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Abstract

A parallel finite element implementation on tetrahedral grids of the nonlinear three-dimensional
nonlinear Stokes model for the dynamics of ice-sheets is presented. Discretization is based on
a high-order accurate scheme using the Taylor-Hood element pair. Both no-slip and sliding
boundary conditions at the ice-bedrock boundary are studied. In addition, effective solvers us-
ing preconditioning techniques for the saddle-point system resulting from the discretization are
discussed and implemented. We demonstrate through established ice-sheet benchmark experi-
ments that our finite element nonlinear Stokes model performs at least as well as other published
and established Stokes models in the field, and the parallel solver is shown to be efficient, robust,
and scalable.

1 Introduction

Over the past decades, glacier and ice-sheet simulation has been a subject of growing interest be-
cause of the influential role they play in global sea-level and climate change studies [2, 5, 7, 12, 32].
Among the numerous different types of approaches employed, the three-dimensional nonlinear
Stokes ice-sheet model appears to be a widely accepted method owing to its capability for dealing
with realistic parameters and boundary conditions [14,15,19,28,30,31]. Although many numerical
methods such as finite difference, finite volume, and finite element have been utilized for ice-sheet
modeling, the question arises as to whether they are also applicable to large scale, high-resolution
simulations of realistic glaciers and ice sheets. Therefore, high-order accurate numerical approxima-
tions of the nonlinear Stokes model and parallel solvers become highly desired because the former
can greatly reduce the size of the resulting discrete system while maintaining comparable solution
accuracy relative to low-order methods and the latter can significantly reduce the computational
costs.

Given realistic data from land and space-based observatories [1,22–24], another key component
is a high-quality, adaptive, variable resolution meshing scheme that can often significantly reduce
the computational costs compared to the use of quasi-uniform grids. Numerical schemes and
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implementations on three-dimensional tetrahedral grids for ice sheet modeling are thus very welcome
due to their flexibility for adaptive computation.

In this paper, we focus on the development of a parallel high-order accurate finite element
solver for the nonlinear Stokes equation for large-scale ice-sheet modeling. The numerically stable
Taylor-Hood element pair is used for the numerical discretization of the Stokes equation, resulting
in third-order accuracy on variable resolution grids for the velocity approximation and second-order
accuracy for the pressure approximation. Note that the velocity field of the ice sheet is of great
interest in glacier or ice sheet studies so that our discretization approach is very attractive. In
the parallel solver, Message Passing Interface (MPI) is used for data communication between the
processes.

In a previous paper [34], the authors also considered three-dimensional finite element discretiza-
tion of the three-dimensional nonlinear Stokes model for ice sheets. This paper differs in several
important ways. First, in [34], only second-order accurate piecewise linear finite element discretiza-
tions are considered whereas now we consider third-order accurate discretizations. In addition,
in [34], a penalty method is used to stabilize the finite element method employed; this introduces
a nonphysical penalty parameter into the problem that not only affects accuracy, but also the
conditioning of the linear systems one has to solve. The Taylor-Hood element pair used here does
not need stabilization so that there is no need to introduce a penalty term for stabilization. More
important, in [34], only the no-slip boundary condition at the ice-bedrock boundary is considered
whereas here we consider sliding conditions as well. Thus, this paper significantly improves [34] on
using higher-order accurate discretizations result in lower computational costs and handling sliding
boundary conditions enables the use of the finite element ice-sheet model for realistic ice-sheet
applications.

The paper is organized as follows. In Section 2, we provide a short review about the nonlinear
Stokes ice-sheet model, including governing equations and boundary conditions. We also define a
variational formulation of the Stokes system which is used, in Section 3, to define high-order finite
element approximations, the corresponding discretized systems, and preconditioning techniques
used in our solution process. Next, in Section 4, we discuss a specific process for anisotropic
tetrahedral grid generation for ice sheets and the parallel implementation of the solver. In Section
5, we provide results of some validations using the established ISMIP-HOM benchmark experiments.
Performance and parallel scalability of our codes are studied in Section 6. Brief concluding remarks
are given in Section 7.

2 The nonlinear Stokes ice sheet model

2.1 Governing equations

The dynamical behavior of the ice sheet is modeled by the nonlinear Stokes equations for a viscous
fluid in a low Reynolds-number flow over the time interval (0, tmax] and in the three-dimensional
spatial domain Ωt occupied by the ice sheet. The system is considered incompressible so that the
kinematic equation, also known as the divergence-free condition, is included as well:

ρ
du

dt
= ∇ · σ + ρg in Ωt × (0, tmax] (1)

∇ · u = 0 in Ωt × (0, tmax], (2)

where u = (u1, u2, u3)T denotes the velocity, σ is the full stress tensor, ρ is the density of ice, and
g = (0, 0,−‖g‖) denotes the gravitational acceleration, respectively. σ can be decomposed in terms
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of deviatoric stress τ and the static pressure p as

σ = τ − pI or σij = τij − pδij , (3)

where p = −1
3 tr(σ), δij denotes the Krönecker delta tensor, and I the unit tensor. Assuming that

the entire material derivative du
dt is neglected in (1) (because the time scale of variations of the

velocity and pressure fields is large), we obtain the instantaneous momentum balance equation

−∇ · τ +∇p = ρg in Ωt × (0, tmax]. (4)

The strain rate tensor ε̇u is then the function of displacement speed defined as

(ε̇u)ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5)

The constitutive law for ice relates the deviatoric stress τij to the strain rate tensor ε̇ij by the
generalized Glen’s flow law [25,29]

τ = 2ηuε̇u (6)

with

ηu =
1

2
A−1/nε̇(1−n)/n

e , (7)

where n is the power-law exponent, ηu is the temperature- and strain rate-dependent rheology
coefficient (referred to as the effective viscosity), A denotes the deformation rate factor (Glen’s flow
law), and ε̇e is the effective strain rate defined as

ε̇e =

√
1

2
ε̇u : ε̇u =

√
1

2

(
(ε̇u)2

11 + (ε̇u)2
22 + (ε̇u)2

33 + 2(ε̇u)2
12 + 2(ε̇u)2

23 + 2(ε̇u)2
31

)
. (8)

If the system is assumed to be isothermal, then A is a spatially uniform constant.1 Obviously, the
constitutive relationship is a function of the strain rate. In general, it is typically assumed as a
thermodynamic quasi-steady-state during the Stokes solution process.

