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Abstract 

Suites of experiments are preformed over a validation hierarchy to test computational simulation 
models for complex applications. Experiments within the hierarchy can be performed at different 
conditions and configurations than those for an intended application, with each experiment 
testing only part of the physics relevant for the application. The purpose of the present work is to 
develop methodology to roll-up validation results to an application, and to assess the impact the 
validation hierarchy design has on the roll-up results. The roll-up is accomplished through the 
development of a meta-model that relates validation measurements throughout a hierarchy to the 
desired response quantities for the target application. The meta-model is developed using the 
computation simulation models for the experiments and the application. The meta-model 
approach is applied to a series of example transport problems that represent complete and 
incomplete coverage of the physics of the target application by the validation experiments. 
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EXECUTIVE SUMMARY 

 

Suites of experiments are performed over a validation hierarchy to test computational simulation 
models for complex applications. Experiments within the hierarchy can be performed at different 
conditions than those for an intended application, with each experiment designed to test only part 
of the physics relevant for the application. The experiments may utilize idealized representations 
of component geometries, with each experiment returning measurement types (i.e. temperature, 
pressure, flux, first arrival times) that may be different from the response quantity of interest for 
the application. How does one relate or “roll-up” results at various levels in a validation 
hierarchy to predictions and uncertainty for the anticipated application? Issues associated with 
the roll-up of hierarchical results to an application prediction include properly weighting of 
individual experimental results to best represent an the application, assessing whether the suite of 
experiments adequately tests the anticipated physics of the application, and characterizing the 
additional uncertainty in an application prediction due to lack of coverage of the application 
physics by the physics addressed by the validation experiments. 

The purpose of the present work is to develop methodology to roll-up validation results to an 
application, and to assess the impact the design of the validation hierarchy has on the rolled-up 
results. This is accomplished through the development of a meta-model that relates the validation 
measurements to the application response quantity of interest. The meta-model possesses the 
following features: The meta-model accommodates the presence of computational model 
parameter uncertainty in both the computational models for the validation experiments and the 
target application, as well as measurement uncertainty in the validation data. The meta-model 
accommodates possible incomplete physics coverage of the application by the validation suite. 
The meta-model allows different validation measurement and application response quantity 
types. The meta-model addresses the impact of validation experiments performed at conditions 
different from those of the anticipated application.  

For the present development, the meta-models will be constructed as weighted combinations of 
the computational based representations of the validation experiments over computational 
neighborhoods around each measurement location, time, and type. Specifically sampling 
techniques are used over these neighborhoods to characterize the dependence of the 
computational based validation and application models on the important computational model 
parameters and independent variables so that the meta-models best represent the behavior of the 
computational application model for the response quantity of interest. Two approaches are used 
and compared to evaluate the meta-model weights. The first is based on an objective function 
defined to explicitly accommodate the trade-off between the ability of the meta-model to resolve 
the target application model, and the sensitivity of the meta-model to computational parameter 
and measurement uncertainty. The second approach is based on partial least squares regression 
(PLSR). The trade-off between resolution (fidelity) and sensitivity for the PLSR approach is 
addressed through the number of latent variables utilized for the regression. 

The methodology is applied to a series of example transport problems that represent complete 
and incomplete coverage of the physics of the target application by the validation experiments. 
The methodology estimates the uncertainty that is introduced due to the lack of coverage of the 
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application physics, due to experiments performed at different conditions than those of the 
application, and due to uncertainties in the validation exercise (computational model parameter 
and measurement uncertainty). Relative assessment of the two approaches is accomplished 
through comparison of meta-model results to the original computational target application model 
results, and through a sensitivity analysis. The results indicate that the partial least squares 
approach is superior for the examples considered. The examples also illustrate many of the 
difficulties associated with the roll-up of validation experimental results to the application, as 
well as some of the limitations of the present methodology.
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1. BACKGROUND 

 

1.1. Model Validation 

AIAA (1998) and ASME (2006) define model validation as “the process of determining the 
degree to which a model is an accurate representation of the real world from the perspective of 
the intended use of the model.” Model validation is based on the direct comparison between 
experimental data and model predictions (typically computational simulations) of the data, 
relative to the uncertainty in the validation exercise (ASME, 2009).  

Comparisons of prediction to measurement provide the most direct evidence of the ability of a 
model to simulate the “real” (that is, observed) physics. These differences are only estimates as 
both the measurements and the model predictions contain uncertainty. The goal in validation is 
to characterize the difference between model prediction and “true” behavior (that is, the true 
value for the measurand which would be observable only if there was no measurement error 
present), and to characterize the uncertainty in this difference.  

Generally, suites of experiments are preformed over a defined hierarchy of experiments for 
complex applications. This hierarchy is often referred to as a validation hierarchy or validation 
pyramid. There are often three types of experiments in a validation hierarchy: material 
characterization experiments, ensemble validation experiments, and accreditation experiments. 
Data from material characterization experiments are used to calibrate constitutive models, are 
generally less expensive to perform, and produce more observational data (i.e., over multiple 
material samples). Ensemble validation experiments represent suites of experiments designed to 
test a computational model’s ability to represent various aspects of the physics relevant to the 
application. They generally do not represent the full complexity of the target application of the 
computational simulation. These experiments may or may not provide sufficient data to 
characterize variability across similar tests. These experiments often are more expensive than 
material characterization experiments, resulting in less data.  Accreditation tests can involve sub-
system or full system testing with application hardware tested under conditions more closely 
representing the design conditions or regulatory requirements of the target application. Such 
experiments are typically expensive, resulting in limited data. Figure 1 represents this hierarchy 
of experiments. Material characterization experiments generally use geometrically simple 
material samples and are ideally performed over the range of environmental conditions (e.g. 
temperature range) expected for the target application. Ensemble validation experiments 
represent more geometric and physical complexity, but are often not performed over the full 
range of environmental conditions expected for the target application. The lack of full range 
coverage may be due to the inability of laboratory experiments to test at the target application 
conditions, or due to the expense of performing validation experiments over the range of 
conditions. Because fewer accreditation experiments can be performed due to their expense, and 
because they are typically performed for a limited set of conditions, they often do not represent 
the entire design space of the application.  
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Figure 1: Experimental Hierarchy (Hills et al., 2008) 

Methodology is required to assess the impact of differences observed between validation 
experiment results and computational model predictions of the experimental results, and 
computational predictions of the target application response quantities of interests. The primary 
focus of the present research is to investigate methodology to roll-up validation results and their 
associated uncertainties to the predicted response quantity of interest for a target application. 

1.2. Sources and Types of Uncertainty Considered 

The sources of uncertainties considered here are  
• Model parameter uncertainty for the target application – uncertainty in the correct values 

of the model parameters for an application
• Validation uncertainty including 

o Data uncertainty for the experiments 
o Parameter uncertainty for the models of the experiments 
o Uncertainty in the projection or roll-up of observed differences to the target 

application due to lack of coverage of the target application by the validation 
experiments, or due to experimental conditions different that those for the target 
application. 

• Expert opinion uncertainty as an assessment of adequacy of model based on experience. 

Note that solution verification uncertainty is not considered. Solution verification uncertainty is 
that uncertainty in prediction associated with the lack of mesh convergence of finite difference or 
finite element algorithms. This type of uncertainty can be incorporated into the present 
methodology through the use of the methods defined in ASME (2009). 
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An important component in the uncertainty quantification process, when the target application 
model is utilized for risk assessment, is to identify and separate the sources of epistemic and 
aleatory uncertainty. Sources of aleatory uncertainty in model predictions include material 
properties that reflect random effects, such as heterogeneities associated with grain structure, 
pores, and impurities. While the uncertainty associated with these randomly induced quantities 
can be classified as aleatory, understand that the uncertainty in the parameters that appear in 
probability density functions characterizing this variability are epistemic as their uncertainty can 
be reduced by acquiring additional characterization data. 

Sources for aleatory uncertainty in experimental data include electronic noise, and uncertainty 
associated with counts per unit time for a stochastic-based measurement (i.e. the number of 
neutron counts measured by a neutron probe). Sources of epistemic uncertainty include bias due 
to calibration errors, and bias in sensor readings due to installation and operation (i.e., thermal 
couple lead heat loses and contact resistance).  

In the present work, aleatory and epistemic uncertainties are considered separately through the 
second probability method. This method is a sampling based uncertainty quantification (UQ) 
method in which aleatory uncertainty is propagated through a computational simulation, for a 
realization of the epistemic parameters. This process is repeated for other realizations of the 
epistemic parameters, resulting in families of PDF’s or CDF’s, with each PDF/CDF 
corresponding to a single realization of the epistemic parameters.  This approach directly 
supports the evaluation of Probability of Frequency (PoF) of failure used for safety and other 
computational analysis at Sandia National Laboratories (Pilch et al., 2006, Diegart et. al, 2007). 
The second probability method is illustrated through an expert opinion example. 

1.3. Roll-Up of Uncertainties 

Computational model form uncertainties, as characterized by validation exercises, include both 
the observed differences in the model form error, and the uncertainty in these differences due to 
uncertainty in the data and in the model simulations. The roll-up of these observed differences 
and associated uncertainties to a target application requires some model for the relationship 
between observations from the validation experiments and predictions at the target level. The 
construction of this model for the relationship presents a difficult challenge. If the underlying 
physics models and the computational simulation models associated with the target application 
and validation experiments are approximately correct, one can use these models and simulations 
to characterize the relationships between different points in the hierarchy. If these models are 
insufficiently to provide useful approximations, then the use of these models to develop 
relationships between points in the hierarchy is only of vague value.  Consider the following 
scenarios. 

• Scenario 1: A component of physics that significantly affects behavior of the response 
quantity of interest at the conditions of the target application is unknown to the analyst 
and not included in the model, and the validation experiments are at conditions or 
configured so as to not be affected by this physics. In this case, the model for the target 
application will not be valid, and the analyst will not know that the model is not valid. 
The occurrence of this case is sometimes identified through unexpected failures during 
surveillance, day-to-day operations of the system, and certification tests. 
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• Scenario 2: Validation experiments are sensitive to physics important to the application, 
but the computational models do not accurately simulate this physics. While these models 
are not accurate, the validation experiments suggest that these models do represent the 
dominant physics. In this case, the computational models may be sufficient to define 
approximate transfer or mapping functions of the observed differences between the 
computational models and experimental data to the application conditions.  

