalytical Snumerical a Rnumerical 
6.28 0.0042 0.1099 0.0025 0.065 
6.21 0.0045 0.1113 0.004 0.065 
5 0.016 0.1476 0.014 0.12 
4 0.084 0.25 0.08 0.40 
3 0.124 0.30 0.11 0.43 

a The values for the relative stable island area are obtained by Chirikov through precise numerical 
measurements (see Table 5.3 in Ref. [17]). 
 
For the cases shown in Fig. 4, the relative stable island area S is the same as that in Table I, and 
the relative island length can be derived from a modified map and the corresponding 
Hamiltonian. The analytical results are R = 0.33 for K = 3 and R = 0.054 for K = 5, while the 
numerical results are R = 0.2 for K = 3 and R = 0.08 for K = 5. 
 
Provided the momentum aperture is large enough, the available maximum harmonic Hmax is 
determined by 

max
1( ),H N
R

=                (2.36) 

where N(x) gives the largest integer not greater than x. 
 
D. Effects of radiation damping and quantum excitation 
 
Up to this point, we have obtained the relative island phase space dimensions (height, width and 
area) using the Hamiltonian in absence of radiation damping and quantum excitation effects. In 
an actual ring, the island phase space dimensions indicate the boundary of the stable motion 
area, while the rms bunch length and energy spread are determined by the equilibrium of 
radiation damping and quantum excitation effects. The rms bunch length determines the 
harmonic limit, so at this point we study the damping and excitation effects. 
 
Let us consider the case that the SSMB system has one modulation source and R56 varies 
monotonically along the ring. In the dispersive region, the rms energy spread σδ is constant, and 
estimated by 



,qC
Jδ

ε

σ γ
ρ

=                (2.37) 

where Cq = 3.832×10-13 m, γ is the Lorentz factor, Jε ≈ 2 is the longitudinal damping partition 
number, and ρ is the radius of circular orbit.  
 
From the Jacobi matrix (with variables of θ and I), we derive the rms bunch length σz, 
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with the generalized longitudinal Courant-Snyder parameters at the exit of the modulation source 
in the form 
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where vs is determined by Eq. (2.11) or (2.18) and 0 < s < 1.  
 
At s = 1/2, the bunch length reaches its minimum, 

,min 56
0 1

1 1 .
cos( (or )) 4z R

Kδσ σ
θ θ
−

= −           (2.39) 

 
In a storage ring, there always is a rf system for injection, trapping particles and providing energy 
loss (due to synchrotron radiation) compensation, with much smaller normalized amplitude K 
and much larger bucket (or stable island) than that of the modulation source in a SSMB scheme. 
As we know, if with only the original rf system, the quantum lifetime is determined by 
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q z
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δ δσ

δ δ

τ τ
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=               (2.40) 

where τz is the longitudinal damping time, and the overall momentum aperture Aδ is determined 
by the existing rf system with long buckets and transverse dynamics. In order to obtain a long 
enough quantum lifetime, i.e. several hours, it requires Aδ > 6σδ. 
 
However, the condition would be slightly changed when introducing strong modulation into the 
ring. Small islands are formed within the overall momentum aperture by the strong modulation, 
with island height of Aisland. If Aisland > 6σδ, the vast majority of the microbunched particles will 
stay inside the small islands, and thus we obtain a long quantum lifetime (In this case, the 
Touschek lifetime is usually long enough). If 3σδ < Aisland < 6σδ, there will be a few particles 
moving out of the small islands every turn due to finite momentum aperture. These particles will 
not get lost at once provided Aδ >> Aisland; furthermore, the existing rf system will help confine 



the particles not far away from the small islands boundary. Therefore most of particles will return 
to the small islands from outside under the effects of quantum fluctuation and radiation damping 
in the next few turns. As a result, an equilibrium beam distribution is established with permanent 
microbunched structure in phase space while individual particles are allowed to move out of and 
into the stable islands without loss. Now let us consider another effect, the single Coulomb 
scattering effect which is related to the Touschek lifetime. For the interested circumstances with 
small bucket height, especially the case that Aisland/3 is above and close to 3, the rate of particles 
moving out the small buckets due to single Coulomb scattering is usually much less than that due 
to finite momentum aperture, thus the equilibrium beam distribution varies little, corresponding 
to a long lifetime. On the other hand, in the case that Aisland < 3σδ, the number of particles 
moving out of the bucket from inside is larger than that of particles moving back from outside of 
the small islands every turn. Some particles will get lost at last, leading to a short lifetime. 
 
