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Abstract. This paper considers the joint state and parameter estimation of ex-
tended targets. Both the target kinematic states, position and speed, are estimated
with the target extent parameters. The developed algorithm is applied to a ship,
whose shape is modelled by an ellipse. A Bayesian sampling algorithm with finite
mixtures is proposed for the evaluation of the extent parameters whereas a subop-
timal Bayesian interacting multiple model (IMM) filter estimates the kinematic
parameters of the maneuvering ship. The algorithm performance is evaluated by
Monte Carlo comparison with a particle filtering approach.

1 Introduction

The increasing interest in simulation-based Bayesian methods for analysis of dynamic
models has been resulted in a variety of powerful techniques for filtering and prediction
of complex dynamic systems [1, 2]. The problem of state and parameter estimation of
dynamic systems has many applications such as in signal processing, machine learning,
robotics, target (e.g., aircraft, ship) tracking [3, 4]. In the present work, a Monte Carlo
(MC) algorithm is applied to ship size evaluation in the framework of state filtering
(tracking) of a maneuvering ship, modeled by a Markovian jump system.

Most of the target tracking algorithms available in the literature consider the moving
object as a single point and estimate its state vector based on the incoming sensor data,
e.g. range and bearing. However, recent sensor systems are able to resolve individual
features or measurement sources on an extended object. The possibility to additionally
make use of this measurements is referred to extended target tracking. For example, a
high-resolution radar can provide a measure of down-range object extent given a rea-
sonable signal-to-noise ratio [5, 6]. This valuable information can help for more precise
estimation of the object behaviour. It can assist in resolving measurement association
uncertainty in situations of closely spaced objects in dense clutter. Furthermore, the
knowledge of objects size is especially important for the purposes of classification.

In this paper we address the problem of extended target tracking. There exist sev-
eral ways for modelling object extent parameters. Models, based on measurements of
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individual points on object require complicated techniques for multiple hypotheses test-
ing [7]. A simple ellipsoidal object model is proposed in [5] and adopted in our work.
The lengths of the major and minor axes of the ellipse have to be calculated, based on
the measurements of down-range extent. Shape parameters are included in [5] in the
state vector together with kinematic parameters and are estimated by Extended and Un-
scented Kalman Filters (EKFs and UKFs) and particle filtering. However, it is pointed
out is [5] that the EKF implementation is prone to divergence due to high nonlinearity
conditions and a straightforward particle filter can avoid this problem.

Having in mind the inferences in [5, 6], we develop a Bayesian algorithm able to
deal with the nonlinear estimation problem. Taking into account the possibility for sub-
sequent classification, we assume that the unknown shape parameters are defined over
the discrete set of values, with a given prior distribution. Within this formulation of the
problem,data augmentation(DA) algorithm for finite mixture estimation [9] offers an
alternative solution. DA represents a special case of Gibbs sampling [2] and belongs
to the class ofMarkov Chain Monte Carlo(MCMC) methods. We develop a DA pro-
cedure for the parameter estimation, along with an IMM algorithm for kinematic state
estimation. The scheme implemented here is inspired by the ideas in [8].

The paper is organised as follows. Section 2 describes the system dynamics and
measurement model. Section 3 presents the formulation of the problem. The designed
DA algorithm is presented in Section 4. Section 5 illustrates and compares the perfor-
mance of the proposed algorithm with a particle filter (PF). Conclusions are given in
Section 6.

2 System Dynamics and Measurement Models

Target motion tracking is performed by a recursive reconstruction of the state proba-
bility density function given the available prior information and current measurement
data. Prior information includes dynamic models, models of the measurement process,
initial state and noise probability distributions.

System Model.Consider the following model of a discrete-time jump Markov sys-
tem, describing object dynamics and sensor measurements

xk = f (mk,xk−1, θ) + g (mk, θ) wk, (1)

zk = h (mk,xk,θ) + d (mk,θ)vk, k = 1, 2, . . . , (2)

wherexk ∈ Rnx is the base (continuous) statevector, with transition functionf ,
zk ∈ Rnz is the measurement vector with measurement functionh, andθ ∈ Θ is
a vector, containing unknown static parameters. The noiseswk andvk areindependent
identically distributed(i.i.d.) Gaussian processes having characteristicswk ∼ N(0,Q)
andvk ∼ N(0,R), respectively. All vectors and matrices are assumed of appropri-
ate dimensions. Themodal (discrete) statemk ∈ S , {1, 2, . . . , s} is a first-order
Markov chain with transition probabilitiespij , Pr {mk = j | mk−1 = i} , (i, j ∈ S)
and initial probability distributionP0(i) , Pr {m0 = i}, i ∈ S, such thatP0(i) ≥ 0,
and

∑s
i=1 P0(i) = 1. k = 1, 2, . . . is a discrete time.

