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I. Introduction. 

The classical S·~matrix des 

been developed and refined over the 

applied to the calculation of a varie 

of molecular collisions has 

decade and has been successfully 

1 
of collision processes. Perhaps 

the most attractive feature of this approach is that it provides a clear 

physical understanding of various effects which a.rise in 

inelastic/react1ve scat One of its first . 2 f t1ons, :or 

example, was that interference effects, "rainbow11 effects, etc., should 

appear in the distribution of final vibrational and/or rotational 

states of an inelastic collision process, quite analogous to such 

effects in the d:lstribution of scatted.ng angles (Le., the differential 

3 
cross section) in elastic scattering. Furthermore, the oiigin of this 

interference structure is the same as that in elastic scattering, 

namely semiclassical interference between different classical 

trajectories which contribute to the process. Just as in elastic 

scattering, however, observation of this interference structure in 

final state distribution requires high resolution experiments, but 

recently rainbow effects have been seen by Beck, ~! 
4 

in rotational 

state distributions. 

Numerical application of the classical S~matrix approach in its 

most rigorous version (L e., using numerically computed classical 

ectories) to systems with several internal degrees of freedom, 

however, encounters technical difficulties which has precluded its 

being employed routinely. The difficulty is not with computing 

classical trajectories, but with (1) finding, in a systematic and 

efficient manner, the t:Lcular t ectories that matter semiclassically, 



( 2) the 

if the process of interest is 

( available an 

. 5 
t~me contours 

forbidden (i.e., weak), and 

uniform semiclassical expression2•6 

if the is too quantum~like for the semiclassi.cal 

to be sufficiently accurate, 

The purpose of this paper is to methods that effectively 

solve proble.ms (1) and (2) above; Le,, numer stable ways have 

been developed for complex trajectories even for extremely 

weak transitions. and efficient ways have been found to find the 

particular trajectories (the "root search" problem) which satisfy 

the semiclassical boundary conditions. The test problem considered 

in this paper is vibrational relaxation of H2 by collision with He, 

and it is treated within the helicity conserving approximation; the 

methods (and described in Section II), however, should be 

much more generally than to just this example. Problem 

(3) above 9 however, is more fundamentally difficult to overcome, as is 

illustrated by the He+ H2 example treated: the known "uniform" 

methods are successful for most, but not all of the region of final 

rotational states jf in the vibrational relaxation process (n 

vibrational number) 

(Ll) 

To make classical S~matrix theory more quantitatively useful it is 

thus concluded that the primary need is for more generally applicable 

multi-dimensional uniform formulae. 



Section II first summarizes the basic aspects of classical 

S~matrix theory for an A + BC collision within the helicity 

conserving approximation, and then describes the methods for 

integrating trajectories along complex time contours and for finding 

the particular "root" trajectories, L e., those satisfying semi~ 

classical boundary conditions asymptotically. Results of the 

application to reaction (Ll) are given in Section III, along with 

a discussi.on of the possi.ble "uniform11 semiclassical formulae. 



IL ectories 

a, The Classical Helie tion 

" 7 Earlier work by us has described the c.lassical version of the 

helicity conserved approximation (variously called the j 
z 

, ' 8 h states approx1mat1on, or t .e sudden approxir::ation9) 

as it applies to A + BC collisions when the diatom BC is restricted to 

be a rotor, and it is a s extension to allow 

the molecule to vibrate. If (P, and (p,r) denote the coordinates 

and momenta for radial translation of A relative to BC and for 

relat~ve B-C motion, , and (j, ) are the ac 

for rotation of BC (i.e,, j is the rotational 
"l 

momenta), then the same is as before' leads to the following 

classical helici Hamiltonian, 

2 
,R,p,r,j,q.) . J 

2mr 

+ V(r,R,y) (2' 1) 

•vhere 51,, the orbital angular momentum for relative A--BC motion, has 

7 as before been assumed to be conserved. The helicity K, which is 

conserved within this 

relation between the 

cos y 

Hamiltonian, appears in the 

y (cosy ~ ~·R) and the angle variable 

cos q, 
J 

(2.2) 