• Scenario 3: Physics or coupling of physics that is important for the application is thought 
to be known and is modeled, but validation experiments to test the model for this physics 
or coupling are not available. This may be the case where one simply cannot perform 
experiments due to economics, time constraints, or for environments that cannot be 
simulated in the lab or in field experiments. In this case, the computational model can be 
used to perform a sensitivity analysis to evaluate the impact on the uncertainties in the 
target application predictions due to the lack of coverage by the validation experiments.  

• Scenario 4: The important physics have been approximately incorporated in the model 
for the application with validation data that provides good coverage of the important 
physics. The major uncertainty in this case is the models have been tested at conditions 
somewhat different from the application. As a result, the model errors and the validation 
exercise uncertainties must be interpolated or extrapolated to the configuration and 
conditions of the target application to determine their impact on the response quantity of 
interest. 

In the following analysis, we assume that the simulation model for the application represents our 
best knowledge of the system. We use this knowledge and the results from the validation 
experiments to roll-up the validation results to the target application. This roll-up will potentially 
be very unreliable if the scenario discussed under the first scenario exists. Scenarios 2 through 4 
represent the presence of at least some knowledge of the important physics, either as 
approximately represented in the simulation model, or represented in the behavior of the 
validation experiments.  

1.3.1. Methods to Roll-up Model Form Uncertainty Characterized by Validation 
Experiments 

A common approach in computational modeling, given observed validation differences, is to 
assume the model is valid if the differences are sufficiently small, and then apply the model to 
the application without considering the impact that these differences may have on the uncertainty 
in the application prediction. The choice of what ‘sufficiently small’ is arbitrary and the 
assumption that small differences for the validation experiments imply small differences for an 
application may not be appropriate. For example, should one consider the model as valid if the 
experimental data lie within one statistical standard deviation of the model predictions, where the 
standard deviation corresponds to the combined uncertainty in the validation exercise (i.e., due to 
model parameter, data, and numerical convergence uncertainty)? Are results that are within two 
standard deviations sufficient to declare a model valid? This approach also does not consider the 
additional uncertainties associated with the lack of coverage of the target application by the 
validation experiments.   
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Several approaches that do consider the impact of observed differences from validation 
experiments on a target application prediction have been developed. These approaches use the 
existing simulation models as a basis, and 1) expand the uncertainties in the model parameters to 
encompass the model validation data when the differences are larger than the estimated 
uncertainty in the validation exercise, 2) develop a calibrated correction of the computational 
simulation model that assumes some functional form over the range of conditions spanned by the 
application and validation experiments, or 3) uses the simulation model to develop a meta-model 
to map the observed differences and uncertainties from the validation experiments to the 
application. An alternative approach to rolling up differences directly is to develop a Bayesian 
network and roll-up probabilities rather than differences. The development and application of a 
Bayesian network to a validation hierarchy to roll-up probabilities for different validation 
measurement and target application response quantity types is in it’s early stages of development 
(Mahadevan, 2011) and is not further discussed here. 

Approach	
  1:	
  Use	
  Model	
  only	
  if	
  Validation	
  Results	
  are	
  Adequate.	
  

Method and assumptions: 
• Assume that the physics of the application is represented by the validation experiments. 

This includes the two-way interaction effects between different types of physics that are 
important to an application. 

• Assume that the conditions of the validation experiments are sufficiently close to that of 
the application.  

• If the differences between the measurements and the model predictions for the validation 
experiments are sufficiently small, use the application model as is. 

Comments: 
• Requires judgment as to what is sufficiently close and sufficiently small are (bullets 2 and 

3). 
• The conservative principles of the underlying physics (i.e. conservation of energy, 

momentum, and mass) are maintained. 
• The uncertainty in application predictions is not increased due to observed differences 

from the validation exercises.  
• The approach does not provide methodology to account for lack of coverage of the 

important application physics by the validation experiments, nor does it account for the 
impact of validation experiments performed at different conditions than those of the 
application. 

Approach	
  2:	
  Capture	
  of	
  Validation	
  Differences	
  through	
  Model	
  Parameters	
  

Method and assumptions: 
• Assume that the dominant physics is adequately approximated in the model, but other 

important (but not dominant) physics, or second order effects in the dominant physics, 
may not be included. Assume that these important but not modeled effects are captured 
by the validation experiments. 

• Expand the characterized uncertainty in the model parameters such that the validation 
differences lie within the resulting prediction uncertainty (e.g. to lie within ±2  standard 
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deviations of the resulting prediction uncertainty, or some other range characterizing 
uncertainty) for the models of the validation experiments. The parameters chosen for 
uncertainty expansion should be those that are important for the application.  

• Use these expanded uncertainties for the parameters in performing UQ for the 
application. 

Comments: 
• Conceptually simple and uses the existing simulation model 
• The conservative principles of the underlying physics (i.e. conservation of energy, 

momentum, and mass) are maintained as modifications are often made to the parameters 
that represent properties or constitutive relationships rather than the conservation 
principles. 

• When the differences are large relative to the uncertainty in the validation exercise, the 
choice of which model parameters to target for an expanded uncertainty range can be 
somewhat arbitrary, especially when considering experiments from a hierarchy of 
experiments. The relationship between the physics for an application to that across the 
hierarchy of validation experiments is not always fully understood.  

• Expansion of the uncertainty ranges in the parameters are often well beyond physically 
realistic values for these parameters when model form error is present. This is a red flag 
that there is something wrong with either the computational simulation or the 
experimental data.  

• The method does not explicitly account for the inability of the validation experiments to 
cover or represent the application since the expansion of uncertainty is based on the 
modeled physics of the validation experiments, and not on the physics that is missing 
from the suite of validation experiments that may be important to the application. 

Development and application of this method is discussed in Romero (2006, 2007, 2008) 

Approach	
  3:	
  Calibrated	
  Correction	
  Model	
  

Method and assumptions: 
• Estimate an additive correction model for the behavior of the observed validation 

differences over the range of conditions (i.e. correction model arguments should 
including both the model parameters and independent variables that vary over this range) 
of the validation experiments and the application. Polynomial or Gaussian Process 
correction models are sometimes used for the correction model (Higdon et al., 2008). 
Assume that the original model for the application, corrected by this model, 
approximately represents the true physics.  

• Use the validation data to estimate the regression coefficients and the uncertainties in the 
coefficients for the correction model. Conventional regression or Bayesian calibration is 
typically used.  

• Use the original target application model to simulate the application, and use the 
correction model to correct the simulation results. Include both the simulation 
uncertainties and the additional uncertainties associated with the regression in the roll-up 
of uncertainties to the target application. 
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Comments: 
• Choice of the correction model can be arbitrary and the quality of the results can depend 

on whether the target application represents an interpolation or an extrapolation from the 
conditions of the experiments. 

• Unless the correction model is carefully chosen to be consistent with the underlying 
conservation principles represented by the governing mathematical equations, the 
corrected results will not satisfy these principles (i.e., conservation of mass, momentum, 
and energy). This lack of consistency is typically the case when Gaussian Process or 
polynomial regression correction models are used.  

• The method is not applicable when the type of experimental data varies over the 
validation hierarchy and the target application. For example, some validation experiments 
may collect temperature measurements at one set of conditions, pressures at another set 
of conditions, and chemical concentrations at a third set of conditions, whereas the 
application quantity of interest may be one or none of these quantities. 

• While conventional regression does not explicitly account for the lack of ability of the 
validation experiments to represent the application, regression techniques can provide an 
estimate of the increased uncertainty due to extrapolation, based on the assumed form of 
the regression model.  

• Both Bayesian and conventional estimation methods implicitly address the ability of the 
data from the validation experiments to ‘inform’ the regression process. If the regression 
model contains parameters that cannot be well calibrated by the data, then the estimated 
uncertainties in these parameters will be large. As a result, the estimated uncertainties in 
extrapolation may be large if the extrapolation is sensitive to these parameters. However, 
one must realize that one is mapping true model form error on a simplistic, non-physics 
based, regression model. As a result, the estimation of uncertainties in extrapolated 
predictions of such regression models do not represent the uncertainties in the model 
form errors for the target application simulation model, but represent the uncertainties 
associated with the estimation process itself.  

Higdon et al. (2008) present examples of Bayesian calibration using Gaussian Process models. 

Approach	
  4:	
  Meta-­‐Model	
  Approach	
  	
  

Method and assumptions: 
• Assume the model for the target application and validation experiments is approximately 

correct. Dominant physics is correctly included, but other important but not dominant 
physics or second order effects may not be included, but is represented by the validation 
experiments. 

• Use the behavior of the models for the validation experiments, in the neighborhood of the 
conditions represented by the experiments; and the model for target application, in the 
neighborhood of the conditions for the target application, to develop a meta-model for the 
relation of validation experiments differences to differences in the desired response 
quantities for the target application. This meta-model can be constructed as a linear 
combination of functions or sampled behavior, where the functions or sampled behavior 
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represents the non-linear dependence of the models on the arguments (parameters and 
independent variables) deemed important to the experiments and the application. 

• Evaluate the weights (i.e. regression model coefficients) in this meta-model to “best” 
represent the target application. Because the target application is often not adequately 
resolved by the validation experiments, robust methodology must be used to develop the 
weights and to assess the impact of this lack of resolution. 

• Use the meta-model to map observed differences from the validation experiments to the 
conditions of the application.  

• Use the meta-model to map uncertainties associated with the validation exercises, 
including the additional uncertainties associated with lack of coverage of the target 
application by the hierarchy of experiments to the application 

Comments: 
• Once the results for the neighborhood behavior of the validation and application models 

have been evaluated, the mappings and the assessment of the mappings can be post 
processed using computationally inexpensive algorithms.  

• Approximately preserves the conservative principles incorporated in the physics based 
computation model for the application used to develop the meta-modal, as the method 
simulates the behavior of the physics based model. 

• Applicable to a hierarchy of experiments and application for which the measured and the 
desired applications quantities of interest can be different, or for which important physics 
can change from validation experiment to validation experiment. 

The development and application of an earlier version of the meta-model approach is provided 
by Hills and Leslie (2003) and Hamilton and Hills (2010a, 2010b). A sampling based approach 
will be further developed here. 

Summary	
  of	
  Roll-­‐Up	
  Approaches	
  

The approach used to roll-up validation experiment uncertainties to an application, when the 
measurement and response variable types are different, is a new and very challenging area of 
research. We expect that the methods that gain favor in the future will have many features that 
are similar to the methods discussed above.   

