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Methods are described which effectively solve two of the technical
difficulties associated with applyving classical S-matrix theory to
inelastic/veactive scattering. Specifically, it is shown that rather
standard numerical methods can be used to solve the "root search”
problem (l.e., the non-linear boundary value problem necessary 1o
impose semiclassical quantum conditions at the beginuing and the
end of the classical trajectories) and also how complex classical
trajectories, which are necessavy to describe classically forbidden

i.e., tunneling) processes, can be computed in & numerically stable
way. Application is made to vibrational relaxation of HZ by collision
with He (within the helicity conserving approximation). The only
remaining problem with regard to applying classical S-matrix theory
to complex collision processes has to do with the availability of
multidimensional uniform asymptotic formulae for interpolating the
Uprimitive" semiclassical expressions between their various regions

of validity.






I, Introduction.

The classical S-matrix description of molecular collisions has
been developed and refined over the past decade and has been successfully
. v 1
applied to the calculation of a variety of collision processes. Perhaps
the most attractive feature of this approach is that it provides a clear
physical understanding of various quantum effects which arise in
o s .} o » o £.3 S e 2 o
inelastic/reactive scattering. One of its first predictions, for
example, was that interference effects, "rainbow" effects, etc., should
appear in the distribution of final vibrational and/or rotational
states of an inelastic collision process, quite analogous to such
effects in the distribution of scattering angles (i.e., the differential
. . ) 3 e
crosg section) in elastic scatteving. Furthermore, the ovigin of this
interference gtructure is the same as that in elastic scattering,
namely semiclassical interference between different classical
trajectories which contribute to the process. Just as in elastic
scattering, however, observation of this interference structure in
final state distribution requires high resolution experiments, but
. : 4, o
recently rainbow effects have been seen by Beck, et al. dn rotational
state distributions.

Numerical application of the classical S-matrix approach in its
most rigorous version (i.e., using numerically computed clagsical
trajectoriesg) to systems with several internal degrees of freedom,
however, encounters technical difficulties which has precluded its
being employed voutinely. The difficulty is not with computing

classical trajectories, but with (1) finding. in a systematic and

efficient manner, the particular trajectories that matter semiclassically,



(2) integrating the equations of motion along complex time cmntours§

if the process of interest is classically forbidden (i.e., weak), and
(3) having available an appropriate uniform semiclassical expression™’
if the system is too quantum-like for the "primitive" semiclassical
expressions to be gufficiently accurate.

The purpose of this paper is to report methods that effectively
solve problems (1) and (2) above; i.e., numerically stable ways have
been developed for computing complex trajectories even for extremely
weak transitions, and efficient ways have been found to find the
particular trajectories {the "voor search" problem) which satisfy
the semiclassical boundary conditicns. The test problem considered
in this paper 1s vibrational velaxation of Hz by collision with He,
and it is treated within the helicity consgerving approximation; the
methods developed (and deseribed in Section II), however, should be
much more generally applicable than to just this example. Problem
(3) abhove, however, is more fundamentally difficult to overcome, as is

"uniform'

iliustrated by the He + HZ example treated: the known
methods are successful for most, but not all of the region of final

rotational states jf in the vibrational relaxation process (n =

vibrational quantum number)
He + H,(n=1;3=0) » He + Hy(n=0;3=] ) . (1.1

To make classical S-matvix theory more quantitatively useful it is
thus concluded that the primary need is for more generally applicable

multi-dimensional uniform formulae.



Section IT first summarizes the basic aspects of classical
S-matrix theory for an A + BC collision within the helicity
conserving approximation, and then describes the methods for
integrating trajectories along complex time contours and for finding
the particular "root" trajectories, i.e., those satisfying semi-
classical boundary conditions asymptotically. Results of the
application to reaction (1.1) are given in Section IIT, along with

a digcussion of the pegsible "uniform” semiclassical formulae,



IT. Computation of Complex Trajectories

a. The Classical Helicity Conserving Approximation

Earlier worki by us has described the classical version of the
helicity conserved approximation (variously called the jzwconserviﬁg
coupled states approximatiengg or the centrifugal sudden approximationg)
as it applies to A + BC collisions when the diatom BC is restricted to
be a rigid votor, and it is a straight-forward extension to allow
the molecule to vibrate. If (P,R) and (p,r) denote the coordinates
and momenta for radial translation of A relative to BC and for
relative B-C motion, respectively, and (quj) are the action-angle