For applications below, K is 0 so that the s relation 

y q. holds. 
J 



In order to define vibrational quantum numbers semiclassically 

one must transform from the ical vibrational coordinate and 

momentum ,p) to vibrational variables (n,q ) . Tili.s 
n 

h b d · d · d "'J b £ la ,lb · f · 11 h as een 1.scusse :tn eta.L. e ore; spec:t.:tca y, t e semi~ 

classical vibrational-rotation function E: , j) is deHned 

implidtly by 

r 

dr [s(n,j) ~ v(r) ~ j {2.3a) 

where v(r) is the H2 vibrational potential function, and the angle 

q is defined by 
n 

~1 
cos (cos q ) 

n 
dr 1 {2m 

As has also been noted before, 1b it is most useful to carry out the 

actual numerical trajectory calculation using the cartesian vibration 

variables (p, trans from the initial values of (n,q ) at 
n 

the beginning of the ectory and to the final values of (n,q ) 
n 

at the end of the trajectory. 

For v(r) the 32~term polynomial of the Kolos~ 

W 1 ' . lO f i . b W h d B . ll d d o ne1w:tcz ~unct_on g1ven y aec an ernste1n was use , an 

the interaction potential, 

V. t(r,R,y) ~ V(r,R,y) ~ v( 
Hl 

k b h d d 12 was ta ~n to e t at of Gor on an Secrest. The function s(n,j) was 

evaluated numerically for this choice of v(r) and then fit to a 



1 ') 
Dunham-like power series in (n + -2) and j ~ up to third order terms, 

a sufficiently accurate representation for the range of n and j that 

are involved in the present application, Comput the function 

e:(n,j) in classical S··matrix theory is analogous to finding the 

target eigenstates for a quantum mechanical coupled channel calcula~ 

tion, and we note that for very weak transftions, such as vibrational 

relaxation in H2 + He, the cross sections are more sensitive to the 

description of the target than for processes with cross 

sections, 

b, Initial Conditions and Choice of Path 

A d · d b f la,lb · · · b · h -s 1scusse e ore 1t 1s most conven1ent to eg1n t e actual 

numerical integration of each trajectory with r at an inner (or outer) 

classical turning point, If n
1 

and jl are the initial vibrational 

and rotational quantum numbers and q and q. the phase shift 
nl Jl 

variables conjugate to then the specific initial conditions for 

a trajectory with orbital angular momentum £ are 

r( t
1

) "' r< (2,4a) 

2E
1 

2TIN~q z 
!1,

2 1/2 
R( t

1
) 

nl 
~ 

(dE (UJT/3ft 
+ -·~~-] 

]J 2]JEl 

(2TIN~q ) 

q/tl) ·- qj 
+ 3E:,(n?j) _ .. nl 

1 
a j d€ ( n, j) I dn 

(2.4c) 

(2,4d) 

(2,4e) 



where E1 is the initial translat:lonal energy, the derJvattves of 

E(n,j) are evaluated at and j 
1

, and the 

to be in the 

N is chosen such 

that R(t1) is ti.c region. 

The end of the ectory at Lime by R 

to a final value chosen for all ectories. To lify 

the for the phase of the S-·matrix contribut:tons one integraU:>.s 

backwards to time at which the most recent inne:c \dbrational turning 

occurred, In practice it is unnecessary to te backwards 

since the descr::i.bed belo\.r one can 

The final value of 4 is constant in this region J 2 

and is given the of motion directly and 112 is determined 

by solving 

v(r t 2)) + 
2mr(t2) 

(2.5) 

using the determined form of the function E(n,j), Only the 

""'"' 
conditions a.t and t 2 and a phase over the interval between 

t
1 

and t 2 are needed to compute the contribution of a root t ectory 

The result of this 

functions n ( 2 9 q. ) and j 2 ( .Jl 

calculation is to the 

), i.e., the final vibrational 
1 

and rotational nquantum numbers 01 as a function of their conjugate 

initial angle variables, one can find an appropriate complex 

time path for the trajec if the roots of the following equations 

are complex, 



(2,6a) 

where n
2 

and j 2 are specific integers. An appropriate complex time 

path must sa two criteria. First, it must produce final conditions 

which determine the correct branch of the (possibly) multivalued 

function ~2(~1) (~2? (n2,j2), S! ~ (~nl'~jl)). For inelastic 

collisions, such as the case we consider here, the correct branch 

is the original one, and this means that the trajectory must not 

encircle any branch points of the action~angle variables (or R) as 

functions of time. Secondly, the trajectory cannot be allowed to 

move outside the range of complex values of the coordinates for which 

we have accurate analytic continuations of the potentials v(r) and 

V .. (r,R,y). 
J..nt 

The tendency of trajectories to "wander" unphysica.lly far into 

the complex coordinate plane during numerical integration of the 

equations of motion is most pronounced for the vibrational degree of 

freedom. This behavior can be understood by considering trajectories 

in complex time for a harmonic oscillator description of vibration 

in which the time dependence of r(t) is given by 

a cos (wt + o) (2.7) 