If the top surface of the ice-sheet is allowed to evolve in time, then a prognostic equation
describing the evolution of that free surface should also be included. The ice-sheet domain Ωt at a
time t can be defined as

Ωt = {(x, y, z) | zb(x, y) ≤ z ≤ zs(x, y, t) for (x, y) ∈ ΩH , t ∈ [0, tmax]}, (9)

where ΩH denotes the horizontal extent of the ice sheet, zs(x, y, t) defines the top surface elevation,
zb(x, y) defines the fixed bottom surface of the ice sheet. We denote the top surface as Γs and the
bottom surface as Γb. In general, zb(x, y) 6= zs(x, y, t) along the boundary of ΩH so that the ice
sheet also has a lateral boundary Γ`.

We impose a kinematic boundary resulting in the free surface equation:

∂zs
∂t

+ u1(zs)
∂zs
∂x

+ u2(zs)
∂zs
∂y
− u3(zs) = b(zs, t) on Γs, (10)

where b(zs, t) represents the surface mass balance and Γs the top surface of the ice sheet. If the
surface accumulation/ablation is zero, one usually sets b = 0.

1Otherwise, A is a temperature dependent. It obeys an Arrhenius relation defined by

A = A(T ) = a exp (−Q/RT ) ,

where a is an empirical flow constant often used as a tuning parameter, Q denotes the activation energy, R the
universal gas constant, and T the absolute temperature measured in degrees Kelvin [34].
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2.2 Boundary conditions

At the top surface of the ice sheet, we impose the boundary condition

σ · n = −patm · n on Γs, (11)

where n denotes the outer normal vector of the ice sheet boundary and patm the atmospheric
pressure. Along the lateral boundary Γ` we impose one of three types of boundary conditions; a
condition such as (11), a no-slip condition u = 0, or periodic boundary conditions. The bottom
surface of the ice sheet can be decomposed into two parts, Γb,fix and Γb,sld, where Γb,fix denotes
the part that is fixed to the bottom bedrock and Γb,sld the part that is allowed to slide. Thus, we
obtain the following conditions:

u = 0 on Γb,fix (12)

which is referred to as the no-slip boundary condition and

u · n = 0 and n · σ · t = −β2u · t on Γb,sld (13)

which is referred to as the Rayleigh friction boundary condition. The parameter β2 denotes a given
sliding coefficient and t denotes any unit vector tangential to the bottom surface. Note that the
negative sign in (13) implies that the direction of the friction force is opposite to that of the velocity.

2.3 Variational formulation

Finite element discretizations are based on variational formulations of the partial differential equa-
tion system; in this section we derive a variational formulation of the Stokes system (1)-(2).

Let L2(Ωt) denote the space of square-integrable functions with respect to Ωt and let H1(Ωt) =
(H1(Ωt))

3, where H1(Ωt) denotes the subspace of L2(Ωt) consisting of functions whose first deriva-
tives also belong to L2(Ωt). Multiply (1) by a test function v ∈ H1(Ωt), then integrate the result
over Ωt, and the integrating by parts results in∫

Ωt

τ : ∇v dx−
∫

Ωt

p∇ · v dx−
∫

Γ
n · σ · v ds = ρ

∫
Ωt

g · v dx, (14)

where Γ = Γs ∪ Γb ∪ Γ` and τ : ∇v denotes the sum of the element-wise products of the tensors τ
and ∇v. Note that, because ∇ · u = 0, we obtain∫

Ωt

τ : ∇v dx =

∫
Ωt

2ηuε̇u : ε̇v dx. (15)

Note that n · σ = −patmn on Γs so that∫
Γs

n · σ · v ds =

∫
Γs

−patmn · v ds. (16)

Here we simply set patm = 0. With this simplification, we also have∫
Γ`

n · σ · v dx = 0, (17)

where, depending on what type of boundary condition we impose along the lateral boundary Γ`,
we also require the test function v to satisfy v|Γ`

= 0 (for the no-slip boundary condition) or v
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periodic (for the periodic boundary condition). If we further restrict v such as v|Γb,fix
= 0, then

we also have ∫
Γb,fix

n · σ · v ds = 0. (18)

On the bottom sliding boundary Γb,sld, because u · n = 0, we can naturally require the test
function to satisfy v · n = 0. Together with the friction law n · σ · t = −β2u · t, we then have that

−
∫

Γb,sld

n · σ · v ds =

∫
Γb,sld

β2u · v ds. (19)

Let
H̃(Ωt) = {u ∈ H1(Ωt) | u|Γl∪Γb,fix

= 0, (u · n)|Γb,sld
= 0}.

Note that functions in H̃(Ωt) satisfy homogeneous boundary conditions on the indicated parts of
the boundary.

