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Abstract

This report describes the theoretical background on modeling electron transport in the presence
of electric and magnetic fields by incorporating the effects of the Lorentz force on electron
motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy
and trajectory continuously, and these effects can be characterized mathematically by differential
operators in terms of electron energy and direction. Numerical solution techniques, based on the
discrete-ordinates and finite-element methods, are developed and implemented in an existing
radiation transport code, SCEPTRE.
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1. Introduction

In many radiation-effect studies, one critical assumption is typically made by treating electron
transport totally independent from the electric field created by the deposited charge, which
become invalid if the field strength is large enough to affect electron motion. An example of this
is spacecraft charging due to the accumulation of low-energy electrons on the outside surface of
a satellite which can cause electrical arcing, breakdown of dielectrics, and eventually lead to the
destruction of electronics and failure of mission capability. With frequent buildup of potentials
on the order of 10 kV on spacecraft surfaces, the effect of the high-flux, trapped electrons in the
1-100 keV range could be significant. Current modeling tools for charging predictions
oversimplify the relevant physics, such as the dynamic interaction between incident electrons
and electric fields generated by deposited charge, and lead to inaccurate predictions and large
safety margins are often imposed due to the significant uncertainty.

To model electron transport in materials in the presence of electromagnetic (EM) fields,
additional terms can be incorporated into the Boltzmann transport equation to represent the
effects of the Lorentz force on particle motion and to describe how the EM fields alter the
particle energy and direction continuously between collisions. These terms are significantly
different from the other physical processes typically handled by the radiation transport codes. In
traditional radiation transport, particles travel freely between interaction events following a
straight-line path, and then undergo collision to a different streaming path with different energy.
In the presence of electric and/or magnetic fields this paradigm is no longer valid, as particles
travel in curved paths between collision sites and their energy changes continuously,
consequently impairing many traditional solution methods.

There are production, radiation transport codes, such as ITS [1] and PENELOPE [2], which can
model electron transport in the presence of electromagnetic fields. These are Monte-Carlo codes
based on the condensed-history algorithms and are limited to electric field in vacuum or weak
field strength in material region so that the interaction properties of electrons (stopping power)
are not substantially altered within a predetermined step. Moreover, Monte-Carlo codes are
restricted to problems where limited information is sought and are difficult to interface with
other finite-element-based electromagnetic code used in radiation effect analysis.

In the early 1980’s, Bruce Wienke [3] demonstrated the feasibility of applying the multigroup,
discrete-ordinates method to solve the one-dimensional, electron transport problem with fields.
The energy redistribution term due to the electric field resembles the slowing—down operator and
was treated with a multigroup-based differencing scheme. The angular redistribution terms due
to the electric and magnetic fields were treated by using the spherical-harmonics expansion of
the angular flux and cast into forms similar to the traditional collision and scattering operators.
Our approach is an extension of his work to multi-dimensional geometries but includes
discontinuous finite-element methods to treat the streaming operator and the energy-
redistribution term from the electric field.

In the following sections, we describe the Boltzmann transport equation including operators
representing the effects on electron motion from the Lorentz force. Detailed derivations are given
to transform these operators from the velocity space to the energy-angle space common to the
traditional radiation transport. We then apply the discrete-ordinates method to discretize the
angular redistribution terms and demonstrate how to convert them into a form similar to the



within-group scattering and suitable for implementation into an existing discrete-ordinates code.
Finally, we discuss the finite-element methods to treat the entire phase space including spatial,
energy and angular dependence. Discussions on coupling to the electromagnetic solver and
numerical results are provided in a companion SAND report.



2. Bololtzmann Transport Equation with Lorentz Force

In the presence of external forces, the Boltzmann transport equation can be written as:

dN
—+V-UN+V,-dN+0ovN=3S§

ON
E+5'VN+5'VUN+(Vv'ﬁ)N+0'vN=S

where
N = particle angular density = N (F, E, 5, t)
7 = position vector = xi + yj + zk
Q = direction of particle motion = ui + nj + ¢k

# = particle velocity = vQ = v,i + vyj + vk

0
V = gradient operator in space = ia + j@ + k&

a = acceleration = a,i + a,j + a,k

0 iy d Tk 0
v, lavy dav,

V, = gradient operator in velocity space = i

S = the scattering and external sources

with the vector components expressed in the Cartesian-coordinate system. The components of
the velocity vector and the direction vector are related such that

U= vd+vyj+v,k=v(ui+n+Ek)

— 1% V. 1%

Q=pi+nj+&k=—"i+2j+-=2k
pitmj+ ik =i+ 2+~

1
withv = (v2 +vZ +vZ)>and u? +n? + &2 = 1.

