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Abstract

The purpose of the present document is to formulate Jacobian-free New-
ton-Krylov algorithm for approximate projection method used in Hydra-
TH code. Hydra-TH is developed by Los Alamos National Laboratory
(LANL) under the auspices of the Consortium for Advanced Simulation
of Light-Water Reactors (CASL) for thermal-hydraulics applications rang-
ing from grid-to-rod fretting (GTRF) to multiphase flow subcooled boil-
ing. Currently, Hydra-TH is based on the semi-implicit projection method,
which provides an excellent platform for simulation of transient single-phase
thermalhydraulics problems. This algorithm however is not efficient when
applied for very slow or steady-state problems, as well as for highly non-
linear multiphase problems relevant to nuclear reactor thermalhydraulics
with boiling and condensation. These applications require fully-implicit
tightly-coupling algorithms. The major technical contribution of the present
report is the formulation of fully-implicit projection algorithm which will ful-
fill this purpose. This includes the definition of non-linear residuals used for
GMRES-based linear iterations, as well as physics-based preconditioning
techniques.

Key words: Multi-Physics, Multi-Scale problems, Finite Volume, Incompressible

Flow, Approximate Projection, Jacobian-Free Newton Krylov (JFNK),

Physics-Based Preconditioning
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1. Introduction

The solution of the time-dependent incompressible single- and multi-
phase flows poses several algorithmic problems due to the div-free constraint,
and the concomitant spatial and temporal resolution required to perform
time-accurate solutions particularly when complex geometry is involved.
The initial deployment of Hydra-TH has focused on projection methods
because of their computational efficiency and accuracy for transient flows.
However, when applied to slow transients and steady-state problems, the
currently existing projection methods are not cost-effective, due to stabil-
ity restrictions imposed by material Courant limit. For these applications,
fully-implicit algorithms are required. Here, we reformulate semi-implicit
projection method to fit into the fully-implicit Jacobian-free Newton Krylov
solution strategy.

We start with a short description of governing equations, defined in Sec-
tion 3. Even though we limit our discussion here to single-phase flows, the
basic ideas introduced are extendable to multi-fluid formulation [1].

A detailed review of projection methods is beyond the scope of this
document, but a partial list of relevant work is provided for the interested
reader. Projection methods, also commonly referred to as fractional-step,
pressure correction methods, or Chorin’s method [2] have grown in popu-
larity over the past 20 years due to the relative ease of implementation and
computational performance. This is reflected by the volume of work pub-
lished on the development of second-order accurate projection methods, see
for example van Kan [3], Bell, et al. [4], Gresho, et al. [5, 6, 7, 8], Alm-
gren, et al. [9, 10, 11], Rider [12, 13, 14, 15], Minion [16], Guermond and
Quartapelle [17], Puckett, et al. [18], Sussman, et al. [19], and Knio, et al.
[20]. The numerical performance of projection methods has been considered
by Brown and Minion [21, 22], Wetton [23], Guermond [24, 25], Guermond
and Quartapelle [26, 27], and Almgren et al. [11]. A short introduction to
semi-implicit projection method is given in Section 4.

The main technical contribution of this report is described in sections 5
and 6, introducing fully-implicit projection and its physics-based precondi-
tioning.

Concluding remarks are given in the final section 7.
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2. HydraTH

Hydra-TH [28] refers to the specific physics module that provides the hy-
brid finite-volume/finite-element incompressible/low-Mach flow solver. This
is built as one of the many physics modules using the Hydra multiphysics
toolkit. The toolkit provides a rich suite of components that permits rapid
application development, I/O interfaces to permit reading/writing multiple
file formats for meshes, plot data, time-history and surface-based output.
The toolkit also provides run-time parallel domain decomposition with data-
migration for both static and dynamic load-balancing. Linear algebra is
handled through an abstract interface that permits use of popular libraries
such as PetSC and Trilinos. Hydra’s toolkit model for development pro-
vides lightweight, high-performance and reusable code components for agile
development. Currently the toolkit supports finite-element based solvers
for time-dependent heat conduction, time-dependent advection-diffusion,
time-dependent incompressible flow, multiple Lagrangian hydrodynamics
solvers, rigid-body dynamics, etc. In addition, unstructured-grid finite-
volume solvers are available for solving time-dependent advection-diffusion,
Burgers’ equation, the compressible Euler equations, and incompressible/low-
Mach Navier-Stokes equations. There are also interfaces to the FronTier
front-tracking software and to level-set methods.