Substituting (15)-(19) into (14), we obtain the weak formulation of the nonlinear Stokes model
(1)-(2): seek u ∈ H̃(Ωt) and p ∈ L2(Ωt) such that

∫
Ωt

2ηuε̇u : ε̇v dx +

∫
Γb,sld

β2u · v ds−
∫

Ωt

p∇ · v dx = ρ

∫
Ωt

g · v dx

−
∫

Ωt

q∇ · u dx = 0
(20)

for all v ∈ H̃(Ωt) and q ∈ L2(Ωt). If the free surface equation (10) is used to evolve the ice sheet,
then its weak form is to find zs ∈ H1(ΩH), such that∫

Γs

∂zs
∂t

ψ ds =

∫
Γs

(
u3 − u1

∂zs
∂x
− u2

∂zs
∂y

+ b

)
ψ ds, for all ψ ∈ H1(ΩH). (21)

In practical simulations, we have to divide the time interval [0, tmax] into K subintervals
{[tk−1, tk]}Kk=1, where tk = k∆t and ∆t = tmax/K. Then, a semi-discrete (in time) variational
problem using the forward Euler scheme is to seek zk+1

s on Γs,tk such that∫
Γs,tk

zk+1
s ψ ds =

∫
Γs,tk

zksψ ds+

∫
Γs,tk

∆t

(
uk3 − uk1

∂zks
∂x
− uk2

∂zks
∂y

+ bk
)
ψ ds, (22)

k = 0, 1, · · · ,K − 1,

where zks denotes the top surface height at time tk, b
k the surface accumulation/ablation at tk, Γs,tk

the top surface of the ice sheet at tk, and z0
s is given as an initial condition.

3 High-order accurate finite element approximation

3.1 Discretized system by finite elements

Let Th be a tetrahedral triangulation of the ice domain Ωt. Here, h is a measure of the spatial
grid size, e.g., the maximum diameter of any of the tetrahedral elements. Now, we spatially
discretize the variational form of the Stokes equation (20). The finite element space P1,h(Th) used
for approximating the pressure consists of functions that, within each tetrahedral element, is a
linear polynomial, e.g., in x, y, z space, they are functions of the form a0 + a1x + a2y + a3z for
constants ai, i = 0, . . . , 3. Such functions are uniquely determined by their values at the four
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vertices of a tetrahedral element. For approximation of the components of velocity, we instead use
a higher-order finite element space, P2,h(Th) that consists of quadratic polynomials inside each of
the tetrahedra, e.g., in x, y, z space, they are functions of the form b0 + b1x + b2y + b3z + b4x

2 +
b5y

2 + b6z
2 + b7xy + b8yz + b9zx for constants bi, i = 0, . . . , 9. These functions can be uniquely

determined by their values at the four vertices and the six midsides of the edges of a tetrahedron.
See Figure 1 for an illustration. In addition, the functions in both P1,h and P2,h are required to
be continuous across element faces. This pair of elements for discretizing the Stokes equation is
referred to as the Taylor-Hood element pair and satisfies the LBB stability condition (or inf-sup
condition) [13] required for stable approximations. We then define the constrained space (in case
the lateral boundary condition is a no-slip boundary condition)

P̃2,h(Th) = {uh ∈ (P2,h(Th))3 | uh|Γl∪Γb,fix
= 0, (uh · n)|Γb,sld

= 0}. (23)

Figure 1: The Taylor-Hood (P2-P1) element.

Thus, given Ωt and Th, we seek functions uh ∈ P̃2,h(Th) and ph ∈ P1,h(Th) such that
∫

Ωt

2ηuh
εuh

: εvh
dx +

∫
Γb,sld

β2uh · vh ds−
∫

Ωt

ph∇ · vh dx = ρ

∫
Ωt

g · vh dx

−
∫

Ωt

qh∇ · uh dx = 0
(24)

for all vh ∈ P̃2,h(Th) and qh ∈ P1,h(Th).
We use a direct Picard-type iterative algorithm to solve the nonlinear system (24), i.e., the

variables used for evaluation of the velocity-dependent viscosity ηu for the j-th step are taken from
the (j − 1)-th iteration step of the algorithm as follows:

∫
Ωt

2η
u
(j−1)
h

ε
u
(j)
h

: εvh
dx +

∫
Γb,sld

β2u
(j)
h · vh ds−

∫
Ωt

p
(j)
h ∇ · vh dx = ρ

∫
Ωt

g · vh dx

−
∫

Ωt

qh∇ · u
(j)
h dx = 0

(25)

and, finally, set uh = u
(j)
h when satisfactory convergence is achieved. The finite element approxi-

mation (25) produces, at each iteration, a symmetric saddle point problem of the type(
F BT

B 0

)(
~u
~p

)
=

(
~r
0

)
. (26)
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Thus, we only need an efficient linear system solver. We expect that this nonlinear solver is linearly
convergent with a contraction constant n−1

n , where n denotes the exponent in the Glen’s flow law.
It is known that the error of such approximation is of third-order accuracy in the velocity u (i.e.,
O(h3)) and of second order accuracy in the pressure p (i.e., O(h2)) [3].

For the approximation of the top surface zs(x, y, t) during evolution, we use the linear finite
element space P1,h(Qh) consisting of continuous piecewise linear polynomials defined with respect
to the two-dimensional triangular triangulation Qh of the horizontal extent of the ice sheet, i.e.,
of ΩH . Note that we assume that ΩH is fixed. Then, the fully discretized (in time and space)
free-surface equation can be described as follows: for k = 0, 1, . . . ,K − 1, given uh,k, we solve
zs,h ∈ P1,h(Qh)∫

Γs,tk

zk+1
s,h ψh ds =

∫
Γs,tk

zks,hψh ds+

∫
Γs,tk

∆t

(
vk3 − vk1

∂zks,h
∂x
− vk2

∂zks,h
∂y

+ bk

)
ψh ds (27)

for all ψh ∈ P1,h(Qh). Once uk has been determined, we can easily update the elevation of the
top surface zk+1

s,h and thus determine the new domain Ωtk+1
. Note that at each time step, after the

computation of surface elevation, the grid points should be redistributed according to the surface
movement to avoid distortion.