1.3.2. Capture of Model Form Error Characterized through Expert Opinion 

Roll-up of model form error, when characterized by a subject matter expert, requires adequate 
specification of the expert’s opinion (Meyer and Booker, 1991) in a form useful for the roll-up 
process. To maintain consistency with the second probability method, uncertainties in expert 
opinion will be characterized through a probability-based (i.e., degree of belief) assessment for 
the example presented here.  The following assumptions are made. 
• The expert opinion is based on experimental or other qualified experience with the physical 

items and physics that are being simulated by a computational model.  
• The opinion is applicable somewhere in the validation hierarchy, from the partial physics 

level at conditions different from the target application, to coupled physics levels at 
conditions closer to the target application. 
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• The expected behavior (maximum temperatures, failure pressures, etc.) can be characterized 
by the expert in quantitative but somewhat general terms. For example, the expert may 
suggest that based on past experience, the maximum temperature one would expect a device 
to reach is between T1 and T2 and the time that the device reaches this temperature is between 
t1 and t2. The uncertainty associated with the actual maximum temperature and time is 
epistemic as one could reduce these uncertainties by performing experiments on the devices. 
To put these quantities in a probabilistic framework, a plausibility or degree of belief 
probability distribution is assigned to the quantities addressed (e.g. maximum temperature 
and time). Meyer and Booker (1991) discuss issues with subject matter expert elicitations of 
distributions and provide recommendations on how to improve the elicitation process.  

• For the present application, an expert derived probability distribution was used to generate 
“samples of expert measurements” and differences between these measurements and the 
modeled response are roll-up to the target application using a second probability method. The 
second probability method is used to separate the components of prediction uncertainty that 
is due to expert opinion from the other sources of uncertainty. An example of this approach is 
provided in Chapter 4. 

1.4. Meta-Model Approach and Present Extension 

The ability to resolve target application model behavior for some response quantity of interest 
utilizing models representing validation experimental measurements suffers from many of the 
issues associated with inverse problems. One often must accept the trade-off that occurs between 
the ability to represent the target application response quantity of interest accurately and the 
sensitivity of that representation to uncertainty in the validation experiments model parameters 
and data. Hamilton and Hills (2010a) provide methodology to provide quantitative guidance of 
how well validation experiments can represent a response quantity for an intended or target 
application model.  They use physics based computational models for the validation 
experimental measurements and for the targeted application response quantity to develop this 
assessment for the application, based on the idea that the model for the target application 
represents the ‘best knowledge’ of the application. Specifically, a meta-model is developed 
utilizing the models for existing or potential validation experiments to best represent the 
dependence of the target application response quantity to important model parameters and 
independent variables.  These meta-models provide useful quantitative information on 1) how 
well the experiments resolve or represent the intended application, 2) the impact of uncertainty in 
the validation experiment model parameters on the assessment, and 3) the trade-off between 
items 1) and 2). The developed meta-models are based on equivalence of first or second order 
Taylor Series expansions of individual validation experiment models over a suite of models, to 
the corresponding expansion of the target application model. The associated trade-off analysis is 
based on singular value decomposition (SVD). While this approach in constructing the meta-
models is straight forward, the approach suffers from the limitations associated with the use of 
lower order Taylor Series expansions, such as the requirement to approximate derivatives that 
represent behavior only at the center point and not in some extended neighborhood around this 
point. The use of SVD to investigate the trade-off between the representation of the target 
application and sensitivity of the meta-model to parameter uncertainty can result in a poorly 
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defined trade-off curve, as just a few points along the curve are available corresponding to non-
zero singular values for the corresponding pseudo-inverse. 

Hamilton and Hills (2010b) extend the above approach through a two term objective function 
that explicitly considers the trade-off between the sensitivity of the meta-model to model 
parameter uncertainty (first term), and the ability of the meta-model to represent the target 
application model over some neighborhood (second term). A parameter is introduced that 
controls the relative weight of each of the two terms during the optimization process. Two 
measures are used to measure the closeness (i.e., ability to represent) of the meta-model to the 
target application model. The first looks at the sum of squares of the differences in the first order 
sensitivity of the target application response to the important arguments. The second uses Box-
Behnken sampling (Box and Behnken, 1960) to sample quadratic behavior of validation 
experimental and application models to important model arguments and utilizes the maximum 
difference between the meta-model and application model over the sampled results. This second 
approach requires non-linear optimization of the weights defining the meta-model, which proves 
to be a non-trivial and CPU intensive process.  

The present work focuses on the roll-up of model bias and uncertainty to the target application 
and not on the trade-off that exists between sensitivity of a meta-model to uncertainties in the 
model parameters and the ability of the meta-model to represent the target application model. As 
will be shown, one can look at a single point in the trade-off curve for this roll-up. The present 
work takes two approaches to developing the weights of the meta-model for this optimal location 
in the trade-off. The first is based on a modification of the objective function discussed above.  
The second is based on Partial Least Squares (Abdi, 2010). In the present development, Latin 
Hypercube Sampling (LHS) is used to characterize the behavior of the predictive models in the 
neighborhood of the validation experiment and target application conditions as defined by their 
model parameters and independent variables for both approaches. This provides a better 
representation of the nonlinear behavior of the models over the sampled neighborhoods than the 
previous approaches used by Hamilton and Hills (2010a, 2010b).  In addition, two post 
assessment measures are provided to help characterize how well the validation suite can 
represent the physics of the target application, and the identification of the sources of lack of 
coverage of the physics, given the assumptions made in developing the meta-models.  
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2. THEORY 

 

2.1. Background and Development 

The approaches developed here to estimate the weights for the meta-model are based on the 
following assumptions: 

• The models of the validation experiments and the model of the target application 
represent our ‘best knowledge’ of the corresponding physics.  

• The primary source for information on model form error, due to incomplete or incorrect 
representation of the physics, is obtained from differences between model predictions and 
the experimental observations observed from the model validation experiments. 

• The dominant physics for the application is included in the CompSim.  The physics that 
is not included is less dominant for the application. For example, errors may exist in the 
constitutive models associated with transport phenomena, but the dominant transport 
mechanism, as based on conservation of mass, momentum, and energy, is approximately 
correct.  

In a loose sense, the present approach develops a meta-model to transport differences between 
experiment and model prediction to the conditions of the target application. The meta-model is 
also used to assess uncertainties associated with the incomplete coverage of the target application 
by the validation experiments.  

The first step is to define a metric that measures distance between a validation experiment and a 
target application in some sense. This metric will then be used to aggregate results from the suite 
of validation experiments to ‘best’ represent the target application. For illustrative purposes, 
consider the case of a propagating wave as shown in Figure 2. The two arguments in the figure 
may represent position and time, or represent two spatial directions (i.e., x, y) for a particular 
time.  The target application point of interest, and some neighborhood about this point is shown 
in blue, while the conditions of the validation experiments are shown in red. Note that the 
validation experiment that best represents the dependence of the quantity of interest on the 
arguments as represented by the shape of the neighborhoods of the application, is the region 
shown without a center point (i.e., the red neighborhood on the ridge of the wave). Also note that 
this neighborhood is not the one with the shortest Euclidian distance (in terms of the arguments) 
to the target application. For this reason, Euclidian distance is not used here. Rather a distance 
metric that is based on differences in behavior of models at different conditions in terms of the 
behavior of the models about the nominal conditions (i.e., the points in the neighborhoods) is 
used, as developed below. 
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Figure 2. Validation Experiments and Target Application 

Following Hills and Hamilton (2010a, 2010b), denote the model or models for the target 
application by 

d = g(x,α)  (1)

where d is the response quantity of interest, g is the corresponding model for the application, α is 
a vector of model parameters (e.g., thermal conductivity, specific heat), and x is the vector of 
independent variables (e.g., time and position). The parameters and independent variables are 
those for which the application model is significantly dependent over neighborhoods around the 
nominal values (blue dot in Figure 2). Insignificant model parameters can be set to nominal or 
mean values for the analysis and don’t need to be included in α.  

An analogous expression for the model of the validation measurements is: 

γ=f(x,α,αf)  (2)

where γ represents the vector of validation model outputs simulating measurements for a suite of 
experiments. These models may represent measurements from suites of experiments using 
different experimental apparatus to test the model for different classes or combinations of 
physics, or similar models evaluated at different values of the independent variables and the 
model parameters, or the same models for repeated measurements at the same nominal 
conditions. f represents a vector of models for the suite of validation experiments simulated 
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measurements, each model evaluated at the conditions of the experiments. α represents the 
vector of model parameters important to the anticipated application as utilized by Eq. (1). These 
parameters are analogous to the ‘traveling parameters in Romero (2008), and the linking 
parameters in Mahadevan (2011). The vector αf represents those parameters in f whose effects 
are significant for the validation models, but not for the anticipated target application model. x is 
the vector of independent variables. If one or more of the models represented by the vector f are 
not a function of the same arguments, then these arguments should appear as dummy arguments 
in (x, α) so that the total number and identity of elements in each of these vectors is the same 
across all models in f (hence the notation in (2)). The sensitivity of these models to the dummy 
arguments will be zero. While components in x and α must represent the same arguments, the 
numerical values for these arguments need not be the same across components of f or g. 

Hills and Leslie (2003), and Hamilton and Hills (2010a, 20010b) use two approaches to 
characterize behavior of f and g. The first approach uses gradients with respect to the x, α, 
evaluated at the nominal or mean experimental conditions for x, α, for each experimental 
measurement. The second approach uses sampling based on Box-Behnkin (Box and Behnken, 
1960) experimental design. The first approach captures linear behavior, and the second captures 
quadratic behavior of the models over the neighborhoods of the mean or nominal values for the 
arguments. In contrast, Latin Hypercube Sampling (LHS) is used here to characterize this 
behavior where sampling for each f and g are coordinated as follows. 