The streaming operator in Eq. (1) is
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The gradient operator in the velocity space is

Dy ON N N
v _lavx lavy v,

which can be expressed in terms of the polar angle (8) and the azimuthal angle (¢) in the
spherical coordinates:

U =cosb 1 = sin @ cos ¢ & =sinfsing

v, = vu = vcos 6 vy, = vn = vsin 6 cos ¢

v, = v = vsinfsing

Applying the chain rule of partial differentiation, we have

[ON1 [0v, O0v, 0v,][0N] [ONT
v v v ov||ov| [¢ V1—pPcose V1=p?sing ||ov,
JON ov, dv, O0v,|[oN " _bpcosg _ bpusing aN
ou ou ou Ou||ov, _[ J1—p? 1/1— J dv,,
(')_N vy Ovy 0v || ON 0 —v\/l——uz sing v 1 u?cos @ G_N
Ldpl Lap d¢ Od¢llov,] [ dv,
- 2
ON] u il 0 [ONT
v, v > v
V1= sin
6_N —|J1—p?cose —ucosq) __ e a_N
v, v vy1—pu?l|ou
oN — 2 JdN
. py1—p® cos ¢ i
[1— 2 N P o r
ov,] | L=u"sing y ome 7 T | [0
[ 1—pu? 0 110N
K v av
I ¢ ||
N T Tva-d||ou
; ué 1 oN
i v v(1—pu?) 1log
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(42)

(4b)
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(6)



The gradient operator V,, becomes

VN__0N+_(’)N+k(’)N
v _lavx lavy v,
— 0N 1—pu?oN ON ON dON ON
v v du v ou v(d-—pu?)oe vou v(l—u?)ade
a-V,N
L = ON 1 5 ON 1 ON
=(a'ﬂ)%+;[ax(1—ll)—ayﬂn—az#f]a—v(l—_#z)[ayf—azﬂ]%
L = ON 1 L, = ON 1 ~ ., ON
_(a Q)%+;[ax— ,u(a Q)]E+v(1—_'uz)(ﬂxa)x%
Similarly, the term V,, - @ can be written as
V,-d
:aax+aay+aaz
v, 0v, Jv,
d - 1 da
=— (@ -Q)+-01-p»)==
av(“ )+v( M)au

v

1[ da, N & aay] 1[ da, n aaz]
o L I C R W P ou  (1—p?) dg

The particle angular flux is defined by

(% E 0,t) = vN(# E, O, t)

v

E)N_a(lp)_l%

ot ot T v oot

-VN=vQ-UN=0- -V

ovN = oy
6N_6<1/J)_161p P
v dv\v) wviv v2
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The transport equation for the angular flux is then

109 QY 1
. v¢+a¢+_(___ )
v ot v \dv v (12)
Q ! ixa) Xy w, al=s
z[ax u(a- )] W( Xa)x%Jr V,-a)— =
Acceleration due to External Force
The following derivations of the relationship between force and acceleration are taken from
Reference [4]. In classic physics the Newton’s second law of mechanics is given as follows:
L, dp dv
T em ZZ=ma 12
F it m, T mya (12)

indicating that the acceleration d is parallel to the force F, and the mass of the particle m, is
constant.

In relativistic physics the acceleration @ is not parallel to the force F at large velocities because
the mass of the particle becomes a function of velocity so that the speed of the particle cannot
exceed the speed of light in vacuum.

. df  db dm.
_dp_ dv  dm 13
F=gr=mawtar? (13)

where the mass of the particle m is given by the Einstein expression

m=m(v) = ym, (14)

m, = rest mass of the particle

1 _ 1
-

v
B = particle speed normalized to speed of light = z

Y:

¢ = speed of light in vacuum

Substituting Eq. (14) into Eq. (13) gives

12




dv dy dv y3vdv
b= > 15
F = ym,—— it +m,— dt ym, dt+m0 2 dtv (15)

The acceleration, a = Z—f, can be determined by taking the dot product between the force F and

the velocity v

Fb
dv | y3vdv |
=ymo |V +m,—- 7 V- U)
3 dQ+dvﬁ 5l + y3vddv
VMo Vg T ) V| T e T g (16)
dv+ y3v3dv
T VMoV T T gy
=ym,(1+ Zﬂz)vd =y3m dv
- y 0] y d y O dt
Solving the last equation for v %
dv F-o (17)
dt  y3m,
and substituting the result into Eq. (15), we have
N Ao myy3 F dv IR
F = — e —+ B4(F-Q)Q 18
ymodt+ 2 y3m0v ymodt+ﬁ( ) (18)

