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Abstract

Pulsed-laser melting (PLM) is commonly used to achieve a fast quench rate in
both thin films and nanoparticles. A model for the size evolution during PLM of
nanoparticles confined in a transparent matrix, such as those created by ion-beam
synthesis, is presented. A self-consistent mean-field rate equations approach that
has been used successfully to model ion beam synthesis of germanium nanoparti-
cles in silica is extended to include the PLM process. The PLM model includes
classical optical absorption, multiscale heat transport by both analytical and finite
difference methods, and melting kinetics for confined nanoparticles. The treatment
of nucleation and coarsening behavior developed for the ion beam synthesis model
is modified to allow for a non-uniform temperature gradient and for interacting
liquid and solid particles with different properties. The model allows prediction
of the particle size distribution after PLM under various laser fluences, starting
from any particle size distribution including as-implanted or annealed simulated
samples. A route for narrowing the size distribution of embedded nanoparticles is
suggested, with simulated distribution widths as low as 15% of the average size.
This work is supported by the US Department of Energy under Contract No.
DE-AC02-05CH11231.

1 Introduction

Phase change materials are studied widely for high-density data storage applications; a
current system of interest is semiconductor or semiconductor-metal alloy nanoparticles
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confined in a transparent matrix[1]. Phase change applications require a method of
reliably switching the material from one phase to the other. One such method is thermal;
a fast quench from pulsed-laser melting (PLM) will produce amorphous particles while a
slower rapid thermal anneal (RTA) will cause recrystallization[1, 2, 3]. In PLM, a short
laser pulse produces rapid temperature rise in the sample, causing melting, dissolution,
and/or coarsening of the nanoparticles; a quantitative understanding of this process will
enable control and optimization of future devices.

For example, an ongoing problem in nanoscience is controlling the width of the size
distribution of nanoparticles to better measure and take advantage of size-dependent
properties. Wet chemistry methods have reached size distributions with relative width
as low as 9%[4] via “size focusing.” A similar narrowing of nanoparticles grown by other
means, including embedded particles made by ion-beam synthesis, might be achieved
by suitable heat treatments including PLM.

A quantitative model of the synthesis of semiconductor nanoparticles has been cre-
ated and shown to agree with experiment[5, 6], but PLM requires a more detailed model.
The laser absorption, heat transport, phase, size, and size distribution of the particles
are all interrelated. In particular, the melting transition and the properties of the melt
have a strong impact on the results of the process. Because PLM involves a short (e.g.
30 ns) laser pulse and nanoscale particles, observing the process in situ is experimentally
difficult. Thus, a detailed numerical simulation is desired.

Previous models of the PLM process (eg [7, 8]) have focused on thin films of semi-
conductor or metal, in which a surface layer absorbs the laser homogeneously, and heat
transport and melting are essentially one-dimensional. Dewetting and pattern forma-
tion in very thin films under PLM[9, 10] have also been observed and modeled. The
temperature evolution, melt front location, and diffusion of dopant elements are often
tracked in these models; in the current model the melt front is replaced by the numbers
of solid and liquid clusters, and diffusion is complicated by the interaction of clusters
and a matrix with low solubility.

2 Methods

A self-consistent mean-field rate equation model following[5, 6, 11] and[12, 13] is devel-
oped. The model includes implantation of ions, nucleation and growth of clusters, ion
impingement-induced fragmentation of clusters, and melting and freezing transitions.
The rate equations track a set of spatially averaged concentrations of clusters of each
possible size and phase. The effect of the laser is treated by a simple optical absorption
model and the temperature in the sample is tracked by a combination of analytical and
finite difference solutions of the heat equation.

The key physical phenomena which make PLM of embedded nanoparticles an in-
teresting problem to model are related to melting: first, melting is complicated by the
relative importance of interface energies in nanoparticles. A significant hysteresis in
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the melting/freezing point has been observed in these systems, and is explained by a
relatively simple kinetic model[14]. This melting point shift is size-dependent, so for a
significant amount of time a population of liquid particles is interacting with solid par-
ticles. This complicates the coarsening problem, as liquid particles of the same size will
have a different chemical potential than solid particles. These two related phenomena
serve to differentiate nanoparticle PLM from an ordinary macroscale coarsening prob-
lem. Additionally, the small sizes of the particles allow atom-by-atom modeling of the
growth and coarsening process.

The system modeled is germanium implanted into a 500-nm thick layer of silica on a
thick silicon substrate. An implanted layer forms at the mean implant depth of the ions
with a thickness of approximately 100 nm, starting 100 nm below the silica surface. The
volumetric dose in this layer is .004Å−3, corresponding to a 4×1016cm−2 experimental
dose. It should be noted that by assumption the model is only valid for relatively low
volume fractions of implanted material, for which the particles can be considered isolated
spheres.