 𝑔 𝐱! + ∆𝐱𝒊,𝛂! + ∆𝛂𝒊 , 𝑓! 𝐱𝒋 + ∆𝐱𝒊,𝛂! + ∆𝛂𝒊,𝛂!! ;     𝑖 = 1,… ,𝑚;     𝑗 = 1,… ,𝑛 (3) 

Note that the change in the arguments for each of the m samples is equal for all models. This 
effectively requires that we sample over equally sized neighborhoods (i.e. ranges of Δx, Δα).  
The sampled results are used to develop a meta-model to relate results from suites of validation 
experiments (i.e., the multiple red neighborhoods of Figure 1) to the target application (blue 
neighborhood). The basic approach is to define the meta-model as a weighted linear combination 
of the validation measurement models as characterized by the samples with the weights chosen 
such that the meta-model approximates the dependence of the decision variable, d, for the target 
application model on its arguments in some neighborhood of the nominal parameter values of 
each individual model. Specifically, we choose the weights of the n measurement models such 
that the differences or residuals between the left and right hand sizes of the following equation is 
minimized in some sense as defined in the following sections. 

 𝑔 𝐱! + ∆𝐱𝒊,𝛂! + ∆𝛂𝒊 − 𝑔   

 ≅ 𝑤!!
!!! 𝑓! 𝐱𝒋 + ∆𝐱𝒊,𝛂! + ∆𝛂𝒊,𝛂!! − 𝑓! ;     𝑖 = 1,… ,𝑚 (4) 

where 𝑔  and 𝑓!  represent expected (mean) values of 𝑔 and 𝑓! over the m sampled values of i. 
What is the significance of taking linear combinations of measurement model differences to 
define a meta-model? 

• One can think of the largest linearly independent subset of the sampled validation model 
vectors as a basis for the target application model. The difference between the right and 
left hand sides of Eq. (4) allows one to evaluate how well the sampled validation model 
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vectors can represent the dependence of the non-linear target application on changes in its 
arguments. If the experiments do not contain the physics as represented by a specific 
parameter (say emissivity) for the application, then there is no linear combination of fj 
that can represent g with zero residuals (differences between left and right sides of Eq. 
(4). 

• If the models for a measurement and for a target application are the same models taken at 
the same conditions, then the behavior (dependence on the arguments around the nominal 
arguments) will be the same. If, as the conditions diverge and the models develop 
different dependence on the arguments, the ability of the measurement models to 
represent the target application model for the response quantity of interest may decrease.  

• The evaluation of the weights is based on the sampled response of the models over a 
neighborhood with a neighborhood size corresponding to the uncertainty in the model 
parameters and the target application. Thus one requires the meta-model to be applicable 
only over a restricted neighborhood in the parameter domain of the model. 

• If the weights wj over several j have the same sign, then this has the effect of stacking of 
(i.e., adding or averaging) the corresponding measurement models, which reduces the 
sensitivity of the resulting meta-model to random uncertainty in the model parameters for 
the corresponding validation models.  

• In contrast, if the weights have different signs for several of the measurement models, 
then one is subtracting effects. Examples of this behavior can result from application 
variable types that are different from the measurements types. For example, if the 
application variable is a flux, but the measurements are temperatures, one should expect 
that the meta-model would contain differences in the temperature models to represent 
gradients. Another example is for the case that measurement models represents physics 
that the target application does not. In this case, the meta-model may contain weights of 
different signs that subtract the effect of this unrepresented physics from the meta-model. 

Denote 

 𝑔𝒊 = 𝑔 𝐱! + ∆𝐱! ,𝛂! + ∆𝛂! − 𝑔   ;     𝑖 = 1…𝑚 (5) 

 𝑓!" = 𝑓! 𝐱! + ∆𝐱𝒊,𝛂! + ∆𝛂! ,𝛂!! − 𝑓! ;     𝑖 = 1…𝑚, 𝑗 = 1…𝑛 (6) 

Equations (4) through (6) can be written in matrix form as  

 𝐠 ≅   𝐅𝐰 (7) 

where 

 𝐠 =
g!
⋮
𝑔!

;   𝐅 =
𝑓!! ⋯ 𝑓!!
⋮ ⋱ ⋮
𝑓!! ⋯ 𝑓!"

;     𝐰 =   
𝑤!
⋮
𝑤!

 (8a, 8b, 8c) 

Note that g represents the sampled behavior around mean conditions of the target application as 
represented by the blue dot in Figure 1, and column j of F represents the sampled behavior for 
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the model of the validation experiment around the mean conditions (red dots of Figure 1) for 
measurement j. The weighting vector w represents the weights to apply to the measurement 
model vectors to ‘best represent’ the target application. 

There is no requirement that the measurement models represent the same physical quantity, or 
that the target application model corresponds to those of any of the measurement models. If a 
target application model depends on an argument that is not reflected in any of the measurement 
models, then the measurement models will not show any dependence on this argument, leading 
to a potential decrease in the rank of F. Also note that there may be more measurements than 
samples (n > m), or more samples than measurements (m > n). Thus F can be (and often is) ill-
conditioned or singular. Because it is not expected that a suite of validation experiments fully 
covers the physics and conditions of the application, this ill-conditioning tends to be the rule 
rather than the exception. A byproduct of ill-conditioned systems in the presence of data and 
model parameter uncertainty is their solution requires a trade-off between the ability to solve the 
system accurately and the sensitivity of the resulting solution to uncertainty. The optimum 
solution will be a balance between the maximum resolution of the meta-model and the sensitivity 
of the meta-model to uncertainty, as discussed in Hamilton and Hills (2010b). Two approaches 
are taken to evaluate the weights accounting for this required balance. One is based on the 
objective function used by Hamilton and Hills (2010b). The second in based on partial least 
squares (Abdi, 2010).  

2.1.1. Objective Function Method 

The objective function used here to evaluate the weights is (note that g, w and F used here are 
the transposes of those used in Hamilton and Hills, 2010b): 

 L = 𝜃  𝐰!  𝐯𝐚𝐫 𝐟− 𝛄   𝐰+ 1− 𝜃 𝐠−𝐰  𝐅 ! 𝐠−𝐰  𝐅 ;       0 ≤ 𝜃 ≤ 1 (9) 

The variance of 𝐟− 𝛄 (the reader is reminded that 𝛄 is the vector of validation model outputs 
simulating the validation measurements, with the variance of 𝛄 representing the uncertainty in 
the measurements) represents the uncertainty in the difference 𝐟− 𝛄 due to parameter and 
measurement uncertainty. Evaluation of this variance is discussed in a later section. Hamilton 
and Hills do not include the measurement uncertainty in 𝛄, as their focus was on how well a set 
of validation experiments resolve the target application in the absence of measurement 
uncertainty. In the present case, we wish to use these weights to project observed validation 
measured/predicted differences from validation experiments to a target application response 
quantity. The measurement uncertainties are included in Eq. (9) so that the resulting meta-model 
predictions are not overly sensitive to measurement uncertainty. Note that choosing different 
values for θ results in a trade-off between that ability of the meta-model to represent the target 
application, and the sensitivity of this the meta-model to uncertainty in the validation differences 
𝐟− 𝛄 over the sampling neighborhoods. 

While the minimization of the objective function (9) with respect to the weights can be evaluated 
through the usual procedure of taking the gradient of the objective function with respect to the 
weights, setting the results to zero, and solving the resulting system of equation, this approach 
suffers from the ill-conditioning, especially for small values of θ. The term corresponding to FTF 
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in Eq. (9) (after expansion of the terms in the parenthesis) squares the condition number of F, 
aggravating the ill-conditioning of the system. To avoid this squaring of the condition number, 
first decompose the variance matrices into upper/lower triangular form using Cholesky 
decomposition. 

 var 𝐟− 𝛄 = 𝐑!𝐑 (10) 

Define the following quantities: 

 𝑐 = !
!!!

 (11) 

 𝐀 = 𝐅
𝑐𝐑 ;   𝐛 =    𝐠𝟎  (12a, b) 

where 0 is a n by 1 vector of zeros. Note that the least squares solution of 

 𝐀𝐰 =   𝐛 (13) 

requires the minimization of 

 𝑟! = 𝐀𝐰−   𝐛 !   𝐀𝐰−   𝐛  (14) 

or  

 𝑟! = 𝐰  !𝐀!𝐀𝐰−   2  𝐛!  𝐀𝐰+   𝐛!𝐛   (15) 

Using Eqs. (12) in (15) gives 

 𝑟! = 𝐰!    𝐅𝑐𝐑
! 𝐅
𝑐𝐑 𝐰−   2   𝐠𝟎

!
   𝐅𝑐𝐑 𝐰  +    𝐠𝟎

! 𝐠
𝟎    (16) 

 𝑟! = 𝐰!     𝐅!𝐅+ 𝑐!𝐑!𝐑 𝐰−   2  𝐠!  𝐅𝐰+   𝐠!𝐠   (17) 

 𝑟! = 𝑐!𝐰!  𝐯𝐚𝐫 𝐟− 𝛄 𝐰+    𝐠− 𝐅𝐰 ! 𝐠− 𝐅𝐰  (18) 

Comparing Eq. (18) to Eq. (9) and noting Eq. (11), we see that  

 L = (1− 𝜃)  𝑟! (19) 

 

Thus, solving Eq. (13) in a least squares sense is equivalent to minimizing Eq. (9) for a given 
value of θ.  

The meta-model residuals and the sensitivities of the meta-model to the model parameters and 
data uncertainty can be used to estimate variances. 
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 𝑟!! =
𝐠!𝐅𝐰 !   𝐠!𝐅𝐰

!!!
 (20) 

 𝑟!! =   𝐰!  𝐯𝐚𝐫 𝐟− 𝛄 𝐰 (21) 

Equation (20) is the variance of differences (i.e., residuals between the meta-model and the 
application model) as estimated from the m samples, and Eq. (21) is the variance of meta-model 
due to uncertainties in the validation differences.  

The	
  choice	
  of	
  θ	
  or	
  c	
  

The choice of optimization parameter θ, or the ratio c (Eq. 11), is a trade-off between minimizing 
the residuals, Eq. (20), or minimizing the variance in the reconstructed meta-model, Eq. (21). In 
general, this choice is arbitrary, but we choose to use the value of θ or c that minimizes the total 
variance of the meta-model prediction. That is, we choose the value of θ or c that minimizes 

 𝑟!"!#$! = 𝑟!! + 𝑟!! (22) 

Comparing Eq. (22) to (18), (20) and (21), we see that to minimize 𝑟!"!#$!  

 𝑐 = 𝑚 − 1 (23) 

Using this value in Eq. (12a) results in the linear system of equations given by Eq. (13) that can 
be solved using conventional techniques. The MatLab (2010) linear equation solver ‘\’ is used 
here. 