Solving % from this equation we obtain the relativistic relation between the force F and the
acceleration a

[F B2(F - 0)q] (19)

Vmo

§|"m

For non-relativistic motion, § — 0 and y — 1, we obtain the classic expression a@ =

13



Lorentz Force
The Lorentz force [5] on a point charge due to electromagnetic fields is given by

ﬁ=q(§+5x§)

where
q = electric charge of the point charge
€ = electric field = £(#t)

B = magnetic field = B(# t)

Acceleration on the point charge including the relativistic effects is then

1

{q(€+ 7 xB) — B*[q(€ + ¥ x B) - 4]0}

i=
ym,
=i{(§+ax§)—[(§+ax§)-3]3}
ym, clc
. (21)
q I., s = E-vvl
= E+BxB-"—"2
ym, c C
q - — — > o\ —>
= E+vaxB-p2E-Q)a
e p(e-0)q]
- = q - — — > o\ —> — q >  —>
0= E+vaxB-p2E-Q)0]-0= £-q 22
d-fi=—[E+v p(e-a)a-a =g -(€-0) (22)
0, =——[e, +v(@xB) - pE- D)yl (234)
'}/mo_ X A
q [ — — > — T
ay = _sy+v(nx73)y—32(e-n)n_ (23b)
a, = ——|e, +v(@x B) - p*(E )] (23c)
ym, L -
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The components of Q x B are

i j k
AxB=|u n &|={nB,—&By)i+ (B, —uBj+ (uB, — (24)
B, B, B,
q > —
a, = ——[& +v(nB, — §B,) — B*(€ - Q)] (252)
Ym,
ay = ——[g, + v(EB, — uB,) - (& - )n] (25b)
Ym,
q - —>
a, = [Ez + v(ﬂBy - an) - ﬁz(g ' 9)5] (25C)
Yme
For non-relativistic particles, § — 0 and y — 1, the acceleration due to the Lorentz force is
i=-1(&+7x3) (26)
mO
i-0=-1(¢-0) 27)
mO
q
ax =[x+ v(iB; - £B,)] (28a)
q
ay =—- [€, + v(EB, — uB,)] (28b)
(0]
q
a, = m. [gz + v(:uBy - an)] (28c)
o

15




a-Qoy
v 0v

The term £22% i Eqg. (11) involves the partial derivative of the angular flux with respect to the
v dv

particle speed which can be converted to a more desirable form in terms of the kinetic energy
(E). The total energy of a particle is the sum of the kinetic energy and the rest energy, or

The term ‘%ﬂg—f in Eqg. (11) involves the partial derivative of the angular flux with respect to the
particle speed which can be converted to a more desirable form in terms of the kinetic energy
(E). The total energy of a particle is the sum of the kinetic energy and the rest energy, or

mc?2 =E+my,c? = E=mc?—myc?=(y—1)m,c? (29)

Taking the derivative of the last expression with respect to v leads to

dE_ zdy_ m,v _ 3 o dE = 3, 4
i =m,C Iy = T =m,y°v =m,y°vdv (30)
(1-%)
Thus,
a-Qoy L. 0y (31)
—v %—moy (a Q)a—E

Substituting Eq. (22) into Eq. (31), it can be shown that the electric field can alter the particle
energy through an operator similar to the CSD operator,

v v q(g 2 0E
- N lp
It can be shown that
(pc)* = (mc?)? — (m,c?)? (33)

16




B (mc?)? — (myc?)? _(E+ 2m,c?)E B c?E(E + 2m,c?) — ¢2B%(E) (34)

2 — — —
(mc)? m(E + m,c?) (E + m,c?)?
2
p= VEE+2Mo) _ o rmEy = cpe) (3)
E + m,c?
where
% E(E + 2m,c?) 5 E(E +2m,c?)
E)=-—= and E) = 36a
and B%(E) - szCZ for E < m,c?. Hereafter, the symbol g2 (E) will be used to represent the
E(E+2m,c? . .. 2
term éT:"CZC)Z) explicitly and 82 is still used for G) . Furthermore,
1 1
y == =
\/1 ~ (Z)Z J1=B2(E) (36b)
c
1 T30 = myc?  m,c? (36¢)
Y g CE+myc?2 T(E)
T(E) =E +m,c? (36d)
The term ;p—z in Eg. (11) can then be written as

v L4 (37)

v2~ C2B2(E)

