INL/EXT-12-27658

Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

Sam Alessi Dennis Keiser

October 2012

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

INL/EXT-12-27658

Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

Sam Alessi Dennis Keiser

October 2012

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the University of Idaho and for the U.S. Department of Energy Assistant Secretary for Environment, Safety, and Health Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 CENTER FOR AVANCED ENERGY STUDIES

Dairy Anaerobic Digester Market Assessment Model

Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

Sam Alessi and Dennis Keiser

Idaho National Laboratory and University of Idaho

10/31/2012

Contents

Introduction
Gaining Access to the Model
Using DANA for Dairy Anaerobic Digestion Analysis
Using the Web Interface
1. Regional Organic Substrate
2. Regional Cows
3. Electricity Price
4. Regional Digester Scenarios
5. Unit Conversion Table
Running the DANA Model15Model Result Reporting16Capital Cost Analysis16
Co-Product Valuation
Time Based Revenue and Expense20
Investment Metrics
GEMS Component Architecture
OASIES Overview
Hybrid Energy Analysis Process
Optimization Platform
Summary
References
Appendix 1: SAS Code
SAS Models
Market Model 2012 Balance Sheet.egp37
Market Model 2012 Cubes.egp
SAS Setup Code
Digester Gas Production Code
Co-Product Valuation Code52
Digester Capital Cost Code58
Digester Balance Sheet Code

Introduction

This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; covered lagoons, modified plug flow, and complete mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters.

DANA's goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can define scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface.

DANA's approach uses server-based data processing and web-based user interfaces, rather a clientbased spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester parameters be held and managed in a single data repository, while allowing users to customize standard values and perform individual analysis. Server-based calculations can be easily extended, versions and upgrades managed, and all changes are immediately available to all users. This user manual describes how to use and/or modify input database tables, run DANA, view and modify reports.

DANA is based in the INL's analysis architecture entitled Generalized Environment for Modeling Systems (GEMS)¹, which offers extensive collaboration, analysis, and integration opportunities and greatly speeds² the ability construct highly scalable web delivered user-oriented decision tools. Thus, DANA has the capability to leverage pre-existing models that can be used to calculate all aspects of dairy operation. Existing government and commercial models can be used directly without reprogramming and lend credibility to national planning efforts or local development analysis. DANA has been designed to be extended and modified in multiple ways to suit multiple analysis goals.

¹ GEMS will be described in section "GEMS Component Architecture"

² This prototype version of DANA was completed in 3 weeks.

Gaining Access to the Model

Access to the DANA model is provided through secure login to the dairy analytics web site. To obtain access you first must be approved by Innovation Center for U.S. Diary and must complete the following steps:

- 1. **Request user credentials** by clicking on the link below.
 - a. Dairy Analytics User Request³
- 2. Select "Dairy Analytics" from the Application drop-down list if it is not already selected.
- 3. **Fill out** the rest of the information on the form.
- 4. **Within** 24 hours you will receive an email response with your new login credentials. Follow the additional instructions exactly as specified.
- 5. Once your account is established you will be added as a user to the dairy analytics web portal (<u>https://dairyanalytics.inl.gov</u>) and will receive an email with the proper link.
- 6. If you have any issues please contact Dave McGrath (david.mcgrath@inl.gov).

Using DANA for Dairy Anaerobic Digestion Analysis

DANA can be run using predefined scenarios or by creating your own. This section will go through be basic process for creating scenarios, running the model and viewing reports.

Using the Web Interface

Figure 1 shows the main DANA Market Model web page. The left panel provides links to documents, input databases, and collaborative discussion. The center panel area has a brief introduction, followed by a link to execute the model and links that open four predefined web reports. To perform new calculations simply modify or specify predefined regional scenarios, execute the model (click "Run Anaerobic Digester Market Model"), and view the reports (i.e., Capital Cost Analysis, Co-product Valuation, Expense and Revenue, or Investment Metrics). Simply open the reports if you are only interested in previously calculated results.

³ https://secure.inl.gov/caims/default.aspx?AppID=a9ced862-24bf-44fb-9e8c-897983245855

Market Model								
DairyAnalytics Farm M	Iddel Market Model ADPHA ALGAE							
Libraries Documents	Introduction							
Lists Backend Treatment	The DANA Market Analysis model and report links listed below provide a U.S. National Analysis of the dairy anaerobic digester technology. The reports detail capital costs, production levels, co-product valuation, revenue/expense and investment metrics.							
Bedding Capital Cost Center Dairy Cows Dairy Type	Input to these reports is defined by tables that can viewed by clicking on the List links to the left. For instruction on how to customize these input tables please refer to the document entitled "Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual." that is available to download from the document library listed at the top left.							
Digester Type Economic Parameters Electricity Price Farm Type	Each report is made up of multiple tables that can be accessed through the report table of contents that is located in the upper left area of the report. Reports can also be modified directly and saved to your own custom reporting area.							
Organic Substrate	Model Executables							
Regions Regional Cows Regional Digester Scenarios	Run Anaerobic Digester Market Model Clicking this link will run the Dairy Market Model. Any changes to the input variables represented in the left panel databases are loaded into the model, the model is executed and the reports below are updated with the new results.							
Regional Organic Substrate	National Anaerobic Digester Analysis Reports							
Regional Parameters Unit Conversion	Capital Cost Analysis This series of reports presents capital costs by digester type and region for all scenarios defined as input.							
Discussions	Co-product Valuation This report set presents production amounts, prices and valuation of co-products for each scenario parameterized by the input tables to the left. Expense and Revenue This reports at shows yearly revenue and expenses for all scenarios. The number of years is set by the 'Planning Horizon' input parameter.							
All Site Content	Investment Metrics This report set shows a variety of investment metrics for the scenarios described by the input parameter set accessable by dicking on the tables listed on the left panel.							

Figure 1. DANA Market Model Web Interface.

Input Scenario Data

This section will describe each of the input data tables and demonstrate how to go about linking them together to create scenarios. A detailed description of each parameter will not be provided here, but can be found associated with the two spreadsheets that were source information for the DANA model (informa, 2012; Innovation Center, 2011).

The web interface to the input data tables is crafted using Microsoft SharePoint 2010. This means that no custom developed web coding has been done to provide editable access and viewing of these tables. A SharePoint user manual will act as a handy auxiliary user manual to help you manipulate these tables and will also show you the many useful capabilities and features that are available in SharePoint 2010.

Regions

The concept of "regions" is fundamental to the overall level and scale of the analysis. The term "region" simply means any geospatial area. For example, states, EPA regions, hydrologic basins, or farms are all valid "regions". Thus, regions can be created to represent any geospatial area you choose. There are many parameters in the model that are specified by region so it is important to remember,

- 1. Parameters are held constant over the whole region and
- 2. The finer the division into regions the greater the amount of input parameters needed.

Libraries	🕼 Name	-	State Abbr 🛛 👻	State FIPS 🛛 🛨 🔺
Documente	Sort Ascending	*	MN	27
Documenta	Sort Descending		NE	31
Lists	(Show All)		NV	32
Backend Treatment	Alabama		NH	33
Bedding	Alaska		NJ	34
Capital Cost Center	Arizona		NM	35
Dairy Cows	- California	+	NY	36
Dairy Type	Uregon		OR	41
Digester Type	Pennsylvania		PA	42
Economic Scenario	Rhode Island		BI	44
Electricity Price	Tennessee		TN	47
Farm Type	Texas		TX	48
Organic Substrate	Vermont		VT	50
Pagions	West Virginia		wv	54
Regional Cowe	EPA Region 1			
Regional Disector	EPA Region 2			E
Scenarios	EPA Region 3			
Regional Organic	EPA Region 4			
Substrate	EPA Region 5			
Region Input Set	EPA Region 6			
Unit Conversion	EPA Region 7			
	EPA Region 8			
Discussions	EPA Region 9			
	EPA Region 10			
Recycle Bin	Other 40 States			
All Site Content	*			

Figure 2. Regions table custom filtered and opened for editing and adding new regions.

The informa (2012) regions are U.S. States, whereas the Innovation Center model (2011) ran its analysis by EPA regions. DANA extends the ability to conduct analysis by any type of region without any reprogramming of the model, only input data setup is needed.

Tables in the left panel of the web site are accessed by simply selecting their names. The table is opened for editing⁴ and allows the user to add new rows and/or edit existing rows. The last table row, indicated by *, is blank and is used to type or paste new rows. The table headers provide capability to filter and sort the data.

Figure 2 shows the Regions table open for editing with a custom filter defined to show only region names that contain, for example, an 'e'. The region table is simply a lookup table that is accessed by an

automatic dropdown menu in many of the other tables, thus all it requires is the region name. Each region name should be unique.

The input data tables are linked into relationships that allow many scenarios to be calculated in a single model run. The hierarchical relationships shown in Table 1 depict how the overall run time scenarios are constructed. Sub-items show linkage of table columns to tables. Users can add new parameters and link tables to create scenarios of any level of complexity. Executing DANA will run all scenarios and return the results to web reports.

1.	Regional (rganic Substrate – Defines organic substrate availability by region
	a.	Regions → "Regions" Table
	b.	Feedstock → "Organic Substrate" Table
2.	Regional (ows – Defines the number of cows per region
	a.	Cows → "Dairy Cows" Table
	b.	Regions → "Regions" Table
3.	Electricity	Price – Defines yearly electricity price by region
	a.	Regions → "Regions" Table
4.	Regional [igester Scenarios – Defines the overall scenario name and associated parameters
	a.	Farm Type - Defines the farm type name and parameters)
		i. Dairy Type $ ightarrow$ "Dairy Type" Table
		ii. Bedding Type → "Bedding" Table
		iii. Backend Treatment \rightarrow "Backend Treatment" Table
		iv. Digester Type \rightarrow "Digester Type" Table
	b.	Regional Input Set- Defines the Regional Parameter Set
		i. Regions → "Regions" Table
	с.	Economic Scenario - Defines the Economic Parameter Set
		i. Capital Cost Centers → "Capital Cost Center" Table
	d.	Regions - Defines the Regions
5.	Unit Conv	ersion – Defines unit conversion used throughout the calculations.

Table 1. Hierarchical relationships among DANA input tables.

⁴ Adding and editing tables is only possible if the user has adequate privileges.

1. Regional Organic Substrate

The regional organic substrate table (Fig. 3) defines for each region (Fig. 2), one or more feedstock types (i.e., Organic Substrates, Fig. 4) and the total amount produced for that region.

DairyAnalytics Farm	n Model	Market	Model ADPHA A	ALG	AE					
Libraries		Include 👻	Regions	•	Feedstock	-	Total	•	Tot_Units	
Documents		7	Alabama		Mixed Food Waste			10	lb/yr	
		v	Alaska		Mixed Food Waste			100	lb/yr	
Lists		1	Arizona		Mixed Food Waste		221,23	1.2698	lb/yr	
Backend Treatment		1	Arkansas		Mixed Food Waste			100	lb/yr	
Badding		7	California		Mixed Food Waste		1,516	,402.5	lb/yr	
Capital Cost Center		1	Colorado		Mixed Food Waste		174,06	5.6361	lb/yr	
Dainy Cours		1	Connecticut		Mixed Food Waste			100	lb/yr	
Dairy Cows		V	Delaware	Mixed Food Waste			100	lb/yr		
Disastar Type		1	Florida		Mixed Food Waste			100	lb/yr	
Economia Connario		1	Georgia		Mixed Food Waste		100		lb/yr	
Electricity Price		V	Hawaii		Mixed Food Waste) lb/yr			
Earm Tune		1	Idaho		Mixed Food Waste		54,255.	62216	lb/yr	
Orazoia Substrata		1	Ilinois		Mixed Food Waste			100	lb/yr	
Degions		1	Indiana		Mixed Food Waste			100	lb/yr	
Regional Cowe		1	lowa		Mixed Food Waste			100	lb/yr	
Regional Cows		1	Kansas		Mixed Food Waste			100	lb/yr	
Scenarios		v	Kentucky		Mixed Food Waste			100	lb/yr	
Regional Organic		1	Louisiana		Mixed Food Waste			100	lb/yr	
Substrate		1	Maine		Mixed Food Waste			100	lb/yr	

Figure 3. Regional Organic Substrate table.

The column entitled "FeedStock" shown in Figure 3 is automatically linked to the Organic Substrate table (Fig. 4) as well as the "Regions" column (Fig. 3) linked to the regions table (Fig. 2). To add or edit rows in the Regional Organic Substrate table scroll to the last row of the table, select a region from the dropdown menu, select a feedstock from the dropdown menu, type in the total amount of that feedstock for the region and select the units from the dropdown provided. The "Include" column is used to indicate this row should be included in the analysis.

DairyAnalytics Farm	Model	Ma	irket	Model	A	OPHA ALGAE							
Libraries	C,	ID	-	Include	-	Kind	-	Substrate Gas Factor	-	Biogas Parameter	-	VS Content Food Waste 🔻	N Content of Food Waste
Documents			2	V		Mixed Food Waste			2.5		7.20	1.25	2.00
			3			Fats Oils Grease				1!	5.39	1.25	2.00
Lists			4			Bakery Wastes				1.	1.44	1.25	2.00
Backend Treatment			5			Food Scraps					4.25	1.25	2.00
Bedding			6			Brewery Waste					1.92	1.25	2.00
Capital Cost Center	*												
Dairy Cows													
Dairy Type													
Digester Type													
Economic Scenario													
Electricity Price													
Farm Type													
Organic Substrate													

Figure 4. Organic Substrate "Feedstock" table.

New substrates can be added or existing substrates edited in the organic substrate table. You simply give the new substrate any name and enter the parameters in each column. Parameter units can be found either by right clicking on the column header and selecting "edit/delete column" or by changing

the table view from datasheet to standard⁵ and opening the line editor (Fig. 5). A definition of the parameter and its units are provided in these views. Each substrate kind should be unique.

Orga	nic Sub	ostrate - 1		
Edit			_	
Save	Close	Paste	Delete Item	
Cor	nmit	Clipboard	Actions	
	ID:		2	
	Kind		Mixed	Food Waste
	Inclu	de	🔽 Inc	lude in analysis
	Gas F	Factor	2.5 Gas pr	oduction relative to dairy manure
	Bioga	as Potential	7.2 Metha	ne for Mixed Food Waste, others biogas (ft3/ton)

Figure 5. Organic substrate table opened in SharePoint standard view

2. Regional Cows

The regional cows table (Fig. 6) defines a scenario name, links multiple dairy cow kinds to regions and defines the number of cows of that type within the region. The "Region Cow Scenario" column is a text name input by the user that names the scenario. The "cows" column presents a dropdown linked to the dairy cow table (Fig. 7) and the regions column is a dropdown linked to the regions table (Fig. 2). The combination of Cows and Regions should be unique. The scenario name groups cow / region combinations into a particular scenario.

⁵ This is capability of the Microsoft SharePoint portal. A user manual for SharePoint can be found <u>here</u> or purchased at any bookstore.

airyAnalytics Farm Mode	l Mar	ket	Model	A	OPHA ALGAE						
ibraries 🖉	ID	•	Include	•	Region Cow Scenario 🛛 👻	Cows	-	Regions	-	Current Number 🛛 👻	Cow Additions
ocuments		1	1		Market Study 2012 Region - Cow Scenario	Lactating		Arizona	-	145,577	
oddinanta		2	1		Market Study 2012 Region - Cow Scenario	Lactating		Arizona		1,351,863	
iete		3	V		Market Study 2012 Region - Cow Scenario	Lactating		Arkansas California		97,282	
askend Treatment		4	V		Market Study 2012 Region - Cow Scenario	Lactating		Colorado		430,013	
adding		5	1		Market Study 2012 Region - Cow Scenario	Lactating		Connecticut		137,665	
apital Cast Captor		6	V		Market Study 2012 Region - Cow Scenario	Lactating		EPA Region 1		260,564	
apital Cost Center	7 🗸			Market Study 2012 Region - Cow Scenario	Lactating	ctating EPA Region 10 -		Ŧ	109,045		
airy Cows		8	V		Market Study 2012 Region - Cow Scenario	Lactating		Texas		26,457	
ingester Type		9	1		Market Study 2012 Region - Cow Scenario	Lactating		Washington		162,615	
igester rype		10	1		Market Study 2012 Region - Cow Scenario	Lactating		Wisconsin		237,825	
Lonomic Scenario		11	1		Market Study 2012 Region - Cow Scenario	Lactating		Other 40 States		775,237	
		12	1		Market Study 2012 Region - Cow Scenario	Lactating		US Total		3,974,142	
ann rype											

Figure 6. Regional Cows table with Regions table dropdown open.

The Dairy Cows table (Fig. 7) can be used to identify many cow types as defined by unique combinations of the parameters available. Each row should have a unique name.

Libraries	🔽 Edit	Include	e ID Kind C	Cost_yr Electr	ric Potential Natu	ral Gas Potential NG	Parasitic Reduction CM	IG Potential C	NG Parasitic	Load An	imal Unit
Documents		Yes	1 Lactating \$1,		0.614						1,000
Lists Backend Treatment	Dairy	Cows							×		
Bedding	Edit										
		~	🦳 🗟 Copy	×							
Dairy Cows			Cut								
Dairy Type	save	close	Paste	Item							
Digester Type	Con	nmit	Clipboard	Actions							
Economic Scenario									<u>^</u>		
Farm Type		ID:									
Organic Substrate		Inclu	de	V							
Regions		101 - J									
Regional Cows		KING		Lactating							
Regional Digester Scenarios		Cost_	yr	\$1,200							
				cost per cow	per year						
Substrate		Electr	ic Potential	0.614							
Region Input Set				Electricity pr	oduction potentia	I in Mega Watt Hours (MWh) /cow/yr				
Unit Conversion		Natur	al Gas Potential	20.63					=		
				Natural Gas parasitic rec	production Millio duction	n Cubic Feet (MCF) per	cow per year without				
		NG Pa	arasitic Reduction	0.5							
				Parasitic rec	duction for clean n	atural gas					
Bt all Site Content		CNG F	Potential	7.895							
				Methane Gas	soline Gallon Equi	valent (GGE) / Million (Cubic Feet (MCF)				
		CNG F	Parasitic Load	10							
				Expressed as	s a %						
		Anima	al Unit	1.000							
				An animal ur agricultural animal unit. per day	nit (AU) is a standa purposes. A 1,000 The dry matter for	ardized measure of anii -pound beef cow is the age requirement of one	mals used for various standard measure of an e animal unit is 26 poun	ds			

Figure 7. Dairy Cows table open in standard SharePoint view

3. Electricity Price

The Electricity Price table provides the average electricity price by region and year⁶. The region column is linked to the regions table by dropdown menu access. Additional years (columns) or regions (rows) can be added by the user.

⁶ Currently, only the 2011 price is used in the calculations. Future versions will incorporate a time series forecast model to predict future electricity prices.

Market Mode	el → I	Electricity Pric	e)	grid +										
DairyAnalytics Farm	Mode	Market Mode	el	ADPHA ALGAE										
Libraries	ø	Region	-	Price 2001 👻	Price 2002 💌	Price 2003 💌	Price 2004 💌	Price 2005 👻	Price 2006 💌	Price 2007 💌	Price 2008 💌	Price 2009 💌	Price 2010 🔻	Price 2011 👻
Documents		California	-	9.23	9.81	9.59	9.27	9.55	10.09	9.98	10.04	10.07	9.80	11.01
		California	*	3.71	4.34	4.1E	3.82	3.91	3.61	3.87	4.48	5.17	5.15	5.16
Lists		Connecticut		5.45	4.48	4.95	5.22	5.61	5.57	5.60	6.38	5.72	6.01	6.11
Backand Treatment		Delaware		5.27	4.66	5.27	5.87	7.14	7.82	7.79	8.79	6.74	6.44	6.34
Bedding		EPA Region 1 EPA Region 10		4.36	4.43	4.71	4.93	5.39	5.85	6.16	6.51	6.73	6.85	7.34
Capital Cost Center		EPA Region 2		4.75	4.88	4.76	4.28	4.27	4.44	4.57	4.55	4.43	4.07	3.97
Dainy Comp		EPA Region 3	Ŧ	5.24	5.20	5.37	5.35	5.85	5.69	6.05	6.57	6.65	6.63	6.58
Dairy Cows		Michigan		5.08	5.02	4.9E	4.92	5.32	6.05	6.47	6.74	6.99	7.08	7.36
Diary Type		New York		5.56	5.18	7.14	7.04	8.23	9.39	8.71	10.14	8.98	8.78	7.80
Digester Type		Colorado		4.48	4.52	5.1	5.11	5.74	5.88	5.97	6.65	6.39	6.90	7.12
Economic Scenario		Minnesota		4.34	4.07	4.36	4.63	5.02	5.29	5.69	5.87	6.26	6.29	6.51
Electricity Price		14		4.55	4.50	1.04	6.00	1.05	5.00	C.40	F 00		0.00	0.70

Figure 8. Electricity Price table.

4. Regional Digester Scenarios

The Regional Digester Scenarios table (Fig. 9) links four tables, three of which link other tables. This hierarchical structure can be used to create many scenarios with many parametric combinations. Users can also perform a basic sensitivity analysis by altering parameters systematically and extending the number of scenarios. The main integrating table (Fig. 9) names the scenario and defines the unique combinations of farm types, regional input sets, economic scenarios and regions. Finally, the proportion of the three primary anaerobic digester types is defined (Fig. 9, Lagoon Percent, Plug Flow Percent, Complete Mix Percent) for the scenario row. Note that the scenario name is unique to 1 or more, (i.e., a set) of rows and each row combination of farm type, regional input set, economic scenario and region should be unique to its row within the scenario set.