As a brief summary of Sec. II, to realize the period-2 SSMB scheme for generating short 
microbunches, one should use modulation (RF or laser system) with normalized amplitude K = 
eVmodR56k/E0 > 4. Increasing K, the relative bucket length R will be smaller, however, the relative 
bucket area S will decrease more rapidly due to the approximate relation S ∝ R2, implying less 
particles trapped in the small buckets. If K is so large that the bucket length Rλmod < σz and/or 
bucket height Aisland < 3σδ, the beam will have a short lifetime. As a compromise between the 
small bunch length and large enough particle trapping fraction, it is recommended to choose K 
slightly above 4 in a practical implementation of the period-2 SSMB. 
  
III. SSMB for THz Coherent Radiation in SPEAR3 storage ring 
 
A. Period-2 SSMB using X-band rf system in SPEAR3 storage ring 
As mentioned above, for the SSMB with rf system, the modulation wavelength is relatively long, 
the momentum aperture is typically smaller than λmod/αC and only conventional buckets are 
allowed. However, in this situation, it is still possible to produce a sharply double-peaked 
longitudinal distribution by using the period-2 SSMB mechanism. For instance, with an X-band rf 
system, λrf ~ 26mm, and equivalent harmonic H = λrf/∆λ about 20, with ∆λ the separation of the 
two density peaks ∼ 1mm, the resulting coherent radiation wavelength λr is in the THz range. 
Thus, we can use an X-band cavity to establish microbunched beams in a storage ring for THz 
coherent radiation. 
 
The main limitation of such a system is that the required modulation voltage of the X-band cavity 
is very high, for instance, Vrf = E0K/e/R56/k ≈ 200 MV with K ≈ 4.2 for the 3GeV SPEAR3 storage 
ring, provided that the X-band cavity is used in continuous operation mode (this limitation will be 
weaker for lower energy). As a compromise, we use the X-band cavity in pulse operation mode 
[20], modulating the beam once every multiple turns (to increase the equivalent R56 and reduce 
the required Vrf) with pulse duration of a fraction of turn instead of a full turn, so as to obtain a 
small duty factor and reduce the required voltage and power of the X-band cavity to an 
acceptable level. 
 
We implement simulations of the period-2 SSMB in SPEAR3 storage ring based on the main 



parameters listed in Table II, while including radiation damping and quantum excitation effects 
(The application of the proposed SSMB mechanism is also explored for another storage ring at 
SLAC, the SLC damping ring [21], but will not be addressed here). In the simulation, a 3.7 m 
X-band rf cavity is placed in a 4.8 m long straight section of the SPEAR3 storage ring. The injection, 
trapping and energy loss (due to synchrotron radiation) compensation are still supplied by the 
existing 476.3 MHz rf cavity. After the beam reaches an equilibrium state due to radiation 
damping and quantum excitation in several damping times, with rms bunch length σz = 4.8 mm 
and rms momentum spread σδ = 0.1%, the X-band rf cavity is turned on and provides voltage of 
30.9 MV to the electron beam every 8 turns (6.2 µs) with pulse duration of 1/5 turn (156 ns). The 
corresponding average power dissipated in the cavity is 20 kW/m, which is in a large but feasible 
level. (Nevertheless, the relatively high average power and high pulse repetition rate, 160 kHz, 
are still challenge to rf scientists.) After tracking the beam for 1 million turns, the final beam 
distributions are shown in Fig. 7. About 27% of particles survive and are microbunched to two 
short bunches with σz ≈ 0.3 mm within each conventional bucket. We note that this bunch length 
is on the same order as that predicted by Eq. (2.39), σz ≈ 0.4 mm. With appropriate R56 between 
the radiator (dipole) and the X-band cavity, we obtain a fixed density modulation structure at the 
radiator every eight turns, with the separation of double density peaks of 1.4 mm and bunching 
factor of 0.35. Our study shows that the particle loss mainly occurs in the first several damping 
times after turning on the X-band cavity, and then, the beam reaches another equilibrium state 
with Aisland/σδ ≈ 3 and particle loss due to the X-band modulation is negligible, corresponding to a 
long quantum lifetime, as shown in Fig. 8. In addition, we test the sensitivity of the period-2 
SSMB mechanism to various errors. It is found that, such scheme can tolerate relatively large 
modulation amplitude fluctuation, i.e. maximum ∆V/V = 5%, but small phase error, i.e. 0.05 
degrees. An error in R56 mainly leads to a change to the separation between the two density 
peaks and hence the coherent radiation wavelength. However, this influence can be removed by 
installing a R56-tunable chicane between the X-band rf cavity and the radiator. Unlike the very 
tight constraints from the transverse transfer elements, R51, R52, to the period-1 SSMB using laser 
modulation, the conditions of R51σx << λr and R52σx’<< λr [6] turn out to be R51R52 << λr