variables for rotation of BC {i.e., j is the rotaiional angular

7
- . . i s
momenta), then the same analysis as before’ leads to the following

clagsical helicity-conserving Hamiltonian,

, 2 2 2 2
HQ/E\‘i((F,Rsp?I“,j;q_,) = %‘; + “%I-ﬁ“ + WQ”@,;; e ‘”&"“2"
J 2mr’ 2R
+ V(r,R,Y 5 (2.1)

where £, the orbital angular momentum for relative A-BC motion, has
7 4. , ; .
as before been assumed to be conserved. The helicity K, which is
conserved within this approximate Hamiltonian, appears in the
relation between the angle Y (cosy # T°R) and the angle variable a
AR ;
cog Y = J& + K7/37 cos qj . (2.2)
For applications below, K is always 0 so that the simpler relation

= ¢, holds.
Y QJ



In order to define vibratiopal quantum numbers semiclassically
one must transform from the physical vibrational coordinate and
momentum (¥,p) to vibrational action-angle variables (n,qn)e This

has been discussed in detadil befor@;igglb

specifically, the semi-
classical vibrational-rotation eigenvalue function €{n,j) is defined

implicitly by

T
> 7
(n +%~>w ﬁjf dr Vomle(n,$) - v(r) - 12/t ] (2.3a)
. '
<

where v(r) is the HZ vibrational potential funciion, and the angle
4 is defined by

2 r y
cos™ (cos q) = m 2B [t Gaatetn, w37 L @)
) i
<

1,

. 1 . .

As has also been noted before, it is most useful to carry out the
actual numerical trajectory calculation using the cartesian vibration
variables (p,r), transforming from the initial values of (ngqn) at
the beginning of the trajectory and to the final values of (n,qn)
at the end of the trajectory.

For v{y) the 32-term polynomial representation of the Kolos-

, ., 10 . . 11
Wolneiwicz function given by Waech and Bernstein = was used, and

the interaction potential,

th(t‘ﬁRsY) 2 V(r,R,Y) - v(x) )

12 ,
was taken to be that of Gordon and Secrest. The function €(n,j) was

evaluated numerically for this choice of v(r} and then fit to a
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Dunham-like power series in (n + %) and j2 up to third order terms,

a sufficiently accurate representation for the range of n and j that
are involved in the present application. Computing the function
e(n,j) in classical S-matrix theory is analogous to finding the
target eigenstates for a quantum mechanical coupled channel calcula-
tion, and we note that for very weak transitions, such as vibrational

relaxation in H, + He, the cross sections are more sensitive to the

]

description of the target than for processes with large cross
sections,

b. Inpitial Conditions and Cholce of the Complex Time Path

la,1b

As discussed before, it is most convenient to begin the actual

numerical integration of each trajectory with v at an inner (or outer)

classical turning point. If ny and j1 are the initial vibrational

and rotational quantum numbers and En and Sj the phase shift
1 1
variables conjugate to them, then the specific initial conditions for

a trajectory with orbital angular momentum 2 are

r(tl) = T, (2.4a)
21N~q
R(t,) = ignl ( ! ’ + L’ }1/2 (2.4b)
1 ! ae(ngj)/ég ZUEl ’
(Zﬁngn )
- oe(n, i) 1
a;(ty) U, T B (a9 /on (2.4c)
p(ty) =0 (2.4d)
1/ 2 2 )
P(tl) = ZUEZ_ - % /R(tl) (2.4e)
) s L
j(tl) iy (2.41)



where 51 is the initdial translational energy, the derivatives of

€(n,3}) are evaluated at ay and j‘19 and the integer N is chosen guch
that R(tl} is large enough to be in the asymptotic region.