Market Mode	el + Digester Region	al Scenario	s > Datasheet >							
DairyAnalytics Farm	Model Market Model	ADPHA ALG	AE Enco Tuno	Regise Legal 2 of	- Formania foormia	Regione	Lance Person -	Phus Flow Rossons -	Complete Mix Encount -	Total Property
Libraries Documents	Ocenario 1	V INCIDE V	Dry Lot Dairy with Sand Dedding and NUtrien/Recovery	2012 Market Study	Economic Scenario 1	Arizona	11.74%	47.15%	41.11%	1000110001
Lists	Scenario 1	V	Dry Lot Dairy with Sand Bedding and Nutrien/ Recovery	2012 Market Study	Economo Scenario 1	California	66.67%	16.67%	16.67%	100.007
Backend Treatment	Scenario 1	V	Dry Lot Dairy with Sand Bedding and Nutrien/ Recovery	2012 Market Study	Economic Scenario 1	Colorado	11.74%	47.15%	41.11%	100.00
Bedding Capital Cast Capitar	Scenario 1	V	Div Lot Dairy with Sand Bedding and Nictrient Recovery	2012 Market Study	Economic Scenario 1	Idaho	0.00%	75.00%	25.00%	100.009
Lairy Cows	Scenario 1	N.	Drv Lot Dainy with Sand Bedding and Nutrien/Recovery	2012 Market Study	Economo Scenario 1	Midhigan	0.00%	16.67%	83.33%	100.007
Cairy Type	Scenario 1	V	Dry Lot Dany with Sand Bedding and Nutrient Recovery	2012 Market Study	Economic Scenario 1	New Mexico	11.74%	47.15%	41.11%	100.00
Economic Scenero	Scenario 1	V	Dry Lot Dairy with Sand Bedding and Nutrient Hecovery	2012 Market Study	Economic Scenario 1	New Yok	0.00%	60.00%	40.00%	100.00
Electricity Price	Scenario 1	V	Dig Lot Dairy with Sand Bedding and Nutrient Recovery	2012 Market Study	Economic Scenario 1	Танах	11.74%	47.15%	41.11%	100.007
Crganic Substrate	Scenario 1	V	Dig Lot Dairy with Sand Bedding and Notright Recovery	2012 Market Study	Economic Spenario 1	Washington	0.00%	85.71%	14.29%	100.00
Regions	Scenario 1	V	Dry Lot Dairy with Sand Bedding and Nutrien/Recovery	2012 Market Study	Economo Soenario 1	Witcondn	0.00%	73.33%	26.67%	100.00
Regional Digester	Scenario 1	V	Dry Lot Dairy with Sand Bedding and Nutrien/Recovery	2012 Market Study	Economic Scenario 1	Other 4C States	2.90%	66.67%	30.43%	100.007
Regional Organic	Scenario 1	₩.	Do Lot Dainy with Sand Bedding and Nutrien/Recovery	2012 Market Study	Economic Spenario 1	US Total	12.00%	47.00%	41.00%	100.00
Substrate Region Input Set	Scenario 2	V	Dry Lot Dairy with Sand Bedding and Nutrient Recovery	2012 Market Study	Economic Scenario 1	Arizona	11.74%	47.15%	41.11%	100.00
Unit Conversion	Scenario 2	V	Dry Lot Dairy with Sand Bedding and Nutrient Recovery	2012 Market Study	Economo Scenario 1	California	11.74%	47.15%	41.11%	108.00
Discussions	Scenario 2	V	Dry Lot Dairy with Sand Bedding and Nutrien/Recovery	2012 Market Study	Economic Scenario 1	Colorado	11.74%	47.15%	41.11%	100.00
	Scenario 2	V	Dry Lot Dairy with Sand Bedding and Nutrien/ Recovery	2012 Market Study	Economic Scenario 1	Idaho	0.00%	53.42%	46.58%	100.00
Recycle Bin	S cenario 2	V	Dry Lot Doiry with Sand Bodding and Nutrien/ Recovery	2012 Market Study	Econome Secnario 1	Michigan	0.00%	53,42%	46.58%	100.001

Figure 9. Regional Digester Scenario table.

The Farm Type column (Fig. 9) is linked by a drop down menu to the Farm Type table (Fig. 10). Likewise Region Input Set column to a table of the same name (Fig. 15), Economic Scenario to the Economic Scenario table (Fig. 16) and finally Regions to the Regions table (Fig 2).

Farm Type Table

The Farm Type table (Fig. 10) defines a Dairy Farm scenario name that is made up of a Dairy Type, Bedding Type, Backend Treatment, and a Digester Type, each of which is a separate table linked to the Farm Type table by a dropdown menu.

👬 Market Model	▶ Farm Type ▶ Grid -				
DairyAnalytics Farm Me	odel Market Model ADPHA ALGAE				
Libraries	🕼 Dairy Farm Scenario	🕶 🛛 Dairy Type 🛛 👻	Bedding Type 👻	Backend Treatment 👻	Digester Type 🗖
Documents	Туре 1	Diry Lot	Manure Solids	Screened Only	Covered Lagoon
	Type 2	Diry Lot	Manure Solids	Screened Only	Plug Flow
Lists	Туре 3	Diry Lot	Manure Solids	Screened Only	Complete Mixed
Backend Treatment	Туре 4	Dry Lot	Manure Solids	Nutrient Removal	Covered Lagoon
Bedding	Туре 5	Dry Lot	Manure Solids	Nutrient Removal	Plug Flow
Capital Cost Center	Туре 6	Dry Lot	Manure Solids	Nutrient Removal	Complete Mixed
Dairy Cows	Туре 7	Diry Lot	Manure Solids	Nutrient Recovery	Covered Lagoon
Dainy Type	Туре 8	Dry Lot	Manure Solids	Nutrient Recovery	Plug Flow
Digester Type	Туре 9	Dry Lot	Manure Solids	Nutrient Recovery	Complete Mixed
Economia Sconneio	Type 10	Dry Lot	Other Organics	Screened Only	Covered Lagoon
Electricity Drice	Type 11	Dry Lot	Other Organics	Screened Only	Plug Flow
Electricity Price	Type 12	Dry Lot	Other Organics	Screened Only	Complete Mixed
Parm Type	Type 13	Dry Lot	Other Organics	Nutrient Removal	Covered Lagoon
Organic Substrate	Type 14	Dry Lot	Other Organics	Nutrient Removal	Plug Flow
Regions	Type 15	Dry Lot	Other Organics	Nutrient Removal	Complete Mixed
Regional Cows	Type 16	Dry Lot	Other Organics	Nutrient Recovery	Covered Lagoon
Scenarios	Type 17	Dry Lot	Other Organics	Nutrient Recovery	Plug Flow
Regional Organic	Type 18	Dry Lot	Other Organics	Nutrient Recovery	Complete Mixed
Substrate	Type 19	Dry Lot	Sand	Screened Only	Covered Lagoon
Region Input Set	Type 20	Dry Lot	Sand	Screened Only	Plug Flow
Unit Conversion	Type 21	Dry Lot	Sand	Screened Only	Complete Mixed
	Туре 22	Dry Lot	Sand	Nutrient Removal	Covered Lagoon
Discussions	Туре 23	Dry Lot	Sand	Nutrient Removal	Plug Flow
Recycle Bin	Complete Mix Digeter on a Dry Lot Dairy with Sand Bedding and Nutrient Recovery	Dry Lot	Sand	Nutrient Removal	Complete Mixed
All Site Content	Covered Lagoon Digeter on a Dry Lot Dai with Sand Bedding and Nutrient Recovery	y Dry Lot	Sand	Nutrient Recovery	Covered Lagoon
	Dry Lot Dairy with Sand Bedding and Nutrient Recovery	Dry Lot	Sand	Nutrient Recovery	Plug Flow

Figure 10. Farm Type table made up of a dairy farm scenario name and four linked tables; Diary Type, Bedding Type, Backend Treatment, and Digester Type.

The Diary Type table

The Dairy Type table (Fig. 11) defines a variety of dairy types. The "kind" column is a text value that names the dairy type row. The remaining columns define parameters for the diary type based on the Innovation Center model (2011).

Market Model	⊢ I lode	Dairy Type	e • Datashe	et -	AF			
Librarian	C.	Include 👻	Kind	-	DPM DryLot 👻	Collectable Manure 👻	Gas Production Modifer 🛛 🔫	Note:
Documents		V	Freestall		0.00%	90.00	100%	Associated with a "Complete Mixed" digester
Documenta	V		Dry Lot		-33.00%	0.00	50%	Can have either "Plug Flow" or "Covered Lagoon" types
Lists		V	Open Lot		0.00%	50.00	50%	
Backend Treatment	+							
Bedding								
Capital Cost Center								
Dairy Cows								
Dairy Type								

Figure 11. Dairy Type table

The Bedding table

The Bedding Table (Fig. 12) defines bedding % sand as defined in the Innovation Center model (2011).

Market Model + Bedding + Datasheet +											
DairyAnalytics Farm M	lodel	Mark	et I	1odel	ADPHA	ALG	AE				
Libraries	🕼 In	clude	-		Kind	-	DPM Sand	-			
Documents		1		Manur	∋ Solids		0.	00%			
bocamenta		V		Sand			25.	00%			
Liste		1		Other (Organics		0.	00%			
Backend Treatment	*										
Bedding											

Figure 12. Bedding table

The Backend Treatment table

The Backend Treatment table (Fig. 13) defines types of backend treatment as defined by the Innovation Center model (2011).

Market Model + Backend Treatment + Datasheet -											
DairyAnalytics Farm	Mode	Market I	Model	ADPHA	ALG	AE					
Libraries	Ø	include 👻		Kind	-	DPM Nutrient Removal	-	DPM Nutrient Recovery	-		
Documents		V	Scree	ned Only		0.	00%	0.0	10%		
Documento		\checkmark	Nutrier	nt Removal		15.	00%	0.0	10%		
Lists		V	Nutrier	nt Recovery		0.	00%	25.0	10%		
Backend Treatment	*						_				

Figure 13. Backend Treatment table

The Digester Type table

The Digester Type table (Fig. 14) defines parameters for different digester types.

DairyAnalytics Farm	Model	Marke	t Model	AD	PHA ALGAE											
Libraries		ID 👻	Include	-	Kind	•	Electric Gen Parasitic Load	-	Capacity Factor	-	Thermal Efficiency Factor	•	Max Substrate Capacity	-	N Recovery rate	
Documents		1	V		Complete Mixed			10%		90%		35%		50%		40
crocumenta		2	V		Plug Flow			10%		90%		35%		20%		40
Liete		3			Covered Lagoon			10%		90%		35%		0%		0
Cipto																
Bedding																
Capital Cost Center																
Dainy Cows																
Dainy Turne																
many type																

Figure 14. Digester Type table

Regional Input Set Table

The Regional Input Set table (Fig. 15) has a large number of variables (Table 2) that are defined for each region of interest. The Input Data Set name defines the overall scenario name (Fig. 15; "2012 Market Study"), the region which is linked to the regions table (Table 2) and 30 additional parameters. Future versions of DANA will attempt to reduce the number of parameters by estimating values regionally from data sets and farm records.

Site Actions - 💕 Brow	List Tools Items List			Region Input Set -		×	
New New View	Version History	Attach Ale	rt Workflow	Edit	ARC		
New New	Manage			🔚 🔤 📑 🖧 🖓 🕅			
Libraries	Input Data Set Nam	e State		Save Cancel Paste Delete Att Item F	ach Spelling	w N Excreted Dairy Heifer	Total VS N Excreted per Co
Documents		Alabama		Commit Clipboard Actions	Spelling	1 0.42	23,189,31 1,392,39
				714-		4 0.42	0.00 0
Lists		Arizona		Title		6 0.42	2,505,380.17 139,753.92
Backend Treatment				Input Data Set Name	2012 Market Study	6 0.42	6,972.00 425.6
Bedding	2012 Market Study	California		State	Alabama	4 0.42	22,850,003.33 1,270,751.22
Capital Cost Center				Tax 10 Daily Chila		7 0.42	1,684,924.24 94,363.54
Dairy Cows				Top to Dairy State		8 0.42	41,927.55 2,406.8
Dairy Type				VS Dairy Cow AU	2,233	3 0.42	6,492.20 376.82
Digester Type					kg/animal/year volatile Solids Dairy Cow	9 0.42	1,024,820.10 59,265.1
Economic Scenario					Volable Solids per Dairy Cow 2012 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010	E 8 0.42	333,752.64 19,528.08
Electricity Price				VS Dairy Heifers AU	1,253	7 0.42	20,100.85 1,223.53
Farm Type					kg/animal/year Volatile Solids Dairy Heifers	4 0.42	7,250,019.18 404,212.22
Organic Substrate					2012 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990- 2010	8 0.42	175,850.29 10,120.88
Regions		Indiana		N Excreted Dairy Cow AU	134	9 0.42	1,038,052.98 59,092.2
Regional Cows					kg/animal/year Nitrogen Excreted Dairy Cow	1 0.42	954,128.00 54,266.03
Scenarios				N Excreted Dairy Heifer AU	68.9	1 0.42	1,177,914.87 66,536.47
Regional Organic			4,041,769		kg/animal/year Nitrogen Excreted Dairy Heifers	Z 0.42	47,632.42 2,859.34
Substrate				VS Dairy Cow	13.49 Ibs/cow/day.Volatile Solids Dairy Cow	4 0.42	16,291.17 1,007.14
Region Input Set					Tost contract, contract contract contract contract	0.42	45 550 76 2 625 50

Figure 15. Regional Input Set table shown in standard output to show parameter descriptions

Table 2. Comple	te set of the	Regional	Input Dat	a table	parameters.
-----------------	---------------	----------	-----------	---------	-------------

News	Turne	Longth	lakal
Name	Туре	Length	Label
ID	Numeric	8	ID
Input_Data_Set_Name	Character	25	Input_Data_Set_Name
Region	Character	25	Region
Census_2000	Numeric	8	Census_2000
Census_2010	Numeric	8	Census_2010
Top_10_Dairy_State	Numeric	8	Top_10_Dairy_State
Number_of_Animals	Numeric	8	Number_of_Animals
Number_Farm_with_Digesters	Numeric	8	Number_Farm_with_Digesters
VS_Dairy_Cow	Numeric	8	VS_Dairy_Cow
VS_Dairy_Heifer	Numeric	8	VS_Dairy_Heifer
N_Excreted_Dairy_Cow	Numeric	8	N_Excreted_Dairy_Cow
N_Excreted_Dairy_Heifer	Numeric	8	N_Excreted_Dairy_Heifer
Total_VS	Numeric	8	Total_VS
N_Excreted_per_Cow	Numeric	8	N_Excreted_per_Cow
Methane_Conversion_Factor	Numeric	8	Methane_Conversion_Factor
Methane_Production	Numeric	8	Methane_Production
Tipping_Fees	Numeric	8	Tipping_Fees
Pipeline_Biomethane_Price	Numeric	8	Pipeline_Biomethane_Price
CNG_Price	Numeric	8	CNG_Price
Diesel_Price	Numeric	8	Diesel_Price
Recovered_Nitrogen_N_Price	Numeric	8	Recovered_Nitrogen_N_Price
Recovered_Phosphorus_P_Price	Numeric	8	Recovered_Phosphorus_P_Price
Recovered_Potassium_K_Price	Numeric	8	Recovered_Potassium_K_Price
Nut_Enr_Fiber_Pr_Covered_Lagoon	Numeric	8	Nut_Enr_Fiber_Pr_Covered_Lagoon
Nut Enr Fiber Pr Plug Flow	Numeric	8	Nut Enr Fiber Pr Plug Flow
Nut Enr Fiber Pr Complete Mix	Numeric	8	Nut Enr Fiber Pr Complete Mix
GHG Offset Credit Price	Numeric	8	GHG Offset Credit Price
REC Price	Numeric	8	REC Price
RIN Price	Numeric	8	RIN Price
VS Dairy Cow AU	Numeric	8	VS Dairy Cow AU
VS Dairy Heifers AU	Numeric	8	VS Dairy Heifers AU
N Excreted Dairy Cow AU	Numeric	8	N Excreted Dairy Cow AU
N_Excreted_Dairy_Heifer_AU	Numeric	8	N_Excreted_Dairy_Heifer_AU

Economic Scenario Table

The Economic Scenario table (Fig. 16) is the third table linked to the Regional Digester Scenario table (Fig. 9). The Capital Cost Center column is linked by dropdown to the capital cost center table (Fig. 17).

DairyAnalytics Farm	Model	Ma	rket	Model	A	DPHA ALGAE					
Libraries	6	ID	-	Include	-	Scenario 🔫	Capital Cost Centers 👻	Electric Gen. Capital Cost Parameter	-	RNG Cap. Cost Parameter	-
Degumente			1	V		Economic Scenario 1	Centers		0.21	;	33.65
Documents	*						Market Study Cost Centers Market Study Cost Centers				
Lists							Market Study Cost Centers				
Backend Treatment							Market Study Cost Centers				
Bedding							Market Study Cost Centers				
Capital Cost Center							Market Study Cost Centers Market Study Cost Centers				
Dairy Cows											
Dairy Type											
Digester Type											
Economic Scenario											

Figure 16. Economic Scenario table

This table also contains an additional 30 parameters (Table 3) many of which are cost related.

Table 3. Complete set	of Economic Scenario	table parameters.
-----------------------	----------------------	-------------------

Name	Туре	Length	Label
ID	Numeric	8	ID
Include	Numeric	8	Include
Scenario	Character	255	Scenario
Capital_Cost_Centers	Character	255	Capital_Cost_Centers
Electric_Gen_Capital_Cost_Parame	Numeric	8	Electric_Gen_Capital_Cost_Parameter
RNG_Cap_Cost_Parameter	Numeric	8	RNG_Cap_Cost_Parameter
CNG_Cap_Cost_Parameter	Numeric	8	CNG_Cap_Cost_Parameter
Operation_Cost_Parameter	Numeric	8	Operation_Cost_Parameter
Equity	Numeric	8	Equity
Debt	Numeric	8	Debt
Loan_APR	Numeric	8	Loan_APR
Grants	Numeric	8	Grants
Third_Party_Funds	Numeric	8	Third_Party_Funds
Depreciation_Parameter	Numeric	8	Depreciation_Parameter
Tax_Rate	Numeric	8	Tax_Rate
NG_Spot_Price	Numeric	8	NG_Spot_Price
CNG_Spot_Price	Numeric	8	CNG_Spot_Price
Electricity_Inflation	Numeric	8	Electricity_Inflation
Natural_Gas_Inflation	Numeric	8	Natural_Gas_Inflation
Inflation_Diesel	Numeric	8	Inflation_Diesel
CNG_Inflation	Numeric	8	CNG_Inflation
OPEX_Inflation	Numeric	8	OPEX_Inflation
Carbon_Credit_Inflation	Numeric	8	Carbon_Credit_Inflation
Inflation_Env_Credits	Numeric	8	Inflation_Env_Credits
Inflation_Other	Numeric	8	Inflation_Other
Planning_Horizon	Numeric	8	Planning_Horizon
GHG_Offset_Credit_Price	Numeric	8	GHG_Offset_Credit_Price
REC_Price	Numeric	8	REC_Price
RIN_Price	Numeric	8	RIN_Price
VS_Dairy_Cow_AU	Numeric	8	VS_Dairy_Cow_AU
VS_Dairy_Heifers_AU	Numeric	8	VS_Dairy_Heifers_AU
N_Excreted_Dairy_Cow_AU	Numeric	8	N_Excreted_Dairy_Cow_AU
N_Excreted_Dairy_Heifer_AU	Numeric	8	N_Excreted_Dairy_Heifer_AU

Capital cost centers (Fig. 17) define how the distribution of total capital costs are apportioned to cost centers. The market study cost centers were taken from the Innovation Center model (2011), but alternate sets can be defined as needed.

👬 Market Mode	► C	apital Cost Ce	enter	▶ Datasheet -			
DairyAnalytics Farm N	1odel	Market Model	ADP	HA ALGAE			
Libraries		Cost Center Scena	ario 🔻	Center Name	-	Cost Allocation	-
Documents		Market Study Cost Ce	nters	Preconstruction Permi	tting	10.	00%
Documenta		Market Study Cost Ce	nters	System		61.	00%
Liete		Market Study Cost Ce	nters	Site Infrastructure		10.0	
Rackand Treatment		Market Study Cost Ce	enters Integration			5.	00%
Badding		Market Study Cost Ce	nters	Utilities		5.	00%
Casital Cast Castar		Market Study Cost Ce	nters	Administration		2.	00%
Capital Cost Center		Market Study Cost Ce	nters	Financiing		2.	00%
Dairy Cows		Market Study Cost Ce	nters	Contingency		5.	00%
Dairy Type	*						

Figure 17. Capital Cost Center table

5. Unit Conversion Table

The Unit Conversion table (Fig. 18) defines conversion factors that are used throughout the calculations. Often conversions like these are left undocumented in equations within the code. Placing conversions in a database allows them to be referred to by name in the code, which provides self-documentation. Also, errors can be corrected in the table without need to edit code.