2 /εx ≈ 60 
m with εx of 18 nm in this case, and can be easily satisfied, which implies the influence from the 
nonzero R51 and R52 is negligible for the proposed SSMB scheme in SPEAR3 storage ring. The 
second-order dispersion T566 with amplitude up to 2R56 is tested in the simulation. The 
microbunching structure is not disturbed, only with little further particle loss, less than 0.5%. It 
appears the tolerance of higher-order dispersion is not very tight. 



 

Fig. 7. SSMB in SPEAR3 storage ring after 106 turns’ tracking while including the existing 476.3 
MHz rf cavity, radiation damping and quantum excitation, with the beam distribution at the 
X-band rf cavity (top left), and the beam distribution (top right), density profile (bottom left) and 
Fourier component bf

2 (bottom right) at the radiator, with bf the bunching factor. 
 

 
Fig. 8. Normalized surviving particles in the cases of with X-band RF and existing 476.3 MHz RF 
system (red solid), with only X-band RF (green dashed) and with only existing 476.3 MHz RF (blue 
dotted). The curves in the first 5000 turns are expanded on the image inset. 
 

Table II.  Main parameters of Period-2 SSMB Scheme in SPEAR3 storage ring 

Parameters SPEAR3 Unit 

Energy 3 GeV 

Circumference 234.126 m 

Nominal Tune vx/vy 14.19/5.23  
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Synch. tune vz (nominal/SSMB) 0.007/0.083  

Mom. Comp.(nominal/SSMB) 0.0011/0.00094  

Nominal RMS bunch length 4.8 mm 

RMS energy spread 0.1 % 

Revolution time, T0 780.4 ns 

Existing RF cavity, f 476.3 MHz 

Existing RF cavity, V 3.2 MV 

X-band RF cavity, f 11.4 GHz 

X-band RF cavity, V 30.9 MV 

X-band RF cavity, L 3.7 m 

X-band RF cavity, pulse duration 1/5 (156) Turns (ns) 

X-band RF cavity, pulse interval 8 (6.2432) Turns (µs) 

X-band RF cavity, duty factor 0.025  

X-band RF cavity, aver. power 20 kW/m 

X-band RF cavity, peak power 0.8 MW/m 

X-band RF cavity, a/lambda 0.148  

Shunt Impedance  91 MOhm/m 

Beam current/bunch 0.1 mA 

No. particles/bunch 5×108  

Harmonic available 18  

Bunching factor, b 0.3  

Radiation wavelength 1.4 mm 

Photon flux @ dipole (bunches #) 1.7×1019 / 8 (50) Ph/[(sec)(0.1%BW)] 

Brightness @ dipole (bunches #) 3.5×1013 / 8 (50) Ph/[(mm)2(mrad)2 

(sec)(0.1%BW)] 

 
B. Limitation of the collective effects 
Since the microbunched beam has a short bunch length, σz ≈ 0.3 mm, short range wake field (or 
high frequency impedance) will potentially lead to beam instability or severe heating at the 
locations of the devices which cause small discontinuities on the vacuum chamber. 
 