The laser absorption and heat transport models will be discussed first, assuming a
distribution of particles {ns}, where s denotes the number of atoms in a cluster and
ns the number per unit volume of clusters of that size. For a discussion of the ion-
implantation portion of the model, which creates the starting distributions used here,
see [5, 6, 11]. The evolution of this particle distribution will follow in sections 2.3-2.4,
and the treatment of molten particles will be discussed last.

2.1 Light Absorption

To model the behavior during PLM, the fundamental mechanism is assumed to be
absorption of light by the nanoparticles, which causes a large temperature rise in the
sample. The silica matrix is transparent to the wavelength used for PLM, so absorption
by the silica is neglected. It is assumed that absorption happens instantaneously relative
to the time scale of the model, i.e. that the duration of electronic excitation and
nonradiative relaxation which take place on the scale of picoseconds can be neglected. To
estimate the absorption, the particles are treated as a film with equivalent volume to the
total particle volume. This reduces to a one-dimensional optics problem. The laser beam
intensity is assumed to be reduced by reflection at the air/silica and silica/germanium
interfaces, and reflection from the back surface of the Ge layer and from the Si substrate
are expected. Including all internal reflections within the Ge layer and between the Ge
and substrate surfaces, the total absorbed intensity is

Iabs = I0(1−Ra)(1−RG)(1− exp(−αGeh) + exp(−αGeh)(RGI1 + (1−RG)I2)) (1)

I1 = 1− exp(−αGeh) + exp(−αGeh)R1(RGI1 + (1−RG)I2) (2)

I2 = RS((1−RG)I1 +RGI2). (3)
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Here Ra, RG and RS are the reflectances at the air-SiO2, Ge-SiO2 and Si-SiO2 interfaces
respectively; αGe is the absorption coefficient of the germanium, h is the equivalent layer
thickness, and I0 is the incident intensity of the laser. The functions I1 and I2 describe a
beam of light bouncing within the Ge layer and within the silica layer between particles
and substrate, respectively. The total absorbed intensity thus calculated is then divided
by the equivalent layer thickness to get an average volumetric power density in effect
within each nanoparticle.

It should be noted that the equivalent layer approximation provides an upper bound
for the energy absorbed. In reality the particles are non-flat and are randomly placed
throughout the sample; reflections will be random and a full scattering solution would
be needed. Instead, a lower bound is postulated: the laser is taken to pass once through
the equivalent layer and then is dispersed. The intensity absorbed is then simply

Iabs = I0(1−Ra)(1−RG)(1− exp(−αGeh)). (4)

The different results of these two bounds will be discussed in section 3.1; fitting to future
experiments would determine which bound is more appropriate.

A small fraction of the laser energy is transmitted into the silicon substrate; this
energy is taken to be absorbed according to P (x) = ISiα exp(−αSix) and be a small
source of heat. The magnitude of ISi, the intensity entering the silicon substrate, is
calculated from the upper bound as

ISi =
I0 exp(−αGeh)(1−Ra)(1−RG)

2(1−RS)

1−RGRS − exp(−αGeh)2RG(RS +RG(1− 2RS))
. (5)

The optical properties of the germanium are temperature-dependent, especially at
the melting transition. The dielectric function changes continuously with temperature
in solid germanium[15]. At the melting transition, the reflectivity jumps discontinuously
from 55% to 65%[16], while the absorption coefficient is high enough for both hot solid
and liquid to defy measurement of the difference.

2.2 Temperature Evolution

Heat generated in the clusters absorbing laser light is conducted rapidly out of the
nanoclusters into the surrounding matrix. The implanted layer itself is flanked by layers
of unimplanted silica and then a silicon substrate on one side and air on the other. A
two-tiered model is used for the temperature evolution; first the heat transport out of
each nanoparticle is calculated on the angstrom scale and then the transport in the
various layers is calculated on a hundred-nanometer scale. The first tier is an analytical
solution to the heat equation in spherical symmetry with an effectively infinite matrix;
the second is a finite difference model of conduction and radiation in one dimension
normal to the sample surface.
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An analytical solution of the heat equation in spherical symmetry is used following[17].
The equation is solved within a spherical region of one material under a constant vol-
umetric power density surrounded by an infinite matrix of a second material with zero
power density. The temperature and heat flux are constrained to be continuous across
the interface, neglecting any contact resistance; the temperature is constrained to be
finite at r = 0 and to go to a base temperature T0 at t = 0 or r → ∞. The temperature
rise ∆T = T − T0 is given by