The end of the trajectory at time ty is signaled by E becoming
equal to a8 lavge final value chosen for all trajectories. To simplify
the expression for the phase of the S-matrix contributions one integrates
backwards to time EZ at which the most recent inner vibrational turning
point occurred. In practice it is unnecessary to integrate backwards
since by using the techniques describad below one can integrate
directly to gzn The final value of jEj? is counstant in this region

and is given by the equations of motion directly and n, is determined

by solving

e

J
. 25 2
e(ny,3,) = v(r(t,)) + ————5 5 (2.5)
Zmriiz)

using the already determined form of the function €{(n,j). Only the

conditions at tl and EZ and a phase integral over the interval between

t. and t¢

1 o are needed to compute the contribution of a root trajectory

to the S-matvix.
The result of this trajectory calculation is to produce the
functions nz(aﬂ ,q. ) and 32(aﬂ gzj Y}, i.e., the final vibrational
191 S R
and rotationsl “quantum numbers" as a function of their conjugate
initial angle vardiables, provided one can find an appropriate complex

time path for the trajectory if the voots of the following equations

are complex,



nz(anst;u ) = n, (2.6a)
s, ) = jZ . (2.6b)

where n, and jz are specific integers. An appropriate complex time
path must satisfy two criteria. TFirst, it must produce final conditions
which determine the correct branch of the (possibly) multivalued
function §2(§l) (32 & (nzgjz)9 %l = (Eni,gjl))a For inelastic
collisions, such as the case we consider here, the corrvect branch
is the original one, and this means that the trajectory nust not
encircle any branch points of the action-angle variables (or R) as
functions of time. Secondly, the trajectory camnot be allowed to
move outside the range of complex values of the coordinates for which
we have accurate analytic continuations of the potentials v(r) and
Vint(rsR9Y)s

The tendency of trajectories to "wander" unphysically far into
the complex coordinate plane during numerical integration of the
equations of motion 1s most pronounced for the vibrational degree of
freedom. This behavior can be understood by considering trajectories
in complex time for a harmonic oscillator description of vibration

in which the time dependence of v(t) is given by

r(t) - r, = a cos (we + 6) . (2.7)

For complex time the cosine function can become exponentially large,

although for a fixed value of the imaginary part of t the trajectory



executes elliptical motion in the complex plane as the real part of

t increases. However, the harmonic oscillator description is usually
not adequate, and in any case during the collision the wvibrational
motion is coupled to other degrees of freedom. Thus it can be the
case that [r(t)| increases rapidly during the collision, even for
fixed Tm(t).

To control this tendency we have employed three methods of
stabilizing the vibrational motion through the choice of the complex
time path. The first of these has been described alsewh@rﬁlg and was
found to be most useful in the portions of the trajectory hefore and
after the collision. This approach assumes r(t) to be quadratic in
t and solves at each step in the trajectory for the time step At
which would bring the oscillator to v{(t) at ry; 2t step n this

gives

bt o= f-t + [5 24 2% (o)1 %08 (2.8)
n n 0 n n

11

@

where rn9 rA9 %n are the current values of rn and ite time derivatives,
and the % sign is chosen to make Re(At) » 0. It is actually the
phase of the time step which is chosen as that of At in Eq. (2.8);
the magnitude of the time step is always determined by the truncation
error criterion of the integrator.

When this method failed to stabilize the trajectory, as it
invariably did in the region of closest approach of He to H29 we switched

to a second method which was found to stabilize the r(t) trajectory in

the interaction region. In this procedure the phase of At is taken
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to be the phase of 1/w, where w is the frequency of a local harmonic
oscillator approximation to v(t). To obtain an expression for w in

terms of quantities which are available during the integration of a

trajectory, we first find the (complex) equilibrium position ry for

the potential U(r) defined by

2
U(r) = v(r) + = (2.9)
2my
for the current value of j. Simple analytic approximations for ro(j)
can be used for this purpose. At any point in the trajectory U(rn)
and U“(rn) are known from the equations of motion, and assuming that
U(rn) is approximately quadratic,

2

0 , (2.10)

1 2.
U(zn) o U(ro) + 7 T (lnmr

one can find an expression for w in terms of quantities available in

) S
n

U’(rn)z 1/2
v [Zm[wf )=~U(r H] g (2.11)

The sign of the square root is chosen so that Re(l/w) > 0. Choosing
the phase of At to be that of 1/w would keep the trajectory on a closed
ellipse if the motion were purely harmonic, i.e., if r(t) satisfied

Eq. (2.8) with a complex value of 6. 1In our calculations this
procedure effectively stabilized the vibrational motion in the

interaction region. 1t should be noted that in the interaction region
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injudicious choice of the time path, for example choosing ¢ such that
r(t) remains real, can also lead to problematic wmotion of R(t). Our
choice avoided this difficulty in most cases, and use of the ratiomal
fraction approach described below was able to avoid it in general.