3. Governing Equations

In the following discussion, we allow variable-density formulation. The
mass conservation principle in divergence form is

∂ρ

∂t
+

∂(ρvj)

∂xj
= 0. (1)

In the incompressible limit, the velocity field is solenoidal,

∂vi
∂xi

= 0 (2)

which implies a mass density transport equation,

∂ρ

∂t
+ vj

∂ρ

∂xj
= 0. (3)

For constant density, Eq. (2) is neglected with Eq. (3) remaining as a con-
straint on the velocity field.
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Momentum conservation. The conservation of linear momentum is

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

=
∂σij
∂xj

+ ρfi (4)

where vi is the velocity, σij is the stress tensor, ρ is the mass density, and
fi is the body force. The body force contribution ρfi typically accounts for
buoyancy forces with fi representing the acceleration due to gravity.

The stress may be written in terms of the fluid pressure and the devia-
toric stress tensor as

σij = −pδij + τij (5)

where p is the pressure, δij is the Kronecker delta, and τij is the deviatoric
stress tensor. A constitutive equation relates the deviatoric stress and the
strain rate, e.g.,

τij = 2μSij . (6)

The strain-rate tensor is written in terms of the velocity gradients as

Sij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (7)

Energy conservation. The energy equation may be expressed in terms
of temperature, T, as

∂ρCpT

∂t
+

∂

∂xj

(
ρvjCpT

)
= −

∂qj
∂xj

+ q
′′′

(8)

where Cp is the specific heat at constant pressure, qi is the diffusional heat
flux rate, and q

′′′

represents volumetric heat sources and sinks, e.g., due to
exothermic/endothermic chemical reactions. Fourier’s law relates the heat
flux rate to the temperature gradient and thermal conductivity

qi = −κ
∂T

∂xi
(9)

where κ is the thermal conductivity.

Alternatively, one can solve in terms of specific internal energy:

∂ρu

∂t
+

∂

∂xj

(
ρvju

)
= −

∂qj
∂xj

+ q
′′′

(10)

with a given function
u = F (T )
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For example,
u (T ) = u

0
+ Cv (T − T

0
)

where u
0
and T

0
are the values of specific internal energy and temperature

at some reference point, while Cv is specific heat.

Scalar transport. In addition, we consider a coupled solution for trans-
port of scalars:

∂ρφn

∂t
+

∂

∂xj

(
ρvjφn

)
= −

∂Jnj

∂xj
+ J

′′′

n
(11)

where by Jnj
and J

′′′

n
we denote diffusive flux and volumetric sources for

a scalar φn . Note that φn could represent turbulence transport quantities
(e.g., turbulent kinetic energy k). In this case, momentum and heat diffusion
coefficients are considered to be a function of φn . In the most general case,

μ
(
T, φn

)
and κ

(
T, φn

)
, n = 0, ..., N − 1

4. Semi-Implicit Projection

Following the well-established finite-volume procedure, we discretize mo-
mentum equation in space, integrate by parts, and apply the divergence
theorem. Using a piecewise-constant weight functions yields

ρ
d

dt

∫
Ωe

v dΩe+

∮
Γe

ρv(v·n) dΓe−

∮
Γe

τ ·n dΓe+

∫
Ωe

∇p dΩe−

∫
Ωe

f dΩe (12)

Using definition for the cell-average,

u =
1

Ωe

∫
Ωe

uh (13)

the spatially-discrete momentum equations become

ρΩe dv

dt
+

∮
Γe

ρv(v · n) dΓe −

∮
Γe

τ · n dΓe +

∫
Ωe

∇p dΩe −

∫
Ωe

f dΩe (14)

The projection algorithm can be derived a number of ways. Here, we
choose to first develop the time-integrator, and identify the terms associated
with the projection via a Helmholtz decomposition of the velocity. Before
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proceeding we define the following mass, advective, viscous, gradient and
body-force operators.

M = ρΩe (15)

A(ρ,v)v =

∮
Γe

ρv(v · n) dΓe (16)

Kv =

∮
Γe

τ · n dΓe (17)

Bp̄ =

∫
Ωe

∇p dΩe (18)

F =

∫
Ωe

f dΩe (19)

We form the global operators, apply forward-Euler first, then backward-
Euler with explicit advection in both cases, and take the sum of the fully-
discrete systems results in the following

M vn+1
−vn

Δt
= (1− θ)Kvn + θKvn+1 + (1− θ)Fn + θFn+1−

−(1− θ)A(ρ,v)vn − θA(ρ,v)vn+1 −Bp̄n − θpB(p̄n+1 − p̄n)

(20)

where 0 ≤ θ ≤ 1, θ = 0 corresponds to a forward-Euler, θ = 1/2 a trape-
zoidal rule, and θ = 1 backward-Euler treatment of viscous and body-force
terms.