3.2 Implementation of the sliding boundary constraints

A remaining important problem is how to handle the sliding boundary conditions. Let us assume
the degree of freedom (DOF) in velocity is 3M , where M is the number of grid points for velocity,
and rewrite the velocity vector ~u in (26) in the form of

~u =

 u1
...

uM


with ui = (ui,1, ui,2, ui,3)T . Constraints need to be imposed on Γb,sld such that

ni · ui = 0, for all i ∈ σb,sld, (28)

where σb,sld denotes the set of indices of the DOF of u that lie on the sliding boundary Γb,sld and
ni denotes the outer normal of the surface corresponding to the i-th DOF.

For each DOF i ∈ σb,sld on the sliding boundary, a local coordinate system is built with one
surface normal vector ni and two orthonormal surface tangential vectors t1

i and t2
i . Define the 3×3

transformation matrix
Ti = (ni, t

1
i , t

2
i ).

As for the DOF that do not lie on the sliding boundary, define the corresponding transformation
matrix to be the 3 × 3 identity matrix I, i.e., Ti = I if i /∈ σb,sld. Then, we obtain a global
transformation matrix for all i,

T =

 T1

. . .

Tm

 .

Note that T TT = I. Inserting T into the linear system (26), we have(
F̃ B̃T

B̃ 0

)(
~̃u
~p

)
=

(
~̃r
0

)
(29)
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where
F̃ = TFT T , B̃ = BT T , ~̃u = T~u, ~̃r = T~r.

Now let us take ~̃u as unknowns. Note that

(~̃u)i = (ni · ui, t1
i · ui, t2

i · ui)T = (0, t1
i · ui, t2

i · ui)T ∀ i ∈ σb,sld.

Thus, we can simply apply zero Dirichlet boundary condition on the first component of each (~̃u)i.

After solving (29) for ~̃u, we simply set ~u = T T (~̃u).

3.3 Linear solvers and preconditioning

The linear system (29) is a saddle point problem and is often very ill-conditioned, thus a precondi-
tioning process is needed. Considering the block factorization of the coefficient matrix(

F̃ B̃T

B̃ 0

)
=

(
I 0

B̃F̃−1 I

)(
F̃ B̃T

0 −S

)
, (30)

where S = B̃F̃−1B̃T is the Schur complement. We use the upper triangular factor

M−1 =

(
F̃−1 B̃T

0 −S−1

)
(31)

as the right preconditioner. Because the Schur complement S involves solving F̃−1, we replace
it by a weighted mass matrix Ŝ := Mµ, where (Mµ)i,j =

∫
Ωt
µ−1φi, φjdx1dx2dx3 and φi denotes

a pressure basis function. For varying viscosity, the resulting matrix is spectrally equivalent to
the Schur complement [26, 27]. This preconditioner is very effective when the sub-problem F̃−1 is
solved exactly, but of course we can only solve F̃−1 iteratively, and in that case, the preconditioner
is highly sensitive to the residual of the F̃−1 solve. We will regard the F̃−1 solve as the inner
iteration and the GMRES solve as the outer iteration for the solution of (30).

A solver for the sub-problem F̃−1 should at least handle the following three obstacles properly:

1. anisotropy – the computing grid could have very thin shaped elements, e.g., with aspect ratio
up to 100;

2. highly variable viscosity – the viscosity across the computing domain could differ by factor of
1000;

3. symmetric gradient – the equation uses the symmetric gradient ∇u +∇uT so that the sub-
problem is a linear elasticity problem and not a Poisson problem.

The Algebraic Multigrid (AMG) method [4] solver is a reasonable choice for the F̃−1 because
it can handle highly variable coefficients and anisotropy nicely; further, it is a very efficient solver
for linear elasticity problem if a proper strategy is used. Geometric multigrid methods probably
also could play a role here because techniques such as semi-coarsening and line smoothing are quite
effective for anisotropic problems. However, in the case of ice-sheet modeling, the highly variable
viscosity is the main difficulty that has to be overcome by using operator-dependent interpolation
and Galerkin coarse grid operator, and these techniques all fall into the AMG category.

Parallel AMG solver BoomerAMG from the hypre package [9] was used in our parallel im-
plementation. BoomerAMG has a great flexibility to choose between various parallel coarsening
strategies and different interpolation operators. The setting of AMG greatly affects the efficiency
of the solver; choices of AMG settings for different problems are studied in Section 6.
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4 Grid generation and parallel implementation

Due to the high aspect ratio of the ice sheet which results in a high aspect ratio grid, some special
treatment during the generation of the tetrahedral grids is needed to avoid bad-quality elements.
Our approach is to first generate a high-quality, two-dimensional triangular grid for the horizontal
extent of the ice sheet ΩH . The two-dimensional grid is then transformed to a three-dimensional
surface triangular grid for the top surface of the ice sheet by adding the z-coordinate obtained from
the topography of the bedrock plus the ice thickness. We then produce a fully three-dimensional
prismatic mesh of the ice sheet domain Ωt by mapping the surface meshes linearly along the z-
direction down to the bedrock. Finally, we obtain a tetrahedral grid of the ice sheet by decomposing
each of the prismatic elements into three tetrahedra.