A conmbination of these two procedures was sufficlent to stabilize
practically all of the trajectories which contributed to the S-matrix
elements computed in this work. However, if very poor guesses ave used
for initial values of the angle variables in the root seavrch fo solve
Eq. (2.6), the final values of the action variables can have such a
large imaginary pari that these simple methods of stabilizing the
trajectories fail. For these extraorvdinary cases the following
technique of choosing the complex time path was devised which, although
more laborious, is much more reliable than the simpler methods.

At every point in the trajectory one has more information than
the local values of the coordinates and momenta and thelr time
derivatives; i.e., one also knows the values of those quantities at
previous steps in the numerical integration of the trajectory. Using
this information one can make use of standard techniques to form a
rational fractionl4 approximation to, for example, v{t) which bhas the

form

p_(t)
(L) = RO) , (2.12)
m
where Pn(t) and Qm(t) are polynomials of order n and m respectively.

This approximation for r{(t) allows one to "look ahead" in the t plane

to find the direction of t in which to proceed to move r(t) to the next



turning point, rtpg for example. Thus at time tn one forms the rational
fraction using the values of r(t) from previous integration steps and

; %* . ,
solves for the time ¢~ satisfying

- % Sk
rtp = Pn(t )/Qm(t ) (2,13

with a gimple numerical rvoot segrch. Then for the next several steps
in the integration time steps with the phase of (t*wtn} are taken. In
practice we form the continued fraction representation of the rational
fraction suggested by Schlessingezl4 from the values of r(t} from the
previous twenty integration steps. This information was found to be
sufficient to predict the motion of r(t) (or p(t)) over roughly half
a vibrational period. Using this technique thus allows one to choose
a time path to move from one vibrational turning point to the next.
Rational fraction analytic continuations can be used as a general
tool for predicting the behavior of a trajectory for complex times.
For example they can be used to help locate branch points in the time
dependence of dynamical variables by exploiting the fact that the radius
of convergence of the rational fraction decreases dramatically near a
branch point. 1In these regions the difference between the predicted
behavior and the results of integrating the trajectory becomes suddenly
greater, particularly in the direction of the branch point.
Finally, we note that the continued fraction representation was
always used in our calculations to find the complex time path which
moved the trajectory to a turning point of wvibrational motion at the

final time EZ for each trajectory.
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c. The Root Search

The difficulty of finding trajectories which satisfy Eq. (2.6) is
probably the most awkward computational feature of classical S-matrix
theory; it exists even when one 1ls treaiting classically allowed
processes, i.e., when the roots of Eq. (2.6) are real. However,
this difficulty can be substantially overcome by the application of
some standard numerical technmology. With the methods described in
the previous section we were able to stabilize, and therefore finish,
trajectories beginning with arbitrary values of §1 and thus to construct
the function %Z(§l>° To solve for the 51 satisfying Eq. (2.6) we used
a method due to Pawe11915 which conmbines the virtues of the Newton and
the steepest descent methods of finding roots of nonlinear algebraic
equations.

Powell's method is a procedure for solving equations of the form
f(g) = 0 (2.14)

and is based on the following equations for each step § in the root

search in the q space,
(37 J 4+ AD)=§ = ~J =f(q) . (2.15)

In this equation J 1s the Jacobian matrix

= )
Jigj fi(g,/qu . (2.16)

and J0 is its transpose, D is a diagonal matrix of constant weight

~ -~

factors which for the purpose of this discussion may be assumed to

be the unit matrix.



If the parameter A is zero, the method reduces to Newton iterations

with steps given by

o~

§ = mj”lﬁg(q) . (2.17)

1f on the other hand A is very large {(and U is the unit matrix), steps

oo

are taken in the direction of steepesti descent

~

§ = M s (2.18)

Powell's method is effectively an algorithm for choosing A at each
step in the voot search and at the same time solving Eq. (2.15)
without explicit matrix inversion.

fguation (2.15) is only valid for veal functions, but it can be
shown that a generalization of Powell's method appropriate for complex
functions can be obtained by replacing the matrix transposes by the
Hermitian conjugate of gg In practice we found it more convenient to
divide § and q [% = 3155(%) e gz(él)wgzj into real and imaginary
parts even though that appears to double the dimensions of the root
search. The steps taken in this way are in fact the same as they
would be in the complex generalization of Powell's method mentioned
above; the only significant additdional work arises because the Cauchy
conditions are not used to simplify the computation of the Jacoblan.