For complex time the cosine function can become exponentially large, 

although for a fixed value of the imaginary part of t the trajectory 



executes elliptical motion in the plane as the of 

t increases. However, the harmonic oscillator des tion 1.s 

not adequate, and in any case dur the collision the vibrational 

motion is coupled to other of freedom, Thus it can be the 

case that lr(t) / increases rapidly during the collision, even for 

fixed Im( t) , 

To control this tendency we have three methods of 

stabili tl1e vibra tlonal motion the choice of the complex 

. h h h h b d "b d 1 h 13 d t1me pat.. T e first of t ese as ueen escr1 e e sew ere an was 

found to be most useful in the portions of the ectory before and 

after the collision. This approach assumes r( to be 

t and solves at each step in the ectory for the time s 

which would b 

gives 

the oscillator to r(t) at r 0 ; at s 

{- . • 2 
± [r + 

n 

n this 

in 

(2' 8) 

·where r , r , r are the current values of 
n n n 

and its time derivatives, 

and the ± is chosen to make Re(L}.t) > 0. It is actually the 

_Ehase of the time s which is chosen as that of L}.t in Eq. (2.8); 

the of the time step is always determined by the truncation 

error criterion of the integrator. 

When this method failed to stab:U.ize the trajectory~ as it 

invariably did in the region of closest approach of He to H2, we switched 

to a second method which was found to stabilize the r(t) trajectory in 

the interaction region. In this procedure the phase of L}.t is taken 



to be the phase of 1/w, where w is the frequency of a local harmonic 

oscillator approximation to r(t). To obtain an expression for win 

terms of quantities which are available during the integration of a 

ectory, \ve first find the (complex) equilibrium position ro for 

the potential U(r) defined by 

U(r) 
.2 

"" v(r) + _J_ 
2mr

2 (2. 9) 

for the current value of j. Simple analytic approximations for r 
0 
(j) 

can be used for this purpose, At any point in the trajectory U(r ) 
n 

and U' (r ) are kno~v-n from the equations of motion, and assuming that 
n 

U(r ) is approximately quadratic, 
n 

U(r ) 
n 

(2.10) 

one can find an expression for w in terms of quantities available in 

r : 
n 

(2.11) 

The sign of the square root is chosen so that Re(l/w) > 0. Choosing 

the phase of 6t to be that of 1/w would keep the trajectory on a closed 

ellipse H the motion were purely harmonic, Le., if r(t) satisfied 

Eq. (2. 8) with a complex value of 6. In our calculations this 

procedure effectively stabilized the vibrational motion in the 

interaction region. It should be noted that in the interaction region 



injudicious choice of the time path, for example t such that 

r(t) remains real, can also lead to problematic motion of R(t). Our 

choice avoided this difficulty in most cases, and use of the rational 

fraction approach described below was able to avoid it in general, 

A combination of these two was sufficient to stabilize 

practically all of the ectories which contributed to the S·"matrix 

elements computed in this work, Ho,.:rever, if very poor guesses are used 

for initial values of the variables in the root search to solve 

Eq. (2.6), the final values of the action variables can have such a 

large imaginary part that these simple methods of stabilt the 

trajectories faiL For these extrao,-dinary cases the following 

technique of choosing the complex time path was devised which~ although 

more laborious, is much more reliable than the simpler methods. 