∆T (r ≤ R, t) =
PR2

3λ2

[
1 +

qλ
2

(
1− r2

R2

)
+

6

π
q
3/2
λ q1/2

R

r

∫ ∞

0

f(z, r, t)g(z, r)dz

]
(6)

with R the radius of the particle, P the volumetric power input, and the abbreviations

qλ =
λ2

λ1

q =
ρ2c2
ρ1c1

g(z, r) = sin
rz

R
(7)

f(z, r, t) = z−2 exp

(
− λ1tz

2

ρ1c1R2

)(
z cos z − sin z

((qλ − 1) sin z + z cos z)2 + qλq(z sin z)2

)
. (8)

The λ1, ρ1, and c1 are the thermal conductivity, density, and heat capacity of the particle
while λ2, ρ2, and c2 are those of the matrix. This solution is valid only within the particle
(r < R); the matching solution (see [17]) for r > R is here omitted for brevity.

Of course, the particle is not isolated in an infinite matrix; the sample contains many
particles close together. In the mean-field framework it is not possible to exactly cal-
culate the heat transport among the randomly-located particles. Instead the matrix is
taken to have a uniform temperature that is the spatial average of the true tempera-
ture profile. This temperature is calculated by totaling the heat transfer from all the
particles during time step ∆t and using this as a uniform power to the implanted layer,
both particles and matrix. The two power sources within the nanoparticles are taken
to superpose, so the temperature at the particle edge is that calculated by the spher-
ical solution plus that of the implanted layer. The combination of the infinite-matrix
approximation with the uniform temperature approximation is contradictory, however
heat conservation is ensured and a reasonable approximation for heat retention in the
particles is obtained without extremely computationally-intensive angstrom-scale finite
difference methods.

Because the implanted layer is not infinite in extent, there is a second heat transfer
problem; the heat in the implanted layer diffuses into the adjacent unimplanted silica,
the silicon substrate and the air. In addition, at higher temperatures radiative heat
transfer from the silica layer into the air becomes significant. The multilayered sample
geometry and the interplay of conductive and radiative heat transfer call for a finite
difference approach. Finite difference heat conduction is computed according to

∂T

∂t
= ∇ · (a∇T ) + Φ(x) (9)

5



with a(x) = λ
cρ

the thermal properties of the material at location x. Φ(x) is any volu-

metric power modified by 1
cρ
; within the implanted layer this is the power output from

the nanoparticles,

Φ(x ∈ implanted) =
1

cρ

(
P
∑
s

nsVs −
∑
s

ns

∫
Vs

cρ
∆T

∆t
dV

)
. (10)

The radiative heat loss from the silica surface is treated as another Φ. For simplicity,
the silica is approximated as a blackbody and radiative power is computed from the
Stefan-Boltzmann law

Prad = σAT 4 (11)

with σ the Stefan-Boltzmann constant and A the area emitting. In the finite difference
framework, the element at the silica surface is given a power term

Φ(xsurface) =
σT (x)4

cρ∆x
. (12)

The finite difference simulation takes boundary conditions T = T0 as x → ±∞ that
are implemented by creating large enough air and silicon layers that the temperature
rise at the simulation edges is insignificant in the simulation time and setting T (0) =
T (xmax) = T0. Thermal resistance at all interfaces is neglected, giving the additional
condition that the temperature is the same coming from either side of a boundary.

The finite difference simulation is run for multiple timesteps between each update of
the particle size distribution; though the temperature profile and the size distribution
should evolve in parallel this would be computationally costly for a very small gain in
accuracy. Absorption and transport out of the nanoparticles are also calculated on the
larger timestep, and the power to the matrix is averaged over this time. At each update
of the particle distribution, the temperature of the particles is set to that of the matrix
and the heat retained is added to the matrix power for the following timestep; because
this heat will be rapidly conducted out of the particles this approximation is reasonable.

2.3 Nucleation, Growth and Coarsening

Ions implanted into a matrix in which their solubility is low tend to precipitate into
clusters. These clusters act as sinks to which monomers diffusing through the matrix
attach. The clusters also desorb monomers to keep an equilibrium between dissolved
monomers and the cluster surface. The derivation of the rates of these two processes
follows that of [5] and [12], but accounts for the internal temperature gradients that
were not needed in previous work.