For given values of the total energy E and orbital angular
momentum £ the method described above can be used to solve Eg. (2.6)

for the initial angle values, Elegﬁ), for the root trajectories which

contribute significantly to the classical S-matrix. It is important
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to note that gl(Egﬁ) for each of these root trajectories is an analytic
function of both E and 2. This observation allows us to simplify the
search for root trajectories at different values of % (or E) once they
have been found at one value, TFor example, to perform the sum over

L in Eq. (3.1) we require §1(E92) for a range of % at fixed E. To

find these values we used linear or quadratic extrapolation to
increasing values of £ from roots found at lower & to give the first
guess for each new root search., In our calculation this procedure
never failed to give adequate values for beginning the root search.
Clearly, rational fraction extrapolation would have been even more

accurate,
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I11. Construction of the S-Matrix Elements and Cross Sections.

The cross section for the <nl’j1) - (nz,jz} transition, summed
over final m-components of the rotational state and averaged over
initial m-components, is given in the helicity conserving approximation
by

o jmin
m « 1 ’ L,X 2
O . m e 9 (2H]) e pD Etd 17, (3.1)
P R B R i 25+ K== . Rpdostydy

1

where j . is the smaller of 3, and j, and k., is the wave vector for
min 1 2 1
the initial translational energy. For the calculations described

below j.=0, so that only the term K=0 appears in the sum over K.

1

The task is to construct the S-matrix elements.

a. Primitive Semiclassical Model

The general expression for the classical S-matrix for an atom-

diatom collision is well-known and has been given in several forms
1 , s . : o

elsewhere, Algo, the simplifications which result from beginning
and ending the trajectories at a vibrational turning point have been

. . 4 1b . . , ,
described previously, so to obtain the working equations for this
calculation it only remains to specialize these results to the case
of the helicity conserving approximation. Since the transitions
considered begin with rotational angular momentum j, equal to zero,

A

and therefore have helicity K equal to zero as well, the formulae
below are specialized to this case.

Fach S-matrix element is a sum over root trajectories (i.e.,

those which satisfy Rq. (2.6)),
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' . i, ..
3 . 2 a(n,,3,) =1/2 # ®(n2329r113192>
Sy i ma ® E% [(-2mih) " —iomniie ] e .
232°%131  voots 3(qn 4 )

whare the phase @(nzjzanljlgﬁ) is given by

Lo
@(32323n13132> iﬁf dt (pr + PR + qu)
1

48 - [fa, + PR - fran T(PR/L)] | : (3.3)

by

There is no contvibution to Eq. (3.3) from the generator of the
classical canonical transformation from the variables (p,r) to
(n,qn) because the trajectories are begun and ended at vibrational

turning points. In Egs. (3.3) agn293?>/a(an 95? ) is the determinant
) 1 -1
of the Jacobian of final quantum numbers with respect to initial

values of the angle variables,

To construct the classical S-matrix for a particular tramsition
it is useful to have a qualitative picture of the several classical
trajectories which contribute to it. If votation and vibration were
separable in these collisions, Eq. (2.6) would separate into two

equations involving the functions nz(an ) and j2(3j1)° For nlzl

one would expect nz(gﬂl) to behave qualitatively as>shown in Figure

la. There is no solution of the equation nz(gnl)gO for real values

of anl, but there are two solutions for compleannl (complex conjugates
of each other). Since the transition is strongly classically forbidden,
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only one of these would contribute to the S~matrix, the other
corresponding to the unphysical solution of the Schrodinger equation
which would give an exponentially large contributlon to the S-matrix.
The situation for the rotatlonal degree of freedom is somewhat
more complicated. For the collision of an atom with a homonuclear
diatomic molecule the potential V(R,r,Y) is periodic in vy so that

V{R,xr,y+m) = V(R,r,Y), and it is easy to show that jz(aj + o) o=

1
jz(aj ). In the generic case there would thus be four real roots of
’ 1
the equation jz(aj ) o= 3y but the second two (at larger Ej ) are
1 1

related by symmetvy to the first pair and make identical contribu-
tions to the S-matrix. In the helicity conserving approximation for

jjsO there will also be four roots of the equation jz(aj ) e
’ 1

cf. Figure 1b and also reference 7--but these are symmetrically

related to the roots for positive jz and make an identical contribu-
tion to the S-matrix. One thus expects two distinct roots of the
rotational equation jz(g, ) = i,
11 2

Combining one root in n with two unique roots in j, this separable
reference thus suggests that there would be two unique (different)
trajectories which contribute to the S-matrix., From symmetry
considerations together with the inclusion of -j, roots, the
S-matrix computed from the two unique roots with jZ > 0 should be
multiplied by four to obtain the S-matrix from all contributions.