At every point in the ectory one has more information than 

the local values of the coordinates and momenta and their time 

derivatives; Le-. one also knows the values of those quantities at 

previous s in the numerical integration of the trajectory. Using 

this tnformation one can make use of standard techniques to form a 

rational fraction
14 

approximation to, for example, r(t) which has the 

form 

p ( t) 
r(t) ::< n 

Q~(t) 
m 

(2.12) 

where P (t) and Q (t) are polynom:Lals of order nand m respectively. 
n m 

This approximation for r(t) allows one to "look ahead" in the t plane 

to find the direction of t in which to proceed to move r(t) to the next 



turning point, r , for example. Thus at time t one forms the rational 
tp n 

fraction using the values of r(t) from previous integration steps and 

solves for the time t* satisfying 

(2.13) 

with a simple numerical root search. Then for the next several steps 

* in the integration time steps with the phase of (t ~tn) are taken. In 

practice we form the continued fraction representation of the rational 

fraction suggested by Schlessinger14 from the values of r(t) from the 

previous twenty integration steps. This information was found to be 

sufficient to predict the motion of r(t) (or p(t)) over roughly half 

a vibrational period. Using this technique thus allows one to choose 

a time path to move from one vibrational turning point to the next, 

Rational fraction analytic continuations can be used as a general 

tool for predicting the behavior of a trajectory for complex times. 

For example they can be used to help locate branch points in the time 

dependence of dynamical variables by exploiting the fact that the radius 

of convergence of the rational fractfon decreases dramatically near a 

branch point. In these regfons the difference between the predicted 

behavior and the results of integrating the trajectory becomes suddenly 

greater, particularly in the direction of the branch point. 

Finally, we note that the continued fraction representation was 

always used in our calculations to find the complex time path which 

moved the trajectory to a turning point of vibrational motion at the 

final time t 2 for each trajectory. 



c. The Root Search 

The difficulty of finding trajectories which satisfy Eq. (2.6) is 

probably the most awkward computational feature of classical S~matrix 

theory; it exists even when one is treating classically allowed 

processes, Le., when the roots of Eq. (2,6) are reaL However, 

this difficulty can be substantially overcome by the application of 

some standard numerical technology. With the methods described in 

the previous section \ve were able to stabilize, and therefore finish, 

trajectories beginning with arbitrary values of ~l and thus to construct 

the function ~2 (~1 ). To solve for the ~l satisfying Eq. (2.6) we used 

t- p 11 15 h. "h a met,wd due to owe_ , vJ J_c combines the virtues of the Newton and 

the steepest descent methods of finding roots of nonlinear algebraic 

equations. 

Powell's method is a procedure for solving equations of the form 

f(q) 0 (2.14) 

and is based on the following equations for each step 6 in the root 

search in the q space, 

T -J •f(q) (2.15) 

In this equation J is the Jacobian matrix 

d J
T . . an :ts :tts transpose, 

J .. 
1,] 

(q)/oq. 
~ J 

(2.16) 

D is a diagonal matrix of constant weight 
:::; 

factors which for the purpose of this discussion may be assumed to 

be the unit matrix. 



If the A is zero, the method reduces to Nev1ton i. terations 

with steps given by 

~1 
~J •f(q) (2.17) 

If on the other hand A is very large (and D is th<~ unit ' s 

are taken in the direction of s t descent 

(2.18) 

Powell's method is ef an algorithm for ,\ at each 

step in the :root search and at the same time • ( 2 .1')) 

without matrix inversion, 

Equation (2.15) is valid for real functions, but it can be 

shown that a of Powell's method appropriate for complex 

functions can be obtained by replacing the matrix transposes by the 

Hermitian of J, In practice we found it more convenient to 

i.n to real and imaginary 

parts even that appears to double the dimensions of the root 

search. The s taken in this way are in fact the same as they 

would be in the generalization of Powell's method mentioned 

above; the only s icant additional work arises because the Cauchy 

conditions are not used to simplify the computation of the Jacobian. 

For given values of the total energy E and orbital angular 

momentum £ the method described above can be used to solve 

for the initial angle values, ~ 1 (E,£), for the root trajectories which 

contribute significant to the classical S-matrix. It is tant 



to note that g
1

(E,.Q,) for each of these root trajectories is an analytic 

function of both E and .Q,, This observation allows us to simplify the 

search for root trajectories at different values of .Q, (or E) once 

have been found at one value, For example, to perform the sum over 

.Q, in Eq, (3.1) we require ~l (E,.Q,) for a range of .Q, at fixed E. To 

find these values we used linear or quadratic extrapolation to 

increasing values of .Q, from roots found at lower .Q, to give the first 

guess for each new root search, In our calculation this procedure 

never failed to give adequate values for beginning the root search, 

Clearly, rational fraction extrapolation would have been even more 

accurate. 