Identifying an average time between thermal desorption events from an s-cluster as
τs and a capture number σs such that Dσs⟨n1⟩ gives the rate for an s-cluster to capture
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monomers, we construct rate equations for nucleation, growth and coarsening as

d⟨n1⟩
dt

= −2Dσ1⟨n1⟩2 −D
∑
j>1

σj⟨nj⟩⟨n1⟩+ 2
⟨n2⟩
τ2

+
∑
j>2

⟨nj⟩
τj

(13)

d⟨ns⟩
dt

= Dσs−1⟨ns−1⟩⟨n1⟩ −Dσs⟨ns⟩⟨n1⟩ −
⟨ns⟩
τs

+
⟨ns+1⟩
τs+1

. (14)

The capture numbers σs and inverse desorption rates τs are in general unknown, but
can be calculated by a self-consistent mean-field method. Consider a spherical s-cluster
in a monomer field n1(r⃗, t) and a set of mean fields of j-particles ⟨nj⟩. The monomer
field follows a diffusion-reaction equation,

∂n1(r⃗, t)

∂t
= ∇ · (D∇n1(r⃗, t)) + J −Dξ−2n1(r⃗, t) (15)

where the first term covers diffusion, the second the addition of monomers to the matrix
by detachment from the set of j-particles, and the third depletion of monomers by
attachment to j-particles, where ξ is the average distance traveled by a monomer before
capture. The associations

J = 2
⟨n2⟩
τ2

+
∑
j>2

⟨nj⟩
τj

(16)

ξ−2 = 2σ1⟨n1⟩+
∑
j>1

σj⟨nj⟩ (17)

are made in equation 13, giving

d⟨n1⟩
dt

= −Dξ−2⟨n1⟩+ J . (18)

Combining equations (15) and (18) and making the definition η ≡ n1 − ⟨n1⟩,
∂η

∂t
=

∂n1

∂t
− d⟨n1⟩

dt
= ∇ · (D∇η)−Dξ−2η ≈ 0. (19)

It is assumed here that ∂n1

∂t
≈ d⟨n1⟩

dt
and n1(r) ≈ ⟨n1⟩, i.e. that the concentration of

monomers does not differ much from the average concentration.
Because the diffusion constant D = D0 exp(−Em/kT ) depends on the temperature,

which varies spatially within the sample, the simplification ∇ · (D∇n1) = D∇2n1 may
not be made as it is in [5] and [12]. The equation is not analytically solvable without
this simplification; instead, a finite-difference solution is used. To make the problem
tractable, the temperature is approximated as having a simple r−1 dependence as in the
steady state T = T0 +

PR3

3λ2r
; the calculated particle edge temperature is used instead of

PR2

3λ2
. The diffusion constant as a function of r is then

D = D0 exp

(
−Em

k(T0 +
R∆T
r

)

)
. (20)
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The object of the finite difference calculation is to identify Dσ and τ from

Js =
1

τs+1

−Dσs⟨n1⟩, (21)

with Js the flux out of an s-cluster consistent with equation (13); D is measured at the
particle surface. Two additional formulations of Js are used, an atomistic picture and
the definition

Js ≡ −4π(R′
s)

2

(
D
∂n1

∂r

)
R′

s

. (22)

The R′
s ≡ Rs + rcap is a radius defined by the physics of attachment; Rs is the physical

radius of the particle and rcap is a small additional capture radius within which monomers
can be assumed to already have crossed the energy barrier to attachment and within
which the diffusion-reaction equation (15) does not hold[12]. This is the radius which
monomers must cross to attach or detach from the particle, and so the flux at this
location is identically that of equation (21). An atomistic picture of the flux is given by

Js = 4πR2
s+1

D

a
n∞e(Γ/Rs+1) − 4π(R′

s)
2D

a
n1(R

′
s). (23)

This equation arises from 4π(R′
s)

2n1(R
′
s) total monomers populating this shell, 1/6 of

which will diffuse inward at a speed 6D/a [5]. These monomers are leaving the monomer
field. At the same time the particle is thermally desorbing monomers to maintain an
equilibrium with the matrix; the concentration of monomers at the particle surface is
n∞e(Γ/Rs+1), with n∞ the solubility at a flat surface and Γ the capillary length. Again,
1/6 of these will diffuse outward at a speed 6D/a. Equations (23) and (21) may both
be broken loosely into attachment and detachment terms; however, the division is not
exact. Equation (23) considers the monomers leaving the Rs+1 radius without consider-
ing whether they reached that location by detachment from the particle or by diffusion
through the matrix, for example. Instead, the identification is made by noting that
equation (21) has a linear dependence on ⟨n1⟩; terms with a dependence on ⟨n1⟩ belong
with Dσ while the rest belong with 1

τ
. In the case that D is constant, this identification

may be made analytically[5, 12], but otherwise the identification is made by calculating
the ⟨n1⟩-derivative of the flux Js. This is done in the finite-difference approximation by
conducting the finite difference calculation of the local monomer density outside each
particle twice using ⟨n1⟩ ± δ⟨n1⟩.

The finite difference model considers a spherically-symmetric region surrounding an
s-particle from the radius R′

s to a large R∞. The boundary condition at R′
s is a Robin

boundary condition, given by equating (22) and (23) and solving for ∂η
∂r
. The boundary

condition at R∞ is η = 0, which is the self-consistency condition

lim
r→∞

n1 = ⟨n1⟩. (24)
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The initial condition is η(r) = 0, and the integration time is sufficient to let the system
come to the steady state, i.e. ∂η

∂t
= 0.