Consider a base state vector in the formxk = (xk, ẋk, yk, ẏk)′, wherex andy specify
the ship position with respect to an observer position, assumed known, and(ẋ, ẏ) is the



velocity in the Cartesian plane, centered at the observer location. All possibles motion
regimes of the maneuvering ship are modelled by the modal state variablem. The static
parameter vectorθ = (`, γ)′ contains shape parameters: the length of the major axis of
the ship ellipsè and the ratio of the lengths of the minor and major axesγ.

Measurement Equation.Similarly to [5, 6], we assume, that a high-resolution
radar provides measurements of ranger and bearingβ to the object centroid, as well
as the object down-range extentL along the observer-object line-of-sight (LOS). The
relationship betweenL and the angleφ between the major axis of the ellipse and the
target-observer LOS is given by

L(φ) = `

√
cos2φ + γ2sin2(φ). (3)

The measurement functionh in (2) is nonlinear,

h(xk, θ) =




√
(xk − xo)2 + (yk − yo)2

arctan((yk − yo)/(xk − xo))
L(φ(xk))


 (4)

where the measurement vector iszk = (rk, βk, Lk)′. Here(xo, yo) is the location of
the observer. If it is assumed that the target ellipse is oriented so that its major axis is
parallel to the velocity vector(ẋ, ẏ) then from (3) the along-range target extent can be
written in terms of the state vector andθ as

L(φ(xk)) = θ(1)
√

cos2φ(xk) + θ(2)2sin2φ(xk), (5)

where φ(xk) = arctan ((xkẏk − ẋkyk) / (xkẋk + ykẏk)).
The problem that we consider has own particularities: the measurements ofL are not
used for the base state vector estimation. The kinematic states are estimated throughr
andβ. The estimated kinematic states are, however, used for the estimation of` andγ.
This is the motivation for applyingseparate estimatorsto the two estimation problems.

3 Problem Formulation

Thegoal is to estimate thestatevectorxk and theextent parametervectorθ, based on
all available measurement informationZk = {z1, z2, . . . , zk}. If we can calculate the
posterior joint state-size probability density function(PDF)

p
(
xk, θ | Zk

)
=

∫
p

(
θ|xk, Zk

)
p

(
xk|Zk

)
dxk, (6)

then for any integrable function~(xk,θ) the required estimate is given by

E
{
~(xk, θ)|Zk

}
=

∫ ∫
~(xk,θ)p

(
θ|xk, Zk

)
p

(
xk|Zk

)
dθdxk. (7)

If we denote thel-th mode history, realised by a Markovian jump system through time
k asml

k, l = 1, . . . , εk then the conditional PDF of the state is obtained as a Gaussian



mixture with an exponentially increasing number of terms [10]

p
(
xk|Zk

)
=

εk∑

l=1

p
(
xk|ml

k, Zk
)

P
(
ml

k|Zk
)

. (8)

The exponentially increasing computations can be avoided by different ways of com-
bining histories of models. For example, the Interacting Multiple Model (IMM) filter

[10] provides an approximate state estimatex̂k = E
{
~ (xk) |Zk

}
and its associated

covariance matrixP k, by usings working in parallel EKFs. Then the estimate ofθ can

be expressed aŝθk = E
{
~(θk)|x̂k,Zk

}
. Note that thek index ofθ indicates that it is

calculated based on the information up to time instantk, not thatθ is time-varying.
MC algorithms (PF or MCMC) can be applied to the highly nonlinear extent estima-

tion problem. The use PF for the first step is not justifiable, as ships exhibit moderate
maneuvers and the time interval between the measurements is rather short. Since the
size estimate could be obtained along with the filtering process, but not necessary on-
line, the more precise MCMC algorithm can be applied.

The scheme implemented here is similar to [8]. It comprises the following steps. On
receipt of a new measurementzk:

a) run the IMM algorithm with the previous state estimatex̂k−1 in order to update
the current state estimatêxk.

b) find the estimatêθk of the parameter vectorθ based on the previous estimates

θ̂k−1, x̂k, and the measurement likelihoodp
(
zk|θ̂k−1, zk−1

)
, by PF or DA scheme.