👔 Market Mode	l F U	Jnit Conversion ► Grid -						
DairyAnalytics Farm I	Model	Market Model ADPHA ALGAE						
Libraries	ø	Name 👻	Value	-	Units	-		
Documents		Renewable_Fuel_Conv_Factor	77,000.	0000	BTU / gal	_		
		RINs_RFEG	1.	0000	RIN / RFEG (Renewable Fuel Fuel Equivalent)			
Lists		day_yr	365.	0000	day / yr	_		
Backend Treatment		lt3_m3	35.	3147	ft3 / m3			
Bedding		mtonne_ton	1.	1023	metric tonne / tan			
Capital Cost Center		kg_lb	2.	2046	kg / lb			
Dairy Cows		yd3_ft3	0.	0370	yd3 / R3			
Dairy Type		lbs_ton	2,000.	0000	lb / ton			
Digester Type		lbs_mtonne	2,204.	6226	Ib / metric tonne			
Economic Scenario		BTU_MMBTU	1,000,000.	0000	BTUs per MMBTU			
Electricity Price		BTU_electricity_conv	3,413.	0000	Energy to electricity conversion - btu/kwh			
Farm Type		Thermal_efficiency_factor	0.	3500	Thermal efficiency factor: CH4 -> kWh % as a decimal			
Organic Substrate		Capacity_factor	0.	9000	Capacity factor (uptime) - % as a decimal			
Regions	ype Thermal_efficiency_factor c Substrate Bio_Gas_Methane_Parm		0.	5800	3 Methane Content of biogas-Manure Only ft3 methane/ft3 biogas			
Regional Cows		Energy_Pot_Methane	923.	0000	Energy potential of methane blu/ft3 methane			
Regional Digester		BTU_FT3	1,025.	0000	BTU / R3			
Scenarios		BTU_DGE	128,700.	0000	BTUs per Diesel Gallon Equivalent - BTU / DGE			
Regional Organic		Max_methane_prod_cap_FW	1.	0000	Maximum methane producing capacity of food waste - ft3 methane / Ib VS			
Substrate		Renewable_Energy_Credit	0.	0010	Renewable Energy Credit REC/kWh			
Region Input Set		REC:_MWh	1.	0000	RECs / MWh			
Unit Conversion		Equ_red_CO2_emision	21.	0000	Equivalent reductions in CO2 emissions per ton CH4 - tons CO2 reductic/ton CH4			
Discussion		Max_methane_prod_cap_manure	3.	8400	Maximum methane producing capacity of dairy manure - ft3 methane/lb VS			
Discussions		Density_methane	0.	0410	Density of methane at 25 degrees Celoius, Ib/It3			
Discussions		BioGas_Parm	5.	7500	BioGas_Ouput Biogas output/lb V.S.ft3 biogas/lb			
A Recycle Bin		OS_Gas_Factor	2.	7000	Increase in Biogas Production per Percent of Food Waste included in influent			
All Site Content	*							

Figure 18. Unit Conversion table

This completes a description of all the input tables. In the prototype model only limited access is given to modify these tables. Future version will implement setup wizards to help users assemble new scenarios. Also, note that the model run in market assessment mode ignores the Digester Type specified in the Farm Type table since all three digesters are always calculated during a national assessment. This specification will be used when the model is run for farm analysis.

Running the DANA Model

To run the DANA model simply click on the link shown in Figure 19. This will cause the input files to be read, calculations performed and a variety of reports, tables and graphs to be created.

Market Model	
DairyAnalytics Farm M	odel Market Model ADPHA ALGAE
Libraries	Introduction
Lists Backend Treatment Bedding Capital Cost Center Dairy Cows Dairy Type Digester Type Economic Parameters Electricity Price Farm Type Organic Substrate	The DANA Market Analysis model and report links listed below provide a U.S. National Analysis of the dairy anaerobic digester technology. The reports detail capital costs, production levels, co-product valuation, revenue/expense and investment metrics. Input to these reports is defined by tables that can viewed by clicking on the List links to the left. For instruction on how to customize these input tables please refer to the document entitled "Dairy Analytics and Nutrient Analysis (DANA) Prototype that is available to download from the document library listed at the top left. Each report is may table to run the DANA model. This reads the input tables, calculates results and creates output reports, tables & charts.
Regions Regional Cows Regional Digester Scenarios Regional Organic Substrate	Run Anaerobic Digester Market Model Clicking this link will run the Dairy Market Model. Any changes to the input variables represented in the left panel databases are loaded into the model, the model is executed and the reports below are updated with the new results.
Regional Parameters Unit Conversion	Capital Cost Analysis This series of reports presents capital costs by digester type and region for all scenarios defined as input. Co-product Valuation
Discussions	This report set presents production amounts, prices and valuation of co-products for each scenario parameterized by the input tables to the left. Expense and Revenue This report set shows yearly revenue and expenses for all scenarios. The number of years is set by the "Planning Horizon" input parameter.
Recycle Bin	Investment Metrics This report set shows a variety of investment metrics for the scenarios described by the input parameter set accessable by clicking on the tables listed on the left panel.

Figure 19. Link to run the DANA model.

DANA combines the equations used in the informa (2012) and Innovation Center (2011) spreadsheet models. In addition to integrating both these models, the main difference is that rather than a spreadsheet approach (where the same equation is copied to many spreadsheet cells), a single set of equations are used to process all the input data. DANA is written the SAS programming language and the main equations are listed in the Appendix 1. The SAS programs can also be downloaded from the dairy analytics web site and can be run on any SAS system.

The model provides results for three anaerobic digester types; covered lagoons, modified plug flow, and complete mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters as described in the prior sections of this report.

Model Result Reporting

Reports are viewed and customized using the SAS web report studio (WRS) product that is launched from links on the dairy analytics web site (Fig. 20). A user manual for this product is available online⁷ and will not be duplicated here. SAS WRS is a web-based report viewing and report writing tool. It fully web based and does not require any software be installed on the user's computer. It implements a virtual workspace for each user to modify and create reports that contain tables, charts, explanatory notes, maps, etc. Here we will describe the standard set of reports created for this project. Keep in mind many more reports can be easily created to support individual reporting needs. Also, please note that the scenario results reported here, though similar to the informa report (2012), may be different due to two factors. First, the DANA system was completed prior to publication of the informa report. Any changes to equations and/or parameters may not have been updated in the DANA databases or code. Additionally, DANA integrates both the informa (2012) spreadsheet and its precursor the Innovation Center (2011) spreadsheet, which may cause altered results, especially when values from the two sources interact to generate results⁸.

National Anaerobic Digester Analysis Reports
Capital Cost Analysis This series of reports presents capital costs by digester type and region for all scenarios defined as input.
Co-product Valuation This report set presents production amounts, prices and valuation of co-products for each scenario parameterized by the input tables to the left.
Expense and Revenue This report set shows yearly revenue and expenses for all scenarios. The number of years is set by the "Planning Horizon" input parameter.
Investment Metrics This report set shows a variety of investment metrics for the scenarios described by the input parameter set accessable by clicking on the tables listed on the left panel.

Capital Cost Analysis

The result of clicking on "Capital Cost Analysis" (Fig. 20) is a cross tabulation table that presents region and scenario by digester type and generation type. Appearing on the left in figure 21 is the data source or "multidimensional OLAP cube⁹" that provides data to generate the report table on the right. Variables with a green and yellow set of rectangles next to them are called "dimensions" and those with a yellow ruler are called "measures". Essentially, dimensions are categories used to organize the measures for reporting. On the right side (Fig. 21) of the report the row and column headers are dimensions and the table values are measures.

Figure 21 shows only one of the many possible views available as each dimension individually or together can be used to organize any set of measures. Currently, DANA generates three cubes. The first contains capital cost information (Fig. 21) the remaining two contain time based income and expense estimates and finally investment measures.

⁷ http://support.sas.com/documentation/onlinedoc/wrs/index.html

⁸ DANA results were identical to the Innovation Center DMI model results for the default case. Since DANA was completed prior to the final informa (2012) report, comparison between DANA and informa has not been completed.

⁹ A multidimensional on-line analytical processing (OLAP) cube is commonly used business reporting tool (<u>http://en.wikipedia.org/wiki/Online_analytical_processing</u>)

Figure 21. Dairy anaerobic digester capital cost report, region and scenario by digester type and generation type.

The cube dimension values automatically change along with their corresponding measures when changes are made to the input data scenarios (i.e., regions, production and economic parameters, etc.). For example, if we created scenarios that used EPA regions, like was done in the original Innovation Center model (2011), we would see EPA region names appear in figure 21 rather than U.S. States. If we created scenarios where regions were names of farms then those names would appear as the list of regions in the results generated by DANA, stored in the resulting cubes and displayed in reports like figure 21.

Each user has the ability to modify the standard reports and save them in a personal workspace. The SAS Web Report Studio manual¹⁰ will describe how to customize reports. Briefly, you many have noticed an "edit" tab in the header of the report shown in figure 21. Clicking the edit tab switches the report to edit mode (Fig. 22) and allows you to change tables and add graphics, maps, text explanations and many more customizations. Figure 22 depicts how data is assign to a crosstab table by assigning dimensions and measures to table rows and columns. The icons displayed below the edit tab gives you an idea of the kinds of graphs that can be added by the user.

¹⁰ http://support.sas.com/documentation/onlinedoc/wrs/index.html

Eila Edit Viaw Invert Data 🏼 🎯 🔛	Edit View	1 14
A Section Data Options -	Dairy Analysis and Nutrient Assessment (DANA) System	
Dairy MS Investment Metrics Cube	Text!	
 Scauro Partian <	The resonance of the second se	
	Report Name: [REPORT_NAME] Reading Type Red In Type R	
	Deter Source: I/or n_Source: Deter Type Bador Type Byperior Type Byperior Type Byperior Type Type	

Figure 22. User customization of a standard DANA report.

Co-Product Valuation

Figure 23 show the standard co-product valuation table that is displayed initially upon clicking the "Co-product Valuation" link (Fig. 20).

Dairy Analytics and Nu	trient Ar	nalysis (I	DANA) Sy	stem														
Co-Product Valuation Report																		
Name of the overall scenario					6											Scena	rio 1	
Name of the type of anaerobic digester					Compl	ete_mix										Lago	on	
	Sum Value Elec And Recs Annual	Sum Value Cng And Rin Annual	Sum Tot Value Prod And Coprod Annual	Sum Rin Value Annual	Sum Renewable Energy Credits	Sum Rec Value Annual	Sum P Recovered Value	Sum Organic Substrate Value Annual	Sum Nutr Enrich Fiber Value Annual	Sum N Recovered Value	Sum Ghg Offset Credit Value	Sum Value Elec And Recs Annual	Sum Value Cng And Rin Annual	Sum Tot Value Prod And Coprod Annual	Sum Rin Value Annual	Sum Renewable Energy Credits	Sum Rec Value Annual	Sum P Recovered Value
Name of the Region which can be any geographic boundary																		
Arizona	\$9,410,341	\$16,349,543	\$718,568,087	\$8,472,023	0.0065	\$140,873	\$12.62	\$8,274,455	\$2,582,041	\$18.95	\$0.16	\$1,874,297	\$3,256,408	\$4,507,132	\$1,687,409	0.0044	\$28,058	\$0.00
California	\$67,160,911	\$58,798,097	\$2,775,926,217	\$36,354,716	0.0072	\$604,509	\$12.62	\$72,206,269	\$11,003,624	\$18.56	\$0.12	\$158,807,983	\$139,033,363	\$212,464,694	\$85,963,979	0.0043	\$1,429,415	\$0.00
Colorado	\$7,150,940	\$9,996,734	\$484,121,748	\$5,956,405	0.0068	\$99,043	\$12.62	\$8,244,738	\$1,725,452	\$19.15	\$0.11	\$1,362,404	\$1,904,588	\$2,502,240	\$1,134,820	0.0044	\$18,870	\$0.00
Idaho	\$9,393,309	\$18,747,804	\$1,254,603,038	\$10,808,080	0.0046	\$178,580	\$12.62	\$1,496,215	\$5,147,256	\$18.56	\$0.15	\$0	\$0	\$0	\$0	0.0043	\$0	\$0.00
Michigan	\$19,975,945	\$28,377,264	\$1,385,663,513	\$16,103,740	0.0064	\$267,774	\$12.62	\$41,653,742	\$3,199,335	\$18.75	\$0.09	\$0	\$0	\$0	\$0	0.0044	\$0	\$0.00
New Mexico	\$12,052,611	\$18,432,958	\$1,278,972,091	\$11,672,067	0.0050	\$194,084	\$12.62	\$3,102,116	\$4,621,519	\$19.35	\$0.16	\$3,211,132	\$4,911,024	\$6,821,726	\$3,109,745	0.0045	\$51,709	\$0.00
New York	\$11,413,562	\$15,310,737	\$549,000,857	\$8,688,651	0.0091	\$144,475	\$12.62	\$43,597,679	\$2,286,892	\$17.96	\$0.05	\$0	\$0	\$0	\$0	0.0041	\$0	\$0.00
Other 40 States	\$80,160,747	\$94,235,114	\$2,969,529,802	\$48,034,807	0.0093	\$793,671	\$12.62	\$280,068,224	\$27,317,801	\$17.57	\$0.06	\$3,411,096	\$4,010,005	\$5,020,254	\$2,044,034	0.0040	\$33,773	\$0.00
Texas	\$19,715,474	\$26,409,380	\$1,301,303,402	\$18,411,094	0.0077	\$306,141	\$12.62	\$37,610,750	\$5,230,764	\$18.16	\$0.11	\$3,134,407	\$4,198,618	\$6,139,791	\$2,927,034	0.0042	\$48,671	\$0.00
US Total	\$442,283,784	\$469,759,738	\$19,879,597,313	\$265,030,169	0.0074	\$4,379,047	\$12.62	\$730,737,122	\$191,389,115	\$18.36	\$0.11	\$74,710,940	\$79,352,200	\$104,516,023	\$44,769,114	0.0042	\$739,712	\$0.00
Washington	\$2,408,097	\$7,056,665	\$281,016,628	\$3,558,261	0.0071	\$59,167	\$12.62	\$9,665,072	\$1,090,041	\$18.95	\$0.10	\$0	\$0	\$0	\$0	0.0044	\$0	\$0.00
Wisconsin	\$9,374,865	\$13,122,448	\$745,970,350	\$7,577,925	0.0054	\$126,006	\$12.62	\$12,214,485	\$1,797,957	\$17.96	\$0.08	\$0	\$0	\$0	\$0	0.0041	\$0	\$0.00

Figure 23. Co-Product valuation results by scenario, digester type and region.

The following is a list of dimensions (italicized) and measures available in the cube entitled "Dairy MS Valuation Cube" that can be used to construct reports.

Digester_Type	Adj_Electricity_Value
Region_Input_Set	Adj_Electricity_Value_Annual
Region_Cow_Scenario	NG_Price
Cows	Natural_Gas_Prod
Organic_Substrate	Natural_Gas_Prod_MMBTU
Electricity_Price	Adjusted_NG_Value
Electricity_Prod_Full	Adj_NG_Value_Annual_Annual
Electricity_Prod_Adj	CNG_Price
Electricity_Prod_kW_yr	CNG_Prod
	Digester_Type Region_Input_Set Region_Cow_Scenario Cows Organic_Substrate Electricity_Price Electricity_Prod_Full Electricity_Prod_Adj Electricity_Prod_kW_yr

CNG_Prod_MMBTU CNG_Value CNG_Value_Annual REC_Price Renewable_Energy_Credits Annual RECs **REC_Value** REC_Value_Annual RIN_Price Renewable ID Num Prod Annual_RINs **RIN_Value RIN Value Annual** GHG_Offset_Credit_Price GHG_Offset_Credits GHG Offset_Credits_yr GHG Offset Credit Value Annual_GHG_Offset_Credit_Value Fiber_Production

Fiber_Production_yr Fiber Price Nutr_Enrich_Fiber_Value Nutr_Enrich_Fiber_Value_Annual Recovered_Nitrogen_N_Price N Prod Codigest N_Recovered N_Recovered_yr N_Recovered_Value N Recovered Value Annual Recovered_Phosphorus_Price P_Prod_Codigest P Recovered P_Recovered_yr P_Recovered_Value P_Recovered_Value_Annual Organic_Substrate_Added Pot_Org_Sub_Need Region_Pot_Org_Sub_Need

FW Avail Pct Organic_Substrate_Added1 OS_cow_added FW_Pct_Tot Tipping_Fees Organic Substrate Value Organic_Substrate_Value_Annual Value_Elec_And_RECs Value_Elec_And_RECs_Annual Value CNG And RIN Value_CNG_And_RIN_Annual Max_Value_Sum Max Value Sum Annual Max_Value_Prod_And_CoProd Max_Value_Prod_And_CoProd_Annual Tot Value Prod And CoProd Tot Value Prod And CoProd Annual

Time Based Revenue and Expense

Figure 24 shows the relationship among three investment metrics for renewable natural gas (RNG) and the complete mix digester type across all regions by year. This lattice graph shows another way view information with DANA. Diagonal elements are a histogram of each of the investment metrics. Symbol marks show values by years 1 through 15. Ellipses represent 95% confidence intervals. Each matrix element is a chart of the row value versus the column value. This graph when viewed online shows data values when graph points are selected. This information is also available in a cross tabular report.

Figure 24. Investment metrics for renewable natural gas (RNG) for the complete mix digester type across all regions.

Investment Metrics

Figure 25 shows the earnings before interest, taxes, depreciation, and amortization (EBITDA) metric by region, digester type and scenario. Other metrics (APR, debt, equity, etc.) can similarly be presented in cross tabular reports or in graphic form (Fig. 26).

	ipons aisp	ays inv	/estment i	neasures	for three	a digester	types ar	id each	scenano	calculated	-
Name o	f the overall sce	nario		Scenario 1			Scenario 2			Scenario 3	
			Avg Ave Annual Ebitda Cng	Avg Ave Annual Ebitda Ele	Avg Ave Annual Ebitda Rng	Avg Ave Annual Ebitda Cng	Avg Ave Annual Ebitda Ele	Avg Ave Annual Ebitda Rng	Avg Ave Annual Ebitda Cng	Avg Ave Annual Ebitda Ele	Avg Ave Annual Ebitda Rng
Name of the Region which can be any geographic boundary	Name of the type of anaerobic digester	Number of years for planning horizon				-					
	Complete_Mix	15	\$-25,281,926	\$-8,890,996	\$4,901,414	\$-25,281,926	\$-8,890,996	\$4,901,414	\$-35,438,320	\$-11,591,107	\$8,475,51
Arizona	Lagoon	15	\$-3,756,765	\$-492,114	\$2,254,979	\$-3,756,765	\$-492,114	\$2,254,979	\$-3,756,765	\$-492,114	\$2,254,97
	Plug_Flow	15	\$-18,989,996	\$-4,477,614	\$7,734,061	\$-18,989,996	\$-4,477,614	\$7,734,061	\$-9,213,296	\$-2,011,606	\$4,048,37
	Complete_Mix	15	\$-119,469,713	\$-49,133,785	\$10,051,503	\$-207,113,681	\$-73,273,703	\$39,348,083	\$-297,908,286	\$-100,204,974	\$66,155,63
California	Lagoon	15	\$-214,999,116	\$-48,683,521	\$91,265,390	\$-38,507,304	\$-8,719,437	\$16,346,040	\$-38,507,304	\$-8,719,437	\$16,346,04
	Plug_Flow	15	\$-75,031,609	\$-24,199,115	\$18,574,699	\$-176,210,523	\$-49,470,750	\$57,176,455	\$-87,181,082	\$-23,699,373	\$29,718,32
	Complete_Mix	15	\$-19,711,299	\$-8,187,368	\$1,509,628	\$-19,711,299	\$-8,187,368	\$1,509,628	\$-27,874,357	\$-11,189,610	\$2,850,03
Colorado	Lagoon	15	\$-3,093,018	\$-897,467	\$950,014	\$-3,093,018	\$-897,467	\$950,014	\$-3,093,018	\$-897,467	\$950,01
	Plug_Flow	15	\$-15,308,167	\$-5,354,386	\$3,021,381	\$-15,308,167	\$-5,354,386	\$3,021,381	\$-7,455,417	\$-2,535,482	\$1,604,47
	Complete_Mix	15	\$-29,409,637	\$-8,631,453	\$8,852,681	\$-54,041,153	\$-15,534,227	\$16,868,042	\$-79,379,048	\$-22,521,505	\$25,322,18
Idaho	Lagoon	15	\$0	\$0	S 0	\$0	\$0	\$0	\$0	\$0	\$
	Plug_Flow	15	\$-82,306,408	\$-22,426,176	\$27,961,000	\$-57,801,470	\$-15,647,152	\$19,824,272	\$-32,596,698	\$-8,789,686	\$11,243,10
	Complete_Mix	15	\$-54,606,999	\$-23,450,890	\$2,765,915	\$-35,119,470	\$-15,548,329	\$920,121	\$-47,904,474	\$-20,778,075	\$2,047,86
Michigan	Lagoon	15	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
	Plug_Flow	15	\$-8,011,784	\$-3,074,493	\$1,080,069	\$-26,622,342	\$-10,474,074	\$3,114,144	\$-14,403,892	\$-5,569,064	\$1,865,14
How	Complete_Mix	15	\$-31,907,967	\$-9,325,871	\$9,676,195	\$-31,907,967	\$-9,325,871	\$9,676,195	\$-48,095,909	\$-13,603,459	\$15,420,76
Mexico	Lagoon	15	\$-7,831,939	\$-1,815,476	\$3,247,173	\$-7,831,939	\$-1,815,476	\$3,247,173	\$-7,831,939	\$-1,815,476	\$3,247,17
Incaldo	Plug_Flow	15	\$-32,523,869	\$-8,362,469	\$11,968,526	\$-32,523,869	\$-8,362,469	\$11,968,526	\$-16,439,442	\$-4,176,288	\$6,142,73
	Complete_Mix	15	\$-32,066,056	\$-15,256,014	\$-1,110,936	\$-36,508,107	\$-17,296,884	\$-1,131,293	\$-49,702,385	\$-23,249,158	\$-969,66
New York	Lagoon	15	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
	Plug_Flow	15	\$-29,386,542	\$-12,782,450	\$1,189,329	\$-25,226,110	\$-10,897,511	\$1,159,517	\$-13,262,732	\$-5,621,917	\$807,56
046 40	Complete_Mix	15	\$-175,323,864	\$-82,978,503	\$-5,273,026	\$-175,323,864	\$-82,978,503	\$-5,273,026	\$-375,170,233	\$-175,496,923	\$-7,478,63
States	Lagoon	15	\$-5,700,079	\$-1,770,489	\$1,536,127	\$-5,700,079	\$-1,770,489	\$1,536,127	\$-5,700,079	\$-1,770,489	\$1,536,12
010100	Plug_Flow	15	\$-234,012,689	\$-98,860,996	\$14,864,552	\$-234,012,689	\$-98,860,996	\$14,864,552	\$-94,181,986	\$-38,903,813	\$7,610,88
	Complete_Mix	15	\$-61,844,559	\$-26,224,384	\$3,748,781	\$-61,844,559	\$-26,224,384	\$3,748,781	\$-85,890,773	\$-34,956,472	\$7,903,00
Texas	Lagoon	15	\$-7,066,926	\$-1,403,957	\$3,361,239	\$-7,066,926	\$-1,403,957	\$3,361,239	\$-7,066,926	\$-1,403,957	\$3,361,23
	Plug_Flow	15	\$-42,068,809	\$-13,804,210	\$9,979,489	\$-42,068,809	\$-13,804,210	\$9,979,489	\$-19,872,686	\$-6,145,236	\$5,405,94
	Complete_Mix	15	\$-891,940,090	\$-382,428,174	\$46,308,757				\$-891,940,090	\$-382,428,174	\$46,308,75
US Total	Lagoon	15	\$-117,414,946	\$-31,347,776	\$41,074,819				\$-117,414,946	\$-31,347,776	\$41,074,81
	Plug_Flow	15	\$-640,951,752	\$-226,333,777	\$122,553,135				\$-640,951,752	\$-226,333,777	\$122,553,13
	Complete_Mix	15	\$-12,062,513	\$-5,178,301	\$614,529	\$-33,701,281	\$-13,668,590	\$3,188,238	\$-46,508,389	\$-18,342,195	\$5,358,69
Washington	Lagoon	15	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1
	Plug_Flow	15	\$-49,110,184	\$-18,063,388	\$8,061,435	\$-27,667,922	\$-9,711,466	\$5,398,281	\$-15,173,539	\$-5,230,423	\$3,136,37
	Complete_Mix	15	\$-25,537,927	\$-10,876,820	\$1,460,002	\$-41,444,956	\$-17,317,849	\$2,984,291	\$-58,561,209	\$-24,093,257	\$4,910,35
Wisconsin	Lagoon	15	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	S
	Plug_Flow	15	S-53.830.370	S-21 136 565	\$6,374,159	S-38 083 130	S-14 809 314	\$4 774 809	S-21 171 550	S-8 175 979	\$2 759 34

Figure 25. Earnings before Interest, taxes, depreciation, and amortization (EBITDA) metric by region, digester type and scenario.