The controlling equation (19) includes a dependence on ξ, which in turn depends on
the set {σs}. This difficulty is removed by guessing a value of ξ, then calculating {σs}
and updating ξ until the values of ξ converge. The values of σ and τ are found for each
particle size as

σs =
−1

D(R′
s)

∂Js
∂⟨n1⟩

(25)

1

τs+1

= Js +D(R′
s)σs⟨n1⟩ (26)

2.4 Melting Kinetics

The melting transition in nanoparticles is more complicated than in the bulk; a size-
dependent depression of the equilibrium melting point has been observed in free-standing
nanoparticles, while for particles embedded in a glass a large hysteresis centered on or
near the bulk melting point is observed[14, 18]. For simplicity, the volume change on
melting will be ignored; in reality this contributes a stress term to the energy balances.
Additional stress terms due to thermal expansion mismatch are also neglected. Particles
are assumed to be spherical irrespective of size, as in the absorption and desorption rates.
A thermodynamic analysis[14] of an embedded particle gives for the equilibrium melting
point depression

∆T =
3Tm

LR
(γLM − γSM) (27)

with Tm the bulk melting point, L the latent heat of melting, and γLM and γSM the
liquid-matrix and solid-matrix interface energies[14]. For the case of germanium in silica,
no equilibrium melting point depression is observed, so these two surface energies can be
taken to be equal and the bulk melting point used. A large hysteresis loop, however, is
observed[14]; this can be explained in terms of the kinetics of melting. The most likely
kinetic pathway for melting of small particles is nucleation at a surface atom followed by
propagation of a spherical cap through the particle. The free energy barrier to melting
(freezing) is given by the maximum of

∆G = V L
∆T

Tm

+ ASLγSL (28)

with V the volume of the nucleus, L the volumetric latent heat of melting, ∆T
Tm

the over-
heating ∆T = Tm − T (under-cooling ∆T = T − Tm), ASL the area of the solid-liquid
boundary, and γSL the interface energy. The nucleus volume and boundary areas are
those of a spherical lens with a contact angle of π/2 because γLM = γSM . The maximum
in this energy gives a critical nucleus size and a free energy barrier ∆G∗ to melting that
is temperature- and size-dependent. Using Boltzmann statistics and this energy barrier,
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a melting and freezing transition rate can be calculated for any given particle size and
temperature. Assuming a per-atom attempt frequency ν and that only atoms located
within an atomic diameter of the surface may participate in nucleation, the particles of
size j at temperature T have a melting transition rate of

d⟨nj,l⟩
dt

∣∣∣∣
melt

= ⟨nj,s⟩νNsurf (j) exp

(
−∆G∗(j, T )

kT

)
(29)

where ⟨nj,l⟩ and ⟨nj,s⟩ are the number densities of liquid and solid particles of size j,
respectively; Nsurf (j) is the number of atoms in a j-cluster at the surface and partici-
pating in nucleation. The temperature used is that of the relevant particle’s edge, since
nucleation begins at the surface. The kinetic framework lends itself immediately to the
rate equations model; two populations of particles, solid and liquid, interact with each
other. Each population experiences absorption and desorption as described above, in-
teracting with a shared field of monomers; the two populations interact by freezing and
melting transitions. Nucleation of 2-clusters from the shared monomer field is handled
by assigning the cluster to be liquid whenever the 2-cluster melting rate is faster than
the 2-cluster freezing rate and solid otherwise; this is equivalent to the temperature
being above or below the equilibrium melting point. The full melting and freezing rate
equations for liquid clusters s ≥ 2 are:

d⟨n2,l⟩
dt

= 2ν

(
⟨n2,s⟩e

(
−∆G∗

m(2,T )

kT

)
− ⟨n2,l⟩e

(
−∆G∗

f (2,T )

kT

))
+

{
Dσ1⟨n1⟩2, T > Tm

0, T < Tm
(30)

d⟨nj,l⟩
dt

= νNsurf (j)

(
⟨nj,s⟩e

(
−∆G∗

m(j,T )

kT

)
− ⟨nj,l⟩e

(
−∆G∗

f (j,T )

kT

))
(31)

with ∆G∗
m and ∆G∗

f the barrier to melting and freezing respectively. The rate equations
for the solid particles are given by changing subscripts appropriately and reversing the
conditional for 2-cluster formation. The final term in eq. (30) replaces the first term in
eq. (14) for 2-clusters; otherwise the equations for nucleation, growth and coarsening
(13 and 14), and melting and freezing (30 and 31) can be combined straightforwardly.