III. Construction of the S~Matrix Elements and Cross S 

The cross section for the (n
1

,J
1

) + (n2 ,.] 2) transition, summed 

over final m~components o.f the rotational state and averaged over 

init m~components, is given in the helicity conserving approximation 

by 

00 

7T 
(29,+1) 

where jmin is the smaller of jl and j 2 and k1 is the wave vector for 

the initial translational energy. For the calculations described 

below 1· •0 so that - 1 , the term K"'O appears in the sum over K. 

The task is to construct the S~matrix elements. 

a. Primitive ical Model 

The general expression for the class S-matrix for an atom-

diatom collision is Hell·-known and has been given in several forms 

elsewhere.
1 

Also, the simplifications which result from beginning 

and ending the ectories at a vibrational turning point have been 

d 'b d . 1 lb b . 1 k. escr1 e prev:tous y, so to o ta1.n tae w·or 1.ng ions for this 

calculation it only remains to specialize these results to the case 

of the helicity conserving approximation. Since the transitions 

considered begin with rotational momentum j, equal to zero, 
_,_ 

and therefore have helicity K equal to zero as well, the formulae 

below are s lized to case, 

Each S~matrix element is a sum over root ectori.es (Le., 

those which satisfy Eq. (2.6)), 



i 
h \!l(n2j2,nJj~ ;£) 

- , J 

dt (p; + Pi + j;~) 
1 

+ 7f Jl, - (j q . + PR 
J 

.J 

~1 
!/,tan (PR/9-)] 

e 

~ 

t 2 

There is no contribution to Eq. (3.3) from the generator of the 

classical canonical transformation from the variables (p,r) to 

(3 .2) 

(3. 3) 

(n,q ) because the trajectories are begun and ended at vibrational 
n 

turning points. 

of the Jacobian of final quantum numbers >vith respect to initial 

values of the angle variables, 

To construct the classical S-matrix for a particular transition 

it is useful to have a qualitative picture of the several classical 

trajectories which contribute to it. If rotation and vibration were 

separable in these collisions, Eq. (2.6) would separate into two 

equations involving the functions n2 ( ) and j 2(q. ). For 
Jl 

one would expect n
2

(q ) to behave qualitatively as shown in Figure 
nl 

la. There is no solution of the equation n2 (~ )=0 for real values 
n 

1 
of qn , but there are two solutions for complex ~ (complex conjugates 

1 ~ 
of each other). Since the transition is strongly classically forbidden, 



only one of the.se would contribute to the S··matrix, the other 

corresponding to the unphysical solution of the Schr3dinger equation 

which would an exponentially contribution to the S-matrix. 

The situation for the rotational of freedom is somewhat 

more complicated, For the collision of an atom with a homonuclear 

diatomic molecule the potential V(R,r,y) is periodic in y so that 

V(R,r,y+TI) ·- V(R,r,y), and it is easy to show that j2(q. + Tl) 
Jl 

j2(q. ), In the case there would thus be four real roots of 
' J 1 

the equation j 2 (qj ) - j 2. but the second two (at larger q, ) are 
1 Jl 

related symmetry to the first and make identical contribu~ 

tions to the S-matrix, In the helicity conserving approximation for 

j
1
•0 there will also be four roots of the equation j 2 (q. ) • -j 

Jl 
cf. Ffgure lb and also reference 7--but these are symmetrically 

related to the roots for positive j 2 and make an identical contribu-

tion to the S-matrix, One thus expects two distinct roots of the 

rotational equation j 2(q. ) ~ ±j
2

. 
Jl 

Combining one root inn with two unique roots in j, this separable 

reference thus suggests that there would be two unique (different) 

trajectories which contribute to the S~matrix, From symmetry 

considerations together with the inclusion of 2 roots, the 

S~matrix computed from the two unique roots with jz > 0 should be 

multiplied by four to obtain the S~matrix from all contributions, 

In the actual calculations vibration and rotation are not 

separable, but the arguments leading to the expression for S-matrix 

as four times the contributions from the unique trajectories with 



j 2 > 0 still applies. However, when the root search was performed 

four unique root trajectories were found which contribute significant 

to the transitions n
1 

• 1 and jl 0 to n 2 = 0 and j
2 

~ 0,2,4,6,8. 