In the actual calculations vibration and rotation are not

separable, but the arguments leading to the expression for S-matrix

as four times the contributions from the unique trajectories with
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j? > 0 still applies. However, when the rooi search was performed

four unique root trajectories were found which contribute significantly

to the transitions ny = 1 and j’1 = (0 to n, = 0 and jZ = 0,2,4,6,8.

The locations of rhese roots in the complex ¢ and q, planes are
! 3
shown in Figures 2 and 3 for £ = 23. For each of the roots, denoted
by I, 1%, 111, and IV in the figures, EP and ai are continuous
1 1
functions of jzo The four curves in each figure connect the values

of g or q,
n
1 il
four distinct roots. If the separable situation sketched in Figure 1

in the complex plane at jZ = (,2,4,6 and 8 for the

had obtained, Figure 2 would counsist of one point and Figure 3
would consist of only two curves which would be strictly on the veal
axis for small values of j2° Thus rotation and vibration are very
strongly coupled in this system.

The ''primitive’ semiclassical S—matrix elements of Eq. (3.2) thus
involve four terms, and one only has to be careful to choose the proper
phases of the square root pre-—exponential factors. As has been

la,1b
discussed before, this can be done in most cases from a knowledge

of the relative signs of the Jacobians. In the present case there is
an additional piece of information because roots I and 11 coalesce to
cause "rainbow" behavior as % is varied. This fact allows one to check
the relative phases for these two roots by comparing it to that for

two coalescing roots in the simpler case of elastic scattering

3

rainbows. These arguments lead to the following "primitive"

formula
for the classical S-matrix (including the above mentioned factor of

4 and setting B = 1)
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T = © . B 03 - QE"
where DI’ DIES )1119 and DIV denote the Jacobians, 8(n2932)/8(qn1,qj1}9
£ 3 . ¢ £ and
or each of the four roots and @Ig @115 ®III’ and @IV denote the

associated phases,

Figure 4 shows the cross sections obtained within the "primitive"
semiclassical limit, i.e., Eq. (3.4) in Eq. (3.1), compared to the
close coupling calculations of Raczkowski, Lester and Mille‘rg16 which
are essentially the exact results for these potential functions,

The semiclassical results agree reasonably well with the correct
quantum values for all final rotational states except the highest,
52389 for which the semiclassical result is much too large. This
behavior is analogous to the classical singularity at a rainbow

in simple elastic scatteringag The coupling between rotation and
vibration quenches the singulavity to some extent in the present
case, but an examination of the location of the voots in the complex
331 plane clearly shows the close approach of pairs of vroots for j2§8
and jzzé for some values of &. Thus the maximum at jzz6 in the

quantum results corresponds to 8 classical rainbow in the classical

S=matrix picture of the collision. In order to obtain more reliable



values near the rainbow one requives a uniform semiclassical approxi-
mation which is valid 4in the vicinity of the rainbow as well as the

71 P ] 1% e o

primitive"” region for iy < 6,

b. Uniform Approximation

Uniform semiclassical approximations for the scattering amplitude
can be derived in the case of elastic scattering by abandoning the
stationary phase approximation to an integral (over & in the usual
derivation) representatiocn of the amplitude and instead employing more
accurate approximations to the integrai¥7 In more complicated cases,
i.e., inelastic scattering, semiclassical theory provides only the
"primitive" semiclassical expressions, and one can construct
"uniform'" approximations which only have the status of interpolations

"primitive" semiclassical approximations

between regions for which valid
are available. In the present case it appears that the rainbow effect
is primarily due to a near coalescence of roots I and II in the 331
plane. Thus we begin by finding a uniform formula for the contributions
of these two roots. For small values of j2 the primitive formula is
applicable (the bright side of the rainbow), and the uniform formula
for the contributions of roots I and II, should reduce to the first
two terms of Eq. (3.4):

LT , T
oo /2 (M AP G -9
S =+ e + = _ . (3.5)
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where A = (®ziu®i)/2 and h has been ger to 1. For values of j, beyond
the rainbow singularity (on the dark side) only one of the roots, in
our case ®II’ should contribute because the other root becomes
unphysically large. Thus in this limit the uoniform formula should
become

(=g ko)

§ == . (3.6}

1

/iDII

The key quantity in the change from Eq. (3.5) to Eq. (3.6) is A9,
For small j29 A® is approximately real, and for large j2 it ig almost
pure imaginary, A® = 1|A®|, because Im(@ll) >> Im(@i)o The goal is
to find a function of A® which reduces to Egs. (3.5) and (3.7) in the
appropriate limits.