2.1.2. Partial Least Squares Regression 

The second approach to estimate the weights are based on partial least squares regression. Partial 
Least Squares (PLS) (Abdi, 2010) regression is considered a second-generation regression 
technique that has several advantages over simple regression.  

• PLS is applicable when the number of unknowns exceeds the number of equations. In the 
following examples, the number of weights (i.e., the number of measurements) exceeds 
the number of application responses (i.e., number of LHS samples).  

• In contrast to the objective function procedure defined above, and to standard regression, 
PLS utilizes a full matrix of desired application responses G. For the present case, the 
columns of G correspond to the different prediction times, while the rows correspond to 
the different LHS samples. This advantage is manifested when the observed responses 
contain noise (i.e., analogous to measurement noise). In the present case, the only “noise” 
that is present in the predicted target application response is algorithmically induced 
noise, which is small compared to other sources of uncertainty. As a result, the present 
application does not significantly benefit from the ability to uses a full matrix of target 
application responses. 

• PLS develops latent or hidden variables that best characterize the behavior of the 
predictors (i.e. the measurement models) and response variables (the target application). 
PLS utilizes an intermediate step to estimate the latent variable responses through 
weighted linear combinations of predictor variables (represented by the columns in F) so 



   

 

   

26 

that each linear combination is chosen to maximize the correlation between the results of 
the meta-model and the response matrix G through a step-wise procedure. The latent 
variables have an indirect relation to the model arguments for the present application. For 
the case of validation models linear in the arguments, the latent variables will correspond 
to linear combinations of the model arguments (i.e., perturbations in these arguments as 
used here) such that these perturbations best capture that behavior of the application 
model G to the arguments. Note that for many engineering applications, the number of 
model parameters may number in the hundreds, but the number of model parameters 
whose variability has a significant impact on a prediction may number in the tens or less. 
For example, if radiation heat transfer is the dominant transport phenomena, then the 
model parameters associated with radiation heat transfer may have the most significant 
impact on the quantities of interest. Because the number of significant model arguments 
is not always large, the number of latent variables required to capture the response is not 
large. 

• Although the measurement model approach is linear in the transformed vectors, the 
method can model non-linear effects (see Haenlein and Kaplan, 2004, who discusses the 
closely related PLS structural modeling approach) by utilizing more latent variables than 
the number of important model parameters in the numerical models.  

• Because the method utilizes a step-wise procedure, the method does not suffer from the 
confounding effects that can exist with non-step wise procedures for regression when two 
predictor variables have highly correlated (e.g. canceling) effects on the response of the 
meta-model. 

As with most forms of regression, the PLS method can suffer from over-fitting the data if the 
number of latent variables is too large. The result of over-fitting is a prediction that is very 
sensitive to measurement noise. To insure that this is not the case for the present application, an 
outer loop step-wise procedure (distinct from the step-wise procedure used by the PLS 
algorithm) is used to select the number of latent variables or components, ncomp, utilized. 
Introduce the following variables and matrices. 

 𝑔!" = 𝑔! 𝐱! + ∆𝐱! ,𝛂! + ∆𝛂!   ;     𝑖 = 1…𝑚,      𝑘 = 1…𝑝 (24) 

 𝐅!"#$% = 𝐅+ 𝐇;     𝐆 =
𝑔!! ⋯ 𝑔!!
⋮ ⋱ ⋮

𝑔!! ⋯ 𝑔!"
 (25a, 25b) 

 𝐇 =
ℎ!! ⋯ ℎ!!
⋮ ⋱ ⋮

ℎ!! ⋯ ℎ!"
 (25c) 

p is the number of prediction times for g, and H is an mxn matrix with each row containing a 
random vector whose generating function corresponds to a multivariate distribution (a Gaussian 
distribution is used here) with a zero mean and variance defined by 
𝐯𝐚𝐫 𝛄 , representing  the  measurement  uncertainty.  

The PLS method is first used to evaluate a vector β with ncomp = 1 for the regression equation 
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 𝟏 𝐅 𝛃 ≅   𝐆 (26) 

The MatLab (2010) function plsregress is used. The model is now evaluated utilizing 𝐅!"#$% and 
compared to the G to evaluate the impact of noise on the regression.  

 𝟏 𝐅!"#$% 𝛃 ≅   𝐆!"#$% (27) 

 𝐃 =     𝐆− 𝐆!"#$% (28) 

 𝑒! =      𝐃!"!
!

!
!  (29) 

Equations (26) – (29) are then re-evaluated at ncomp = ncomp + 1. This step-wise procedure is 
repeated until the new 𝑒!  is larger than the previous value. The value for ncomp that results in the 
minimum for 𝑒! is used to define the final value of the weights β. As was the case for the 
objective function approach, this approach addresses the trade-off that exists between the ability 
to resolve the target application model using the validation models and the sensitivity of this 
reconstruction to measurement uncertainty.  

2.2. Evaluation of 𝐯𝐚𝐫 𝒇 − 𝜸  for the Objective Function Method 

The variance of the difference between the model predictions and the experimental 
measurements is given by 

 𝐯𝐚𝐫 𝐟− 𝛄 = 𝐯𝐚𝐫 𝐟 + 𝐯𝐚𝐫 𝛄 + 𝟐𝐜𝐨𝐯 𝐟,𝛄  (30) 

If the model predictions are independent of the measurements, the covariance term is zero. Hills 
and Leslie (2003) assume independence and use the following equation 

 𝐯𝐚𝐫 𝐟− 𝛄 = 𝐯𝐚𝐫 𝐟 + 𝐯𝐚𝐫 𝛄  (31) 

Note that the 𝐯𝐚𝐫 𝐟  represents the variance in f due to parameter uncertainty in the models for 
the validation experiments.  The neighborhood size (range of uncertain parameter values) and 
corresponding distributions for the validation model parameters will generally be different from 
those of the target application. As a result, one should evaluate this variance directly for the 
conditions of the experiments rather than based on the LHS sampling neighborhoods used to 
construct the meta-model. One can do this through a first order sensitivity analysis as used by 
Hamilton and Hills (2010a), or by evaluating the variance of sampled values of f where the 
validation models are based on sampled values of the model parameters that represent the 
parameter distributions of the validation experiments.  In the present work, the second approach 
was applied. The samples developed in the following section were re-used to do this. While the 
sampling approach requires additional model evaluations, the results are more reliable for the 
assessment of the present technique.  
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2.3. Projection of Validation Differences and Projection Uncertainty  

The resulting meta-models can now be used to project observed differences from the validation 
experiments to the target application. Denote 𝑔! as the meta-model projection of the 
measurements differences and use Eq. (4) for the objective function approach to evaluate the 
corresponding results.  

 𝑔! ≅ 𝑔 + 𝑤!!
!!! 𝛾! − 𝑓! ;     (32) 

If the PLS approach is used, the corresponding equation is 

 𝑔! ≅ 𝛽! + 𝛽!!
!!! 𝛾! − 𝑓! ;     (33) 

The projected uncertainty will have contributions due to the uncertainty in the model parameters 
for each validation experiment, the uncertainty in the validation measurements, and the 
uncertainty in the model parameters for the target application. Sampling can be used to 
characterize the effect of these uncertainties as follows. 

• Generate nr samples of the model parameters for each validation experiment and the 
application using the specified parameter distributions for the validation experiments and 
the application. Note that if two sets of data are from the same validation experiment (i.e., 
measurement sets taken at different spatial or temporal locations for the same 
experiment) then the sampled model parameters for each realization should be the same. 

• Evaluate the model responses for each of the nr samples.  

• Simulate the effect of additive measurement noise on the validation experiments by 
randomly sampling such noise from the specified distributions for the measurement 
uncertainty and then add the sampled noise to the model responses for the validation 
experiments.   

• Use the validation responses, including measurement noise, in Eqs. (32) or (33) to 
generate nr samples of the projected validation results for each time.  

• Calculate the differences that exist between the application model results and the meta-
model projections for each of the nr samples across all prediction times/locations. This 
population of differences approximates the uncertainty that one would obtain if all 
models contain the correct physics; and given the uncertainties in the model parameters 
and measurements, and the uncertainties associated with the inability of the meta-model 
to fully represent the target application model.  

• Sample these differences with replacement (bootstrapping) and add these boot-strapped 
differences to the mean values of the meta-model results. Mean values are used because 
the meta-model was constructed in terms of changes about the means. To maintain the 
correlation structure between measurements, one should bootstrap an entire response (i.e., 
all prediction times/locations) as a single sample.  
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• Evaluate the inter-quartile distances (i.e., locations of the 25 and 75 percentiles of the 
sampled output distributions) to characterize the uncertainty in the meta-model results.  

The number of samples used for the examples in the present study is nr = 100. Note that the 
above procedure accounts for the additional uncertainties that are associated with the 
independence that may exist in the parameters for the various validation experiments and the 
target application. The procedure also uses the distributions for the model parameters for the 
validation experiments and the application, which may be different than the multi-normal 
distributions used to develop the meta-model. In contrast, the meta-model was developed by 
using equal perturbations in the model parameter values, across the suit of validation 
experiments and the target application; to identify a causal relationship between the models of 
the validation experiments and the application. The projected uncertainty, as characterized by the 
above steps, reflects the additional uncertainty associated with using the meta-model for 
validation experiment and application models that may have different correlation structures and 
different distributions for the model parameters, than what was used to develop the meta-model.  

2.4. Expert Opinion 

Often, one must rely on expert opinion to characterize expected differences between 
experimental results and model predictions. For example, a subject matter expert may state that 
the difference between a model prediction and a physical observation is expected to be in some 
range. For the case of a time series of measurements, (i.e., temperature measurements made at 
some location as a function of time), the expert may state that over some interval of time, the 
response or the difference between the response and a corresponding model prediction is in some 
range. For the case of a peaked response, the expert may claim that the difference in time 
between the peak of a hypothetical measured response and the peak of the predicted response is 
characterized by some interval, and the difference in the size of the peaks (i.e., maximum 
predicted and measured temperatures) is also characterized by some interval. Note that both of 
these uncertainties (time lag between predicted and measured peaks, and differences in 
maximum value between predicted and observed peaks) are epistemic in the sense that the 
uncertainties in both, in concept, be reduced through the development of model validation 
experiments for the physics in question.  