From Eq. (22),

17



v qE-Q) q(E-Q)1-p%E) g
(“'Q)_‘y3moc2ﬂ2(E) N OREORM &

and

v,,-azm—[vv-§+vv-(ﬁ><§)]=o (39)

(o]

For relativistic case,

i=—[E+5xB-pE-0)0]

ym,

V,-i=V,- { 1 [E+5xB-p2(E- Q)Q]}

Y,
1
yzl mi(v ;) [€+ 5 x B — p2(€-0)q]
___4 ANEN _p2(2. )G
= ymov [B%(€ - Q)Q]+—<Vvy) [€+ 7 x B - p2(E-0)q]
= quczv (E-v )+io(v;)-[§+ax§—32(§-ﬁ)a]

18



=a_vx(vx(§ v)) a—(vy(E v))+—(vz(£ v))
R a€-v a€E-v a(€-v
—3(5'17)+vx (avx) + v, (avy) ; (avz)
=4(€-9)
v, a
=L v (§-ﬁ)ﬁ+mi(vv%)-[§+13><§—/32(5-§)ﬁ]
4qg N s H R
=—qucz(e-ﬁ —mi(Z—)Z/Q)-[E+ﬁxB—ﬁZ(€-Q)Q]
49 s .
=g (€ 9) ~ () [(E- D)~ p2(E D))
4q 5 40
=—ymocz(£-v —moczvy(l—ﬁ)(S-Q) (40)
4 ., .,
- E D) -2 pED)
__ M e
__)/mOCZ(E ) ymc(g )
5¢ 2 .
=_ymocz(£' )
¥ 5q(€-0)  5¢(€-9)  5q(€-0)
O By = ez V= B ¥ =TT “

1 1
j(l[}=ﬁ[ax_ ”( ﬂ)] a” 172(1—”2)( )xa(p

The acceleration due to the Lorentz force is given in Eq. (21):

a= [e+vQ><B B%(€-Q)q]

ymg

Substituting the third term containing 82 of d into v leads to

19




T

— —B2(E-Q)u+p2(E-Q)u] =0

and
Gxd = Ox[p2(E-0)0] =p2(€ BB xT =0

The relativistic terms in particle acceleration have no contribution to Ky since those terms
represent acceleration along the particle direction. Next, using the expressions of 12 and v

11 B 1 1
ymov?  ym,c?BA(E)  (E + my,c?)B3(E)  T(E)B2(E)

v =cB(E)
we can rewrite K to the following
0y
[ax u(d- 9)] ﬁ(ﬂ ) —
(11 — §?) aq) (42)
= [a, - M(a'Q)]EJF(l_—#z)(Q N)xa(p
with
~_ 9 iz = =
2
D(E) = T(E)F?(E) = L+ 2Moc?) (44)

E 4+ m,c?
One can further simplify Eq. (42) by considering the following

a-0=—1[E+cpE)OxB)]-0==t

D(E) oy &Y

20



&y — w(@ 0) = s [E:— (€ Du+ epE (@ xB),

——[&,(1 — u?) — Eyun — E,ué + cB(E)(B,n — Byé)]

(45)
"D (E )

(ﬁxa)

D(E) (@x[E+cBE)AxB]),

D(E)[Qx8+cﬁ(E)QxQx‘B]
= % 0 x &+ cpE)[G(0-B) - B(a- ?i)]]x

= % (@ &), +cp@[(@-B)u—5.]]
= B [En = &8 + BB, + Bus — B,(1 - )]

(46)

Substituting Egs. (32), (38), (41), (45) and (46) into Eq. (11)

i Q-v
Cﬂ(E)E-}_ l/)+0'l/)

1+ 4B2(E)
+q(&- )[ @(ﬁE)
oY

+ W[E (1 —u?) — Eyun — E,u& + cB(E)(B,n — Byf)]a

q v
GETR) |&n — £,€ + cBEY[Byun + Boug — B(1 — 2] =5

(47)

U = cosé n=+1—pu?cosq §=41—pu?sing

T(E) =E +m,c?

E(E + 2m,c?)
(E + m,c?)?

B*(E) =

E(E + 2m,c?)
E + m,c?