An approach which has been successful in other casesz of two
coalescing roots is to use the asymptotic relationship for combinations
of the two kinds of Airy functiomsl

w0
Ml(é AD)

where 2z = %{A@)Z/Ba This substitution in Eq. (3.53), together with the
assumpition that DI = WDII in the regions on either side of the rainbow,
produces the desired uniform formula provided that A® is such that

0 < arg{A®) < 1w/2 as it changes from being large and real to large

and imaginary, and also provided that the correct branch of the cube
root is taken in the definition of z. 1In the present case, however,

A® does not remaln in the first quadrant, but as it moves from near

the real axis to near the ilmaginary axis the argument of A® decreases



DT

smoothly from zero to almost -37/2. This case can be dealt with

conveniently by using an asymptotic relation similar to Egq. (3.7),

but in which Bi(-2z) is replaced by ~Ai'(~-z) /Vz where Ai' is the

; . . 6 , s ; ,
derivative of Ail. In this way one obtains a qualitatively correct

uniform formula for the contributions of roots I and II:

1O /2 12 1/4 (Ai(-z) - 1AL (~2) / /2
ST e " /=10
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gret=innmy |
MIDII

This expression provides a smooth analytic continuation in AQ

between the primitive semiclassical approximations in Egs. (3.5)
and (3.6) if the argument of A® varies as degcribed above and if

the branch of the cube root in the definition of 2z is chosen such

that arg(z) =2 argég A®)Y., The branch of the square root in

3
1/2

Eq. (3.8) is chosen such that arg(z ) = é<arg(z)o

In Figure 4 the cross sectlons obtained using this uniform

formula for the contribution of voots I and 1I, but retaining the

(3.8)

primitive semiclassical contribution of roots III and IV, are also

shown. This approximate "uniformization” does indeed improve the

gsemiclassical result for Jo = 8, but still does not bring it into

good agreement with the correct value. What seems to be needed is

a "uniformizatrion" also of the contribution from roots III and 1V,

but we have been unable to devise such a global "uniform’ expression

which deals with all four complex roots. That the problem at

j,=8 is due to the "primitive” treatment of roots III and IV is
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also suggested by the fact that if the contribution from these roots
is totally discarded, the cross section for j2s8 is too small (the

circle in Figure 4).
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IV, Concluding Remarks.

Several of the computational difficulties associated with caryying
out rigorous calculations based on clagsical S-matvix theovy thus appear
manageable; i.,e., Powell's algorithm seems to deal with the root search
problem quite efficiently, for real or complex roots, and the procedure
described in Section IIb mekes it possible to integrate trajectories
along complex time contours in a numerically stable manner so as to
be able to treat classically forbidden processes. The example treated
in this paper is a very weak transition and thus a severe test of
these methods.

A more fundamental difficulty, though, is the present lack of
multi-dimensional uniform approximations which can deal with more
general topologies of the pattern of roots to the trajectory
relations 32(51) = D,- This dis a difficult problem but one clearly

o s 19
meriting further research effort,
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Figure Captions

Gualitative sketch of the functions n7(zn ) and jz(aj ) in the
B 1
separable limit. The actual situation is substantially more

complicated. See text,

Locations of the roots of Eg. (2.6) in the complex af plane for

4
L

£=23, Roman numerals label the four distinct sets of roots.
Integers label wvalues of jze

Same as Figure 2 except for the location of roots in the En
1

plane.

Calculated totral cross sections at 1 eV initial translational
energy, for (nlejl) = (1,0), nzzO, as a function of final
rotational quantum number jZ’ The broken line connects the
points of the "primitive' semiclassical model, the solid line
those of the "uniform'" semiclassical model, with the "exact”
quantum results of reference 16 denoted by squares ([1). The
circle at j228 is the "uniform" result including only the

contribution from roots I and II; see text.
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