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Mapping transcription regulatory circuits

The goal of this project was to understand the regulatory mechanisms underlying growth
and cell wall biosynthesis at the level of gene expression. The properties of the walls that
surround plant cells vary dramatically across cell type and composition is an important
factor determining cell shape and function. Following primary growth, some cell types
construct a second thick rigid layer known as a secondary cell wall. These structures
account for the bulk of renewable plant biomass and are composed of the polymers
cellulose, hemicellulose, and lignin. A unique suite of enzymes assembles each class of
polymer; consequently, their coordinated regulation is believed to be both complex and
vital to cell function. The factors responsible for this coordinated regulation are proposed
to be a hierarchy of developmental switches although the full complement of regulators
remains largely unknown. My laboratory implemented a high throughput approach to
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Fig 1. A non-hierarchical schematic diagram of the
Arabidopsis thaliana transcriptional regulation of
secondary cell wall biosynthesis. Note the prevalent
direct interactions, highlighted coherent feed-forward loop,
epigenetic, environmental, and natural genetic variation
effects. Rectangles represent transcription factors. Ovals
indicate non-protein-DNA interaction effects. The dark
green line is the secondary cell wall surrounding the cell.
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measure direct interactions between gene
promoter regions and transcription factor
proteins. In collaboration with Dr. Siobhan
Brady at UC Davis, we screened the promoters of
A. thaliana cell wall genes and discovered
something very different from the existing
hierarchical model that describes mostly a series
of sequential activation steps. On the contrary,
we found that nearly all of the transcription
factors involved, including a cell cycle regulator,
directly regulate secondary cell wall metabolism
genes and other transcription factors in a series
of feed forward loops (Fig 1; Taylor-Teeples et
al, in preparation). My laboratory also
characterized a rare but naturally occurring
promoter sequence polymorphism upstream of
a cellulose synthesis gene that perturbs gene
regulation. Impact and significance: Our new

regulatory model of cell wall biosynthesis proposes original network architecture with several
newly incorporated components. The mapped set of protein-DNA interactions will serve as a
foundation for 1) understanding the regulation of a complex and integral plant component
and 2) the manipulation of crop species for biofuel and biotechnology purposes.

The cell walls of grasses, including domesticated cereals that provide the majority of
human calories and those under development as biofuel energy crops, differ significantly in



morphology and composition from dicots such as A. thaliana. These salient distinctions in
wall properties dictate that the flagship plant model species A. thaliana is unsatisfactory for
understanding cell walls, and that a model grass species is required. Recently, the small
grass Brachypodium distachyon (brachy) has emerged as a new model species for various
food and bioenergy crops. We have completely and successfully embraced this system for
all of our research. In addition to adopting many existing protocols, we have developed
several of our own and laid groundwork for our studies of biomass accumulation. In order
to gain vital familiarity with the species and assure proper sampling strategies and
experimental design, we characterized brachy stems at various developmental stages
(Matos, Whitney et al., submitted). We made the interesting observation that secondary cell
walls of vascular bundle cells develop much earlier than the surrounding fiber cells. This
conflicts with the doctrine that secondary wall biosynthesis uniformly synchronized at
least at the transcriptional level. Impact and significance: This study revealed interesting
and novel aspects of grass growth and development and further enforce the importance of a
grass model system.

Again, the main focus of the project was
the transcriptional regulation of cell wall
biosynthesis (Handakumbura and Hazen,
2012). Because we are working with a
burgeoning model system, we first
demonstrated function for two lignin and
two cellulose genes by characterizing
brachy plants transformed with artificial
microRNA predicted to target these
candidates (Handakambura et al., 2013;
Trabucco et al.,, 2013). We then set forth
[PV Pl to characterize the proteins that directly
Fig 2. BdMYB48 directly controls secondary wall thikenig in reglﬂate these cell wall genes. As part of
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open reading frames that we used to
screen for protein-DNA interactions. The characterization of several of these genes has
proved to be very interesting. For example, BAMYB48 is the first grass protein shown to be
a direct activator of wall genes, which it does by binding AC-type sequence elements. Gain-
and loss-of-function mutants have equivalent flowering times and internode number, but
the loss-of-function mutant lacks secondary walls in the fiber cells that surround vascular
bundles (Fig 2A). This protein may play a role in the distinct timing of wall thickening we
observed when we characterized wild type stem development. Interestingly, loss-of-
function mutants were more easily converted to ethanol by Clostridium phytofermentans
and gain-of-function mutants exhibited significant gains in above ground biomass yield



(Fig 3). Thus, BAMYB48 is an obvious target to engineer the improvement of biomass yield
and conversion quality in energy crops.

A second gene, BANAC38, appears to be tied to both the direct regulation of cellulose
biosynthesis and the transition from vegetative to reproductive growth. Unlike rosette type
plants like A. thaliana, grasses produce stems before the developmental transition to flower.
Putative flowering activators are repressed in the BANAC38 gain-of-function mutant and it
persists in the vegetative phase. Our results suggest that BANAC38 is an activator of a
flowering repressor and a direct
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Fig 3. Biomass yield and bioconversion efficiency are altered in BdMYB48
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annotated with the same letter are not significantly different at P < 0.05. resource.
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