4 Extent Parameters Estimation by Stochastic Simulation

Based on a priori information about ship types, we assume thatθ takes values from a
known discrete setθ ∈ T , {1, 2, . . . , t} with known prior distribution:Pθ0(i) ,
Pr {θ = i}, i ∈ T , such thatPθ0(i) ≥ 0, and

∑t
i=1 Pθ0(i) = 1. Let us suppose that

along-range extent measurementsLk, k = 1, . . . , n, . . . have Gaussian distributed zero-
mean errors with known varianceRL. The PDF of the measurementLk is represented
in the following mixture form [9, 11]:

p (Lk|π, θ, xk) =
t∑

j=1

πjG (Lk|θj ,xk) , (9)

whereπ = (π1, . . . , πt) are the mixture proportions which are constrained to be non-
negative and sum to unity.G (Lk|θj , xk) ∼ N (Lk;L (θj , x̂k) , RL) is a Gaussian den-
sity andL (θj , x̂k) is the measurement prediction, calculated according to (5). Thus,
the task is reduced to the well knownfinite mixture estimation problem: for the mix-
ture model (9) withknown componentPDFsG (Lk|θj , xk), one needs to estimate
the unknown weightsπ = (π1, . . . , πt), given a sequence of independent observa-
tions L1, L2, . . . , Ln. The mixture component with amaximum weightidentifies the
most probable ship type. The estimate of the extent parameters can be calculated as the
weighted byπ sum of the possibleθ values in the set.



Mixture Weights Estimation by Data Augmentation. DA algorithm approximately
evaluates the mixture posterior distribution, relying on the missing data structure of
mixture model. Generally, the mixture model is given by the observation ofn indepen-
dent random variablesy1, . . . , yn from at-component mixture [9, 11],

z(yk) =
t∑

j=1

πjzj(yk), k = 1, . . . , n, (10)

where the densitieszj , j = 1, . . . , t are known or are known up to a parameter and the
proportionsπj satisfy the above conditions. We consider the special case, whereonly
the weightsπ have to be estimated. According to [9], the mixture model can always
be expressed in terms of missing (or incomplete) data. That is, define vectorsδ(k) =
(δ1(k), δ2(k), . . . , δt(k)), k = 1, 2, . . . , n with componentsδj(k) ∈ {0, 1}, j =
1, 2, . . . , t, which indicate that the measurementyk has densityzj(yk) [8]. The model
is hierarchical with, on top, the true parameters of the mixture,π, then the missing data
whose distribution depends onπ, δ ∼ p(δ|π), and, at the bottom, the observed data
y ∼ p(y|π, δ). Starting with an initial valueπ(0), the algorithm implementstwo-step
iterative scheme: at the iterationu, u = 1, 2, . . .

a) generateδ(u) ∼ p(δ|y,π(u)) from a multinomial distribution with weights pro-
portional to the observation likelihoods:δ

(u)
j (k) ∝ π

(u)
j zj(yk);

b) generateπ(u+1) ∼ p(π|y, δ(u)).
Since the conjugate priors onπ are with Dirichlet distributions (DD)D(α1, . . . , αt)
[9], π(u+1) is generated according to the DDs with parameters, depending on the miss-
ing data. Bayesian sampling produces an ergodic Markov chain (π(u)) with station-
ary distributionp(π|y). Thus, afteru0 initial (warming up) steps, a set ofU samples
π(u0+1), . . . , π(u0+U) are approximately distributed asp(π|y) and, due to ergodicity,
averaging can be made with respect to time [8, 9].

In the next scheme, the sequence of observationsyk, k = 1, . . . is replaced by the
along-range extent measurementsLk, k = 1, . . .. The joint IMM and data augmentation
scheme is given below. DA is realised in a sliding window mode.

Algorithm Outline

Fork = 1, 2, . . .

• Run the IMM algorithm with the previous state vectorx̂k−1, covariance ma-
trix P k−1 and posterior model probability vectorµk−1 to update the current
estimatêxk, together withP k andµk.