The latent heat of melting must be accounted for in the temperature evolution of the
sample, as for the experimental laser power and particle concentration the latent heat
for transforming all of the germanium is a significant fraction of the total energy input.
The latent heat is tracked by the total mass in each phase, neglecting the size effects on
the latent heat but assuming that monomers remain solid for this purpose. The energy
that goes into latent heat during each update of the particle distribution is subtracted
over the next timestep as a residual power loss to the matrix.

2.5 Melt Properties

Several properties including optical and thermal properties change upon melting; how-
ever, the most significant effect in this case seems to be the equilibrium solubility outside
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a liquid vs. a solid particle. The solubility n∞ = n0 exp(−Ef/kT ) is defined as the num-
ber of monomers in equilibrium with a flat surface of a reference state. The formation
energy Ef is the energy required to remove an atom from the reference state and place
it into the matrix; this can be considered a sum[19]

Ef = ∆Hsub +∆Eion −∆Ebinding −∆Eremainder (32)

of the heat of sublimation, the relevant ionization energy (in this case zero, as the Ge
atoms in silica should remain neutral), the binding energy of the solute to the matrix,
and a remainder energy comprising the image charge heat of formation, the electron
affinity, and other effects. The last three terms are independent of the phase of the
particle, since a thermodynamic pathway can be constructed in which the atom first
sublimates or vaporizes, then ionizes and binds to the matrix. Thus ∆Ef,melting =
∆Hvap − ∆Hsub = −∆Hmelt, the latent heat. This reduction in the formation energy
has the effect of drastically increasing the effective solubility of germanium in the matrix,
dissolving clusters.

3 Results and Discussion

The parameters used to generate these results are literature values for the properties
of germanium, silica, and silicon, unless otherwise noted. An important deviation is
that in order to decrease the computational expense, a Ge-SiO2 interface energy of 0.2
J/m2 is used as a default value to calculate the absorption and desorption rate constants
instead of a more realistic 0.7[14] to 1.5[5] J/m2. This modification has the major effect
of reducing the critical cluster size of nucleation[5], allowing particles to form at lower
overall system sizes and decreasing computation time.

The laser schedule used, mimicking typical experiments, is a 30-ns pulse at 248 nm
wavelength, with a total fluence of 0.3 J/cm2. The laser power is assumed to be constant
over the pulse time. The laser power is set to zero after 30 ns simulation time and the
system is allowed to cool. The initial temperature of the system and surroundings is
set to 300 K. Starting particle size distributions are created by an implant simulation
conducted at a constant 300 K.

The simulation under these conditions shows that the nanoparticles reach a temper-
ature exceeding 2800 K due to the large laser power and the low thermal conductivity
of the silica matrix. The temperatures of the particles vary by size and phase, with
large particles retaining more heat than small particles; the temperatures differences
between large particles, small particles, and the matrix in the implanted layer is a few
degrees K. The majority of the particles are molten after roughly 8 ns, corresponding to
a melt temperature of 1398 K; this is substantially above the bulk melting temperature
of 1210.6 K due to the kinetics of melting embedded particles. The majority of the parti-
cles are solid again 27 ns after the end of the laser pulse, corresponding to a temperature
of 1247 K; we postulate that this is due to the high desorption rate of liquid particles
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Figure 1: Evolution of the nanoparticle size distribution over time. Size distributions
are presented at the beginning of the pulse (0.1 ns), during melting (8 ns), at the end
of the pulse (30 ns), during freezing (57 ns), and after cooling (100 ns). The cutoff in
size at 1.7Å radius is single atoms.

favoring growth of the solid particles rather than melting and freezing kinetics alone. In
fact, suppressing absorption and desorption in the simulation, i.e. allowing no change
in the distribution, shows the particles freezing below the bulk melting temperature, as
expected from the kinetics. Slight plateaus in the temperature profile are observed at
melting and freezing, corresponding to the latent heat of the transformation.

Although the peak temperature in the implanted layer is very high, heat is dissipated
very quickly, and the silicon substrate remains relatively cool. Just 100 ns after the laser
pulse ends, the temperature of the implanted layer has dropped to 589 K, corresponding
with experimental evidence of a fast quench rate[3]. Because of the relatively high
thermal conductivity of silicon, the highest temperature the substrate reaches is 458
K at the surface. It is worth noting that the fast quench is not due to the matrix
remaining at a lower temperature than the particles during the pulse, but rather due to
the unimplanted silica on either side of the implanted layer remaining relatively cool.