The CSR wake field is one of the dominant collective effects with short bunches. Theoretical and 
experimental studies show that bursts of coherent radiation will emerge when beam current is 
above the threshold of the CSR driven microwave instability [22-23]. A recent study taking into 
account the shielding effect [24] shows that with no shielding the particle distribution is 
deformed to have markedly triangular shape, and with increasing shielding the distribution 
profile moves gradually toward that of the unperturbed Gaussian. The threshold is given in the 
form 

( ) 0.5 0.12 ,csr thS = + Π              (3.1) 

with 
1/ 3 1/ 2

4 / 3 3/ 2( ) , .
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e z
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ρ σ ρ
πν γσ σ

= Π =
 

where Scsr and Π are the dimensionless strength parameter and shielding parameter, respectively; 



re is the classical electron radius, Nth is the bunch population at the threshold, σz is the (zero 
current) rms bunch length, σδ is the nominal energy spread, and h is half of the separation 
between the two plates (2h approximately corresponds to the vacuum chamber height). 
 
From Eq. (3.1), for a given σz, Nth is proportional to the synchrotron tune vs. Note that vs ∝ α1/2 

[25], thus we have Nth ∝ α1/2. The traditional way to generate THz coherent radiation in a storage 
ring is to reduce the bunch length to sub-millimeter level by decreasing the momentum 
compaction α, i.e, using the "low α" mode. For SPEAR3 storage ring, to obtain σz = 0.3 mm, it 
requires to reduce α to 1/256 of that of regular user operation optics. The available beam current 
for steady-state coherent radiation generation is quite limited. Eq. (3.1) yields Nth = 3.1×107 (beam 
current of 6 µA/bunch) for the SPEAR3 storage ring "low α" mode, which agrees well with the 
experimental scaling law for the bunch current limit I(µA/bunch) = 5 (σz/0.3[mm])2.354 [26]. In 
contrast, due to strong X-band modulation voltage and momentum compaction of the same 
order as that of regular user operation mode, the synchrotron tune of the period-2 SSMB is 
relatively large, vs = 0.083, which results in a much higher threshold, Nth = 6.0×109 (beam current 
of 1.2 mA/bunch).  
 
In addition to the shielded CSR impedance, another strong source is the short range longitudinal 
wake field associated with the small structure of the X-band rf cavity, which will cause the 
particles at the tail to lose more energy than that at the head of the bunch, and therefore 
introduce additional energy modulation to the particles and affect the final longitudinal 
distribution of the microbunched beams. We estimate the effect of the X-band cavity wake field 
[27] by including it in the tracking simulation. Although the effect of asymmetrical energy loss 
within one bunch is partially alleviated by the relatively rapid synchrotron oscillation, the strong 
wake field causes more particles loss, and limits the beam current to about 0.1 mA/bunch 
(5.0×108 electrons/bunch) with bunching factor of 0.3. Note that this beam current is still much 
higher than that allowed by the “low α” mode of SPEAR3 storage ring. 
 
In the case of a short bunch, the heating from the interaction of beam with small discontinuities 
(enlargements on the pipe) whose sizes are comparable to the short bunch length might become 
a serious problem for the performance of the storage ring. (The small X-band rf cavity structure 
will cause beam energy loss and local heating, which, however, can be moved by the designed 
cooling system for the rf cavity.) Thus, we consider an ideal case that there are Nd = 100 identical 
discontinuities more or less evenly distributed along the storage ring and estimate the heating 
power with the assumption of a single Gaussian distribution profile rather than the actual 
double-peak density modulation profile. The induced wake potential W// is calculated with the 
code ECHO [28] and shown in Fig. 9.  
 



        

Fig. 9. Model for one discontinuity on the perfectly conducting vacuum chamber (left) and wake 
potential calculated with ECHO code (right), ∆z = 1 mm, ∆r = 5 mm and pipe radius b ≈ 17 mm. 
 
The loss factor κ is [29] 
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which results in κ ≈ 0.5 V/pC for one discontinuity.  
 
For stored beam of Nb = 50 bunches with 0.1 mA/bunch in SPEAR3 storage ring, the average 
parasitic power is evaluated by 

    
2

0

,b d b
parasitic

q N NP
T

κ
=          (3.3) 

where qb is the charge of a single bunch, T0 = C/c is the revolution time, with c being the speed of 
light. The resulting parasitic power is about 0.2 Watt per discontinuity and a total of 20 Watt, 
which is in an acceptable level.  