In the present work, we represent this epistemic uncertainty through probability density functions 
that represent plausibility or degree-of-belief (rather than frequency as would be appropriate for 
aleatory uncertainty). We can make no distinction between epistemic and aleatory uncertainty, 
and roll-up the effects of these uncertainties concurrently to the target application; or we can use 
a second probability method in which a meta-model is developed for each epistemic realization 
of the expert opinion. The development of a meta-model is a post-processing step and requires 
minimal CPU resources. As a result, a second probability method can be practically applied for 
the case of expert generated measurements without added sample runs of the underlying 
computation models representing the physics. We apply the second probability method here for 
the case of expert opinion.  
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3. MODELS FOR THE EXAMPLE APPLICATIONS 

 

To illustrate the previously defined methodology, consider the following equation and the initial 
and boundary conditions: 

 !!
!!
= 𝑑 !!!

!!!
+ 𝑐 !!

!

!!
 (34) 

 𝑢(𝑥, 0) =

0.5;                           𝑥 < 1
𝑥 − 0.5;     1 ≤ 𝑥 < 2
1.5;                     2 ≤ 𝑥 < 3
4.5− 𝑥;     3 ≤ 𝑥 < 4
0.5;                           4 ≤ 𝑥

 (35) 

 𝑢 0 = 𝑢(20) (36) 

Note that periodic boundary conditions are used for u. When d ≠ 0, c = 0, Eq. (34) represents the 
diffusion equation; d = 0, c ≠ 0, p = 1, the convective equation; d = 0, c ≠ 0, p = 2, Burgers 
equation, and d ≠ 0, c ≠ 0, p = 2, the diffusive Burgers equation. For the present examples, the 
true physics of the target application are taken to be correctly represented by the diffusive 
Burgers equation. Various forms of Eq. (34) will be used to represent the true physics and the 
models of the physics for the validation experiments. The validation experimental measurements 
are time history observations of u(xmeas, t) for independent experiments at two different 
measurement locations xmeas. The correlation introduced if the two measurement locations are 
measured from the same experiment can be easily addressed by the present methodology by 
incorporating this correlation into the variance matrix all of the model parameters for the 
experiments. Three forms of Eq. (34) are considered, as summarized by the parameter values and 
their standard deviations listed in Table 1. The parameter p is considered a model specification 
parameter and takes on the values 1 or 2 with no uncertainty.  

Note that Type A1 corresponds to u for the linear convective-diffusive equation, Type A2 
corresponds to u for Burgers equation, and Type A3 corresponds to u for the diffusive Burgers 
equation. Type B3 corresponds to flux per unit area for the diffusive Burgers equation. This flux 
is given by 

 flux = 𝑐𝑢! − 𝑑 !!
!!

 (37) 

To illustrate the use of these physics/model types, consider the results shown in Figure 3. The 
string A1A1:A3A3 in the upper plot has the following meaning. The A1A1 string before the 
colon represents the type of the models used to predict the measurement for the time histories at 
two locations, the A3A3 string after the colon represents the ‘true physics’ of these two time  
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Table 1. Physics/Measurements/Predictions 
 

Type: 
measured/predicted 

quantity 

d σd c σc p 

Each Validation Model 

A1: u 0.05 0.05d 0.8 0.05c p = 1 

A2: u 0 0 0.8 0.05c p = 2 

A3: u 0.05 0.05d 0.8 0.05c p = 2 

Application 

A3: u 0.05 0.1d 0.8 0.1c p = 2 

B3: flux 0.05 0.1d 0.8 0.1c p = 2 

 

histories. The first time history represents the time history observed as the ‘wave’ passes through 
x = 4, and the second represents the time history observed at x = 6. For this example, the 
measurement models were calibrated or tuned using the data. Note that even though the values 
for d and c where calibrated to each set of experimental data, the model cannot capture the 
experimental results, suggesting model form error (i.e. A1 vs. A3). The lower plot illustrates the 
effect of using the calibrated model to predict the response at x = 8. The string A1:A3 indicates 
that the model used to predict the response is A1, but the true physics of the response is A3 (i.e., 
model form error). Note that the model for the experiments and the target application (see Table 
1) does not posses the non-linear physics induced by p=2, while this physics is present in the 
experimental results and in the true target application. What can we say about the uncertainty in 
the prediction of the application response, given the observed differences in the predicted and 
measured response for the validation experiments? The answer to the above question is the focus 
of the present work.  

The methodology developed here requires that LHS samples be obtained in neighborhoods of the 
conditions of the validation experiments and the target application. We find that the use of 
multivariate normally distributed LHS sampling has the advantage of weighting model behavior 
closer to the nominal conditions of the arguments, due to increased number of samples near the 
nominal conditions, than obtained using uniformly distributed LHS. This distribution is used 
only to construct the meta-model. The actual distributions for the uncertain model parameters 
should be used for the projection of the validation uncertainties to the application, as will be 
demonstrated later. The samples and thus the size of the sampling neighborhoods for the various 
models must be the same for the development of the meta-model to insure a causal relationship is 
maintained in the development of the meta-model. The neighborhood size used for meta-model 
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development, as characterized variance matrix for the multivariate normal sampling, is given by 
the sum of variance matrices for the arguments of the individual validation experiments and the 
target application. Choosing the neighborhood size for those arguments that do not have 
uncertainty (i.e., p), or for the independent variables, requires judgment. One approach is to 
choose a range of the independent variables and fixed parameters that results in similar changes 
in response quantity predictions as those induced by the uncertainty in the parameters. This 
approach was not used here. Here we arbitrarily choose the neighborhoods on the parameter p 
and the independent variables x, t as characterized by the standard deviations of Table 2. All 
parameters are assumed to be uncorrelated (i.e., a diagonal variance matrix), unless model 
calibration is used. In this case, the variance matrix for each calibrated model parameter set is 
estimated using a sensitivity analysis as presented later in the examples. The measurement 
uncertainty is also listed in Table 2.  

Table 2. Fixed Argument Neighborhood Sizes and Measurement 
Uncertainty 

 

neighborhood 
σp 

neighborhood 
σx 

neighborhood 
σ t 

measurement σ  

Each Validation Model 

0.05p 0.05 0.05 0.02 

Application 

0.10p 0.05 0.05  

All computations are performed using an operator splitting, super-bee flux corrected algorithm 
for the diffusive Bergers’ equation (see Hills et. al., 1994, for a version of the algorithm that uses 
a different flux limiter). One hundred LHS samples with rejection were used for the meta-model 
construction neighborhood. Samples were rejected when they resulted in negative values for any 
of the arguments, occasionally resulting in less than 100 samples. MatLab (2010) was used to 
develop the algorithms and plot the results.

The experimental data was simulated by randomly generating non-calibrated parameter vectors 
for use in the true physic model for the experiments, and adding uncorrelated measurements 
noise (normally distributed) as characterized by the standard deviations listed in Tables 1 and 2.  
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Figure 3. Example Problem: Calibrated Model (Tuned) 
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4. EXAMPLES OF METHODOLOGY AND ASSESSMENT 

 

A series of example problems are presented to illustrate the application of the method under 
various scenarios. These examples are designed to show the features and limitations of the 
methodology. The examples are present through a series of figures, with discussions provided for 
each. We start with a favorable case.  

4.1. Complete Physics Coverage  

Figure 4 illustrates (figures provided at the end of this chapter) the application of the 
methodology for a case where the full physics is included in all of the models and in the 
experiments. The response quantity of interest is the flux (Eq. (39)) passing through the x=8 
plane, and the validation measurements are the observations of u at the x=4 and 6 planes. Black 
curves are used to represent the true physics of the experiments and application, blue curves 
represent the underlying models evaluated at the nominal conditions for the parameters, and red 
curves represent the projection of the validation models to the application (i.e., the meta-model). 
The distances between the dashed lines represent inter-quartile distance, which result from the 
sampling over both the true target application and the reconstructed target application results. 
Inter-quartile results are used as they better reflect the spread of distributions when the 
distributions are not symmetric about the mean. The estimation of 95% confidence levels would 
be less precise due to the lack of sufficient samples. The red dashed curves represent the 
projected 25% and 75% quartiles of the expected uncertainty in the projection due to the 
uncertainties in the model parameters, data, and meta-model error as developed in the theory. 
The solid red curve does not represent the median of the project results, but the projection of the 
observed differences between the validation model predictions and the measurements.  As a 
result, one should not expect this solid curve to lie at some average or median distance between 
the red dashed quartile curves.  

The results shown in Figure 4 indicate that the objective function method and the partial least 
squares (PLS) method both provide estimates of the projected quartiles that capture most of the 
mean behavior of the target application. Note that the peak of the true response cannot be fully 
captured by the meta-models due to the differences in validation experiment locations and the 
target application location, and due to parameter uncertainty and measurement noise. Note also 
that there is a small shift in the data from the mean model results (upper plot). This shift may 
simply be due to a shift in the parameters of the true experimental conditions from the nominal 
parameter values. One can calibrate these parameters and investigate this effect. Figure 5 shows 
these results. The experimental results from the two measurement locations were assumed 
independent. As a result, a separate calibration was performed on each set of data. The act of 
calibration results in correlation between the estimated parameters. A first order sensitivity 
analysis was used to estimate the corresponding variance matrix for each experimental location. 
Denote X as the sensitivity matrix corresponding to a validation model at the calibrated values 
for the parameters for a location. The MatLab (2010) routine lsqcurvefit was used for the 
calibration, and this routine also provides an estimate of the sensitivity matrix. The resulting 
variance matrix for the parameters can be estimated from the sensitivity matrix X as follows: 
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 𝐗 = 𝛁𝛂𝐟 (38) 

 𝐀 = inv(𝐗!𝐗)    𝐗! (39) 

 𝐀 = pinv(𝐗!𝐗)    𝐗!,  if singular (40) 

 𝐕𝐚𝐫 𝛂 =   𝜎!"#!   𝐀  𝐀!  (41) 

where σres is the estimated standard deviation of the regression residuals. For the case of 
calibration, the resulting calibrated parameter values and the corresponding variance matrices are 
used for the meta-model development and the projected validation uncertainty, rather than those 
presented by Table 1. The calibrated results are also used in the specification of the 
neighborhoods and the validation differences, but the calibration constants are not used to revise 
the target application model parameter values for this example. While an over-parameterized 
model may result in a calibration with small 𝜎!"#! , the corresponding uncertainties in the 
estimated parameters will be large due to 𝐀  𝐀!. In other words, over-fitting data through a many 
parameter model will result in large uncertainties in the estimation of the parameters.  