Using the Helmholtz decomposition as

ρv∗ = ρvn+1 +∇λ (21)

we introduce the following definition

λ = θpΔt(p̄n+1 − p̄n) (22)

Plugging these into Eq. (20), the momentum equation can be formulated
for the approximate (“predictor”) velocity as

[M − θΔt (K −A (ρ,v))]v∗ = [M + (1− θ)Δt (K −A (ρ,v))]vn+

+Δt
(
(1− θ)Fn + θFn+1 −Bp̄n

)
+

+
�
�

�
�

�
�
�
�� 0

θΔtA (ρ,v) ∇λ
ρ

−
�

�
�

�
�� 0

θΔtK∇λ
ρ

+
�

�
�

�
�

�
���

0[
M ∇λ

ρ
−Bλ

] (23)
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Using the Helmholtz decomposition, and requiring ∇vn+1 = 0, yields a
pressure-Poisson equation (PPE) that can be solved for the Lagrange mul-
tiplier λ:

∇ ·
1

ρ
∇λ = ∇ · v∗ (24)

Given a velocity and pressure at time-level n, the P2 algorithm proceeds
as follows.

Algorithm 1. Basic P2 Algorithm

1. Solve for v∗

[M − θΔt (K −A (ρ,v))]v∗ = [M + (1− θ)Δt (K −A (ρ,v))]vn+

+Δt
(
(1− θ)Fn + θFn+1 −Bp̄n

) (25)

2. Form the right-hand-side of the PPE, solve for λ,

Kpλ = D (26)

3. Update the pressure

p̄n+1 = p̄n +
1

θpΔt
λ (27)

Note that testing over the last 20 years or so has indicated that using
θp = 1/2 to update the pressure can lead to temporal oscillations in the
pressure. For this reason, we use θp = 1 in the implementation.

4. Project the cell-centered velocities

vn+1 = v∗ −
1

ρ
Bλ (28)

5. Compute face gradients and project the face-centered velocities

vf = v∗f −
1

ρf
((B)λ)f · n (29)

6. Repeat steps 1 - 5 until the termination time is reached
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5. Fully-Implicit Projection

For the sake of simplicity, consider isothermal constant-density flow.
Thus, the vector of unknowns is

U =

[
p̄
v

]
or, in terms of Lagrange multiplier:

V =

[
λ
v

]
Let us search a new-time solution iteratively, defining new-iteration values
U

♦♦

or V
♦♦

in the following incremental form:

p̄
♦♦

= p̄
♦

+ p′ (30)

λ
♦♦

= λ
♦

+ λ′ (31)

v
♦♦

= v
♦

+ v′ (32)

and assume the following linearization of body force:

F
♦♦

= F
♦

+ F
v

(
F

♦
)
v′ + f p

(
F

♦
)
p′ (33)

where specific forms of the linearization matrix F
v
and vector f p are problem-

dependent.

Plug these into eqs.(21), (22) and (20):

v∗ = v
♦

+ v′︸ ︷︷ ︸
Divergence-free part

+
1

ρ
∇

(
λ

♦

+ λ′

)
(34)

λ
♦

+ λ′ = θpΔt
(
p̄
♦

− p̄n
)

︸ ︷︷ ︸
λ
♦

+ θpΔtp′︸ ︷︷ ︸
λ′

(35)

M
(
v

♦

+ v′ − vn
)
= Δt(1− θ)Kvn +ΔtθK

(
v

♦

+ v′

)
−

−Δt(1− θ)A(ρ,v)vn −ΔtθA(ρ,v)
(
v

♦

+ v′

)
+

+Δt(1− θ)Fn +Δtθ
(
F

♦

+ F
v
v′ + f pp

′

)
−

−ΔtBp̄n −ΔtθpB(p̄
♦

+ p′ − p̄n)

(36)
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After re-grouping, the momentum equation becomes:[
ΔtθM

−1

(
f p −

θp

θ
B

)]
p′ +

[
1−ΔtθM

−1

(K −A(ρ,v) + F
v
)
]
v′ = −res

v

(37)
where

res
v
= v

♦

− vn −ΔtM
−1

(
(1− θ)Kvn + θKv

♦
)
+

+ΔtM
−1

(
(1− θ)A(ρ,v)vn + θA(ρ,v)v

♦
)
−

−ΔtM
−1

(
(1− θ)Fn + θF

♦
)
+

+ΔtM
−1

(
Bp̄n + θpB(p̄

♦

− p̄n)
) (38)