 
C. Brilliance evaluation 
 
Coherent radiation occurs when multiple electrons in a bunch radiate with mutual relative phase, 
resulting in a quadratic dependence of the power on the number of participating electrons. For a 
given wavelength λ, the emitted average spectral power is given by 

2[1 ],f
dP dpN Nb
d dλ λ

= +              (3.4) 

where N is the number of electrons, bf is the bunching factor, and dp/dλ is the power from a 
single electron. The bunching factor bf is defined by  

2 / ( ) ,i z
f nb e z dzπ λ ρ= ∫               (3.5) 

where ρn(z) is the normalized longitudinal density, satisfying ∫ρn(z)dz = 1. 
 
For the coherent radiation emitted from a dipole, dp/dλ/dψ is given by [30] 
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where λcr = 4πρ/3γ3 is the critical radiation wavelength, and S(x) ≈ 1.333x1/3 for x << 1. For 
SPEAR3 storage ring, the average radiation spectral power from a dipole is 1.6 × 10-15 Watt/m at 
the wavelength λr = 1.4 mm, assuming the radiation in a deflection angle of dψ = 100 mrad is 
collected. 
 
Consider 50 bunches with 0.1mA/bunch and bunching factor bf = 0.3 stored in the storage ring. 
The total photon flux is 

19
( )

0.1% 1.7 10 /[(sec)(0.1% )],

dP
dflux ph BW

w

λ
λ= × = ×


      (3.7) 

Since the microbunching structure is formed once every eight turns, the average photon flux of 
the coherent radiation is about 1.7×1019/8 ≈ 2.1×1018 ph/[(sec)(0.1%BW)] and the brightness is 
about 4.4×1012 ph/[(mm)2(mrad)2(sec)(0.1%BW)], which is more than one order of magnitude 
higher than that produced by the “low α” mode in SPEAR3 storage ring of 280 bunches with 5 
µA/bunch, with average photon flux about 1.7×1017 ph/[(sec)(0.1%BW)] [25]. 
 
D. X-band injection 
 
Up to this point, we have assumed that the period-2 SSMB begins with injection using the 
existing 476.3 MHz rf system. As a result, the microbunch pairs are separated by the standard 
bunch spacing of about 0.6 m. Using the X-band rf cavity for both injection and modulation, we 
can store many more bunches in the storage ring, resulting in higher average beam current. More 
importantly, the regularly spaced microbunches exist over many periods, permitting bunching 
factors at only a narrow range of frequencies (see Fig. 10). The result is a sharper bandwidth and 
increased brightness of the THz coherent radiation. 

 
Fig. 10. Square of the bunching factor bf

2 at the radiator, with X-band rf cavity for both injection 
and modulation. 

 
III. Conclusion 
In this paper, we explore the dynamics of the SSMB system with a Hamiltonian and Jacobi matrix 
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approach. Through the analysis, we re-identify the condition of period-1 SSMB mechanism and 
propose the period-2 SSMB mechanism, which uses slightly stronger modulation but promises 
much smaller bunch length and hence higher harmonic than the period-1 SSMB mechanism. In 
addition, the proposed SSMB makes it possible to use an rf system instead of a laser system to 
produce microbunching. Taking the SPEAR3 storage ring as an example, we illustrate the 
application of period-2 SSMB to generate coherent THz coherent radiation using an X-band rf 
system in pulse operation mode. Our study shows that, the available beam current and the 
brightness produced by such a scheme can be much higher than that by a “low α” mode. For 
SPEAR3 storage ring, the THz coherent radiation power enhancement is more than one order of 
magnitude. Throughout the paper, the transverse motion is assumed to remain stable in the 
presence of the proposed X-band rf modulation. This is a rather good assumption because the 
nonlinearities in transverse dimensions are relatively weak compared with the strong X-band sine 
function modulation and collective effects in longitudinal plane, and the coupling between the 
transverse and longitudinal motions is usually weak in a typical storage ring. Nevertheless, a full 
6D simulation is needed and will be implemented in the future. 
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