The results of this approach are shown in Figure 5. The calibrated results show less shift in 
projected results. Because we are not assessing model validity, but are projecting differences to a 
target application, updated values for these parameters should be used to better reflect the 
conditions of the experiments. All remaining examples will be based on calibrated results. The 
calibration is not applied to the parameters for the target application unless noted. The number 
of latent variables or components used for this example was 14. In contrast, the number of 
arguments used to generating the F and G matrices was 5 (d, c, p, x, t). More latent variables are 
required because the meta-model is a linear combination of validation model responses whereas 
the computational model is non-linear. The non-linearity of the computational models is 
captured, within measurement noise, by the 14 latent variables and corresponding vectors for the 
PLS meta-model. 

A more detailed assessment of the meta-model can be performed through an assessment of the 
samples as shown in the upper plot of Figure 6. The scatter plots show the meta-model 
predictions versus the application model predictions for all of the LHS samples for all prediction 
times used for the meta-model estimation. Note that the PLS method shows somewhat less 
scatter about the 45 degree line, indicating a better approximation. The corresponding inter-
quartile distances as a function of time for the corresponding samples are shown in the lower 
plots of Figure 6. The PLS method does a significantly better job of capturing these bounds.  

Figure 7 shows first order sensitivities of the application model and meta-model to the model 
parameters. These sensitivities can be obtained though least squares solutions of the following 
equation for S. 

 𝐒  ∆𝛂 =   ∆𝐠 (42) 
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Here we take Δα  and Δg as differences from their mean values to maintain consistency with the 
meta-model approaches. The Δα  are those used to generate the meta-model. The least squares 
solution of Eq. (42) for S gives 

 𝐒! =    ∆𝛂∆𝛂! !𝟏  ∆𝛂∆𝐠! (43) 

The sensitivities can be scaled to represent the relative impact of parameter variability on a 
predicted response. The square root of the diagonal elements of the cov(α) defines a scale for the 
variability of the parameters for the neighborhood that was used to build the meta-model. The 
corresponding scaled sensitivities are define as 

 𝐒𝒔𝒄𝒂𝒍𝒆𝒅 = 𝐒  
𝜎!! 0 0
0 ⋱ 0
0 0 𝜎!!

   (44) 

where p is the number of model parameters for the application and the σ are corresponding 
square roots of the diagonal elements of cov(α) .  

Applying Eq. (44) to both the application model and the meta-model, results in 3 columns for 
𝐒𝒔𝒄𝒂𝒍𝒆𝒅 for the application and the meta-models, corresponding to model parameter sensitivities 
in c, d, and p as a function of time. The results are shown in Figure 7. Note that the sensitivity 
analysis indicates that the meta-model from the PLS method better captures the scaled 
sensitivities of the application model. Based on the results of Figure 6 and 6, the PLS method 
appears to provide the superior meta-model. 

Effect	
  of	
  Measurement	
  Noise	
  

The presence of measurement noise in a suite of validation experiments degrades the ability to 
represent the target application because the measurement noise masks some of the physical 
response of the tested system. To investigate this effect, one can repeat the previous example 
with the standard deviation characterizing measurement noise set to zero. Unfortunately, the 
Cholesky decomposition represented by Eq. (10) for use in the objective function method fails if 
the variance matrix is not computationally positive definite. While one can use an incomplete 
decomposition for this case, we chose to add a very small amount of noise to maintain an 
algorithmically positive definite variance matrix. Specifically we reduced the measurement noise 
standard deviation by a factor of 10-6 to a value of σ = 2x10-8.  The corresponding results are 
shown in Figures 7 though 9. Note that the ability of the meta-model to represent the target 
application improves dramatically (see Figure 9) when the PLS method is used. This is because 
the decrease in measurement noise allows one to use 85 terms (latent variables) rather than the 
14 used when more noise is present. The uncertainty of the projected differences is larger for the 
PLS method. We suspect that this is due to an over-fitting of the results (i.e., 85 rather than 14 
terms, where 85 corresponds to the number of non-rejected samples used to construct the meta-
model) resulting in projections that are sensitive to unaccounted-for numerical noise, such as that 
associated with the lack of grid convergence and due to the switching effects of the flux limiter. 
In contrast, the objective function method does not reflect this increased sensitivity. The take-
away from this exercise is that while the PLS meta-model can represent the target application 
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very well in the extreme case of almost no measurement noise, the results can be negatively 
affected if other sources of noise are present and not accounted for.  

4.2. Validation Experiments with for Different Physics 

In developing a validation database, one cannot always perform experiments that each represent 
the full physics of the application. Consider the case for which one validation experiment 
addresses one type of physics and a second address another, both of which address the complete 
physics of the application. While this approach covers the physics of the application, the 
validation experiments may be at different conditions than the application, and the validation 
experiments do not reflect the coupling that may exist between the two types of physics. This 
situation is reflected in the results of Figure 11 through 12. Note that the first validation 
experiment corresponds to the convective-diffusive equation (A1), the second validation 
experiment corresponds to Burgers’ equation without diffusion (A2), and the application 
corresponds flux for Burgers’ equation with diffusion (B3). Comparison of these results with 
those of Figures 4 through 6 indicates that there is very little degradation, if any, in the ability to 
represent the target application with the meta-model. The most significant difference is that 15 
latent variables are used to build the meta-model for the mixed physics case whereas 14 are used 
for the non-mixed physics case. However, it is not clear whether this lack of sensitivity to mixed 
or separate effects of the meta-model is for this example only.  

4.3. Known but Untested Physics 

Consider the case for which the physics of the application is known and included in the model, 
but for which physics is not included in the validation experiments. We may expect a 
degradation of the ability of the experiments to represent the target application though a 
degradation in the performance of the meta-model.  To illustrate this case, consider experiments 
that test only the convective-diffusive equation (A1) but not the non-linear effects of the 
diffusive-Burger’s equation (A3 or B3). The results for this example are shown in Figures 13 
through 15. The results for Figure 14 indicate that the both of the methods perform slightly 
worse than when all of the physics is contained in the experiments (compare Figure 14 to Figure 
5).  However, the results shown in Figures 14 and 15 illustrates that the performance, as reflected 
in the scatter plot and the quartile plots are significantly worse.  The meta-models cannot capture 
the quartiles of the target application model as reflected in the lower plot of Figure 15. The 
sensitivity results shown in Figure 16 indicate that the parameter p sensitivity cannot be 
represented by the meta-models. The lack of coverage for p is expected since the validation 
experiments do not include the physics associated with this parameter. The results of Figures 14 
and 15 illustrate the impact of incomplete physics coverage of the application by the validation 
experiments and strongly suggest that experiments to address this component of the missing 
physics should be developed. Not doing so will result in the inability to represent the model 
dependence of the target application due to the non-linear effects of p.  

4.4. Unknown but Tested Physics 

The next case considered is for a physics model that does not contain the correct physics for the 
validation experiments or the target application, but the experiments do represent the correct 
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physics. This example would be the case when we simply do not know that the physics is 
important, but we are fortunate that the correct physics is represented in the validation 
experiments. First consider the simpler case for which the application response variable for the 
application is the same as that measured for the validation experiments. Figure 17 illustrates this 
example. Note that the results of the validation experiments clearly indicate that some important 
physics is not in the validation models even though the model for the validation experiments is 
calibrated. The projected results are especially poor. In engineering, we often calibrate a model 
and apply these calibration constants to the application. Because such calibration is used to 
compensate for missing physics in the model, and not to simply to adjust the model to the correct 
conditions of the experiment, we will make a distinction and denote this type of calibration as 
tuning. To illustrate the dangers of tuning, a series of examples are presented. 

4.4.1. Model Tuning 

The first step often taken is to calibrate the parameters and apply the calibrated parameters to the 
model for the anticipated application (i.e., tuning). Figure 18 illustrates this approach. The 
calibrated parameters for the experiments at x = 6 were used for the application since this 
experiment is at conditions closer to the application. The results presented in Figure 18 indicate 
that the tuned model better captures the target application response, but the methodology does 
not capture the uncertainty. Note that the projected differences do provide a more correct 
response at intermediate and late times but possess an oscillatory behavior prior to the arrival of 
the true front. A possible cause for this behavior is due to the forcing of one model that possesses 
one type of behavior to represent another type of behavior. For the present example, the area 
under the u(t) curve for the linear convective-diffusion at some location can be expected to the 
same as the area and other locations as long as the time period captures the entire moving wave 
at both locations (i.e. due the relations between conservation of mass and flux for the linear 
diffusive convection equation). In contrast, the corresponding area for the diffusive Burgers 
equation will not be a constant because the flux is non-linear in u. As a result, the oscillations in 
the project validation differences may be due to this contradictory behavior. 

4.4.2. Expanded Uncertainty 

How does one account for the additional uncertainties associated with the fact that the validation 
models do not represent the true physics of the experiments. A typical approach is to expand the 
uncertainty on the model parameters to reflect this lack of correct physics. For example, in 
Bayesian updating, lack of agreement between the measurements and the tuned model results in 
a heavier weighting of the prior in the update, resulting in a broader and thus more uncertain a-
prior likelihood for the parameters. The choice of the prior, however, can be is very tricky when 
one recognizes that the model does not represent the true physics. The appropriate way to 
interpret the results is to not consider the resulting a-prior uncertainty as a physics-based 
uncertainty in the parameters, but to consider the uncertainty as a regression uncertainty in 
estimating the parameters for this model. Romero (2006, 2007, 2008) expands the uncertainty in 
selected parameters common to the validation experiments and the target application sufficiently 
to include the observed differences when the models are applied to the validation experiments at 
some level or probability (say 95%) or through an expanded interval representation of the 
parameter.  One must choose which parameter or subset of parameters to use for this expansion.  
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An alternative approach is use here for expending the uncertainty. We consider the original 
distribution of the parameters and the tuned distribution to be equally likely. Note that this 
approach, like the previous discussed approaches, is simply tuning a model that is missing 
physics to best represent the observations, without full physical justification. The hope is that the 
missing physics does not significantly effect the application of the model. As in the previous 
case, the values for the tuned parameters will still be considered the best estimate of he tuned 
parameters (i.e. not the mean or median of the combined distributions). The resulting variance of 
two equally weighted distributions, with separation in the individual population means of the 
parameters, is given by  

 𝐕𝜶,𝒆𝒙𝒑𝒂𝒏𝒅𝒆𝒅 =    𝐕𝜶 + 𝐕𝜶,𝒆𝒔𝒕 /2+ diag ( 𝛂 −    𝛂𝒆𝒔𝒕 )! /4 (45) 

where 𝛂  are the parameter values corresponding to those listed in Table 1, and 𝛂𝒆𝒔𝒕  are those 
estimated from the tuning process. The term diag  indicates a diagonal matrix with the 
diagonal elements given by the argument vector. 