During the surface evolution, after the computation of top surface elevation zs, the grid points
should be redistributed according to the surface movement to avoid distortion. Linear or nonlinear
elasticity analogs could be used to deform the mesh. However, for simplicity, a linear mapping is
applied to determine the z-coordinates of the mesh vertexes. The governing equation reads,

∂Z

∂z
= 1 on Ωt

Z = zs on Γs
Z = zb on Γb,

(32)

where Z denotes the z-coordinate of the mesh vertices. If the initial mesh is uniform in the z
direction at each horizontal grid point, this linear mapping ensures that subsequent meshes are
likewise uniform in the z direction.

Parallel computations often apply a divide and conquer strategy to solve large-scale problems.
In our parallel solvers, we used the preconditioned GMRES method for solution of the linear system
and adopted the domain decomposition method (DDM) [10, 33] for construction of the coefficient
matrix and the local preconditioning on distributed computer processors. The finite element meshes
are first partitioned into a number of sub-meshes whose number is consistent with the number of
processors to be used in the parallel calculation. This results in dividing the computing domain
Ωtk at the time step tk into interconnected sub-domains. By doing so, the original large-scale
computing problem is decomposed into a group of relatively simpler and smaller problems on
different processors. Our grid partitioning is done only in the horizontal direction using ”METIS”,
a family of multilevel mesh partitioning algorithms [17]; see Figure 2 for an illustration.

Figure 2: Partition of a sample tetrahedral grid into 32 subgrids. Left: two-dimensional view from
the top; right: three-dimensional view.
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The large, sparse linear systems arising from the finite element discretization may have mil-
lions of unknowns in order to obtain high-resolution in the numerical simulations. Solving such
large-scale systems is a challenging task due to the high demand on computing power and memory.
Iterative solution techniques for massive linear systems based on Krylov subspace methods (such
as GMRES and conjugate gradient methods) as well as preconditioning techniques (such as block,
multi-grid, and incomplete LU factorization preconditioners [18]) are commonly used because the
Krylov subspace iteration methods require only matrix-vector products. Message Passing Interface
(MPI) is taken as the parallel environment. We use the GMRES method together with the block
and Algebraic Multi-Grid (AMG) preconditioning techniques for the solution of (29) in our imple-
mentation; in particular, the popular software package PETSC (http://www.mcs.anl.gov/petsc/)
is employed in our parallel implementation due to its reliability and robustness. Some detailed
discussions are given in Section 6. We also would like to note that, for the above horizontal parti-
tioning, parallel coarsening using AMG will have fewer difficulties in handling the inter-processor
boundary and data communication.

5 ISMIP-HOM benchmark tests

We tested our parallel, high-order accurate FEM nonlinear Stokes ice-sheet model using the ISMIP-
HOM Benchmark problems [30]. There are six experiments (Experiments A-F) in this Benchmark
suite [30]. For all experiments, because the horizontal extent of the ice sheet ΩH is a rectangle,
we used tetrahedral grids produced from a uniform two-dimensional structured triangular meshes
so that periodic boundary conditions in the lateral boundaries can be easily applied. We use the
parameters given in [30] for the ice sheet; see Table 1.

Name Symbol Value Units

Deformation rate factor A 10−16 (Exp. A-E) Pa−na−1

2.140373× 10−17 (Exp. F)

Power law exponent n 3 (Exp. A-E) –
1 (Exp. F)

Ice density ρ 910 kgm−3

Table 1: Parameters and constants for ISMIP-HOM benchmark experiments for the nonlinear
Stokes ice sheet modeling.

5.1 Experiments A and B: ice flow with no-slip basal boundary condition

Experiment A considers ice flow over a bumpy bed in an idealized geometry, i.e., we have a parallel-
sided slab of ice having a mean thickness of 1000m lying on a sloping bed with a mean slope
α = 0.5◦. The basal topography of the ice sheet is then defined as a series of sinusoidal oscillations
with an amplitude of 500m:

zb(x, y) = zs(x, y)− 1000 + 500 sin(ωx) sin(ωy) (33)

with the top surface is given by
zs(x, y) = −x tan(α). (34)

Here, (x, y) ∈ [0, L]× [0, L]. Note that the basal bumps have a frequency of ω = 2π/L. The no-slip
boundary condition u = 0 is imposed at the bottom boundary of the ice sheet (thus Γb,sld = ∅).
On the lateral boundaries, periodic boundary conditions are imposed.
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The set-up for Experiment B is the same except that the basal topography does not vary in y,
i.e., we have

zb(x, y) = zs(x, y)− 1000 + 500 sin(ωx) (35)

so that in this case we have ice flow over a rippled bed.
The ice-sheet length L is set to increase by a factor of two in each successive experiment,

starting L = 5 km and ending L = 160 km.2 Our numerical simulation results for the surface
velocity components at different length scales for Experiments A and B are shown in Figures 3 and
4, respectively; 16 processors and a grid of 192,000 tetrahedra resulting from a 40×40×20 structured
prismatic mesh was used. An obvious improvement of the high-order numerical scheme vs. the
low order ones even can be visually seen in the velocity component u2 in Figure 4 (Experiment B).
Although u2 in this experiment is very small compared with u1 and u3 as expected, a clear pattern
of u2 is shown in our high order accurate simulations while not in the results of [34] which used a
low-order linear finite element approximations.

Our results match very well with the results of [11] which also used a Stokes finite element
simulation but with a finer 60× 60× 30 mesh for Experiment A and 240× 120× 30 for Experiment
B. The norm of surface velocity across the bump at y = L/4 is shown and compared with the
reference solution from [11] in Figures 5 and 6.