Figure 26. APR digester type by scenario variability chart for sum (left column), average (center column) and standard deviation (right column).

GEMS Component Architecture

DANA was implemented within the INL's Generalized Environment for Modeling Systems (GEMS) component architecture, which includes a unique integration of Microsoft SharePoint, SAS Analytics and Business Intelligence, and Phoenix Integration's ModelCenter and AnalysisLibrary. As mentioned previously, SharePoint provides the customer information deliver point and enables many collaboration capabilities. SAS's systems provide business intelligence and extensive statistical analysis capability in a form that is accessible by analysts and researchers without the need for extensive programming skills. ModelCenter provides a point-and-click model integration environment that relieves modelers of extensive error-prone scripting tasks needed to connect models.

The remainder of this section will describe a GEMS application entitled OASIES. Though not related to directly to dairy farms, the example provides concepts that demonstrate what is possible for extending DANA to integrate existing models, add alternate user control interfaces and to perform optimization studies. In this example, OASIES conducts a planning and an optimization study to determine a set of most attractive combinations of hybrid energy equipment combinations.

Future versions of DANA may include digester process models and environmental models of nutrient movement on the landscape. Rather than coding these models anew, the GEMS component architecture can be used to integrate already existing codes available from DOE, USDA and EPA into DANA. This integration uses the same input databases and same SAS web report studio reporting tools to handle the data produced by new models.

OASIES Overview

OASIES provides scenario analysis capability, like DANA, but was developed to provide understanding of the technical and regulatory viability of integrated energy solutions (i.e., hybrid energy systems). Conventional, renewable, and alternative integrated energy systems are synthesized and analyzed for viability within the boundaries of a community of interest. OASIES allows for a flexible and site-specific identification of available energy resources, allowing decision makers to make more informed decisions about hybrid energy systems.

Hybrid Energy Analysis Process

The OASIES hybrid energy analysis process, shown in Figure 27, can be used in any order depending on the experience level and comfort of the user. The final step, hybrid energy systems (HES) Design, requires the work of an experienced HES developer. The following subchapters will describe the planning and optimization steps.

Figure 27. OASIES analysis process

Planning Platform

The OASIES Planning Platform allows the user to select the technology mix from a variety of technologies identified via a site-specific resource evaluation. First, the user inputs required electrical demand levels that the generation mix must match. Then the Planning Platform calculates capital and operational costs, emission levels, power, and energy system resilience.

The OASIES planning model allows users to select the components of the HES and calculate cost and performance values. Results are delivered to the user and are executable from a web portal (Fig. 28, shows the front page). Users make adjustments to controls (slider bars, dropdown boxes, check boxes, etc.) that set model parameters. When the user is ready, clicking the "Run the Model" button (upper left, Fig. 28), executes the model and returns tables and charts of results to the portal. The user can then view charts and graphs that summarize the resulting calculations.

Figure 28. OASIES planning model web portal interface

Figure 29 shows the user input tab that allows specification of a number of model inputs, such as the planning horizon for life cycle cost analysis, discount on money per year over the horizon, potential selling price of electricity, cost of natural gas and diesel fuel, maximum NOx emission levels, and yearly kWh demand. Additionally, the base and variable (peak) power demand can be set independently.

The scenario input tab (Fig. 29) allows the user to input the component mix. The set of components shown here is configurable by the user from the web portal and determines the components presented in Figure 29. In the case shown, a nuclear power option, biomass plant option, diesel generator (prime mover) models and number, and hydro plant models can be chosen. A similar DANA interface will likely be created for farm and investor use.

SELECT POWER PLANTS Nuclear Bio Plant Hypenion Air_Cooled_25MVASCR Example Table Pathon SCR SET THE QUANTITY FOR EACH PRIME MOVER Account and the bar and the ba	IN IN		SUMMARY Assumption Report	COSTS OUTPUT	POWER OUTPUT	FUEL	EMISSIONS OUTPUT	RESILIENCE OUTPUT
SELECT POWER PLANTS								
Nuclear Bio Plant. Hyperion ▲ Air_Cooled_250.WSCR Protect Air_Cooled_250.WSCR Protect Market Protect Market Protect Market SET THE QUANTITY FOR EACH PRIME MOVER Cat_Genset_1450_DM7960 10 Cat_Genset_2000_DM7958 9 Cat_Genset_2000_DM7959 8	ELECT POV	VER PLAN	ITS					
Fiyperion All Cooled 25MW SCR Image: Cooled 25M	Nuclear	Bio Pla	ant n		2 7			
Set THE QUANTITY FOR EACH PRIME MOVER Autors Vides Autors Autors <th< td=""><td>yperion 👻 A</td><td>ir_Cooled_25I</td><td>MW_SCR 💌</td><td></td><td></td><td></td><td></td><td></td></th<>	yperion 👻 A	ir_Cooled_25I	MW_SCR 💌					
Set I He GUANTITY FOR EACH PRIME MOVER Recording in stand Symbol Cat_Genset_1450_DM7960 10 Cat_Genset_1750_DM7958 9 Cat_Genset_2000_DM7959 8 SELECT HYDRO PLANTS TO INCLUDE No Hydro W WA 00001	ace *	Clipping	File I	Printout Printout	Audio Video			
Cat_Genset_1450_DM7960 10 Cat_Genset_1750_DM7958 9 Cat_Genset_2000_DM7959 8 SELECT HYDRO PLANTS TO INCLUDE No Hydro 20 WA 00001		AN ITTY PC	R EACH PR		Recording			
Cat_Genset_1750_DM7958 9 Cat_Genset_2000_DM7959 8 SELECT HYDRO PLANTS TO INCLUDE No Hydro WA 00001	t_Genset_1450	_DM7960	10					
Cat_Genset_2000_DM7959 8 SELECT HYDRO PLANTS TO INCLUDE No Hydro WA 00001	at_Genset_1750		9	1. 3. 1. 1.				
	at Genset 2000	DM7050	8					
SELECT HYDRO PLANTS TO INCLUDE								
No Hydro Z WA 00001								
No Hydro WA 00001	ELECTHYD	RO PLAN	IS TO INCL	UDE				
VA 00001	No Hydro							
	WA 00001							
☑ WA_00003								

Figure 29. Component input selection screen

This completes the input necessary for the OASIES Planning Model. The remaining tabs contain results obtained from executing the model.

Figure 30 shows information on power, emissions, costs and security metrics by component so the user can understand what components contribute the greatest and least to the overall totals that appear on additional tabs.

Run the Model	J					
ARIABLES	SCENARIO	SUMMARY Assumption Re	COSTS PORT OUTPUT	POWER F	UEL EMISSIC	ONS RESILIENCE
VARIABLE	S AND AS	SUMPTIO	NS MADE F	OR RUN LABI	eled Darw	INTEST
DUTPUT CREATED O	DN: 8/5/2011 11:26	:13 AM				
INFO CO	STS SECURI	Y				
Col	mponent	Quantity	Power Rating	Capacity Factors	NOx Emission	1
45		1	10	0.75	i 0.5	
Air_Cooled	_20MW_SCR	1	20	0.85	5 27	1
Cat_Gense	et_1450_DM796	0 0	0	0.25	ō 0	
Cat_Gense	et_1750_DM798	8 9	15750	0.25	j 94.68	
Cat_Gense	et_2000_DM795	9 8	0	0.25	5 0	1
Prime M	overs Summa	ry 9			94.68	1
No Hydro		1	0	() 0	
WA_00001		1	1.891	0.75	5 0	
WA_00003	i	0	5.451	0.75	j 0	
WA 00005		0	3.713	0.75	j 0	
					1	1

Figure 30. Component summary results

Figure 31 shows the Cost Output Tab. Each contains a variety of tables and charts that describe the overall system costs. Charts can be expanded and viewed in sequence. These charts are extracted directly from an Excel table that can be modified by the user if necessary. The remaining results include:

power, fuels, emissions, and resilience/security outputs. All are presented in a similar format with tables and associated charts in Figures 31–35.

Run the Model											
VARIABLES SCENAR	SUMMARY Assumption Report	COSTS OUTPUT	POWER OUTPUT	FUEL	EMISSIONS OUTPUT						
Power Generation Type Life Cycle Costs (\$M) Total_Life_Cycle \$ 88.234 Total_O&M \$ 47.2416 O&M_PctOf_LCC 53.5412903470108 %											
Life Cycle Costs (\$M) Life Cycle Costs (\$M)											
520000 510000 510000 50000 5 Total_Life_Cricle Tetal_06.M BURE Cs de Conto (5M) Total_Life_Cricle Tetal_06.M											
Descrip	tion	Costs per kW	(\$/kW)								
\$/kW Per Capital Costs	t net leskuling Fuel	2017.16214060	974								
\$/kw Per Operation Cos	t not including Fuel	0.01181591116	56707								
SykW Per Capital Costs 20020 150020 150020 2000 20000 200000 20000 20000 20000 20000 20000 20000 20000 200000 200000 2000000	Costs p 0254 0255 0250 025	Carts per kill Carts per kill out ret									
Power Generation Ty	Capital Costs (\$	M) Capita 31 84070	al Cost %								
BioPlant	\$53.2	56.48014	38042126 %	-							
HydroPlant	\$5.1424	5.459458	53824939 %								
Total Capital Cost	\$5.85	6.210692	50478654 %	-							
Total Capital Cost \$94.1924 100 %											
Power Generation	Operating Costs	Operating	Cost %								
Type	(\$M)	54 37246949	320067 %								
BioPlant	\$2.16	44.68969572	256767 %								
HydroPlant	\$0.0453	0.937841141	1416643								
Prime Mover	\$0	0 %									
Total Operating Cost	\$4.8333	100 %									
Coperatin 53 52 51 51 51 51 51 51 51 51 51 51	g Costs (\$M) # Operating C	• HydroØl 1%	int	Operating BioPlant 45%	Cost % Prime Mover 0%						

Figure 31. Cost output tab

Figure 32. Power output tab

Run the Model							
VARIABLES SCENARIO	SUMMARY Assumption Report	COSTS T OUTPUT	POWER Output	FUEL Output	EMISSIO Output	NS RESILIENCE OUTPUT	
Power Generation Type	\$/hr 100% capa	capacity fact	tors C	ost per Un	it		
Biomass	\$45,	000	\$ 279,225,	,000 100	\$/to	on	
Natural Gas	\$ 63,	540	\$ 139,152,	cf			
Diesel	\$	al					
Total \$109,037 \$419,465,592							
\$/hr 100% capacity	,	Total	yr user capacity f	factors			
Netural Gas Biomass	S/hr 100% capacity Nature	al Gas			S/yr user capacity factors		
System Fuel Requ	irements	System Requirer	Fuel nents	Un	it	Notes	
BioPlant.Fuel_Mass_Flow (moisture)	wet ton/day 20%		450.0000 r	wet ton/day moisture	/ 20%	Assumes unit at 100% capacity	
BioPlant.Fuel_Mass_Flow (ton/year)	100,000 wet		27.9225 1	1000 wet to	on/year	Accounts for user input capacity factor	
Diesel.Volume_Flow (gal/hr)		124.2000 g	gal/hr		Assumes all units at 100% capacity	
Diesel.Volume_Flow (1000	gal/year)		271.9980 1	1000 gal/ye	ear	Accounts for user input capacity factor	
Natural_Gas.Volume_Flow	(1000 scf/year)		15.8850 1	1000 scf/hi		Assumes all units at 100% capacity	
Natural_Gas.Volume_Flow scf/year)	(1,000,000		34.7882 1	1,000,000	scf/year	Accounts for user input capacity factor	
System Fuel Requirements Survey for USER of the USE of							

Figure 33. Fuel output tab

Figure 34. Emissions output tab

Figure 35. Resilience output tab

Overall the planning model provides extensive summary information on a particular hybrid energy technology mix relative to base power and peak demand. Adjusting inputs and components and studying the results will help users obtain a general idea of the types and number of components that are good candidates for further analysis.

Optimization Platform

The OASIES Optimization Platform requires a set of user defined operational goals. Then, using an optimization algorithm, the system selects an appropriate technology mix based on a minimization and/or maximization of the stated goals. The result is a set of alternative, integrated energy system designs.

Optimization is be defined as "the process of making something as fully perfect, functional, or effective as possible." (Merriam-Websterⁱ). As such, there are many approaches available to achieve optimization, in fact the overall OASIES process could be said to be a process the leads to optimization, one that uses both qualitative and quantitative methods.

OASIES conducts model execution and optimization using the Phoenix Integration ModelCenterⁱⁱ tool. This is a commercially available product used for product design and trade study analysis primarily in the aerospace and defense industries. ModelCenter provides flexibility for conducting optimization since any of the over 30 gradient and evolutionary-based optimization methods can be used directly, or an independent optimization algorithm can be integrated and used. ModelCenter provides integration for codes developed in virtually any programming language such as Fortran, C++, etc., and commercial tools such as MatLab, Excel, and many others. Additionally, ModelCenter has licensed and integrated Sandia National Laboratories, Dakota nonlinear optimization suite.

Figure 36 shows the OASIES Optimization model. It is constructed from an optimizer component (rainbow icon), the OASIES Planning Model ("Planning" node)ⁱⁱⁱ, a Pareto front processor, and an Excel spreadsheet that accumulates results and forms tables and graphs that are delivered to the user web portal.

Figure 36. OASIES optimization model

The optimization objectives, constraints and design variables are chosen from the inputs and outputs within the Planning Model. Figure 37 shows the ModelCenter optimization definition window.

This particular optimization is defined to solve for the following:

- 1. Zero difference between the base power goal input by the user and the calculated total base power output result for the alternative hybrid energy design solution
- 2. Zero difference between the peak power goal and the calculated peak value for the alternative design
- 3. Minimize the total NOx emissions
- 4. Maximize the total resilience score
- 5. Minimize the total life cycle cost which is discounted over the planning horizon

This is a multi-objective optimization problem with 5 objectives to be met. There are no constraints specified. Constraints, if present, are specified with bounds and any alternative design that falls outside the bounds is discounted.

The Design Variables (Figure 37) are variables that the optimizer changes in an effort to find alternatives that better satisfy the objectives. The design variables chosen for this particular optimization are nuclear reactors, biomass plants, number of three different prime movers (diesel generators), and selection of one or more of three hydropower plants. A selection of a particular value for each of the variables listed, taken together, constitutes one alternative design.

The number of potential alternative designs and thus the search space (i.e, optimization run time) can increase exponentially. In the example shown in Figure 37 there are 127,776 design alternatives available to be selected. This number is derived by calculating the product of all choices i.e., 3 Nuclear X 3 BioPlants X 11 Diesel #1 X 11 Diesel #2 X 11 Diesel #3X 2 Hydro #1 X 2 Hydro #2 X 2 Hydro #3. This shows the value of following the OASIES process and limiting the number of components prior to optimization.

favorites list								
bjective Definition								
Objective			Value	Weight	Goal	_		-
* Model Optimization Tool Planning Overall Summary Base Diff GoalMinusCalc			0		1 solve fo	or: 0		
Model.Optimization Tool.Planning.Overall Summary.Peak Diff Goal MinusCalc			7.33		1 solve fo	or: 0.00		
Model Optimization Tool Planning Overall_Summary. Total_NOx			71.14		1 minimize	•		
Model Optimization Tool Planning Overall_Summary.Total_Score			21.13		1 maximiz	ze		
Model.OptimizationTool.Planning.Overall_Summary.Tot_LCC			\$319,105,74		1 minimize	e		
Constraint			v	a) e	Lower	Bound	Linner Bo	und
Dran constrained variables from Component Tree on left.			v	sue	Lower	Dounu	Upper bo	una
an Vanables								
ign Vanables Design Vanable Holder Ortensterbe	Type	Value	Start Value	Lowe	r Bound	Upper I	Bound	Edit
on Vestbles Design Vanable Model Optimization Tool Planning enumList ReactorList Model Optimization Charles are und in the Databation	Type discrete	Value Hyperion	Start Value Hyperion	Lowe	r Bound	Upper 1	Bound	Edit
gn Vatables Design Vatable Model Optimization Tool Panning ensurtList ReactorList Model Optimization Tool Panning ensurtList Bio-RentList Model Optimization Tool Panning ensurtList Bio-RentList	Type discrete discrete	Value Hyperion Air_Cooled_1	Start Value Hyperion Air_Cooled_2	Lowe	r Bound	Upper I	Bound	Edit
agr Variables Design Variable Mode Quinzation Tool Ranning enunList ReactorList Mode Quinzation Tool Ranning enunList BerBetList Mode Quinzation Tool Ranning PM, Cerabications Nurder (Ma(0)) Mode Quinzation Tool Ranning PM, Cerabications Nurder (Ma(0))	Type discrete discrete discrete	Value Hyperion Air_Cooled_1 0	Start Value Hyperion Air_Cooled_2	Lowe	r Bound	Upper I	Bound	Edit
sgr Vanibles Design Vanible Model Optimization Tool Flanning enurit.its ReactorList Model Optimization Tool Flanning PL Moniburdon Multerber Mo[0] Model Optimization Tool Flanning PL Moniburdon Multerber Mo[0] Model Optimization Tool Flanning PL Moniburdon Multerber Mo[0]	Type discrete discrete discrete discrete	Value Hyperion Ar_Cooled_1 0 4	Start Value Hyperion Air_Cooled_2. 8	Lowe	r Bound	Upper I	Bound	Edit
agn Verstöles Design Verstöle Media Optimization Tool Planning enumList ReactorList Media Optimization Tool Planning PM. Combinations: Number PMI(0) Media Optimization Tool Planning PM. Optimizations: Number PMI(1) Media Optimization Tool Planning PM. Combinations: Number PMI(2) Media Optimization Tool Planning PM. Combinations: Number PMI(2)	Type discrete discrete discrete discrete	Value Hyparion Air_Cooled_1 0 4 1	Stat Value Hyperion Ar_Cooled_2. 5 8 2	Lowe	r Bound	Upper I	Bound	Edit
sgr. Versibles Design Versible Model Coptimization Tool Planning ensurtList ReactorList Model Coptimization Tool Planning, PM Combinations Naturebref Me[0] Model Coptimization Tool Planning, PM Combinations Naturebref Me[1] Model Coptimization Tool Planning PM Combinations Naturebref Me[2] Model Coptimization Tool Planning PM Combinations Naturebref Me[2] Model Coptimization Tool Planning Model Continuations Naturebref Me[2] Model Coptimization Tool Planning Model Coptimizations Naturebref Me[2] Model Coptimization Tool Planning Model Coptimizations Naturebref Me[2] Model Coptimization Naturebref Medel Coptimizations Naturebref Medel Coptimizations Naturebref Medel Coptimizations Naturebref Medel Coptimizations Naturebref Medel Nature	Type discrete discrete discrete discrete discrete	Value Hyperion Ar_Cooled_1 4 1	Start Value Hyperion Air_Cooled_2. 5 8 2 0	Lowe	r Bound	Upper I	Bound	Edt
sgn Vasables 2 Design Vasable Model Optimization Tool Planning enumLat ReactorLat Model Optimization Tool Planning PM. Contributions Rhanber?Mq[1] Model Optimization Tool Planning PM. Contributions Select [1] Model Optimization Tool Planning Hydro. Contributions Select [1]	Type discrete discrete discrete discrete discrete discrete	Value Hyperion Ar_Cooled_1 0 4 1 1 1	Stat Value Hyperion Ar_Cooled_2. 5 8 2 0 0	Lowe	r Bound	Upper I	Bound	Edt
Ign Vatables Design Vatable Design Vatable Nodel Optimization Tool Planning Pru-Unit Relatoritat Nodel Optimization Tool Planning PM. Centribution Number PM[0] Nodel Optimization Tool Planning PM. Centributions Number PM[1] Nodel Optimization Tool Planning PM. Contributions Number PM[2] Nodel Optimization Tool Planning Hydro _Contributions Select [1]	Type discrete discrete discrete discrete discrete discrete discrete	Value Hyperion Ar_Cooled_1 0 4 1 1 1 0	Start Value Hyperion Air_Cooled_2 8 2 0 0 1	Lowe	r Bound	Upper I	Bound	Edit
sign Vanibles	Type discrete discrete discrete discrete discrete discrete discrete discrete	Value Hyperion Air_Cooled_1 0 4 1 1 1 0	Stat Value Hyperion Ar_Cooled_2 5 8 2 0 0 1	Lowe	r Bound	Upper I	Bound	Edt
	Type disorete disorete disorete disorete disorete disorete disorete	Value Hyperion Ar_Cooled_1 4 1 1 1 0	Stat Value Hyperion Ar_Cooled_2 8 2 0 0 1	Lowe	r Bound	Upper 1	Bound	Edit
sign Variables	Type discrete discrete discrete discrete discrete discrete	Value Hyperion Ar_Cooled_1 0 4 1 1 1 0	Start Value Hyperion Ar _Cooled_2 5 8 2 0 1	Lowe	r Bound	Upper I	Bound	Edt
eign Variables	Type disorte disorte disorte disorte disorte disorte disorte	Value Hyperion Ar_Cooled 4 1 1 1 0	Stat Value Hyperion Ar_Cooled_2 0 0 1	Lowe	r Bound	Upper I	Bound The Christian Chris	Edit

Figure 37. Optimization definition screen

The optimization algorithm chosen is the "Darwin Algorithm," so named because it mimic's the biological breeding genetics process^{iv}. The algorithm performs these steps;

- 1. Generate a generational population of alternative design by random selection
- 2. Calculate the objectives or "fitness" for each member of the population
- 3. Create a next generation by cross breeding the "fittest" members using substitution and mutation
- 4. Evaluate the fitness of the children
- 5. Repeat until no or little improvement in fitness is found

As this process is running, ModelCenter is collecting Pareto efficient designs and is presenting them to the user. Figure 38 shows a Pareto front made up of 5 alternative system designs. The values of the objectives listed in Figure 37 are shown along an axis for each alternative design. This optimization generated thousands of alternatives and took ~ 4 hours to complete running on a Windows desktop workstation.