The results of using the tuned parameters and the expanded uncertainty for both the development 
of the meta-model and the projection of the validation results to the target application are shown 
in Figure 19. Note that the 25% and the 75% quartiles of the PLS meta-model predictions do 
capture much of the true behavior of for the application, whereas the objective function meta-
model quartiles do not. The PLS meta-model utilizes 25 latent variables rather than the 5 used in 
the previous results. This is a reflection that more latent variables are required to capture the non-
linear behavior of the models over the expanded neighborhoods. A side effect of the increase in 
the number of latent variables is that the estimation of more latent variables requires more 
measurements. In other words, if significant model form error exists, more experimental data is 
required to capture the effect of this model form error. 

The corresponding assessment and sensitivity plots are shown in Figures 19 and 20. The results 
of Figures 19 and 20 indicate that the meta-model does a good job of utilizing the wrong models 
for the physics of the validation experiments to represent the wrong physics of the application.  

In the above example, the quantities measured from the validation experiments were the same as 
the target application response variable. Figure 22 illustrates the results when flux is predicted, 
but not measured. Note that the results are considerably different than those of the true 
application flux. For this case, one simply cannot represent the behavior of flux of u using a 
model tuned based on measurements of u. This illustrates a danger in using tuned models that 
contain the wrong physics to predict behavior at other conditions, especially when the predicted 
response quantity is different from that used for model tuning.  

4.5. Unknown and Undetected Physics 

The next case represents the worst-case scenario of physics that is unknown, not included in the 
models, and not represented in the validation experiments. In this case, the methodology has no 
information that can be used to adjust or even assess this effect. The results of Figure 23 show 
that the projected differences have no relation to true behavior. 
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4.6. Expert Opinion 

The final case considers expert opinion as characterized by the following statement.  

If we were to perform a hypothetical experiment corresponding to model A2 measured at x = 6, 
we expect the peak to be located somewhere in the time interval t = [1.0, 2.5], with a peak value 
in the interval u = [1.5, 1.7]. 

Note that this statement contains uncertainty in both the location of the peak and in the peak 
value. Because the expert statement represents lack of knowledge and is reducible through 
experimentation (epistemic uncertainty), a second probability method is used. Here we represent 
the plausibility of the peak time as uniform over the interval [1.0, 2.5] and the plausibility of the 
peak values as uniform over the interval [1.5, 1.7]. The two uncertainties are considered 
independent. Ten samples from these distributions are shown in the upper plot of Figure 24 with 
the results for each of these ten realizations of the ‘expert measurements’ shown in lower two 
plots of the figure. The validation models were calibrated once, excluding the expert data and 
applied to all epistemic realizations. No model tuning was performed (i.e. calibrated parameters 
from the validation experiments were not applied to the application).  

Note that the model results for x = 6 are lower than those ‘measurements’ based on the expert 
opinion for this experiment (upper plot). There is considerable shift in the location of the peaks 
in the projected responses due to the significant uncertainty in the expert opinion realizations for 
a hypothetical validation experiments. The range of peak heights is less as the uncertainty in this 
range was 0.2. The heavy dashed lines represent the quartiles of the projected uncertainties, 
assuming that the model is correct and ignoring the expert input. It is clear from the results that 
the projected results often lie outside the quartiles, suggesting that the data sampled from expert 
opinion is very inconsistent with the A2 validation model results.  
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Figure 4. Fully Resolved Physics: Not Calibrated
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Figure 5. Fully Resolved Physics: Calibrated
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Figure 6. Fully Resolved Physics: Assessment - Calibrated
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Figure 7. Fully Resolved Physics: Sensitivity - Calibrated
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Figure 8. Fully Resolved Physics: Calibrated, Measurement uncertainty = 10-6 x table 
values (sigma = 2 x 10-8) 



47

Figure 9. Fully Resolved Physics: Assessment - Calibrated,      Measurement uncertainty 
= 10-6 x table values (sigma = 2 x 10-8) 
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Figure 10. Fully Resolved Physics: Sensitivity - Calibrated,         Measurement uncertainty 
= 10-6 x table values (sigma = 2 x 10-8)  
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Figure 11. Mixed Physics
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Figure 12. Mixed Physics: Assessment
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Figure 13. Mixed Physics: Sensitivity
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Figure 14. Known but Untested Physics
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Figure 15. Known but Untested Physics: Assessment
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Figure 16. Known but Untested Physics: Sensitivity
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Figure 17. Unknown Tested Physics 
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Figure 18. Unknown Tested Physics: Tuned to x=6 Results
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Figure 19. Unknown Tested Physics: Tuned, Expanded Uncertainty
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Figure 20. Unknown Tested Physics: Tuned, Expanded Uncertainty, Assessment
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Figure 21. Unknown Tested Physics: Tuned, Expanded Uncertainty, Sensitivity
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Figure 22. Unknown Tested Physics: Tuned, Expanded Uncertainty, Case 2
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Figure 23. Unknown Untested Physics
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Figure 24. Expert Opinion
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5. DISCUSSION 

 

The methodology presented provides a means to assess the impact of the lack of full physics 
coverage of a target application by a suite of validation experiments. The methodology 
constructs a meta-model from models of the validation experiments to best represent the model 
for the target application response variable; and then assesses the ability to resolve the 
application model by the meta-model, and the uncertainty in the meta-model due to uncertainty 
in the model parameters for the models.  

There is flexibility in the choice of the form of the meta-model. The meta-model was taken as a 
linear combination of sampled responses for the validation experimental models for the present 
development. Other choices can be made, such as products of sampled responses. The downside 
of other forms is that they may require non-linear optimization to estimate the weights, a process 
that is difficult if there are more unknowns (weights) than observations (the number of model 
runs).  

Some of the limitations and concerns associated with the present methodology are listed below.  
• The methodology can provide non-physical ringing or oscillatory behavior (see Figure 

24) when there are considerable discrepancies between the experimental data and the 
validation model predictions. While other approaches, such as those surveyed earlier, 
generally will not suffer from this ringing for this transport application, they can suffer 
from the constraints placed on the target application predictions by the computational 
model itself. Methodology to bring in other types of expert judgment in the construction 
of meta-models can help. For example, the expert may state that the projected target 
application result should not be oscillatory and contain only one peak. Comparative 
analysis of the various approaches is required to assess the significance of this and other 
effects. 

• The methodology cannot create knowledge out of nothing as the unknown-unknown 
example illustrates. This statement is true for any method. In the end, engineering 
judgment based on experience is required to cast a sufficiently broad net as to the types of 
physics that may be important and tested by the validation experiments.  

• The use of the tuning and expanded uncertainty approach when the validation results 
indicate that the model is missing important physics, should cause discomfort in the 
analyst. The use of a clearly invalid model to predict target application performance 
should be done with significant skepticism or perhaps even cynicism.  In such cases, one 
preferably should continue to develop the model, or at least develop an additive term that 
can be used to extrapolate observed differences to a prediction. The deficit model 
approach of Higdon et al. (2008) is an example of such an approach. However, the 
application of this approach for cases when the desired response quantities for the 
application are different from those of the validation experimental measurements, or for 
extrapolation beyond the support of the measurement data, provides a difficult and 
challenging problem; as deficit models generally do not reflect the underlying physics of 
the application (e.g., mass, momentum, and energy conserved).  
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The advantages of the meta-model approach are several-fold: 
• The primary advantage is the approach allows one to assess whether the suit of validation 

experiments, as modeled, covers the target application response quantity, as modeled. 
The approach also can be used to assess whether the meta-model is sensitive to the same 
model parameters as the application model. This information can be used to justify the 
need for additional experiments.  The methodology addresses the impact of model 
parameter uncertainty in both the target application and in the validation experiments, as 
well as measurement uncertainty, as characterized by the variance matrix of the 
measurements. Covariance between the measurement, between the model parameters, 
and between model parameters from different experiments (not demonstrated here, but 
included the author’s MatLab, 2010, algorithm) can be easily handled. 

• The weights developed in defining the meta-model have the effect of weighting those 
measurements most that best reflect the response of the target application. Measurements 
made closer to the conditions and physics of the application tend to be weighted more. 
These weights can be used to define an application level validation metric that utilizes the 
validation results taken throughout the validation hierarchy. The use of such weights to 
define a system relevant validation metric is presented in Hills and Leslie (2003). 

• The approach can be exercised to provide additional insight into the relationship between 
validation experiments and a target application. For example, one observation made for 
the example problems was that more measurements are needed to represent a target 
application if one plans to use a “not so valid model” to predict a response quantity for an 
application. This is due to the requirement to estimate more latent variable/vectors to 
capture the nonlinear behavior over a larger neighborhood as expanded due to model 
tuning.  

Both the objective function approach and the partial least squares (PLS) approach can be used to 
construct the weights associated with the meta-model. An advantage of the PLS approach for the 
present applications is that the PLS approach better captured the response of the target 
application. The PLS method is available in many statistical packages, such as MatLab (2010). 
Both approaches are designed to handle singular system for which there are more unknowns 
(number of weights or validation measurements) than responses (number of LHS realizations). 
This proves to be an advantage as the number of model evaluations that one can afford may be 
less than the number of measured quantities (typically large when time responses are measured). 

Rolling up validation experiment results and uncertainties to target application predictions 
represents one of the more difficult problems in model validation when testing models 
throughout a validation hierarchy. Significant research is needed in the development of such 
methodology. Such research should be somewhat general in the structure of the validation 
hierarchy, in the sense that the methodology should be applicable to experiments with different 
physics, different measured and predicted response types, experiments at different conditions 
from the application, and to hierarchies that possess incomplete coverage of the application 
physics.  

Perhaps the most significant aspects of the present work is that this work illustrates the need to 
roll-up the additional uncertainties due to lack of coverage of the application by the validation 
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hierarchy, illustrates many of the issues associated with this roll-up, and provides potential 
example problems to test other methodologies. 
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