In addition to the temperatures reached, the resulting particle size and size distri-
bution are of interest; the particle sizes affect subsequent properties. Size distributions
are here presented in radius space (rather than atoms per cluster) as probability densi-
ties, i.e. the probability that a randomly chosen particle will have a given radius. At
high temperatures, two major effects change the distribution: faster diffusion leads to
coarsening, tending to increase the average size, while higher temperatures increase the
solubility, tending to increase the number of dissolved atoms and decrease the average
size. The distribution during melting in figure 1 shows this interplay, as the initial single-
peaked distribution splits into a high single-atom peak at 1.7Å radius and a lower peak
at larger sizes. Well above the melting point, dissolution dominates, giving a single peak
at one- and two-atom clusters. As the temperature comes down through solidification,
the distribution bifurcates again (fig. 1) as small clusters start to grow while a large
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number of atoms remain dissolved; as the temperature continues to drop the clusters
coarsen while retaining the bimodal distribution shape.

3.1 Absorption bounds

Comparing the upper- and lower-bound assumptions for the laser absorption, the results
are qualitatively very similar, but the peak temperature reached using the lower bound
is just 78% of the higher bound (fig. 2a). The thermal budget is smaller, so there is
less change in the particle size distribution, and the final average particle size is smaller
(fig. 2b-d). The time spent above the melting temperature is shorter and the peak
temperature is lower, so fewer clusters dissolve completely, explaining the larger particle
size (fig. 2b) during the laser pulse and until solidification. The upper bound is used in
the remainder of the results.

3.2 Annealing

Instead of starting the PLM simulation from an as-implanted distribution, an interme-
diate rapid thermal anneal (RTA) can be added. To accomplish this, the simulation
is run with zero laser intensity, instead changing the base temperature over time. To
mimic experimental conditions, the base temperature schedule ramps linearly to the
target anneal temperature (in this case 300◦C) over the course of two seconds, holds
for six seconds, and ramps back down. This has the effect of increasing the average
particle size and changing the distribution shape from positive to negative skewness
(fig. 3). However, the resulting particle distribution after PLM is nearly identical; the
PLM final distribution seems to be independent of the input distribution. In fact, the
RTA/PLM cycle can be repeated several times, with each PLM step giving identical
results(fig. 4b), and each RTA step except the first taking an identical initial distri-
bution and thus returning an identical final distribution. This result corresponds with
recent experiments[3], which have shown that the process is repeatable in an AuGe al-
loy nanoparticle system with nanoparticles still present after ten PLM/RTA cycles, and
suggests that no significant degradation in the size distribution will occur. It should be
noted, however, that this result may be an artifact of the small interface energy; the
smaller particle size means the laser is able to “reset” the distribution to a single peak
of very small particles, while in a system with higher interface energy, some very large
particles may survive the pulse and lead to a different distribution.

The final distribution in this case is characteristic of only the laser fluence. A temper-
ature (roughly 2300 K) is reached at which both the desorption rate and the diffusivity
are high enough that the system reaches its equilibrium within a nanosecond. At the
peak temperature of 2800 K, the desorption rates are such that a 50-atom liquid particle
desorbs well over 50 atoms in 0.1 ns; the diffusion length in the same 0.1 ns is 2.8 nm,
while the particle density is just over one particle per nm3. The melt rate for the same
50-atom particle is 4.5×1012 s−1, while the freezing rate is negligible. The combined
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Figure 2: Comparison of the multiple-reflections upper bound on the laser absorption
and single-pass lower bound. Temperature profiles (a) and average radii (b) over time
for both simulations. Size distributions of the initial state, at the end of the laser pulse,
and after cooling for 70 ns for multiple absorptions (c) and single-pass (d) case.
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Figure 3: Distributions before and after PLM, starting from the as-implanted and 6-
second RTA final distributions. The distributions after PLM overlay each other.

effect of these rates is to quickly bring any starting distribution to a high-temperature
equilibrium dominated by one-, two- and three-atom clusters in a liquid state. The final
distribution then is simply a result of the cooling rate, which determines the thermal
budget for coarsening.

3.3 Laser power

Similar to reducing the laser absorption, reducing the laser power provided gives a lower
temperature profile, a smaller final particle size, and less change between the initial and
final distributions (fig. 5c). As long as the particles reach a temperature well above
the melting point, the behavior is qualitatively the same. If the particles do not melt
at all, as at 0.1 J/cm2 laser fluence, then PLM functions like a very short anneal (fig.
5e), increasing the average particle size slightly. A small amount of size distribution
narrowing is seen as the particles grow.