From eq.(34),

v
♦

+ v′ = v∗ −
θpΔt

ρ
∇

(
p̄
♦

+ p′ − p̄n
)

(39)

which can be plugged into eq.(36) to get a counterpart of the momentum
“predictor” equation (23):

[M −Δtθ (K −A(ρ,v) + F
v
)]v∗ =

= [M +Δt(1− θ) (K −A(ρ,v))]vn − ΔtθK

(
Δtθp

ρ
∇

(
p̄
♦

+ p′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp

ρ
∇

(
p̄
♦

+ p′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇

(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′ − p̄n)−
Δtθp

ρ
∇

(
p̄
♦

+ p′ − p̄n
))

(40)

Note that the terms in boxes are dropped in eq.(25). Next, we further
re-group this equation as:

Pv∗ = m
♦

−Gp′ (41)
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where

m
♦

= [M +Δt(1− θ) (K −A(ρ,v))]vn+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
v

♦

+ 1
ρ
∇λ

♦
))

−ΔtBp̄n−

−Δtθ [K −A(ρ,v)]
(
1
ρ
∇λ

♦
)
−Bλ

♦

+ 1
ρ
∇λ

♦

(42)

G ≡ Δtθ

[
F

v

Δtθp

ρ
∇− f p+

θp

θ
B−

Δt

ρ

θp

θ
∇+ (K −A(ρ,v))

Δtθp

ρ
∇

]
(43)

P ≡ [M −Δtθ (K −A(ρ,v) + F
v
)] (44)

and we used equation (35) for definition of λ
♦

. Thus, “predictor” velocity
can be computed as

v� = P
−1

(
m

♦

−Gp′
)

(45)

Finally, we can form incremental PPE by taking divergence of eq.(34)
and using eq.(45):

∇ ·
1

ρ
∇λ′ +

1

θpΔt
∇ ·Gλ′ = −res

λ
(46)

where

res
λ
= ∇ ·

1

ρ
∇λ

♦

−∇ ·

(
P

−1

m
♦
)

(47)

With this, linear iterations of a Newton-based algorithm are defined by the
following equation:⎡
⎢⎢⎢⎢⎣

∇ ·
1

ρ
∇+ 1

θ
p
Δt

∇ ·G 0

θ
θ
p

M
−1

(
f
p
−

θ
p

θ
B

)
1−ΔtθM

−1

(K −A(ρ,v) + F
v
)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Jacobian, J

V

[
λ′

v′

]
︸ ︷︷ ︸

V′

= −

[
res

λ

res
v

]
︸ ︷︷ ︸

�res
V

(48)

Non-linear residuals res
λ
and res

v
are supplied to PETSC-SNES [29] for

JFNK implementation.
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6. Preconditioning

6.1. General strategy

Consider the following modification of eq.(48):

J
V
P
−1︸ ︷︷ ︸

J
P

PV′︸︷︷︸
V′′

= − �res
V

(
V′

)︸ ︷︷ ︸
�b

(49)

where P symbolically represents the preconditioning matrix (or process),
and P−1 is its inverse. Thus, the solution procedure is splitted into two
processes:

1. Solving for

J
P
V′′ = �b (50)

(this is what actually crunched by GMRES), and

2. Preconditioning:

V′ = P
−1V′′ (51)

While one refers to the matrix/process P, operationally the algorithm
only requires the action of P−1 on a vector. The main requirement is that
P designed properly, to enable clustering eigenvalues of the J

P
, making the

solution of eq.(50) to converge faster.

For effective preconditioning of the fully-implicit projection algorithm,
we can use semi-implicit algorithm described in Section 4. The strategy with
involving a legacy (e.g., operator-splitting) algorithm for preconditioning
is commonly referred to as Physics-(Process)-based preconditioning (PBP)
[30, 31, 32, 33, 34], to be contrasted to the Matrix-(Math)-based precon-
ditioning (MBP) algorithms. The later include different flavors of SOR,
SSOR, ILU, MILU, ILUT, ILUTP, ILUS, ILUC, etc. preconditioners, see
[35] for review. In these cases, the preconditioning matrix P is required, as
a suitable approximation for J

V
.

In the following section, we will describe details of our implementation
of the semi-implicit projection as PBP, emphasizing all differences relative
to the using this algorithm as a solver (in an operator-splitting OS mode).
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6.2. Semi-Implicit Projection as Physics-Based Preconditioning

At the input of the preconditioning step, we have current Newton itera-
tion values of v

♦

, p̄
♦

and λ
♦

, and current update values v′′, p̄′′ and λ′′. In
the OS splitting mode, these are:

v
♦

= vn, p̄
♦

= p̄n, λ
♦

= 0, v′′ = 0, p̄′′ = 0 and λ′′ = 0

The task of the preconditioning is to convert these into v
♥

, p̄
♥

, λ
♥

, v′, p̄′

and λ′, where

v
♥

= v
♦

+ v′

p̄
♥

= p̄
♦

+ p̄′

λ
♥

= λ
♦

+ λ′

(52)

In the OS mode, Φ
♥

= Φ
n+1

, where Φ = v, p̄ and λ.