• Compute Mixture Components Conditional PDFs

G̃j(k) , G (Lk|θj , xk) ∝ exp
[
−0.5 (Lk − L (θj , x̂k))T

R−1
L (Lk − L (θj , x̂k))

]

• Implement Data Augmentation
- Initialisation: π(0) = π (k − 1)
- Iterations (u = 0, 1, . . . , u0 + U − 1)

* Missing Data Conditional Probability Mass Functions (PMFs)

q
(u)
j (l) =

π
(u)
j G̃j (l)

∑t
j=1 π

(u)
j G̃j (l)

, l = 1, 2, . . . k, j = 1, 2, . . . t



* Missing Data Generation (Multinomial Sampling)

δ(u)(l) = (0, . . . , 0, 1, 0, . . . , 0) ∼
{

q
(u)
j (l)

}t

j=1
, l = 1, 2, . . . k

* Parameter Evaluation (Dirichlet Distribution Sampling)

π(u+1) ∼ D
(

π; α1 +
k∑

l=1

δ
(u)
1 (l) , . . . , αt +

k∑

l=1

δ
(u)
t (l)

)

• Calculate the Output Estimates

π (k) =
1
U

U∑
σ=1

π(u0+σ) and θ̂k =
t∑

j=1

πj(k)θj

5 Simulation Results

The algorithm performance is evaluated by simulations over trajectories, including con-
secutive segments of uniform motion and maneuvers (a typical scenario is shown in
Fig.1(a)). The observer is static, located at the origin ofx − y plane. The initial tar-
get state isx0 = (18e3,−14, 90e3, 5)′. It performs two turn maneuvers with a normal
acceleration of±1.4 [m/s2]. The object length is̀ = 50 [m] and the ratio of the
lengths of the minor and major axes (aspect ratio) isγ = 0.2. The sensor parame-
ters are as follows [6]: sampling intervalT = 0.2 [s]; the standard deviations of mea-
surement errors along range, azimuth and along-range target extent are respectively:
σr = 5 [m],σβ = 0.2 deg andσL = 5 [m].
Root-Mean Squared Errors(RMSEs) [10] are selected as a quantitative measure for the
algorithm performance evaluation.

An IMM algorithm with s = 3 models is designed. The first model corresponds to
the nearly constant velocity motion. The next two models are matched to the nearly
coordinated turn maneuvers with a turn rate ofω = ±1.4 [rad/s]. The form of the
transition matrices in (1) for these models can be found in [10].

A particle filter for extent parameters estimation is realised for the purposes of compar-
ison with DA algorithm, withN = 100 particles. Similarly to the procedure, described
in [1] (Ch.10),N particles(θ(i))N

i=1 are generated according to a priori normal dis-
tribution with mean, corresponding to the trueθ. After that the particles are predicted
according to a normal distribution with small deviations to provide “artificial evolution”
of parameters. Then the particle weights are evaluated using likelihoods of the received
measurements and finally resampling is implemented according to a known rule.

In accordance with (Sec. 4), we assume thatθ takes values from a discrete set oft = 4
components:{(30, 0.15), (50, 0.2), (70, 0.25), (100, 0.3)} with equal initial probabili-
ties.θ2 corresponds to the trueθ. The mixture proportionsπj , j = 1, . . . , t, estimated
by the DA procedure are given in Fig.1(b). It can be seen that DA identifies the correct



θ with a high probability. The results are obtained from one MC realisation and confirm
the reliability of the algorithm for classification tasks.

Figs.(2) and (3) demonstrate the better performance of the DA in comparison with the
PF: the estimation errors of` andγ obtained by the PF are quite large. It is natural to ex-
pect a better performance of DA scheme. It has additional prior information, available
from the θ set. DA is an off-line procedure and processes the cumulative measure-
ment information. In addition, PF involves additional noise, necessary for prediction
which deteriorates the estimation accuracy of the parameters (they are fixed). Its perfor-
mance is highly sensitive to the choice of noise deviations, which are design parameters.
However, the better performance is achieved at the increased computational time. The
relative execution time is approximately 17:1 in PF favour.
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6 Conclusion

An alternative solution to the problem of extended object tracking is proposed in this
paper. Two different Bayesian algorithms are developed for kinematic state and size
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parameter estimation of a ship, based on positional and along-range object extent mea-
surements. A Monte Carlo algorithm (Data augmentation) is designed for length and
aspect ratio assessment of the elliptical ship shape. The performance of the proposed al-
gorithm is evaluated by Monte Carlo simulation. The results show that DA is capable to
deal with highly nonlinear relationships between states, parameters, measurements and
complicated target-observer geometry. A combined IMM-DA procedure is proposed
which provides accurate joint state-parameter estimation and reliable identification of
the ship type.
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