5.2 Experiments C and D: ice-stream flow and basal sliding condition

Experiments C and D consider the case of ice-stream flow and basal sliding conditions. The
geometry setup of the ice sheet in Experiment C is similar to Experiment A except that α = 0.1◦

and the basal topography is flat, i.e.,

zb(x, y) = zs(x, y)− 1000. (36)

Periodic boundary conditions are still imposed on the lateral boundaries, but on the bottom surface
a basal friction boundary condition is imposed everywhere (thus Γb,fix = ∅) with

β2(x, y) = 1000 + 1000 sin(ωx) sin(ωy). (37)

The setup of Experiment D is the same as Experiment C except that the basal friction coefficient
is set to

β2(x, y) = 1000 + 1000 sin(ωx). (38)

Simulation results for the surface velocity components at different length scales for Experiments
C and D are shown in Figures 7 and 8, respectively, using the same grid (except the elevation in
the z direction) as that used for Experiments A and B. The norm of surface velocity across the
bump at y = L/4 is shown and compared with the reference solution in Figures 9 and 10. Again,
our results match the results in [11].

5.3 Experiment E: Haut Glacier d’Arolla

Experiment E is a diagnostic experiment along the central flowline of a temperate glacier in the
European Alps (Haut Glacier d’Arolla). The basic experiment and geometry is described in [6].
Input for the model is formed by the longitudinal surface and bedrock profiles of Haut Glacier
d’Arolla, Switzerland. The longitudinal profile of this glacier has a very simple geometry; see
Figure 11.

2As we move towards the shorter wavelengths, it successively pushes the “higher-order” parts of the model harder
and harder (i.e., they contribute relative more to the stress balance), whereas at the longest wavelength, the solution
for the model is essential the same as that for an SIA model [30].
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We run Experiment E for two different basal boundary conditions: (I) without sliding zone,
i.e., the no-slip condition u = 0 (or say β2 = +∞) is imposed on the basal boundary; (II) with a
sliding zone defined by

β2 =

{
0 if 2200m ≤ x ≤ 2500m
+∞ otherwise.

(39)

For both cases, zero velocity conditions are imposed on the lateral boundary in the x direction and
periodic boundary conditions are imposed in the y direction.

Two different grids are generated using the dataset of the Haut Glacier d’Arolla longitudinal
profile, which has 51 points of location, bedrock elevation and surface elevation. The first grid,
denoted by E 1 10, uses only one interval between the dataset points of the geometry from the
profile, whereas the second grid uses 10 intervals, denoted by E 10 10, and both grids have 10
layers in vertical direction. The mesh vertex coordinates between dataset points were generated
using linear interpolation. Although linear interpolation would result in oscillation of the solution,
it defines an unique region to carry out the experiments; besides, it could represent the situation in
which there is indeed some discontinuities in geometry. For other applications, as suggested in [11],
smoother interpolation such as Nonuniform Rational B-Splines (NURBS), could be chosen.

Simulation results of Arolla flow without sliding zone are shown in Figures 12 (left) and 13.
The surface velocities for both grids are quite smooth and show good agreement with the reference
solution, but the basal sheer stresses and the pressure differences show certain oscillations and
roughly match the reference solution, especially for the coarse grid case. One interval between
two dataset points is not enough; higher resolution is clearly needed to capture all the features.
The solution on the fine grid E 10 10 is smooth between two dataset points, however, near the
dataset points sudden changes still appear. We can conclude that the solution, especially to high
order accurate models such as the model proposed here, is quite sensitive to the geometry; rough
boundary descriptions such as linear interpolation on the boundary could lead to solutions with
small oscillations.

The results of Arolla flow with a sliding zone are shown in Figures 12 (right) and 14. Because
this experiment includes a sliding zone, a singularity could appear near the singular points where
friction parameter β2 suddenly change from zero to infinity. The results using the coarse grid E 1 10
are inaccurate; as we can see, the velocity is relatively smaller and the peak of the basal stress and
pressure difference is smoothed out. The results using the fine grid E 10 10 show agreement with
the reference solution for the surface velocity. Strong singularities of the basal stress and the
pressure difference appear near the singular points; we believe that adaptively locally refined grids
or isoparametric elements can be used to resolve this issue.

5.4 Experiment F: a prognostic example

Experiment F is a prognostic example for which the top surface is allowed to evolve in time according
to equation (10) until a steady state is reached, i.e., zero surface mass balance holds such that

lim
t→+∞

∂zs
∂t

= 0. (40)

A slab of ice with mean ice thickness H(0) = 1000m is considered, lying on a sloping bed with
a mean slope α = 3.0◦. This slope is maximum in x and zero in y. The initial top surface elevation
is

z(0)
s (x, y) = −x tanα (41)
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and the bedrock plane zb is parallel to the initial top surface plane and is perturbed by a Gaussian
bump such that

zb(x, y) = −H(0) − x tanα+ γ0e
−(x2+y2)/σ2

(42)

with γ = 0.1H(0) and σ = 10H(0). The horizontal domain of the ice sheet is taken to be a square
[−L/2, L/2] × [−L/2, L/2] with size L = 100H(0). It is also assumed that there is no surface
accumulation/ablation. Periodic boundary conditions are applied in the horizontal directions and
a sliding boundary condition is imposed on the bottom with

β2 = (cAH(0))−1. (43)

We test two cases for Experiment F: (I) non-slippery case, i.e., c = 0, and (II) slippery case with
c = 1. Note that in this experiment, because n = 1, the effective viscosity is constant and is given
by ηu ≡ (2A)−1 so that the Picard iteration is not needed.