Figure 38. Example Pareto Frontier made up of 5 alternative HES designs.

Figure 39 shows a subset of the generated alternatives three dimensionally. Each point represents a separate alternative set of hybrid energy equipment components. Color indicates the alternative preference score and black crossbars mean that the alternative is best in some respect from all others (i.e., it is Pareto efficient)

Figure 39. Alternative design solutions and the Pareto efficient designs indicated by black crossbars.

Summary

This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; covered lagoons, modified plug flow, and complete mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters.

The document explained how to use and modify input data tables, run the DANA model and view and customize results. Only a small fraction of the resulting output was discussed. Requesting access to the system and viewing the reports online is the best way to view the information.

DANA's goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can define scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface.

DANA is based in the INL's analysis architecture entitled Generalized Environment for Modeling Systems (GEMS), which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. Thus, DANA has the capability to leverage pre-existing models that can be used to calculate all aspects of dairy operation. Existing government and commercial models can be used directly without reprogramming and lend credibility to national planning efforts or local development analysis. DANA has been designed to be extended and modified in multiple ways to suit multiple analysis goals.

References

Informa economics. 2012. National Market Value of Anaerobic Digester products. August 2012.

Innovation Center. 2011. DMI Model. DMI Digester Model (MS 8-24-11) (version 1).xls, Innovation Center for U.S. Dairy

Appendix 1: SAS Code

This appendix lists the main calculations for the DANA model. The full SAS code can be downloaded from the dairy analytics web site.

SAS Models

The SAS model is made up of three SAS Enterprise Guide files (.egp) as follows;

- 1. Market Model 2012.egp,
- 2. Market Model 2012 Balance Sheet.egp, and
- 3. Market Model2012 Cubes.egp

After changes are made to the input, these three files must be executed in order.

Market Model 2012.egp

This model gathers input from the database tables and performs basic calculation related to gas production, co-product valuation and capital cost amounts. All values calculated are stored in a table entitled Dairy.MS_Results.

Capital costs are calculated based on predetermined costs associated the three digester types and are then apportioned by the capital cost centers. Additionally, capital costs associated with electric generation, renewable natural gas generation and compressed natural gas production are apportioned to the cost centers.

Table columns from left to right are arranged as follows;

- 1. Run Categories
- 2. Input Parameters
- 3. Production Amounts
- 4. Valuation Amounts
- 5. Capital Cost Amounts

Market Model 2012 Balance Sheet.egp

This model takes data from Dairy.MS_Results and calculates revenue and expense over a planning horizon that can be set by the user (generally 15 to 20 years). The analysis is conducted for anaerobic digestion producing electricity, renewable natural gas, or compressed natural gas. Additionally, co-products that results from the anaerobic digestion process are calculated.

These co-products currently are;

- 1. nutrient enriched fiber,
- 2. nutrient N and P,
- 3. greenhouse gas credits,

- 4. renewable energy credits (RECs),
- 5. renewable identification numbers (RINs transportation / CNG related), and
- 6. tipping fees.

Market Model 2012 Cubes.egp

This model prepares the data to be reported via the web using the SAS web-based tool entitled Web Report Studio. This tool allows any user to create customized reports containing tables, graphs and explanatory text. Data can be filtered, totaled and flagged based on user specified criteria.

Many other reporting options are available and can be quickly implemented as needed including the following;

- 1. Microsoft Office Excel, PowerPoint, Word
- 2. SAS Reports List reports, summary reports, distribution/uncertainly reports, frequency reports
- 3. SAS graphs report graphs, activex graphs, GTL graphs
- 4. JMP graphs

SAS Setup Code

Data Dairy.iElectric_Calculations; Set Dairy.Input_Data; Renewable_Fuel_Conv_Factor =77000; label = "77,000.0000 BTU / gal"; RINs_RFEG **=1**; label = "RIN / RFEG (Renewable Fuel Equivalent)"; **=365**; day_yr label = "day / yr"; ft3 m3 =35.31466; label = "ft3 / m3"; =1.10231; mtonne ton label = "metric tonne / ton"; kg_lb =2.2046; label = "kg / lb"; yd3_ft3 =0.037037; label = "yd3 / ft3"; lbs ton =2000; label = "lb / ton"; lbs_mtonne=2204.62262; label = "2,204.6226 lb / metric tonne"; BTU_MMBTU =1000000; label = "BTUs per MMBTU"; BTU_electricity_conv =3413; label = "Energy to electricity conversion - btu/kwh"; Thermal_efficiency_factor =0.35; label = "Thermal efficiency factor: CH4 --> kWh - % as a decimal"; Capacity_factor =0.9: label = "Capacity factor (uptime) -- % as a decimal"; Bio_Gas_Methane_Parm =0.58; label = "Methane Content of biogas- Manure Only -- ft3 methane/ft3 biogas"; Energy_Pot_Methane =923; label = "Energy potential of methane -- btu/ft3 methane"; BTU_FT3 =1025; label = "BTU / ft3"; BTU DGE =128700; label = "BTUs per Diesel Gallon Equivalent - BTU / DGE"; Max_methane_prod_cap_FW **=1**; label = "Maximum methane producing capacity of food waste - ft3 methane / lb VS"; Renewable_Energy_Credit =0.001; label = "Renewable Energy Credit -- REC/kWh"; RECs_MWh **=1**; label = "RECs / MWh"; Equ_red_CO2_emision=21; label = "Equivalent reductions in CO2 emisions per ton CH4 - tons CO2 reductio/ton CH4"; Max_methane_prod_cap_manure =3.84; label = "3.8400 Maximum methane producing capacity of dairy manure - ft3 methane/lb VS"; Density_methane =0.041; label = "Density of methane at 25 degrees Celcius, lb/ft3"; = 5.75; /* BioGas_Ouput Biogas output/lb V.S. ft3 biogas/lb */ BioGas_Parm label = "BioGas_Ouput Biogas output/lb V.S. ft3 biogas/lb"; OS_Gas_Factor = 2.7; /* Increase in Biogas Production per Percent of Food Waste included in influent */ label = "Increase in Biogas Production per Percent of Food Waste included in influent"; /* Informa Spreadsheet Calculations */ /*Number of Cows on Farms with Each Digester Type by State */ /*Formula: Number of cows per state * % of each digester type = Number of cows per digester type*/ /*Unit[.] Cows*/ AD_Cows = AD_Percent * Number_of_Animals; Label AD_Cows = "Number of Cows on Farms with Each Digester Type by State"; /*Manure Production by cows with manure directed to each digester type (tons/year) */ /*Formula: Number of Cows * Manure excretion rate (lbs/cow/day) * Days per year * ton/lbs = Manure Production by cows with manure directed to each digester type (tons/year)*/ /*Unit: tons/year*/ Tot_Manure_Prod = AD_Cows * Manure_Excretion_Rate * day_yr / lbs_ton; Label Tot_Manure_Prod = "Manure Production by cows with manure directed to each digester type (tons/year)"; /* -----*/ START FOOD WASTE CALCULATIONS -----*/ /* Food Waste 1000 tons / yr */ /* FW_parm_yrxx is food waste based US totals for population and food waste 1000 tons /yr */ /* Values from Informa Economics */ /* 1000 tons /yr */ /*FW_parm_2000 = 17478 / 281421.906 ; */ /* 1000 tons / person */ FW_parm = 21372 / 308745.538 ; Label FW_Parm = "FW_parm_yrxx is food waste based US totals for population and food waste 1000 tons /yr"; /*FW_parm_2020 = 23215 / 341387 ;*/ /* 1000 tons / person / day? yr? */ Food_Waste = FW_parm * Census_2010; Label Food_Waste="Food Waste Produced by the Region - 1000 tons / person / yr"; If Tot_Manure_Prod > 0 then Pct_Waste_Manure = Food_Waste / Tot_Manure_Prod; else Pct_Waste_Manure = 0; Label =""; /*Maximum Food Waste Allowed by Digester Type (%) */ /*Formula: User Input*/ /*Unit: %*/ /*If DigesterType = "Lagoon" then Max_Substrate_Capacity = 0.00;*/ /*If DigesterType = "Plug Flow" then Max Substrate Capacity = 0.25;*/ /*If DigesterType = "Complete_Mix" then Max_Substrate_Capacity = 0.50;*/ Label Max_Substrate_Capacity ="Maximum Food Waste Allowed by Digester Type (%)"; /*Annual Maximum Possible Organic Substrate Used (tons/year) */ /*Maximum Possible Organic Substrate Used Note: This table assumes enough food waste is available to meet the maximum food waste percentage allowed.*/ /*Formula: Manure Production by cows with manure directed to each digester type (tons/year) / (1 - Maximum Food Waste Allowed by Digester Type (%)) - Manure Production by cows with manure directed to each digester type (tons/year) = Annual Maximum Possible Organic Substrate Used (tons/year)*/ */ /*Unit: tons/year Pot_Org_Sub_Need = Tot_Manure_Prod * Max_Substrate_Capacity / (1 -Max_Substrate_Capacity); Label Pot_Org_Sub_Need="Annual Maximum Possible Organic Substrate Used (tons/year)"; /* ----- END FOOD WASTE CALCULTTIONS ------*/ Format Pct_Waste_Manure PERCENT6.2 AD Cows 20 Tot_Manure_Prod 20.2 FW_Parm Percent6.2 Food Waste 20.2 Pct_Waste_Manure Percent6.2

Pot_Org_Sub_Need 20.2

;

run;

Proc Sort;

By Scenario Regions Digester_Type;

run;

Digester Gas Production Code

Data Dairy.Production;

Set Dairy.Input_Merge;

/* Notes */

/*25% more VS in Food Waste and 85% Destroyed */

/* Amount of Biogas ft3 / lb VS destroyed = 5.6 ft3 */

/* Don't know how much N volatilizes before it gets to the digester */

/*Annual Organic Substrate Utilized by Digester Type (tons/year) */

/*Annual Organic Substrate Utilized

/*Formula: If Maximum Food Waste Allowed by Digester Type (%) <= Food Waste Available, use Annual Maximum Possible Organic Substrate Used (tons/year), otherwise, weight food waste available by Annual Maximum Possible Organic Substrate Used (tons/year)*/

/*Unit: tons/year*/

if Food Waste > 0 then FW Avail Pct = Region Pot Org Sub Need / Food Waste;

*/

If FW_Avail_Pct <= 1.0 then Organic_Substrate_Added = Pot_Org_Sub_Need;

else

do;

if Region_Pot_Org_Sub_Need > 0 then Organic_Substrate_Added = Food_Waste * Pot_Org_Sub_Need / Region_Pot_Org_Sub_Need; /* lb/cow/day */

else Organic_Substrate_Added = 0;

end;

Label Organic_Substrate_Added = "Annual Organic Substrate Utilized by Digester Type (tons/year)";

/*Organic Substrate Utilized by Digester Type (lbs/cow/day)

/*Organic Substrate Utilized Note: Assigns available food waste to digester types based on the share of maximum food waste utilized*/

/*Formula: Annual Organic Substrate Utilized by Digester Type (tons/year) / Number of cows * (year/days) * (lbs/ton) = Organic Substrate Utilized by */ Digester Type (lbs/cow/day)

*/

/*Unit: lbs/cow/day

*/ if AD_Cows > 0 then OS_cow_added = Organic_Substrate_Added / AD_Cows * lbs_ton / day_yr;

Label OS_cow_added = "Organic Substrate Utilized by Digester Type (lbs/cow/day)";

/*Food Waste as a Percent of Total Influent by State (%)

/*Formula: Annual Organic Substrate Utilized by Digester Type (tons/year) / [Annual Organic Substrate Utilized by Digester Type (tons/year) + Manure Production by cows with manure directed to each digester type (tons/year)] = Food Waste as a Percent of Total Influent by State (%) */ /*Unit: */ %

IF (Organic_Substrate_Added + Tot_Manure_Prod) > 0 then FW_Pct_Tot = Organic_Substrate_Added / (Organic_Substrate_Added + Tot_Manure_Prod);

else FW_Pct_Tot = 0;

Label FW Pct Tot ="ood Waste as a Percent of Total Influent by Region (%)";

/*Food Waste N (Nitrogen) Co	ontent	%= lbs N/lbs food	waste		*/	
/*Food Waste P (Phosphorus) Content	%= lbs P/lbs food	waste	*/		
*Food Waste K (Potassium) Content		%= lbs K/lbs food	waste	*/		
/*VS Content of Food Waste	lbs VS	/lb food waste	*/			
/*Methane Conversion Factor	for Food Wast	e % as a decimal*/				
/*VS_Content_Food_Waste	= Manure * 7	1.25;*/				
/*Food_Waste_N_Content	= 0.02 ;*/					
/*Food_Waste_P_Content	= 0.02 ;*/					
/*Food_Waste_K_Content	= 0.02 ;*/					
/*Methane_Conversion_Factor	or_FW = 0;*/					
/*	PRODUCTION	۱	*/			
/* BioGas_Ouput Biogas outp	ut/lb V.S.	ft3 biogas/lb	5.75			DMI defined */
/*BioGas_Parm = 5.75; */						
/*Increase in Biogas Production	on per Percent	of Food Waste inclu	ded in influent	*/		
/* ft3 biogas */						

/*OS Gas Factor = 2.7;*/

*/

/*Biogas Production Manure Only (ft3 biogas/cow/day) */ /*Formula: (V.S. lbs/cow/day) * (ft3 biogas/ Lb. VS) = (ft3 biogas/cow/day)*/ /*Unit: ft3 biogas/cow/day*/ Bio_Gas_Day = VS_Dairy_Cow * BioGas_Parm; /*Biogas Production Manure and Co-substrate (ft3 biogas/cow/day) */ /*Formula: Biogas Production Manure Only (ft3 biogas/cow/day) + [Increase in biogas production per % increase in food waste * % food waste utilized by state * biogas production manure only (ft3 biogas/cow/day)] = Biogas Production with Codigestion for each digester type (ft3 biogas /cow/day)*/ /*Unit: ft3 biogas/cow/day Bio_Gas_Cogen_Day = Bio_Gas_Day * (1 + FW_Pct_Tot * OS_Gas_Factor); /*Annual Biogas Produced (ft3 biogas/year) */ /*Formula: Biogas Production Manure and Co-substrate (ft3 biogas/cow/day) * Number of cows * days/year = Annual Biogas Produced (ft3 biogas/year)*/ /*Unit: ft3 biogas/year*/ Bio_Gas_Annual = Bio_Gas_Cogen_Day * AD_Cows * day_yr; /*Methane Content of biogas- Manure Only ft3 methane/ft3 biogas*/ /*Bio_Gas_Methane_Parm = 0.58;*/ /*Adjusted Methane Production (ft3 methane/cow/day) */ /*Formula: Biogas Production with Codigestion (ft3 biogas /cow/day) * Methane content of biogas (%) = Adjusted Total Methane Production (ft3 methane /cow /day) */ /*Unit: ft3 biogas/cow/day*/ Bio_Gas_Methane = Bio_Gas_Cogen_Day * Bio_Gas_Methane_Parm; /*Annual Adjusted Methane Produced (ft3 methane/year) */ /*Formula: Adjusted Methane Production (ft3 methane/cow/day) * Number of cows * days/year = Annual Adjusted Methane Produced (ft3 methane/year)*/ /*Unit: ft3 methane/year*/ Methane_Prod_Adj_Annual = Bio_Gas_Methane * AD_Cows * day_yr; /*Energy potential of methane btu/ft3 methane*/ /*Energy_Pot_Methane = 923;*/ /*Annual Adjusted Methane Produced (ft3 methane/year) */ /*Formula: Adjusted Methane Production (ft3 methane/cow/day) * Number of cows * days/year = Annual Adjusted Methane Produced (ft3 methane/year)*/ ft3 methane/year*/ /*Unit: Methane_BTU = Bio_Gas_Methane * Energy_Pot_Methane; /*Annual BTUs of Energy (BTUs/year) */ /*Formula: BTUs of Energy Produced (BTUs/cow/day) * Number of cows * days/year = Annual BTUs of Energy (BTUs/year)*/ /*Unit: BTUs/year*/ Energy_Annual_BTU = Methane_BTU * AD_Cows *day_yr; /* BTUs per MMBTU */ /*BTU_MMBTU = 1000000; */ /*Annual MMBTUs of Energy (MMBTUs/year) */ /*Formula: Annual BTUs of Energy (BTUs/year) * MMBTU/BTUs = Annual MMBTUs of Energy (MMBTUs/year)*/ MMBTUs/year*/ /*Unit:

Energy_Annual_MMBTU = Energy_Annual_BTU / BTU_MMBTU;

/*Energy to electricity conversion btu/kwh 3,413 */ /*BTU_electricity_conv = 3413; */ /*Electricity Produced with 100% Conversion (kWh/cow/day) */ /*Formula: Total BTUs of Energy Production (btu/ cow/ day) * Energy to electricity conversion (kwh/btu) = Potential Electricity production (kwh/ cow/ day)*/ kWh/cow/day*/ /*Unit: Electricity_Prod_Full = Methane_BTU / BTU_electricity_conv ; /*Thermal efficiency factor: CH4 - kWh % as a decimal 0.35*/ /*Thermal_efficiency_factor = 0.35;*/ /*Capacity factor (uptime) % as a decimal 0.9*/ /*Capacity_factor = 0.9;*/ /*Parasitic load - Digester system % as a decimal 0.1*/ /*Parasitic_load_Elec = 0.1;*/ /*Adjusted Electricity Production (kWh/cow/day) */ /*Formula: Maximum Potential Electricity production (kwh/ cow/ day) * Electricity Generation Efficiency Factor (%) * Electricity Capacity Uptime Factor (%) * [1 - (Parasitic Load Factor)] (%) = Adjusted Potential Electricity Production (kwh/ cow/ day)*/ /*Unit[.] kWh/cow/day*/ Electricity_Prod_Adj = Electricity_Prod_Full * Thermal_Efficiency_Factor * Capacity_Factor * (1 - Electric_Gen_Parasitic_Load); /*Annual Electricity Production (kWh/year) */ /*Formula: Adjusted Electricity Production (kWh/cow/day) * Number of cows * days/year = Annual Electricity Production (kWh/year)*/ /*Unit[.] kWh/year*/ Electricity_Prod_kW_yr = Electricity_Prod_Adj * AD_Cows * day_yr ; /*Parasitic load - To Run Digester % as a decimal*/ /*Parasitic load - Gas Clean-up Facility % as a decimal*/ /*BTU per cf BTU/cf*/ /*Parasitic_load_NG_Digester = 0.3;*/ /*Parasitic_load_NG_Cleanup = 0.15;*/ /*BTU FT3 = 1025;*/ /*Adjusted Pipeline-Quality Biomethane (CH4) Production (MMBTUs/cow/day) */ /*Formula: Total BTUs of energy production (BTUs/ cow/day) * [1 - parasitic load factor to operate digester (%)] * [1 - parastic load factor for biomethane cleanup facility (%)] * BTU to MMBTU Conversion Factor (1mmbtu / 1,000,000 btu) = Potential Pipeline Quality Biomethane Production (mmbtu/cow/day) */ MMBTUs/cow/day /*Unit: */ Natural_Gas_Prod = Methane_BTU * (1 - NG_Parasitic_Load) * (1 - NG_Parasitic_Load) / BTU_MMBTU ; /*Annual Biomethane Production (MMBTUs/year) */ /*Formula: Adjusted Pipeline-Quality Biomethane (CH4) Production (MMBTUs/cow/day) * Number of cows * days/year = Annual Biomethane Production (MMBTUs/year)*/ /*Unit: MMBTUs/year*/ Natural_Gas_Prod_MMBTU = Natural_Gas_Prod * AD_Cows * day_yr; BTUs/DGE 128,700 */ /*BTUs per Diesel Gallon Equivalent /*BTU_DGE = 128700; */

/*CNG (DGEs/cow/day) */ /*Formula: Total BTUs of energy production (BTUs/ cow/day) * [1 - parasitic load factor to operate digester (%)] * [1 - parasitic load factor for biomethane cleanup facility (%)] / diesel gallon equivalent conversion factor (128,700btu/gallon) = Potential CNG Production (diesel gallon equivalents/cow /day)*/ /*Unit: DGEs/cow/day*/