An intermediate laser fluence of 0.15 J/cm2 causes the particles to reach the melting
point, but due to kinetics not all of the particles melt; a small number of solid particles
survive and coarsen (fig. 5d). This results in a strongly bimodal distribution after
PLM, with a large peak below 5Å radius and a smaller peak around 13Å. This kind
of bimodal distribution provides the possibility of narrowing the size distribution as
the large number of small particles serve as a feedstock for the larger particles to grow
without cannibalizing each other as in Ostwald ripening. To explore this possibility, a
one-second RTA simulation was run starting from this output distribution; the results
are shown in figure 6. This distribution is substantially narrowed relative to the average
size, with a distribution FWHM of 14.9% of the average radius. The length of the RTA
step was chosen to give the sharpest peak, when most of the mass has transferred from
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Figure 4: Final particle size distributions during a repeated RTA (a) and PLM (b) cycle.
Results from all but the first RTA step overlay each other.
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Figure 5: Comparison of lower laser powers. Pulse time is constant and total laser
fluence is decreased from 0.2 J/cm2 (black, c) to 0.15 J/cm2 (red, d) to 0.1 J/cm2

(green, e). Temperature profiles (a) and average radii (b) are shown for each fluence.
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Figure 6: Size-focusing using fine-tuned PLM and RTA; final distribution (green) has a
FWHM just 14.9% of the average radius.

the small-particle peak to the large-particle peak but Ostwald ripening of the larger
particles has not yet had a large broadening effect.

The size distribution splitting predicted here is analogous to previous work on coars-
ening during heteroepitaxial island formation[20]. In that case, a shape transition as a
function of size caused a discontinuity in the chemical potential, which in turn caused the
transformed particles to grow quickly at the expense of the smaller particles. A narrow
size distribution resulted. In this case, the chemical potential difference is reached in
two ways: first, partial melting creates two populations of particles whose sizes diverge.
Second, even after all particles have returned to the solid state, a discontinuity exists
because of the bimodal distribution itself. While the bimodal distribution persists, Ost-
wald ripening consumes the small-particle peak without broadening the large-particle
peak, leading to a sharp overall distribution. A characteristic size can be identified for
this process as the largest particles to melt; particles smaller than this will shrink into
the small-particle peak, while larger particles will grow during cooling and form the
large-particle peak. For this simulation, the particle size for which half the particles
were liquid and half solid at the peak temperature is 174 atoms, or 9.8Åradius.

3.4 Interface Energy

Although computationally expensive, the model does allow larger particle-matrix in-
terface energies; simulations at an interface energy of 0.5 J/m2 are shown in figure 7.
Realistic interface energies are closer to 0.7[14] to 1.5[5] J/m2. The major effect of in-
creasing the interface energy in the implantation simulations is to increase the average
sizes via the critical cluster size, leading to a simple scaling law[5]; however, in the PLM
case the behavior is more complex. Although the temperature profile for a given laser
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fluence is nearly identical for different interface energies, the particle distribution con-
tinues to evolve for a longer time, necessitating a longer simulation (fig. 7b). The higher
interface energy discourages the formation of subcritical 2-atom clusters, leaving more
dissolved single atoms in the matrix over time. For a fluence of 0.3 J/cm2, the final size
distribution has changed qualitatively; the main peak at 5Å radius is fairly broad, and
there is a small peak of frozen-in monomers (fig. 7c). Additionally, there is a low, broad
peak at roughly 27Å radius, not shown. This suggests that at higher, more realistic
interface energies the final distribution becomes more bimodal or multimodal, agreeing
with experimental evidence that a Ge-Sn nanoparticle system under PLM results in
large particles surrounded by a “halo” of smaller material[1].

However, at the lower fluences that show bifurcation in the small interface energy
case, e.g. 0.15 J/cm2, the behavior is qualitatively the same: a bimodal distribution
is seen in figure 7d similar to that in 5d, although the relative heights of the peaks
are switched. Both have a shouldered peak at small sizes and a sharp peak at large
sizes. This distribution, without a following RTA step, has a FWHM just 16% of the
average radius, significant narrowing over the as-implanted 64%. This suggests that the
possibility of narrowing distributions under PLM exists at realistic interface energies.

4 Conclusion

A model of pulsed laser melting has been created which tracks the particle size dis-
tribution and various temperatures within the sample. The model includes nucleation
and growth, dissolution, and melting of the nanoparticles, as well as absorption of the
laser and dissipation of heat through the system. Ion beam synthesis and rapid thermal
annealing are also included. The results provide for comparison between possible laser
powers to fine-tune processing and correspond with experimental results regarding cy-
cling RTA and PLM steps for possible phase change material applications. In particular,
simulations modeling experimental conditions show no change in the size distribution
over multiple RTA/PLM cycles. Additionally, a route for narrowing the size distribution
of embedded particles is suggested; reducing the laser power should give a bifurcated
distribution which can be further annealed to produce a very narrow (15% width) size
distribution in embedded particles.
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Figure 7: Selected simulations at a interface energy 0.5 J/m2. PLM at a laser fluence of
0.3 J/cm2 (black, c) and 0.15 J/cm2 (red, d) are shown. Temperature profiles (a) and
average radii (b) are shown for each fluence. Compare figures 2 and 5.
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