The time dependent model is run using our parallel implementation, again on the same tetra-
hedral grid (except for the elevation in the z direction) as for Experiments A and B with a time
step of 5 years. We also note the z-coordinates of the grid points are recalculated at each time step
to maintain the mesh quality as mentioned in Section 4. In our test, a steady state is assumed to
be reached if the change of the top surface elevation between two time steps is small enough, e.g.,
less than 10−2m. From our simulation, the time it takes for the thickness of the ice sheet to be
stabilized in the non-slippery case and slippery case are about 375 and 1245 years, respectively.
The steady state results and convergence history are shown in Figures 15, 16, and 17. Our results
show good agreement with the two reference solutions in [11] and [20].

6 Performance and scalability

Our parallel high-order FEM solver worked very well with all experiments. The stopping criterion
for the GMRES method is set to 1.0e-9 and that for the Picard iteration to 1.0e-4. We first
present tests of the performance of the preconditioned GMRES linear system solver. A grid of
192,000 tetrahedra was produced from a starting structured prismatic mesh with a 40 × 40 × 20
decomposition of the domain; the number of DOF for the discretized system is 827,604. For
different experiments, three different AMG parameter settings were used, as listed in Table 2; the
first setting was also used by Burstedde in [8, 21]. Because the AMG solver serves in the inner
iteration, the most time consuming part of AMG in our test is the cycling. Settings of the AMG
solver and numbers for inner iterations used in our experiments are listed in Table 3, and numbers
for the outer GMRES iterations are listed in Table 4.

Parameter Setting No. a b c

Coarsening PMIS PMIS Falgout
Interpolation extended extended classical
Truncation factor 0.3 0.3 0.
Strong threshold 0.5 0.9 0.5
Max entries per row for interp 5 5 0
Number of Functions 3 3 1
Coarsest Relax Type direct direct direct

Table 2: The BoomerAMG parameter settings used in our parallel solver.
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Length Scale Exp. A Exp. B Exp. C Exp. D

L = 5km a,1 a,1 c,3 c,3
L = 10km a,1 a,1 c,3 c,6
L = 20km a,1 a,1 c,3 c,6
L = 40km a,1 b,1 c,3 c,6
L = 80km a,1 b,1 c,3 c,6
L = 160km a,1 b,1 c,3 c,6

Table 3: The AMG settings and cycle numbers of the sub-problems in Experiments A-D.

From the table it is easy to see that our linear solver worked very well for all experiments, i.e.,
it used only a few number of outer GMRES iterations. Another fact we learn from Table 4 is that
problems with sliding boundary are more difficult than the ones with a no-slip boundary, requiring
roughly 3 to 6 times number of inner iterations to effect similar reductions in the residual of the
problem. This is usually due to the worse condition of the linear system resulted from the sliding
boundary conditions.

Length Scale Exp. A Exp. B Exp. C Exp. D

L = 5km 19 28 31 56
L = 10km 17 27 32 26
L = 20km 16 30 25 25
L = 40km 17 31 29 34
L = 80km 24 33 41 30
L = 160km 24 30 38 50

Table 4: Numbers of the outer GMRES iterations of the preconditioned solver in Experiments A-D.

In parallel computing, two types of scalability are commonly used to measure the performance.
The first one is the strong scalability Sstrong which reflects how the solution time varies with the
number of processors for a fixed total problem size. The second is the weak scalability Sweak which
shows how the solution time varies with the number of processors for a fixed problem size per
processor. Since we used four processors as the smallest number of processors in all tests, then we
calculated Sstrong and Sweak as

Sstrong =
4 ∗ T4

n ∗ Tn
, Sweak =

T4

Tn

where Tn denotes the solution time with n processors. A value greater than 1.0 implies super-linear
scaling.

The first test is for weak scalability, i.e., we test our solver with proportionally increasing number
of processors but a fixed subproblem size per processor. Up to 1024 processors are used to test
our solver and the results are reported in Table 5. In this table, ”NOIs-nonlinear” denotes the
number of Picard iterations and “NOIs-linear” the number of GMRES iterations used for solving
the linear system at each Picard iteration. From the table we can see that the number of iterations
the linear solver used for different problem sizes is almost constant, and the total running times
grow very slow as the number of processors increases until the last case with 1024 processors. This
clearly shows both our preconditioning algorithm and parallel implementation have very nice weak
scalability.

The second test is for strong scalability, i.e., we test our solver with increasing number of
processors for a fixed total problem size. We fixed the structured mesh using the 80 × 80 × 20
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Mesh Size Number of DOF Number NOIs NOIs Total Scalability
Tetrahedra of Procs -linear -nonlinear Time(s) Sweak

20 × 20 × 20 48,000 208,644 4 31 25 494 -
40 × 40 × 20 192,000 827,604 16 26 25 466 1.060
80 × 80 × 20 768,000 3,296,724 64 20 25 435 1.136

160 × 160 × 20 3,072,000 13,159,764 256 19 25 525 0.941
320 × 320 × 20 12,288,000 52,585,044 1024 20 25 886 0.558

Table 5: Results of the weak scalability tests using our parallel FEM solver for Experiment A.

decomposition of the domain; the number of DOF is 3,296,724. Results are reported in Table 6.
For all the tests with different number of processors, the number of interior linear iterations is 20
and the number of outer non-linear iterations is 25. From the table it is easy see that, for number
of processors no more than 32, the total time cost decreases more than half as the the number of
processors doubles, implying super linear scaling. For the rest of the case, the time cost decrease
is not so large, and it’s still endurable. This shows that our parallel solver has excellent strong
scalability.

Number of Memory Usage Avg. Time(s) Total Scalability
Processors per Core(MB) per Iteration Time(s) Sstrong

4 4859 233 8090 -
8 2495 75 3030 1.335
16 1368 39 1547 1.307
32 766 22 853 1.186
64 480 12 459 1.102
128 335 8.2 288 0.878
256 267 6.6 226 0.559

Table 6: Results of the strong scalability tests using our parallel FEM solver for Experiment A.
Mesh size: 80 × 80 × 20, number of tetrahedral elements: 768,000, number of DOF: 3,296,724.