CNG_Prod = Methane_BTU * (1 - NG_Parasitic_Load) * (1 - NG_Parasitic_Load) / BTU_DGE;

/*Annual CNG (DGEs/year) */

/*Formula: CNG (DGEs/cow/day) * Number of cows * days/year = Annual CNG (DGEs/year)*/ /*Unit: DGEs/year*/

CNG_Prod_MMBTU = CNG_Prod * AD_Cows * day_yr;

/*Nitrogen volatilization % as a dec	cimal 0*/		
/*Phosphorus Volatilization	% as a decimal*/		
/*Potassium Volatilization	% as a decimal*/		
/*Nitrogen_volatilization	= 0;*/		
/*Phosphorus_volatilization	= 0;*/		
/*Potassium_volatilization	= 0;*/		
/*Nitrogen (TKN) in liquid filtrate	% as a decimal	0.823*/	
/*Phosphorus in liquid filtrate	% as a decimal	0.622*/	
/*Nitrogen_in_Filtrate = 0.823;*/			
/*Phosphorus_in_Filtrate	= 0.622;*/		

/*Potassium_in_Filtrate = 0.00;*/

/*N (Nitrogen) potential with codigestion (lbs N/cow/day) */

/*Formula: N excretion rate (Pounds N/ cow/ day) * (1 - % N volatilization) * (% of N that goes to the liquid filtrate) + Food Waste Weight (lbs food waste added/ cow/ day) * (N as % of food waste) = N potential (lbs N/cow/day)*/

/*Unit: Ibs N/cow/day*/

N_Prod_Codigest = (N_Excreted_Dairy_Cow * (1 - N_volatilization) * N_in_Filtrate); * + (OS_cow_added * Food_Waste_N_Content);

/*Recovery Rate for N % as a decimal	0	0.4	0.4*/	
/*Recovery Rate for P % as a decimal	0	0.8	0.8*/	
/*Recovery Rate for K % as a decimal	0	0	0*/	
/*If DigesterType = "Lagoon" then do: N Recovery	/ Rate = 0.	00: P Recove	erv Rate = 0.	00: K

/*If DigesterType = "Lagoon" then do; N_Recovery_Rate = 0.00; P_Recovery_Rate = 0.00; K_Recovery_Rate = 0.00; end;*/
/*If DigesterType = "Plug_Flow" then do; N_Recovery_Rate = 0.40; P_Recovery_Rate = 0.80; K_Recovery_Rate = 0.00; end;*/
/*If DigesterType = "Complete_Mix" then do; N_Recovery_Rate = 0.40; P_Recovery_Rate = 0.80; K_Recovery_Rate = 0.00; end;*/

/*N (Nitrogen) recovered (lbs N/cow/day) */
 /*Formula: N potential with codigestion (lbs N/ cow/ day) * N recovery rate (%) = N recovered (lbs N/ cow/ day)*/
 /*Unit: lbs N/cow/day*/
 N_Recovered = N_Prod_Codigest * N_Recovery_Rate;

/*Annual N (Nitrogen) recovered (lbs N/year) */ /*Formula: N (Nitrogen) recovered (lbs N/cow/day) * Number of cows * days/year = Annual N (Nitrogen) recovered (lbs N/year)*/ /*Unit: lbs N/year*/ N_Recovered_yr = N_Recovered * day_yr;

/*Manure Phosphorus content (lbs) lbs/cow/day 0.17*/ /*Manure Phosphorus content % as a decimal 0.001*/ /*Manure_P_Content = 0.17;*/ /*Manure_P_Percent = 0.001;*/ /*P (Phosphorus) potential with codigestion (lbs P/cow/day) */ /*Formula: Manure weight (Pounds manure/ cow/ day) * (P as % of total manure) * (% of P that goes to the liquid filtrate) + Food Waste Weight (lbs food waste added/ cow/ day) * (P as % of food waste) = P potential (lbs P/cow/day)*/ /*Unit: lbs P/cow/day*/ P_Prod_Codigest = (Manure_P_Content * (1 - P_Volatization) * P_in_Filtrate); * + (OS_cow_added * Food_Waste_P_Content); /*P (Phosphorus) recovered (lbs P/cow/day) */ /*Formula: P potential with codigestion (lbs P/ cow/ day) * P recovery rate (%) = P recovered (lbs P/ cow/ day)*/ /*Unit: lbs P/cow/day*/ P_Recovered = P_Prod_Codigest * P_Recovery_Rate; /*Annual P (Phosphorus) recovered (lbs P/year) */ /*Formula: P (Phosphorus) recovered (lbs P/cow/day) * Number of cows * days/year = Annual P (Phosphorus) recovered (lbs P/year)*/ /*Unit: lbs P/year*/ P_Recovered_yr = P_Recovered * day_yr; /*Manure Potassium content (lbs) lbs/cow/day 0 23*/ /*Manure Potassium content % as a decimal 0.0015*/ /*Manure_K_Content = 0.23;*/ /*Manure_K_Percent = 0.0015;*/ /*K (Potassium) potential with codigestion (lbs K/cow/day) */ /*Formula: Manure weight (Pounds manure/ cow/ day) * (K as % of total manure) * (% of K that goes to the liquid filtrate) + Food Waste Weight (lbs food waste added/ cow/ day) * (K as % of food waste) = K potential (lbs K/cow/day)*/ /*Unit: lbs K/cow/day*/ /*K_Prod_Codigest = (Manure_K_Content * (1 - Potassium_volatilization) * Potassium_in_Filtrate); * + (OS_cow_added * Food_Waste_P_Content);*/ /*K (Potassium) recovered (lbs K/cow/day) */ /*Formula: K potential with codigestion (lbs K/ cow/ day) * K recovery rate (%) = K recovered (lbs K/ cow/ day)*/ lbs K/cow/day*/ /*Unit: /*K Recovered = K Prod Codigest * K Recovery Rate;*/ /*Annual P (Phosphorus) recovered (lbs P/year) */ /*Formula: P (Phosphorus) recovered (lbs P/cow/day) * Number of cows * days/year = Annual P (Phosphorus) recovered (lbs P/year)*/ /*Unit: lbs P/year*/ /*K_Recovered_yr = K_Recovered * day_yr;*/ /* Nutrient Enriched Fiber */ /*Nutrient Enriched Fiber Recovered yd3/cow/day 0 9 7*/ /*If DigesterType = "Lagoon" then do; Fiber_Recovery_Rate = 0.00; end;*/ /*If DigesterType = "Plug_Flow" then do; Fiber_Recovery_Rate = 9.00; end;*/ /*If DigesterType = "Complete_Mix" then do; Fiber_Recovery_Rate = 7.00; end;*/ /*Nutrient Enriched Fiber Production (yd3 fiber /cow/day) */ /*Formula: yd3 fiber /cow/year / Days/year = yd3 fiber/cow/day*/ /*Unit: yd3 fiber/cow/day*/ Fiber_Production = Fiber_Recovery_Rate / day_yr; /*Annual Nutrient Enriched Fiber (yd3/year) */ /*Formula: Nutrient Enriched Fiber Production (yd3 fiber /cow/day) * Number of cows * days/year = Annual Nutrient Enriched Fiber (yd3/year)*/ /*Unit: yd3/year*/ Fiber_Production_yr = Fiber_Recovery_Rate * AD_Cows; * day_yr;

/* Greenhouse Gas Offset Credits */

*/ /*GHG Carbon Offset Credits /*Equivalent reductions in CO2 emisions per ton CH4 tons C02 reductio/ton CH4 21*/ /*Maximum methane producing capacity of dairy manure ft3 methane/lb VS 3.84*/ /*Density of methane at 25 degrees Celcius, lb/ft3 0.041*/ /*Maximum methane producing capacity of food waste ft3 methane/lb VS ??*/ /*Equ_red_CO2_emision = 21;*/ /*Max_methane_prod_cap_manure = 3.84;*/ /*Density_methane = 0.041;*/ /*Max_methane_prod_cap_FW = 1; */

/*GHG Offset Credits (lbs carbon offset credits/cow/day) */

/*Formula: lbs of Carbon Equivalent Offsets = 21 * (Proportion Manure x (VS x TAM/1000 x MCF x B0 x 0.041 lbs.ft3) +(1-Proportion Manure) x ((VS x TAM/1000 x MCF x B1 x 0.041 lbs.ft3)*/

/*Unit: Potential lbs carbon offset credits/cow/day*/

GHG_Offset_Credits = Equ_red_CO2_emision*(((1-FW_Pct_Tot) * VS_Dairy_Cow * Max_methane_prod_cap_manure *

Methane_Conversion_Factor * Density_methane)

+ (FW_Pct_Tot * VS_Content_Food_Waste * Max_methane_prod_cap_FW * Methane_Food_Waste_Factor * Density_methane));

/*Annual GHG Offset Credits (lbs carbon equivalents/year) */
/*Formula: GHG Offset Credits (lbs carbon offset credits/cow/day) * Number of cows * days/year = Annual GHG Offset Credits (lbs carbon
equivalents/year)*/
/*Unit: lbs carbon equivalents/year*/

GHG_Offset_Credits_yr = GHG_Offset_Credits * AD_Cows * day_yr;

/*GHG Offset Credits (MT carbon equivalents/year) */ /*Formula: */ /*Unit: MT carbon equivalents/year*/ GHG_Offset_Credits_yr = GHG_Offset_Credits_yr / lbs_mtonne;

 /*Renewable Energy Credit
 REC/kWh
 0.001*/

 /*RECs per MWh
 REC/MWh
 1.000*/

 /*Renewable_Energy_Credit
 = 0.001;*/

 /*RECs_MWh
 = 1.000;*/

/*Renewable Energy Credits (RECs/cow/day) */
/*Formula: Adjusted Potential Electricity production (kwh/ cow/ day) * (REC per kWh) = Renewable Energy Certificate Generation (RECs/ cow/ day)*/
/*Unit: RECs/cow/day*/
Renewable_Energy_Credits = Electricity_Prod_Adj * Renewable_Energy_Credit;

/*Annual RECs (RECs/year) */ /*Formula: Renewable Energy Credits (RECs/cow/day) * Number of cows * days/year = Annual RECs (RECs/year)*/ /*Unit: RECs/year*/ Annual_RECs = Renewable_Energy_Credits * AD_Cows * day_yr;

/*Renewable Fuel Conversion Factor BTUs/Gallon 77,000 */ /*RINs per Renewable Fuel Equivalent Gallon RIN/RFEG 1 */ /*Renewable_Fuel_Conv_Factor = 77000;*/ /*RINs_RFEG = 1.000;*/

/*Renewable Identification Number Production (RINs/cow/day) */

/*Formula: CNG production (diesel gallon equivalents/cow/day) * diesel gallon equivalent conversion factor (128,700btu/gallon) / renewable fuel equivalent gallon conversion factor (77,000 btu/gallon) * RIN conversion factor (1 RIN / renewable fuel equivalent gallon) = RINs/cow/day*/
/*Unit: RINs/cow/day*/

Renewable_ID_Num_Prod = CNG_Prod * BTU_DGE / Renewable_Fuel_Conv_Factor * RINs_RFEG;

/*Annual RINs (RINs/year) */

/*Formula: Renewable Identification Number Production (RINs/cow/day) * Number of cows * days/year = Annual RINs (RINs/year)*/

/*Unit: RINs/year*/

Annual_RINs = Renewable_ID_Num_Prod * AD_Cows * day_yr;

Label GHG_Offset_Credit_Price = "";

Label Scenario = "Name of the overall scenario";

Label Regions = "Name of the Region which can be any geographic boundary"; Label Economic_Scenario = "Set of economic parameters used for the calculation"; Label Capital_Cost_Centers = "Set of Cost Center Names and Percent"; Label Dairy_Farm_Scenario = "Name of a Set of Dairy Components"; Label Dairy_Type = "Type of Dairy"; Label Bedding_Type = "Type of Bedding"; Label Backend_Treatment = "Name of Treatment of Digester Output"; Label Digester_Type = "Name of the type of anaerobic digester"; Label Region_Input_Set = "Regional Input Data Set Name"; Label Region_Cow_Scenario = "Cow Parameters by Region"; Label Cows = "A set of Cow Parameters"; Label Organic_Substrate = "A Type of Organic Substrate"; Label AD_Percent = "Percent of the digester type of all anaerobic digesters within the region"; Label Census_2000 = "Regional Population from 2000 Census - # people"; Label Census_2010 = "Regional Population from 2010 Census - # people"; Label Top_10_Dairy_State = "Indicator that Region is one of the top ten dairy states"; Label Number_of_Animals = "Number of Diary Cows in Region"; Label Number_Farm_with_Digesters = "Number of Farms with Digesters in Region"; Label VS Dairy Cow = "Volitile Solids of Dairy Cow Manure (V.S. lbs/cow/day)"; Label VS_Dairy_Heifer = "Volitile Solids of Dairy Heifer Manure (V.S. lbs/cow/day)"; Label N_Excreted_Dairy_Cow = ""; Label N_Excreted_Dairy_Heifer = ""; Label Total_VS = ""; Label N Excreted per Cow = ""; Label Methane_Conversion_Factor = ""; Label Methane_Production = ""; Label Tipping_Fees = ""; Label Pipeline_Biomethane_Price = ""; Label CNG Price = "": Label Diesel_Price = ""; Label Electricity_Price = "Electricity Price \$/kWhr EIA, Average Retail Electricity Price paid by Industrial Customers"; Label Recovered_Nitrogen_N_Price = ""; Label Recovered_Phosphorus_Price = ""; Label Recovered_Potassium_K_Price = ""; Label NEFP_Covered_Lagoon = "Nutrient Enriched Fiberc Price for Covered Lagoon \$/yd3 of fiber"; Label NEFP_Plug_Flow = "Nutrient Enriched Fiberc Price for Plug_Flow \$/yd3 of fiber"; Label NEFP_Complete_Mix = "Nutrient Enriched Fiberc Price for Complete_Mix \$/yd3 of fiber";

Label REC_Price = ""; Label RIN_Price = ""; Label DPM_Nutrient_Removal = ""; Label DPM_Nutrient_Recovery = ""; Label DPM_Sand = ""; Label DPM_DryLot = ""; Label Collectable Manure = ""; Label Gas_Production_Modifier = ""; Label Electric_Gen_Parasitic_Load = ""; Label Capacity_Factor = ""; Label Thermal_Efficiency_Factor = ""; Label Max_Substrate_Capacity = "Max_Substrate_Capacity"; Label N_Recovery_Rate = ""; Label P_Recovery_Rate = ""; Label K_Recovery_Rate = ""; Label Capital_Cost_Per_Cow = ""; Label NG_Parasitic_Load = ""; Label NG_Cleanup_Parasitic_Load = ""; Label Fiber_Recovery_Rate = ""; Label N_Volatilization = ""; Label P_Volatization = ""; Label N_in_Filtrate = ""; Label P_in_Filtrate = ""; Label K_in_Filtrate = ""; Label Pct_Preconstruction_Permitting = ""; Label Pct_System = ""; Label Pct_Site_Infrastructure = ""; Label Pct_Integration = ""; Label Pct_Utilities = ""; Label Pct_Administration = ""; Label Pct Financing = ""; Label Pct_Contingency = ""; Label Electric_Gen_Capital_Cost_Parame = ""; Label RNG Cap Cost Parameter = ""; Label CNG_Cap_Cost_Parameter = ""; Label Operation_Cost_Parameter = ""; Label Equity = "Equity percent (%)"; Label Debt = "Debt percent (%)"; Label Grants = "Funds contributed from grants (\$)"; Label Third_Party_Funds = "Funds contributed from third party investors (\$)"; Label OPEX_Inflation = "Operational Expenditure (OPEX) inflation (%/yr)"; Label Electricity_Inflation = "Inflation of electricity price (%/yr)"; Label Natural_Gas_Inflation = "Inflation of natural gas price (%/yr)"; Label Diesel_Inflation = "Inflation of diesel price (%/yr)"; Label CNG_Inflation = "Inflation of CNG price %/yr"; Label Tax_Rate = "Tax rate percent (%)"; Label Carbon_Credit_Inflation = "Inflation of carbon credit price per year (%/yr)"; Label NG_Spot_Price = "Compressed Natual Gas spot price (\$/GGE)"; Label CNG_Spot_Price = "Spot price of natual gas (\$/MCF)"; Label Loan_APR = ""; Label Diesel_Price = "General nonregional diesel price \$/GGE)"; Label Inflation_Env_Credits = "Inflation of environmental credit price (%/yr)"; Label Inflation_Diesel = "Inflation of diesel price (%/yr)";

Label Inflation_Other = "Inflation of all other prices (%/yr)"; Label Planning_Horizon = ""; Label Cow_Cost_Yr = "Average cost to support a single cow per year (\$/yr)"; Label Cow_Electric_Potential = "Electricity production potential in Mega Watt Hours (MWh) /cow/yr"; Label Cow_Natural_Gas_Potential = "Renewable Natural Gas production in Million Cubic Feet (MCF) per cow per year without parasitic reduction"; Label NG_Parasitic_Reduction = "Parasitic reduction for clean natural gas (%)"; Label CNG Potential = "Potential production of Compressed Natual Gas (CNG) Methane Gasoline Gallon Equivalent (GGE) / Million Cubic Feet (MCF)"; Label CNG_Parasitic_Load = "CNG parasitic load expressed as a %"; Label Animal Unit = "Weight of a standard animal (Ib/animal). An animal unit (AU) is a standardized measure of animals used for various agricultural purposes. A 1,000-pound beef cow is the standard measure of an animal unit."; Label AU_VS_Excretion_Rate = "Animal Unit Volital Solid Excretion Rate (lb/AU/day)"; Label Animal_Mass = "Average dairy cow mass (lb/cow)"; Label VS_Excretion_Rate = "Average Dairy Cow Volital Solid Excretion Rate ((lb/cow/day)"; Label Manure_Excretion_Rate = "Average Dairy Cow Manure Extraction Rate (lb/cow/day)"; Label Manure_P_Content = ""; Label Manure_P_Percent = ""; Label Manure_K_Content = ""; Label Manure_K_Percent = ""; Label Substrate_Gas_Factor = ""; Label Biogas_Parameter = ""; Label VS_Content_Food_Waste = ""; Label N_Content_of_Food_Waste = ""; Label P_Content_of_Food_Waste = ""; Label K_Content_of_Food_Waste = ""; Label Methane_Food_Waste_Factor = ""; Label Renewable_Fuel_Conv_Factor = "BTU / gal"; Label RINs_RFEG = "RIN / RFEG (Renewable Fuel Fuel Equivalent)"; Label day_yr = "day / yr"; Label ft3_m3 = "ft3 / m3"; Label mtonne_ton = "metric tonne / ton"; Label kg lb = "kg / lb"; Label yd3_ft3 = "yd3 / ft3"; Label lbs ton = "lb / ton": Label lbs_mtonne = "lb / metric tonne"; Label BTU_MMBTU = "BTUs per MMBTU"; Label BTU electricity conv = "Energy to electricity conversion - btu/kwh"; Label Bio_Gas_Methane_Parm = "Methane Content of biogas- Manure Only -- ft3 methane/ft3 biogas"; Label Energy_Pot_Methane = "Energy potential of methane -- btu/ft3 methane"; Label BTU_FT3 = "BTU / ft3"; Label BTU_DGE = "BTUs per Diesel Gallon Equivalent - BTU / DGE"; Label Max_methane_prod_cap_FW = "Maximum methane producing capacity of food waste - ft3 methane / Ib VS"; Label Renewable_Energy_Credit = "Renewable Energy Credit -- REC/kWh"; Label RECs_MWh = "RECs / MWh"; Label Equ_red_CO2_emision = "Equivalent reductions in CO2 emisions per ton CH4 - tons CO2 reductio/ton CH4"; Label Max_methane_prod_cap_manure = "Maximum methane producing capacity of dairy manure - ft3 methane/lb VS"; Label Density_methane = "Density of methane at 25 degrees Celcius, lb/ft3"; Label BioGas_Parm = "BioGas_Ouput Biogas output/lb V.S. ft3 biogas/lb"; Label OS_Gas_Factor = "Increase in Biogas Production per Percent of Food Waste included in influent"; Label AD_Cows = "Number of Cows in the Region"; Label Tot_Manure_Prod = "";

Label FW_parm = ""; Label Food_Waste = "Food Waste Available in Region - tons/yr"; Label Pct_Waste_Manure = ""; Label Pot_Org_Sub_Need = ""; Label Region_Pot_Org_Sub_Need = "";

Format

FW_Avail_Pct PERCENT6.2 OS_Cow_Added COMMA20.2 Max_Substrate_Capacity PERCENT6.2 Region_Pot_Org_Sub_Need COMMA20.2 Organic_Substrate_Added COMMA20.2 FW_Pct_Tot PERCENT6.2 Bio_Gas_Day COMMA20.2 Bio_Gas_Cogen_Day COMMA20.2 Bio_Gas_Annual COMMA20.2 Bio_Gas_Methane COMMA20.2 Methane_Prod_Adj_Annual COMMA20.2 Methane_BTU COMMA20.2 Energy_Annual_BTU COMMA20.2 Energy_Annual_MMBTU COMMA20.2 Electricity_Prod_Full COMMA20.2 Electricity_Prod_Adj COMMA20.2 Electricity_Prod_kW_yr COMMA20.2 Natural_Gas_Prod COMMA20.3 Natural_Gas_Prod_MMBTU COMMA20.3 CNG_Prod COMMA20.3 CNG_Prod_MMBTU COMMA20.2 COMMA20.2 N_Prod_Codigest N_Recovery_Rate COMMA20.2 N_Recovered COMMA20.2 GHG_Offset_Credits COMMA20.2 GHG_Offset_Credits_yr COMMA20.2 GHG_Offset_Credits_yr COMMA20.2 Renewable_Energy_Credits COMMA20.4 Annual_RECS COMMA20.2 Renewable_ID_Num_Prod COMMA20.2 Annual_RINs COMMA20. ; run:

Proc Sort;

By Scenario Regions Digester_Type; run;

Co-Product Valuation Code

DATA Dairy.Valuation; SET Dairy.Production;