We define Helmholtz decomposition as

v♥,� = v
♦

+ v′︸ ︷︷ ︸
Divergence-free part, v

♥

+
1

ρ
∇

(
λ

♦

+ λ′

)
︸ ︷︷ ︸

λ
♥

(53)

Non-incremental Form.

1. The first step would be to solve for non-solenoidal (“predictor”) veloc-
ity field, v♥,�, using one of the following options.

Option-A:

[M −Δtθ (K −A(ρ,v) + F
v
)]v♥,� =

= [M +Δt(1− θ) (K −A(ρ,v))]vn − ΔtθK

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇

(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

(54)
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In the OS mode, v♥,� = v� and eq.(54) reduces to eq.(25).

Option-B:

Equation (54) is of advection-diffusion type, which is not well amean-
able to multigrid algorithm, and solved in Hydra by ILU-based solver.
Another viable option would be to convert it into the parabolic equa-
tion, by taking out advection operator on the left-hand-side (leaving
it to GMRES to deal with). Thus, the parabolic equation would be:

[M −Δtθ (K + F
v
)]v♥,� = [M +Δt(1− θ) (K −A(ρ,v))]vn−

−ΔtθA(ρ,v)
(
v

♦

+ v′′

)
− ΔtθK

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇

(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

(55)

2. The second step would be to form and solve PPE. Taking divergence
of eq.(53) leads to the following PPE:

∇ ·
1

ρ
∇λ

♥

︸ ︷︷ ︸
Kpλ

♥

= ∇ · v♥,�︸ ︷︷ ︸
D

(56)

which reduces to eq.(26) in the OS mode.

3. Pressure is computed from the new Lagrange multiplier as:

p̄
♥

= p̄n +
1

θpΔt
λ

♥

(57)

4. Next, we project the cell-centered velocities as

v
♥

= v♥,� −
1

ρ
Bλ

♥

(58)
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5. Finally, we can compute

v′ = v
♥

− v
♦

p̄′ = p̄
♥

− p̄
♦

λ′ = λ
♥

− λ
♦

(59)

and these are the values which are returned to PETSC-SNES. As men-
tioned above, in the OS mode, this step is absent, as Φ

♥

= Φ
n+1

.

Incremental Form. One can re-write eq.(53) as:

v♥,� = v
♦

+ v�′ (60)

where

v�′ = v′ +
1

ρ
∇

(
λ

♦

+ λ′

)
(61)

1. Solve for non-solenoidal velocity increment v�′ .

Option-A:

[M −Δtθ (K −A(ρ,v) + F
v
)]v�′ = − [M −Δtθ (K −A(ρ,v) + F

v
)]v

♦

+

+ [M +Δt(1− θ) (K −A(ρ,v))]vn − ΔtθK

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇

(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

(62)
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Option-B:

[M −Δtθ (K + F
v
)]v�′ = − [M −Δtθ (K + F

v
)]v

♦

+
+ [M +Δt(1− θ) (K −A(ρ,v))]vn−

−ΔtθA(ρ,v)
(
v

♦

+ v′′

)
− ΔtθK

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇

(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp

ρ
∇

(
p̄
♦

+ p′′ − p̄n
))

(63)

2. Solve incremental PPE:

∇ ·
1

ρ
∇λ′ = ∇ · v�′ −∇ ·

1

ρ
∇λ

♦

(64)

3. Convert to pressure correction as

p̄′ =
λ′

Δtθp

(65)

4. Return to PETSC-SNES a preconditioned solution as[
p̄′ (or λ′)

v′ = v�′ − 1
ρ
∇

(
λ

♦

+ λ′

) ]
(66)

7. Concluding Remarks

The main technical contribution of the present report is the formulation
of the fully-implicit projection algorithm for implementation in Hydra-TH
code. We discussed definition of non-linear residual vector, as well as the
strategy for efficient preconditioning of linear (GMRES) solver, utilizing the
variation of the currently-available in Hydra-TH semi-implicit projection
algorithm. While focusing here on single-phase flow formulation, the basic
ideas of the fully-implicit projection should be straightforwardly extandable
to multi-fluid flows. These extensions will be presented in future.
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