The locations of these roots in the complex~ and ~. planes are 
. nl J1 

shown in Figures 2 and 3 for £ = 23. For each of the roots, denoted 

by I, II, III. and IV in the figures, q and q. are continuous 
nl J 1 

functions of j
2

• The four curves in each figure connect the values 

of q or q. in the complex plane at j 2 = 0,2,4,6 and 8 for the 
nl Jl 

four distinct roots. If the separable situation sketched in Figure 1 

had obtained, Figure 2 would consist of one point and Figure 3 

would consist of two curves which would be strict on the real 

axis for small values of j 2 . Thus rotation and vibration are very 

strongly coupled in this system. 

The "primitive" semiclassical S~matrix elements of Eq. (3.2) thus 

involve four terms, and one only has to be careful to choose the proper 

phases of the square root pre-exponential factors. As has been 
la,lb 

discussed before, this can be done in most cases from a knowledge 

of the relative signs of the Jacobians. In the present case there is 

an additional piece of information because roots I and II coalesce to 

cause "rainbow" behavior as £ is varied. This fact allmvs one to check 

the relative phases for these two roots by comparing it to that for 

two coalescing roots in the simpler case of elastic scattering 

3 
rainbmvs. Thef:;e arguments lead to the following "primitive" formula 

for the classical S-matrix (including the above mentioned factor of 

4 and setting fi ~ 1) 



2 
7T 

(3 .4) 

where D1 , DII' DIII' and DIV denote the Jacobiaus, 'd(n2 ,j 2)/o(qn
1
'qj/' 

for each of the four roots and ~I' ~II' 0
111

, and ~IV denote the 

associated 

Figure 4 shows the cross sections obtained within the "primitive" 

semiclassical limit, i.e., Eq. (3.4) in Eq. (3.1), compared to the 

close coupling calculations of Raczkowski, Lester and Miller, 16 which 

are essentially the exact results for these potential functions. 

The semiclassical results agree reasonably well with the correct 

quantum values for all final rotational states except the highest, 

j 2=8, for VJhich the semiclassical result is much too This 

behavior is analogous to the classical singularity at a rainbo\..r 

. . 1 1 . . 3 
1n s1mp e e ast1c scatter1ng. The coupling betVJeen rotation and 

vibration quenches the s ty to some extent in the present 

case, but an examination of the location of the roots in the complex 

q. plane clearly shows the close approach of 
Jl 

and j 2"'6 for some values of 5I,. Thus the maximum at j 2''"6 in the 

quantum results corresponds to a classical rainbow in the classical 

S-matrix picture of the collision. In order to obtain more reliable 



values near the rainbow one requires a uniform semiclass:tcal approxi"" 

mation which is valid in the vicinity of the rainbow as well as the 

"primitive" region for ]
2 

< 6, 

b, Uniform 

Uniform semiclassical approximations for the scattering amplitude 

can be derived in the case of elastic scattering by abandoning the 

stationary phase approximation to an integral (over £ in the usual 

derivation) representdtion of the amplitude and instead employing more 

' . 17 accurate approximations to ttle lntegral-, In more complicated r:ases, 

i.e., inelastic scattering, semiclassical theory provides only the 

"primitive" semiclassical expressions, and one can construct 

"uniform" approximations which only have the status of interpolations 

between regions for which valid "primitive" semiclassical approximations 

are available. In the present case it appears that the rainbow effect 

is primarily due to a near coalescence of roots I and II in the q 
jl 

plane. Thus we begin by finding a uniform formula for the contributions 

of these two roots. For small values of ]
2 

the primitive formula is 

applicable (the bright side of the rainbow), and the uniform formula 

for the contributions of roots I and II, should reduce to the first 

two terms of Eq. (3.4): 

s 2 
1T 

i (¢I +<P II) I 2 
e 

Tr 
i(- ~ 6<P) 

4 

l-lD 1 

. I 

(3.5) 



where /:,¢ "" ( /2 and h has been set to l, For values of j
2 

beyond 

the rainbow singular (on the dark only one of the roots, in 

our case <P
11

, should contribute because the other root becomes 

unphysica.lly large. Thus in this limit the uniform formula should 

become 

s 2 
Tr 

The key quantity in the change from Eq. (3.5) to 

(3 ,6) 

For small j 2, ~¢ is approximately real, and for large j 2 it is almost 

pure imaginary, ~ip ~ iJ J, because Im(¢Il) » Im(¢
1
). The goal is 

to find a function of ~¢which reduces to Eqs. (3.5) and (3.7) in the 

appropriate limits. 