/*Organic Substrate Value (\$/cow/day) */ /*Formula: Organic Substrate Utilized by Digester Type (lbs/cow/day) * (1/tons per pound) * Tipping Fees(\$/Ton organic waste received) = Organic Substrate Value (\$/cow/day)*/ /*Unit: \$/cow/day*/ Organic_Substrate_Value = OS_cow_added * (1/lbs_ton) * Tipping_Fees; Format Organic_Substrate_Value DOLLAR20.2;

/*Organic Substrate Value (\$/year) */ /*Formula: Organic Substrate Value (\$/cow/day) * Number of cows * days/year = Organic Substrate Value (\$/year)*/ /*Unit: \$/year*/ /*Organic_Substrate_Value_Annual = =C818*Calculate!C\$40*NatlAssum!\$C\$9;*/ Organic_Substrate_Value_Annual = Organic_Substrate_Value * AD_Cows * day_yr; Format Organic_Substrate_Value_Annual DOLLAR20.;

/*Adjusted Electricity Value (\$/cow/day) */ /*Formula: Adjusted Electricity Production (kWh/cow/day) * \$/kWh = Adjusted Electricity Value (\$/cow/day)*/ /*Unit: \$/cow/day*/ /*Adj_Electricity_Value=C351*PriceAssum!\$D11*/ Adj_Electricity_Value = Electricity_Prod_Adj * Electricity_Price; Format Adj_Electricity_Value DOLLAR20.2;

/*Annual Electricity Value (\$/year) */ /*Formula: Adjusted Electricity Value (\$/cow/day) * Number of cows * days/year = Annual Electricity Value (\$/year)*/ /*Unit: \$/year*/ Adj_Electricity_Value_Annual = Adj_Electricity_Value * AD_Cows * day_yr; Format Adj_Electricity_Value_Annual DOLLAR20.;

/*Adjusted Pipeline-Quality Biomethane (CH4) Value (\$/cow/day) */ /*Formula: Adjusted Pipeline-Quality Biomethane (CH4) Production (MMBTUs/cow/day) * \$/MMBTU = Adjusted Pipeline-Quality Biomethane (CH4) Value (\$/cow/day)*/ /*Unit: \$/cow/day*/ /*Adjusted_NG_Value=C389*PriceAssum!\$E11*/

Adjusted_NG_Value = Natural_Gas_Prod * Pipeline_Biomethane_Price; Format Adjusted_NG_Value DOLLAR20.;

/*Annual Pipeline-Quality Biomethane Value (\$/year) */ /*Formula: Adjusted Pipeline-Quality Biomethane (CH4) Value (\$/cow/day) * Number of cows * days/year = Annual Pipeline-Quality Biomethane Value (\$/year)*/ /*Unit: \$/year*/ /*Annual_NG_Value */ Adj_NG_Value_Annual_Annual = Adjusted_NG_Value * AD_Cows * day_yr; Format Adj_NG_Value_Annual_Annual DOLLAR20.;

/*CNG (\$/cow/day) */ /*Formula: CNG (DGEs/cow/day) * \$/DGE = CNG (\$/cow/day)*/ /*Unit: \$/cow/day*/ /*CNG_Value=C428*PriceAssum!\$F11*/ CNG_Value = CNG_Prod * CNG_Price; Format CNG_Value DOLLAR20.;

/*Annual CNG Value (\$/year) */ /*Formula: CNG (\$/cow/day) * Number of cows * days/year = Annual CNG Value (\$/year)*/ /*Unit: \$/year*/ /*CNG_Value_Annual=C935*C\$40*NatlAssum!\$C\$9*/ CNG_Value_Annual = CNG_Value * AD_Cows * day_yr; Format CNG_Value_Annual DOLLAR20.;

/*N (Nitrogen) Recovered Value (\$/cow/day) */ /*Formula: N (Nitrogen) recovered (lbs N/cow/day) * tons/lb * \$/ton N = N (Nitrogen) Recovered Value (\$/cow/day)*/ /*Unit: \$/cow/day*/ /*N_Recovered_Value=C484*(1/NatlAssum!\$C\$10)*PriceAssum!\$G11*/ N_Recovered_Value = N_Recovered * (1 / lbs_ton) * Recovered_Nitrogen_N_Price; Format N_Recovered_Value DOLLAR20.2;

/*Annual N (Nitrogen) Recovered Value (\$/year) */ /*Formula: N (Nitrogen) Recovered Value (\$/cow/day) * Number of cows * days/year = Annual N (Nitrogen) Recovered Value (\$/year)*/ /*Unit: \$/year*/ /*N_Recovered_Value_Annual=C974*C\$40*NatlAssum!\$C\$9*/

N_Recovered_Value_Annual = N_Recovered_Value * AD_Cows * day_yr;

Format N_Recovered_Value_Annual DOLLAR20.;

/*P (Phosphorus) Recovered Value (\$/cow/day) */
/*Formula: P (Phosphorus) recovered (lbs P/cow/day) * tons/lb * \$/ton P = P (Phosphorus) Recovered Value (\$/cow/day)*/
/*Unit: \$/cow/day*/
/*P_Recovered_Value=C537*(1/NatlAssum!\$C\$10)*PriceAssum!\$H11*/
P_Recovered_Value = P_Recovered * (1 / lbs_ton) * Recovered_Phosphorus_Price;
Format P_Recovered_Value DOLLAR20.2;

/*Annual P (Phosphorus) Recovered Value (\$/year) */ /*Formula: P (Phosphorus) Recovered Value (\$/cow/day) * Number of cows * days/year = Annual P (Phosphorus) Recovered Value (\$/year)*/ /*Unit: \$/year*/

/*P_Recovered_Value_Annual=C1010*C\$40*NatlAssum!\$C\$9*/ P_Recovered_Value_Annual = P_Recovered_Value * AD_Cows * day_yr;

Format P_Recovered_Value_Annual DOLLAR20.;

/*K (Potassium) Recovered Value (\$/cow/day) */
/*Formula: K (Potassium) recovered (lbs K/cow/day) * tons/lb * \$/ton P = K (Potassium) Recovered Value (\$/cow/day)*/
/*Unit: \$/cow/day*/
/*K_Recoved_Value=C592*(1/NatlAssum!\$C\$10)*PriceAssum!\$G11*/
/*K_Recoved_Value = K_Recovered * (1 / lbs_ton) * Recovered_Potassium_K_Price;*/
/*Format K_Recoved_Value DOLLAR20.2;*/

/*Annual K (Potassium) Recovered Value (\$/year) */ /*Formula: K (Potassium) Recovered Value (\$/cow/day) * Number of cows * days/year = Annual K (Potassium) Recovered Value (\$/year)*/ /*Unit: \$/year*/

/*Annual_K_Recovered_Value=C1047*C\$40*NatlAssum!\$C\$9*/

/*Annual_K_Recovered_Value = K_Recoved_Value * AD_Cows * day_yr;*/

/*Format Annual_K_Recovered_Value DOLLAR20.;*/

/* Note: Need to input these differently */

If Digester_Type = "Lagoon" then Fiber_Price = NEFP_Covered_Lagoon;

If Digester_Type = "Plug_Flow" then Fiber_Price = NEFP_Plug_Flow; If Digester_Type = "Complete_Mix" then Fiber_Price = NEFP_Complete_Mix; Drop NEFP_Covered_Lagoon NEFP_Plug_Flow NEFP_Complete_Mix; Format Fiber_Price DOLLAR20.2;

/*Nutrient Enriched Fiber Value (\$/cow/day) */
/*Formula: Nutrient Enriched Fiber Production (yd3 fiber /cow/day) * \$/yd3 of fiber = Nutrient Enriched Fiber Value (\$/cow/day)*/
/*Unit: \$/cow/day*/
/*Nutr_Enrich_Fiber_Value =C631*PriceAssum!\$J11*/
Nutr_Enrich_Fiber_Value = Fiber_Production * Fiber_Price;
Format Nutr_Enrich_Fiber_Value DOLLAR20.2;

/*Annual Nutrient Enriched Fiber Value (\$/year) */ /*Formula: Nutrient Enriched Fiber Value (\$/cow/day) * Number of cows * days/year = Annual Nutrient Enriched Fiber Value (\$/year)*/ /*Unit: \$/year*/ Nutr_Enrich_Fiber_Value_Annual = Nutr_Enrich_Fiber_Value * AD_Cows * day_yr; Format Nutr_Enrich_Fiber_Value_Annual DOLLAR20.;

/*GHG Offset Credits Value (\$/cow/day) */ /*Formula: GHG Offset Credits (lbs carbon offset credits/cow/day) * \$/ lb carbon credit offset = GHG Offset Credits Value (\$/cow/day)*/ /*Unit: \$/cow/day*/

/*GHG_Offset_Credit_Value=C670/NatlAssum!\$C\$11*PriceAssum!\$M11*/ GHG_Offset_Credit_Value = GHG_Offset_Credits / lbs_mtonne * GHG_Offset_Credit_Price; Format GHG_Offset_Credit_Value DOLLAR20.2;

/*Annual GHG Offset Credits Value (\$/year) */ /*Formula: GHG Offset Credits Value (\$/cow/day) * Number of cows * days/year = Annual GHG Offset Credits Value (\$/year)*/ /*Unit: \$/year*/ /*Annual_GHG_Offset_Credit_Value=C1125*C\$40*NatlAssum!\$C\$9*/ Annual_GHG_Offset_Credit_Value = GHG_Offset_Credit_Value * AD_Cows * day_yr; Format Annual_GHG_Offset_Credit_Value DOLLAR20.;

/*Renewable Energy Credits Value (\$/cow/day) */ /*Formula: Renewable Energy Credits (RECs/cow/day) * \$/MWh = Renewable Energy Credits Value (\$/cow/day)*/ /*Unit: \$/cow/day*/ /*REC_Value=C726*PriceAssum!\$N11*/ REC_Value = Renewable_Energy_Credits * REC_Price; Format REC_Value DOLLAR20.2;

/*Annual RECs Value (\$/year) */ /*Formula: Renewable Energy Credits Value (\$/cow/day) * Number of cows * days/year = Annual RECs Value (\$/year)*/ /*Unit: \$/year*/ /*REC_Value_Annual=C1164*C\$40*NatlAssum!\$C\$9*/ REC_Value_Annual = REC_Value * AD_Cows * day_yr; Format REC_Value_Annual DOLLAR20.;

/*Renewable Identification Number Value (\$/cow/day) */ /*Formula: Renewable Identification Number Production (RINs/cow/day) * \$/RIN = Renewable Identification Number Value (\$/cow/day)*/ /*Unit: \$/cow/day*/ /*RIN_Value=C765*PriceAssum!\$O11*/ RIN_Value = Renewable_ID_Num_Prod * RIN_Price; Format RIN_Value DOLLAR20.2; /*Annual RINs Value (RINs/year) */ /*Formula: Renewable Identification Number Value (\$/cow/day) * Number of cows * days/year = Annual RINs Value (RINs/year)*/ /*Unit: \$/year*/ /*RIN_Value_Annual */ /*RIN_Value_Annual=C1203*C\$40*NatlAssum!\$C\$9*/ RIN_Value_Annual = RIN_Value * AD_Cows * day_yr; Format RIN_Value_Annual DOLLAR20.;

/*Value of Electricity and RECs (\$/cow/day) */
/*Formula: Adjusted Electricity Value (\$/cow/day) + Renewable Energy Credits Value (\$/cow/day) = Value of Electricity and RECs (\$/cow/day)*/
/*Unit: \$/cow/day*/
/*Value_Elec_And_RECs=C857+C1164*/
Value_Elec_And_RECs = Adj_Electricity_Value + REC_Value;
Format Value_Elec_And_RECs DOLLAR20.2;

/*Value of Electricity and RECs (\$/year) */ /*Formula: Value of Electricity and RECs (\$/cow/day) * Number of cows * days/year = Value of Electricity and RECs (\$/year)*/ /*Unit: \$/year*/ /*Value_Elec_And_RECs_Annual=C1250*C\$40*NatlAssum!\$C\$9*/ Value_Elec_And_RECs_Annual=Value_Elec_And_RECs * AD_Cows * day_yr; Format Value_Elec_And_RECs_Annual DOLLAR20.;

/*Value of Pipeline Natural Gas (\$/cow/day) */
/*Formula: Adjusted Pipeline-Quality Biomethane (CH4) Value (\$/cow/day)*/
/*Unit: \$/cow/day*/
/*Value_NG_Adjusted=C896*/
Value_NG_Adjusted = Adjusted_NG_Value;
Format Value_NG_Adjusted DOLLAR20.2;

/*Value of Pipeline Natural Gas (\$/year) */ /*Formula: Value of Pipeline Natural Gas (\$/cow/day) * Number of cows * days/year = Value of Pipeline Natural Gas (\$/year)*/ /*Unit: \$/year*/ /*Value_NG_Adj_Annual=C1287*C\$40*NatlAssum!\$C\$9*/ Value_NG_Adj_Annual = Value_NG_Adjusted * AD_Cows * day_yr; Format Value_NG_Adj_Annual DOLLAR20.;

/*Value of CNG and RINs (\$/cow/day) */
/*Formula: CNG (\$/cow/day) + Renewable Identification Number Value (\$/cow/day) = Value of CNG and RINs (\$/cow/day)*/
/*Unit: \$/cow/day*/
/*Value_CNG_And_RIN=C935+C1203*/
Value_CNG_And_RIN = CNG_VAlue + RIN_Value;
Format Value_CNG_And_RIN DOLLAR20.2;

/*Value of CNG and RINs (\$/year) */ /*Formula: Value of CNG and RINs (\$/cow/day) * Number of cows * days/year = Value of CNG and RINs (\$/year)*/ /*Unit: \$/year*/ /*Value_CNG_And_RIN_Annual=C1324*C\$40*NatlAssum!\$C\$9*/ Value_CNG_And_RIN_Annual = Value_CNG_And_RIN * AD_Cows * day_yr; Format Value_CNG_And_RIN_Annual DOLLAR20.;

/*Max Value of Electricity + RECs, Pipeline Biomethane, and CNG + RINs (\$/cow/day) */ /*Formula: Maximum of (Electricity + RECs Value, Pipeline Biomethane Value, and CNG + RINs Value) */ /*Unit: \$/cow/day*/

/*Max_Value_Sum=MAX(C1250,C1287,C1324)*/

Max_Value_Sum = MAX(Value_Elec_And_RECs,Value_NG_Adjusted,Value_CNG_And_RIN); Format Max_Value_Sum DOLLAR20.2;

/*Max Value of Electricity + RECs, Pipeline Biomethane, and CNG + RINs (\$/year) */ /*Formula: Max Value of Electricity + RECs, Pipeline Biomethane, and CNG + RINs (\$/cow/day) * Number of cows * days/year = Max Value of Electricity + RECs, Pipeline Biomethane, and CNG + RINs (\$/year)*/

/*Unit: \$/year*/

/*Max_Value_Sum_Annual=MAX(C1267,C1304,C1341)*/

Max_Value_Sum_Annual = MAX(Value_Elec_And_RECs_Annual,Value_NG_Adj_Annual,Value_CNG_And_RIN_Annual); Format Max_Value_Sum_Annual DOLLAR20.;

/*Max Value of Primary Products with Co-Products (\$/cow/day) */

/*Formula: */

/*Unit: \$/cow/day*/

/*Max_Value_Prod_And_CoProd=IF(C1361=C1250,\$A\$1244,IF(C1361=C1287,\$A\$1281,IF(C1361=C1324,\$A\$1318,"error")))*/

 If Max_Value_Sum = Value_Elec_And_RECs
 then Max_Value_Prod_And_CoProd = "Electricity + RECs Value";

 Else If Max_Value_Sum = Value_NG_Adjusted
 then Max_Value_Prod_And_CoProd = "Pipeline Biomethane Value";

 Else If Max_Value_Sum = Value_CNG_And_RIN
 then Max_Value_Prod_And_CoProd = "CNG + RINs Value";

 Else
 Max_Value_Prod_And_CoProd = "Error";

Format Max_Value_Prod_And_CoProd \$255.;

/*Annual Max Value of Primary Products (\$/year) */

/*Formula: */

/*Unit: \$/year*/

/*Max_Value_Prod_And_CoProd_Annual=IF(C1378=0,0,IF(C1378=C1267,\$A\$1244,IF(C1378=C1304,\$A\$1281,IF(C1378=C1341,\$A\$1318,"error"))))*/

If Max_Value_Sum_Annual=Value_Elec_And_RECs_Annual then Max_Value_Prod_And_CoProd_Annual="Electricity + RECs Value"; Else If Max_Value_Sum_Annual=Value_NG_Adj_Annual then Max_Value_Prod_And_CoProd_Annual="Pipeline Biomethane Value"; Else If Max_Value_Sum_Annual=Value_CNG_And_RIN_Annual then Max_Value_Prod_And_CoProd_Annual="CNG + RINs Value"; Else Max_Value_Prod_And_CoProd_Annual="Error"; Format Max_Value_Prod_And_CoProd_Annual \$155.;

/*Max Value of Primary Products and Co-Products (\$/cow/day)

*/

/*Formula: (Max Value of Electricity + RECs, Pipeline Biomethane, and CNG + RINs (\$/cow/day)), Organic Substrate Value (\$/cow/day) + N (Nitrogen) Recovered Value (\$/cow/day) + P (Phosphorus) Recovered Value (\$/cow/day) + K (Potassium) Recovered Value (\$/cow/day) + Nutrient Enriched Fiber Value (\$/cow/day) + GHG Offset Credits Value (\$/cow/day) = Max Value of Primary Products and Co-Products (\$/cow/day)

*/

/*Unit: \$/cow/day

*/

/*Tot_Value_Prod_And_CoProd=C1361+C818+C974+C1010+C1047+C1086+C1125*/

Tot_Value_Prod_And_CoProd =

SUM(Max_Value_Sum,Organic_Substrate_Value,N_Recovered_Value,P_Recovered_Value,Nutr_Enrich_Fiber_Value,GHG_Offset_Credit_Value); /* + K Recovered Value */

Format Tot_Value_Prod_And_CoProd DOLLAR20.2;

/*Annual Max Value of Primary Products and Co-Products (\$/year) */

/*Formula: Max Value of Primary Products and Co-Products (\$/cow/day) * Number of cows * days/year = Annual Max Value of Primary Products and Co-Products (\$/year)*/

/*Unit: \$/year*/

/*Tot_Value_Prod_And_CoProd_Annual=C1433*C\$40:C\$50*NatlAssum!\$C\$9*/

Tot_Value_Prod_And_CoProd_Annual = Tot_Value_Prod_And_CoProd * AD_Cows * day_yr;

Format Tot_Value_Prod_And_CoProd_Annual DOLLAR20.;

RUN;

PROC SORT;

BY Scenario Regions Digester_Type; RUN;

Digester Capital Cost Code

Data Dairy.MS_Results; Set Dairy.Valuation;

```
/* These are Capital Cost parmeters in the DMI model */
/* Units $/cow for each digester type
                                              */
/*If DigesterType = "Complete_Mix" Then Cap_Cost_Per_Cow = 895;*/
/*If DigesterType = "Lagoon"
                                Then Cap_Cost_Per_Cow = 600;*/
/*If DigesterType = "Plug_Flow"
                                  Then Cap_Cost_Per_Cow = 825;*/
/*Format Cap_Cost_Per_Cow DOLLAR20.;*/
/**/
/* Digester Capital Cost Modifiers - DPM = Digester Price Modifier */
/* See DMIModel.xls FWC Projections C16:f19
                                                        */
/* Units % */
/*BeddingType = "Sand";*/
/*If BeddingType = "Manure Solids" Then DPM_Sand = 0.00; /* type = 1 */*/
/*If BeddingType = "Sand" Then DPM_Sand = 0.25; /* type = 2 */ */
/*If BeddingType = "Other Organics" Then DPM_Sand = 0.00; /* type = 3 */*/
/**/
/*Backend_Trt = "Nutrient Recovery";*/
/*If Backend_Trt = "Screened Only" Then Do; */
/* DPM_Nutrient_Removal = 0.00; */
/* DPM_Nutrient_Recover = 0.00; */
/* End; /* type = 1 */*/
/*If Backend_Trt = "Nutrient Removal" Then Do; */
/* DPM_Nutrient_Removal = 0.15; */
/* DPM_Nutrient_Recover = 0.00; */
/* End; /* type = 2 */*/
/*If Backend_Trt = "Nutrient Recovery" Then Do; */
/* DPM_Nutrient_Removal = 0.00; */
/* DPM_Nutrient_Recover = 0.25; */
/* End; /* type = 3 */*/
/**/
/*DairyType = "Dry Lot";*/
/*If DairyType = "Freestall"
                                Then DPM_DryLot = 0.00; /* type = 1 */*/
/*If DairyType = "Dry Lot"
                                Then DPM_DryLot = -0.33; /* type = 2 */
```

DPM_TOT

= 1 + SUM(DPM_Sand,DPM_Nutrient_Removal,DPM_Nutrient_Recovery,DPM_DryLot);

Format DPM_SandPercent6.2;Format DPM_Nutrient_Removal Percent6.2;Format DPM_Nutrient_Recovery Percent6.2;Format DPM_DryLotPercent6.2;Format DPM_TotPercent6.2;

/* Capital Cost for the particular digester */ /* Units \$ */ Capital_Cost = AD_COWS * Capital_Cost_Per_Cow; Format Capital_Cost DOLLAR20.;

/* Capital Costs assign to construction component */ /* PCP = Pre-construction permitting */ CapCost_PCP = Capital_Cost * Pct_PreConstruction_Permitting; /* SYS = Pre-construction permitting */ CapCost_SYS = Capital_Cost * Pct_System; /* SIT = Pre-construction permitting */ CapCost_SIT = Capital_Cost * Pct_Site_Infrastructure; /* INT = Pre-construction permitting */ CapCost_INT = Capital_Cost * Pct_Integration; /* UTL = Pre-construction permitting */ CapCost_UTL = Capital_Cost * Pct_Utilities; /* ADM = Pre-construction permitting */ CapCost_ADM = Capital_Cost * Pct_Administration; /* FIN = Pre-construction permitting */ CapCost_FIN = Capital_Cost * Pct_Financing; /* CON = Pre-construction permitting */ CapCost_CON = Capital_Cost * Pct_Contingency; /* Total costs */ CapCost_TOT = SUM(CapCost_PCP,CapCost_SYS,CapCost_SIT,CapCost_INT,CapCost_UTL,CapCost_ADM,CapCost_FIN,CapCost_CON);

Format

CapCost_PCP DOLLAR20. CapCost_SYS DOLLAR20. CapCost_SIT DOLLAR20. CapCost_INT DOLLAR20. CapCost_UTL DOLLAR20. CapCost_ADM DOLLAR20. CapCost_FIN DOLLAR20. CapCost_CON DOLLAR20. CapCost_TOT DOLLAR20.