7 Concluding remarks

In this paper we develop a parallel finite element ice-sheet computational model for the nonlinear
Stokes system in three dimensions. Our finite element model features higher-order computational
accuracy compared to existing ice-sheet models and scalable parallel solvers. Moreover, it accounts
for realistic basal sliding conditions along the ice-bedrock boundary. Future efforts are devoted to
implementing the three-dimensional nonlinear Stokes finite element model on variable resolution
grids and in particular, for Greenland and Antarctica ice-sheet modeling. Note that our tetrahedral
meshing strategy based on prismatic grids is directly applicable to grids constructed using variable
resolution in the horizontal directions and layers in the vertical direction. Future efforts also involve
the incorporation of the ice-ocean interface into the model in addition to the ice-atmosphere and
ice-bedrock interfaces treated here. Finally, future efforts also consider several implementation
improvements for our ice-sheet model, including studying the impact of using NURBS refined
elements in Experiments E and F to produce higher accuracy and smoother solutions and also to
the design of better preconditioning for problems with sliding boundary conditions to produce more
efficient solvers.
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Figure 3: Simulation results at different length scales for Experiment A. From left to right: the
components u1, u2, and u3 of the top surface velocity (ma−1); from top to bottom: L = 5, 10, 20,
40, 80, 160 km.
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Figure 4: Simulation results at different length scales for Experiment B. From left to right: the
components u1, u2, and u3 of the top surface velocity (ma−1); from top to bottom: L = 5, 10, 20,
40, 80, 160 km.
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Figure 5: Norm of the surface velocity across the bump at y = L/4 in Experiment A at different
length scales (solid lines with tick marks: our solution; dashed curve with crosses: the reference
solution [11]). From left to right and from top to bottom: L = 5, 10, 20, 40, 80, 160 km.
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Figure 6: Norm of the surface velocity across the bump at y = L/4 in Experiment B at different
length scales (solid lines with tick marks: our solution; dashed curve: the reference solution [11]).
From left to right and from top to bottom: L = 5, 10, 20, 40, 80, 160 km.

21



Figure 7: Simulation results at different length scales for Experiment C. From left to right: the
components u1, u2, and u3 of the top surface velocity (ma−1); from top to bottom: L = 5, 10, 20,
40, 80, 160 km.
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Figure 8: Simulation results at different length scales for Experiment D. From left to right: the
components u1, u2, and u3 of the top surface velocity (ma−1); from top to bottom: L = 5, 10, 20,
40, 80, 160 km.

23



 6

 8

 10

 12

 14

 16

 18

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

 (
m

/a
)

Normalized x

 15.9

 15.95

 16

 16.05

 16.1

 16.15

 16.2

 16.25

 16.3

 16.35

 16.4

 16.45

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

 (
m

/a
)

Normalized x

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

 (
m

/a
)

Normalized x

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

 (
m

/a
)

Normalized x

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

 (
m

/a
)

Normalized x

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

 (
m

/a
)

Normalized x

Figure 9: Norm of the surface velocity across the bump at y = L/4 in Experiment C at different
length scales (solid lines with tick marks: our solution; dashed curve with crosses: the reference
solution [11]). From left to right and from top to bottom: L = 5, 10, 20, 40, 80, 160 km.
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Figure 10: Norm of the surface velocity across the bump at y = L/4 in Experiment D at different
length scales (solid lines with tick marks: our solution; dashed curve: the reference solution [11]).
From left to right and from top to bottom: L = 5, 10, 20, 40, 80, 160 km.
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Figure 11: Surface and bedrock profiles of the Haut Glacier d’Arolla [30] in Experiment E.

Figure 12: Simulation results (view of the middle section along the y-direction) for Experiment E.
Left: Case I – without sliding zone; right: Case II – with sliding zone. From top to bottom: the
components u1, u2, u3 of the velocity.
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Figure 13: Simulation results for Experiment E without a sliding zone (Case I). Top to bottom
and then left to right: horizontal top surface velocity (ma−1); vertical top surface velocity (ma−1);
basal shear stress; difference between the isotropic and hydrostatic pressure at the bed. Dotted
curve: fine mesh; dashed curve with crosses: coarse grid; solid curve with tick marks: the reference
solution [11].
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Figure 14: Simulation results of Experiment E with a sliding zone (Case II). Top to bottom and
then left to right: horizontal top surface velocity (ma−1); vertical top surface velocity (ma−1);
basal shear stress; difference between the isotropic and hydrostatic pressure at the bed. Dotted
curve: fine mesh; dashed curve with crosses: coarse grid; solid curve with tick marks: the reference
solution [11].
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Figure 15: Simulation results for the steady state in Experiment F viewed from above the top
surface. Left: Case I – non-slippery case; right: Case II – slippery case. From top to bottom:
surface elevation and velocity components u1, u2, and u3.
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Figure 16: Simulation results for the steady state in Experiment F – Case I (non-slippery case)
viewed along the central line. Top to bottom and then left to right: top surface elevation; surface
velocity component u1; surface velocity component u3; maximum change of the surface elevation in
time. Dotted curve with crosses: our solution; dashed curve with crosses: the reference solution [20].
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Figure 17: Simulation results of the steady state in Experiment F – Case II (slippery case) viewed
along the central line. Top to bottom and then left to right: top surface elevation; surface velocity
component u1; surface velocity component u3; maximum change of the surface elevation in time.
Dotted curve with crosses: our solution; dashed curve with crosses: the reference solution [20].
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