An approach which has been successful in other cases
2 

of two 

coalescing roots is to use the asymptotic relationship for combinations 

f h k . d f A' f . lS o t e two 2n s o :try _unctcons 

12 z
114 [Ai(-z) ±i Bi(-z)] ~ ( 3. 7) 

W ·n• ere z = -2~·(A"') 213 . h' b · · · E (3 5) h · h h - L..\'¥ T 2s su st1.tut1.on 2n 'q. . , toget er vnt t e 

assumption that D
1 

~ ~n11 in the regions on either side of the rainbow, 

produces the desired uniform formula provided that Mil is such that 

0 < arg(~¢) < Tr/2 as it changes from being and real to large 

and imaginary, and also provided that the correct branch of the cube 

root is taken in the definition of z. In the present case, however, 

~¢ does not remain in the first quadrant, but as it moves from near 

the real axis to near the :Lmaginary axis the argument of ~cp decreases 



smoothly from zero to almost ~3rr/2, This ease can be dealt vlith 

conveniently by using an asymptotic relation similar to Eq, (3. 7), 

but in which Bi(~z) is replaced by ~Ai'(~z)//Z where Ai' is the 

d . . f A' 6 er:tva.t1ve o 1, In this way one obtains a qualitatively correct 

uniform formula for the contributions of roots I and II: 

s 2 i(¢
1
+¢

11
)/2 1/2 

2
1/4 

e n· 
7f 

+ Ai 

l:::rD' 
I 

This expression provides a. smooth analytic continuation in ~¢ 

between the primitive semiclassical approximations in Eqs, (3,5) 

and (3 ,6) :i.f the argument of M> varies as described above and if 

the branch of the cube root in the definition of z is chosen such 

that arg(z) • ~ arg(~ ~¢). The branch of the square root in 

Eq, (3,8) is chosen such that arg(z112 ) ~} arg(z), 

In Figure 4 the cross sections obtained using this uniform 

formula for the contribution of roots I and II, but retaining the 

(3' 8) 

primitive semiclassical contribution of roots III and IV, are also 

shown, This approximate "uniformization" does indeed improve the 

semiclassical result for j 2 "" 8, but still does not brl.ng l.t into 

good agreement with the correct value. What seems to be needed is 

a "uniformization" also of the contribution from roots III and IV, 

but we have been unable to devise such a global "uniform" expression 

which deals with all four complex roots. That the problem at 

j 2::::8 is due to the "primitive" treatment of roots III and IV is 



also suggested by the fact that if the contribution from these roots 

is totally discarded, the cross section for j 

circle in Figure 4). 

is too small (the 



Several of the computational difficulties associated with carrying 

out rigorous calculations based on classical S-matrix theory thus appear 

manageable; i,e,, Powell's algorithm seems to deal with the root search 

problem quite efficiently, for real or complex roots, and the procedure 

described in Section IIb makes it possible to integrate trajectories 

along complex time contours in a numerically stable manner so as to 

be able to treat classically forbidden processes. The example treated 

in this paper is a very weak transition and thus a severe test of 

these methods, 

A more fundamental difficulty. though, is the present lack of 

multi-dimensional uniform approximations which can deal with more 

general topologies of the pattern of roots to the trajectory 

relations ~2 C31 ) = ~2 , This is a difficult problem but one clearly 

meriting further research effort. 19 
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L Qualitative sketch of the functions (q ) and j
2
(q. ) in the 

nl Jl 

separable limit, The actual situation is substantially more 

complicated. See text. 

2. Locations of the roots of Eq. (2.6) in the complex qj
1 

plane for 
L 

1•23. Roman numerals label the four distinct sets of roots. 

Integers label values of j 2 . 

3. Same as Figure 2 except for the location of roots in the qn 
1 

plane. 

4, Calculated total cross sections at 1 eV initial translational 

energy, for (n
1
,j

1
) • (1,0), n2=0, as a function of final 

rotational quantum number J 2 . The broken line connects the 

points of the "primitive" semiclassical model, the solid line 

those of the "uniform" semiclassical model, with the "exact" 

quantum results of reference 16 denoted by squares (0), The 

circle at j 2"'8 is the "uniform" result including only the 

contribution from roots I and II; see text. 
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