/* Capital Cost adjusted for the particular digester */ /* Units \$ */ Capital_Cost_Adj = Capital_Cost * DPM_TOT;

Format Capital_Cost_Adj DOLLAR20.;

/* Capital Costs assign to construction component using adjusted costs */ /* PCP = Pre-construction permitting */ CapCost_PCP_Adj = Capital_Cost_Adj * Pct_PreConstruction_Permitting; /* SYS = Pre-construction permitting */ CapCost_SYS_Adj = Capital_Cost_Adj * Pct_System; /* SIT = Pre-construction permitting */ CapCost_SIT_Adj = Capital_Cost_Adj * Pct_Site_Infrastructure; /* INT = Pre-construction permitting */ CapCost_INT_Adj = Capital_Cost_Adj * Pct_Integration; /* UTL = Pre-construction permitting */ CapCost_UTL_Adj = Capital_Cost_Adj * Pct_Utilities; /* ADM = Pre-construction permitting */ CapCost_ADM_Adj = Capital_Cost_Adj * Pct_Administration; /* FIN = Pre-construction permitting */ CapCost_FIN_Adj = Capital_Cost_Adj * Pct_Financing; /* CON = Pre-construction permitting */ CapCost_CON_Adj = Capital_Cost_Adj * Pct_Contingency; /* Total costs */

CapCost_TOT_Adj = SUM(CapCost_PCP_Adj,CapCost_SYS_Adj,CapCost_SIT_Adj,CapCost_INT_Adj,CapCost_UTL_Adj,CapCost_ADM_Adj,CapCost_FIN_Adj,CapCost_ CON_Adj);

Format

CapCost_PCP_Adj DOLLAR20. CapCost_SYS_Adj DOLLAR20. CapCost_SIT_Adj DOLLAR20. CapCost_INT_Adj DOLLAR20. CapCost_UTL_Adj DOLLAR20. CapCost_ADM_Adj DOLLAR20. CapCost_FIN_Adj DOLLAR20. CapCost_CON_Adj DOLLAR20. CapCost_TOT_Adj DOLLAR20. ;

/* ----- START Electrical Capital Costs ------ */

/* Electrical Generation Capital Cost Parameter, Cost per kWhr producted */
/* Units \$/kWh */
Elec_Gen_CapCost_Parm = 0.21;
Format Elec_Gen_CapCost_Parm DOLLAR20.2;
/* Capital Cost to generate Electricity */
/* Units \$ */
Elec_Gen_Cap_Cost = Electricity_Prod_kW_yr * Elec_Gen_CapCost_Parm;
Format Elec_Gen_Cap_Cost DOLLAR20.2;

/* SalePct is on the Digester Decision Tool page, I think it means how much you want to sell as opposed to reues */ /*Electrical_SalePct = 1.0;*/

/* Capital Costs apportioned to various construction components */ /* PCP = Pre-construction permitting */ Elec_Gen_Cap_Cost_PCP = Elec_Gen_Cap_Cost * Pct_PreConstruction_Permitting; /* SYS = Pre-construction permitting */ Elec_Gen_Cap_Cost_SYS = Elec_Gen_Cap_Cost * Pct_System; /* SIT = Pre-construction permitting */ Elec_Gen_Cap_Cost_SIT = Elec_Gen_Cap_Cost * Pct_Site_Infrastructure; /* INT = Pre-construction permitting */ Elec_Gen_Cap_Cost_INT = Elec_Gen_Cap_Cost * Pct_Integration; /* UTL = Pre-construction permitting */ Elec_Gen_Cap_Cost_UTL = Elec_Gen_Cap_Cost * Pct_Utilities; /* ADM = Pre-construction permitting */ Elec_Gen_Cap_Cost_ADM = Elec_Gen_Cap_Cost * Pct_Administration; /* FIN = Pre-construction permitting */ Elec_Gen_Cap_Cost_FIN = Elec_Gen_Cap_Cost * Pct_Financing; /* CON = Pre-construction permitting */ Elec_Gen_Cap_Cost_CON = Elec_Gen_Cap_Cost * Pct_Contingency; /* Total costs */ Elec_Gen_Cap_Cost_TOT = Cap_Cost_ADM,Elec_Gen_Cap_Cost_FIN,Elec_Gen_Cap_Cost_CON);

Elec_Total_Capital_Cost = Elec_Gen_Cap_Cost_TOT + Capital_Cost_Adj - Grants ;

 Elec_Gen_EQUITY
 = Elec_Total_Capital_Cost * EQUITY;

 Elec_Gen_DEBT
 = Elec_Total_Capital_Cost * DEBT;

 Elec_Gen_APR
 = FINANCE('PMT',Loan_APR,Planning_Horizon,Elec_Gen_DEBT);

Format

Elec_Gen_Cap_Cost_PCP DOLLAR20. Elec_Gen_Cap_Cost_SYS DOLLAR20. Elec_Gen_Cap_Cost_SIT DOLLAR20. Elec_Gen_Cap_Cost_INT DOLLAR20. Elec_Gen_Cap_Cost_UTL DOLLAR20. Elec_Gen_Cap_Cost_ADM DOLLAR20. Elec_Gen_Cap_Cost_FIN DOLLAR20. Elec_Gen_Cap_Cost_CON DOLLAR20. Elec_Gen_Cap_Cost_TOT DOLLAR20. Elec_Total_Capital_Cost DOLLAR20. Elec_Gen_APR DOLLAR20. Elec_Gen_EQUITY DOLLAR20. Elec_Gen_DEBT DOLLAR20. ; /* ----- END Electrical Capital Costs ------*/ /* ------ START Natural Gas Capital Costs ------ */ /* Renewable Natual Gas Generation Capital Cost Parameter, Cost per ??? producted */ /* Units \$/??? */ RNG_Gen_CapCost_Parm = 33.65; Format RNG_Gen_CapCost_Parm DOLLAR20.2; /* Capital Cost to generate renewable natural gas */ /* Units \$ */ RNG_Gen_Cap_Cost = Natural_Gas_Prod_MMBTU * RNG_Gen_CapCost_Parm; Format RNG_Gen_Cap_Cost DOLLAR20.2; /* SalePct is on the Digester Decision Tool page, I think it means how much you want to sell as opposed to reues */ /*Electrical_SalePct = 1.0;*/ /* Capital Costs apportioned to various construction components */ /* PCP = Pre-construction permitting */ RNG_Gen_Cap_Cost_PCP = RNG_Gen_Cap_Cost * Pct_PreConstruction_Permitting; /* SYS = Pre-construction permitting */ RNG_Gen_Cap_Cost_SYS = RNG_Gen_Cap_Cost * Pct_System; /* SIT = Pre-construction permitting */ RNG_Gen_Cap_Cost_SIT = RNG_Gen_Cap_Cost * Pct_Site_Infrastructure;

/* INT = Pre-construction permitting */

RNG_Gen_Cap_Cost_INT = RNG_Gen_Cap_Cost * Pct_Integration;

/* UTL = Pre-construction permitting */

RNG_Gen_Cap_Cost_UTL = RNG_Gen_Cap_Cost * Pct_Utilities;

/* ADM = Pre-construction permitting */

RNG_Gen_Cap_Cost_ADM = RNG_Gen_Cap_Cost * Pct_Administration;

/* FIN = Pre-construction permitting */

RNG_Gen_Cap_Cost_FIN = RNG_Gen_Cap_Cost * Pct_Financing;

/* CON = Pre-construction permitting */

RNG_Gen_Cap_Cost_CON = RNG_Gen_Cap_Cost * Pct_Contingency; /* Total costs */ RNG_Gen_Cap_Cost_TOT = SUM(RNG_Gen_Cap_Cost_PCP,RNG_Gen_Cap_Cost_SYS,RNG_Gen_Cap_Cost_SIT,RNG_Gen_Cap_Cost_INT,RNG_Gen_Cap_Cost_UTL,RNG_G en_Cap_Cost_ADM,RNG_Gen_Cap_Cost_FIN,RNG_Gen_Cap_Cost_CON);

RNG_Total_Capital_Cost = RNG_Gen_Cap_Cost_TOT + Capital_Cost_Adj - Grants ;

RNG_Gen_EQUITY = RNG_Total_Capital_Cost * EQUITY;

RNG_Gen_DEBT = RNG_Total_Capital_Cost * DEBT;

RNG_Gen_APR = FINANCE('PMT',Loan_APR,Planning_Horizon,RNG_Gen_DEBT);

Format

RNG_Gen_Cap_Cost_PCP DOLLAR20. RNG_Gen_Cap_Cost_SYS DOLLAR20. RNG_Gen_Cap_Cost_SIT DOLLAR20. RNG_Gen_Cap_Cost_INT DOLLAR20. RNG_Gen_Cap_Cost_UTL DOLLAR20. RNG_Gen_Cap_Cost_ADM DOLLAR20. RNG_Gen_Cap_Cost_FIN DOLLAR20. RNG_Gen_Cap_Cost_CON DOLLAR20. RNG_Gen_Cap_Cost_TOT DOLLAR20. RNG_Total_Capital_Cost DOLLAR20. RNG_Gen_APR DOLLAR20. RNG_Gen_EQUITY DOLLAR20. RNG_Gen_DEBT DOLLAR20. /* ----- END Natural Gas Capital Costs ------ */ /* ------ START CNG Capital Costs ------ */ /* CNG Generation Capital Cost Parameter, Cost per ??? producted */ /* Units \$/??? */ CNG_Gen_CapCost_Parm = 60.79; Format CNG_Gen_CapCost_Parm DOLLAR20.2; /* Capital Cost to generate Electricity */ /* Units \$ */ CNG_Gen_Cap_Cost = CNG_Prod_MMBTU * CNG_Gen_CapCost_Parm;

Format CNG_Gen_Cap_Cost DOLLAR20.;

/* SalePct is on the Digester Decision Tool page, I think it means how much you want to sell as opposed to reues */ /*Electrical_SalePct = 1.0;*/

/* Capital Costs apportioned to various construction components */
/* PCP = Pre-construction permitting */
CNG_Gen_Cap_Cost_PCP = CNG_Gen_Cap_Cost * Pct_PreConstruction_Permitting;
/* SYS = Pre-construction permitting */
CNG_Gen_Cap_Cost_SYS = CNG_Gen_Cap_Cost * Pct_System;
/* SIT = Pre-construction permitting */
CNG_Gen_Cap_Cost_SIT = CNG_Gen_Cap_Cost * Pct_Site_Infrastructure;
/* INT = Pre-construction permitting */
CNG_Gen_Cap_Cost_INT = CNG_Gen_Cap_Cost * Pct_Integration;
/* UTL = Pre-construction permitting */

CNG_Gen_Cap_Cost_UTL = CNG_Gen_Cap_Cost * Pct_Utilities; /* ADM = Pre-construction permitting */ CNG_Gen_Cap_Cost_ADM = CNG_Gen_Cap_Cost * Pct_Administration; /* FIN = Pre-construction permitting */ CNG_Gen_Cap_Cost_FIN = CNG_Gen_Cap_Cost * Pct_Financing; /* CON = Pre-construction permitting */ CNG_Gen_Cap_Cost_CON = CNG_Gen_Cap_Cost * Pct_Contingency; /* Total costs */ CNG_Gen_Cap_Cost_TOT = SUM(CNG_Gen_Cap_Cost_PCP,CNG_Gen_Cap_Cost_SYS,CNG_Gen_Cap_Cost_SIT,CNG_Gen_Cap_Cost_INT,CNG_Gen_Cap_Cost_UTL,CNG_G en_Cap_Cost_ADM,CNG_Gen_Cap_Cost_FIN,CNG_Gen_Cap_Cost_CON);

CNG_Total_Capital_Cost = CNG_Gen_Cap_Cost_TOT + Capital_Cost_Adj - Grants ;

CNG_Gen_EQUITY= CNG_Total_Capital_Cost * EQUITY;CNG_Gen_DEBT= CNG_Total_Capital_Cost * DEBT;CNG_Gen_APR= FINANCE('PMT',Loan_APR,Planning_Horizon,CNG_Gen_DEBT);

Format

CNG_Gen_Cap_Cost_PCP DOLLAR20. CNG_Gen_Cap_Cost_SYS DOLLAR20. CNG_Gen_Cap_Cost_SIT DOLLAR20. CNG_Gen_Cap_Cost_INT DOLLAR20. CNG_Gen_Cap_Cost_UTL DOLLAR20. CNG_Gen_Cap_Cost_FIN DOLLAR20. CNG_Gen_Cap_Cost_FIN DOLLAR20. CNG_Gen_Cap_Cost_TOT DOLLAR20. CNG_Gen_Cap_Cost_TOT DOLLAR20. CNG_Gen_Cap_Cost_TOT DOLLAR20. CNG_Gen_APR DOLLAR20. CNG_Gen_EQUITY DOLLAR20. CNG_Gen_EQUITY DOLLAR20. CNG_Gen_DEBT DOLLAR20. ;

/* ----- END CNG Capital Costs ----- */

Digester Balance Sheet Code

Data Ele_IS;

Set Dairy.MS_Results; Do Year = 1 to Planning_Horizon; Rev_Electric = Annual_Electricity_Value; Rev_Tipping = Organic_Substrate_Value,yr; Rev_RNG = Adj_NG_Value_Annual; Rev_CNG = Annual_CNG_Value; Rev_N = Annual_N_Recovered_Value; Rev_P = Annual_P_Recovered_Value; Rev_NEFiber = Annual_Nutr_Enrich_Fiber_Value; Rev_GHG = Annual_GHG_Offset_Credit_Value; Rev_REC = Annual_REC_Value; Rev_RIN = Annual_RIN_Value;

Exp_OM_Ele =(Electricity_Prod_kW_yr*Operation_Cost_Parameter)+(0.025*Elec_Total_Capital_Cost); Exp_OM_RNG =(Natural_Gas_Prod_MMBTU*Operation_Cost_Parameter)+(0.025*RNG_Total_Capital_Cost); Exp_OM_CNG =(CNG_Prod_MMBTU *Operation_Cost_Parameter)+(0.025*CNG_Total_Capital_Cost);

Exp_Util_Ele = Elec_Gen_Cap_Cost_UTL; Exp_Util_RNG = RNG_Gen_Cap_Cost_UTL; Exp_Util_CNG = CNG_Gen_Cap_Cost_UTL;

Depreciation_Pct = 0.30;

Exp_Depr_Ele = (Elec_Total_Capital_Cost * (1 - Depreciation_Pct)) / Planning_Horizon; Exp_Depr_RNG = (RNG_Total_Capital_Cost * (1 - Depreciation_Pct)) / Planning_Horizon; Exp_Depr_CNG = (CNG_Total_Capital_Cost * (1 - Depreciation_Pct)) / Planning_Horizon;

Exp_Loan_Ele = Elec_Total_Capital_Cost * Loan_APR; Exp_Loan_RNG = RNG_Total_Capital_Cost * Loan_APR; Exp_Loan_CNG = CNG_Total_Capital_Cost * Loan_APR;

OUTPUT;

End; Format Rev_Electric DOLLAR25. Rev_Tipping DOLLAR25. DOLLAR25. Rev_RNG Rev_CNG DOLLAR25. DOLLAR25. Rev N Rev_P DOLLAR25. Rev_NEFiber DOLLAR25. Rev_GHG DOLLAR25. Rev_REC DOLLAR25. Rev_RIN DOLLAR25. Exp_OM_Ele DOLLAR25. Exp_OM_RNG DOLLAR25. Exp_OM_CNG DOLLAR25. Exp_Util_Ele DOLLAR25. Exp_Util_RNG DOLLAR25. Exp_Util_CNG DOLLAR25.

```
Depreciation_Pct
                    Percent6.2
 Exp_Depr_Ele
                DOLLAR25.
 Exp_Depr_RNG
                  DOLLAR25.
 Exp_Depr_CNG
                 DOLLAR25.
 Exp_Loan_Ele
                 DOLLAR25.
 Exp_Loan_RNG
                 DOLLAR25.
                  DOLLAR25.
 Exp_Loan_CNG
 ;
 RENAME Nutr_Enrich_Fiber_Value = Nutrient_Enrich_Fiber_Value;
RUN;
Proc Sort ;
by Scenario Regions Digester_Type;
run;
Data Dairy.Income_Statement;
Set Ele_IS;
By Scenario Regions Digester_Type;
Format
Revenue_Electricity DOLLAR20.
Revenue_Tipping
                    DOLLAR20.
Revenue_RNG
                              DOLLAR20.
                              DOLLAR20.
Revenue_CNG
Revenue_N
                                        DOLLAR20.
Revenue_P
                                        DOLLAR20.
Revenue_NEFiber
                    DOLLAR20.
Revenue_GHG
                              DOLLAR20.
Revenue_REC
                              DOLLAR20.
Revenue_RIN
                              DOLLAR20.
Tot_Rev_Ele
                DOLLAR20.
Tot_Rev_RNG
                 DOLLAR20.
Tot_Rev_CNG
                 DOLLAR20.
Revenue_Electricity = Rev_Electric*((1+Electricity_Inflation)**year);
Revenue_Tipping
                   =
                              Rev_Tipping
                                                 *((1+Electricity_Inflation)**year);
Revenue_RNG
                              =
                                       Rev_RNG
                                                            *((1+Natural_Gas_Inflation)**year);
Revenue_CNG
                              = Rev_CNG
                                                            *((1+ CNG_Inflation)**year);
Revenue_N
                                                                      *((1+Inflation_Other)**year);
                                        =
                                                 Rev N
                                                            *((1+Inflation_Other)**year);
Revenue_P
                                        = Rev_P
Revenue_NEFiber
                    =
                             Rev_NEFiber
                                                  *((1+Inflation_Other)**year);
Revenue_GHG
                                        Rev_GHG
                                                            *((1+Carbon_Credit_Inflation)**year);
                              =
Revenue_REC
                              = Rev_REC
                                                            *((1+Inflation_Env_Credits)**year);
Revenue_RIN
                                                            *((1+Inflation_Env_Credits)**year);
                              = Rev_RIN
                = Sum(Revenue_Electricity,Revenue_REC,Revenue_GHG,Revenue_NEFiber,Revenue_N,Revenue_P,Revenue_Tipping);
Tot_Rev_Ele
                                          Revenue_RIN,Revenue_GHG,Revenue_NEFiber,Revenue_N,Revenue_P,Revenue_Tipping);
Tot_Rev_RNG
                 = Sum(Revenue_RNG,
Tot_Rev_CNG
                 = Sum(Revenue_CNG,
                                          Revenue_RIN,Revenue_GHG,Revenue_NEFiber,Revenue_N,Revenue_P,Revenue_Tipping);
Expenses_OM_Ele = Exp_OM_Ele *((1+Inflation_Other)**year);
Expenses_OM_RNG = Exp_OM_RNG *((1+Inflation_Other)**year);
Expenses_OM_CNG = Exp_OM_CNG *((1+Inflation_Other)**year);
Expenses_Util_Ele = Exp_Util_Ele *((1+Inflation_Other)**year);
Expenses_Util_RNG = Exp_Util_RNG *((1+Inflation_Other)**year);
Expenses_Util_CNG = Exp_Util_CNG *((1+Inflation_Other)**year);
```

```
Tot_Exp_Ele
               = Sum(Expenses_OM_Ele,Expenses_Util_Ele,Exp_Depr_Ele,Exp_Loan_Ele);
Tot_Exp_RNG
                = Sum(Expenses_OM_RNG,Expenses_Util_RNG,Exp_Depr_RNG,Exp_Loan_RNG);
Tot_Exp_CNG
                = Sum(Expenses_OM_CNG,Expenses_Util_CNG,Exp_Depr_CNG,Exp_Loan_CNG);
Net_Operating_Income_Ele = Tot_Rev_Ele - Sum(Expenses_OM_Ele,Expenses_Util_Ele);
Net_Operating_Income_RNG = Tot_Rev_RNG - Sum(Expenses_OM_RNG,Expenses_Util_RNG);
Net_Operating_Income_CNG = Tot_Rev_CNG - Sum(Expenses_OM_CNG,Expenses_Util_CNG);
Earning_Before_Tax_Ele = Tot_Rev_Ele - Tot_Exp_Ele;
Earning_Before_Tax_RNG = Tot_Rev_RNG - Tot_Exp_RNG;
Earning_Before_Tax_CNG = Tot_Rev_CNG - Tot_Exp_CNG;
Debt_Service_Coverage_Ele = Net_Operating_Income_Ele / -Elec_Gen_APR;
Debt_Service_Coverage_RNG = Net_Operating_Income_RNG / -RNG_Gen_APR;
Debt_Service_Coverage_CNG = Net_Operating_Income_CNG / -CNG_Gen_APR;
IRR_Parm_ELE = -Elec_Total_Capital_Cost;
IRR_Parm_RNG = -RNG_Total_Capital_Cost;
IRR_Parm_CNG = -CNG_Total_Capital_Cost ;
```

ⁱ. http://www.merriam-webster.com/dictionary/optimization

- ⁱⁱ. http://www.phoenix-int.com/
- ⁱⁱⁱ. The Planning Model is discussed in detail in appendix 1.7
- ^{iv}. http://en.wikipedia.org/wiki/Genetic algorithm