D(E) = T(E)BA(E) =

21




E & m,c? E > m,c?
T(E) myc? E
2(E) 2F 1
A m,c?
D(E) 2E E
1 1 1
D(E) 2E E
1+4B%(E) 1 5
D(E) 2E E
B(E) 1 1
D(E) 2Em,c? E

From Eq. (47),

oY
cﬁ(E)EJrQ Vi + o
_LHBE)
+Q(5 ) [ D(E) 47
B 5 - >a—¢—5[ tn e[ 5 - )
%) 9 H 2) a<p — 1) 99
qcB(E) /m N ué oY
+D(E){ xaqa [gau (1- uz)aca Bz nEJr(l—uz)%]}_

U =cosf n =+1—u?cos¢e §=41—pu?sing

E(E + 2m,c?)
(E + m,c?)?

B*(E) =

E(E + 2m,c?)
E + m,c?

D(E) =T(E)B?*(E) =
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For non-relativistic electrons,

L.

;E-I_ lp+0'l/)
L [0 1

+Q(5'9)[ﬁ—ﬁ¢]

(47b)

q oy oy s oy n oy
+ﬁ{gx(1_,uz)a_gy Hna‘*'(l_’uz)% _EZI:MEE_(]_—#Z)%}
qv {—B oy B, [5 oy pn 01/)] B, oy ps oY } —g

2B 9 o T T - e "o T a— D aglS T

v= |— B=0 D(E) = 2E

It is noted that Eq. (47) is the consequence from including two additional terms describing the
change in velocity due to the Lorentz force, d@ - V,N + (V, - @)N, to the Boltzmann transport
equation. One can obtain a similar result by considering the effects in the momentum space. The
only difference is in the energy redistribution term such that the coefficient 1 + 482(E) should

be replaced by 1 — B2(E).
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3. Discrete-Ordinates Method

In the discrete-ordinates approximation [6], the angular flux is determined at a set of discrete
directions such that Y (Q) — ¥ (Q,) for {Q,}. To evaluate the scattering source, the angular flux
is often represented by a finite expansion in terms of spherical harmonics as

L l
@) =D D W@ + Vi (Dbt (48)
=0 m=0

The real and imaginary parts of the spherical harmonics are defined by

Y5, (Q) = Y5, (w, @) = Crn P™ () cos mg (49a)

Y (Q) = Y (1, @) = Cip ™ (1) sinmep (49b)

where P/™(u) is the associated Legendre polynomial of order I and degree m,

m

m P (w) (49c)

d
PG = (~)m( - ey

20+ 1 (1 — m)1]?
Cim =[ yp (2 - mo)m (49d)

Using the expansion Eq. (48), one can represent the angular derlvatlves and :ﬁ in terms of

the angular moments (see Appendix A for details)

L l
= Z Z{ CinYin (D) = Vi )6 + [ConYin (@) — ¥ (@] 85}
= (50)

L l
W; ZO{[C]mﬁfn(ﬂ) — W5 (D] dfn + [Com Vi () — ¥ (] din}

L l
== Ml @ — Vi (@)D ] (51)

=1 m=0

where the modified spherical harmonics are defined as
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Yim ()

M@ =— (52a)
l 1= ‘uz

VA — Ylsm('Q')

Y (Q) = i (52b)
75,(Q) = 75,(Q) =0 form > 1 (52¢)
N 21+ 1 1/2 (520)

im = [2l—1(l m)(l+m)]

The angular moments can be generated from the discrete angular flux through the following:

¢ = [D]Y (53)

where

¢ is a column vector containing the angular moments
1 is a column vector containing the discrete angular flux
[D] is the discrete to moment matrix with a dimension of Ny, X Np,
N, is the number of angular moments

Np is the number of directions
The angular-moment vector is arranged in an orderly fashion

¢ =005 ¢5H ¢f ¢S @5 ¢5 " (54)
for 2D geometry, and

¢ =1[ds ¢S5 ¢51 D5 P50 D51 D5 b5 03 P 5 o5 1T (9D)

for 3D geometry such that there is a unique, bi-directional mapping between the indices (I, m),
the cosine- and sine-component and an index n’ (the location of the angular moment in ¢),

25



cosine
(l, m, ) =

sine

With these, one can cast the angular redistribution terms into matrix form similar to that of the
scattering term.

W s . [0y 1+4p2(E)
et v ow+a(€ ) [FE -
+%{ EdMe] + &y e, | + &[0, ]} DIy (56)
E
q;[éé)) (B[] +B, [M5] +B,[M5,]} DIy = 5

where [M] are the moment-to-discrete matrices due to the EM fields and have dimension of
Np X Ny. The components of these moment-to-discrete matrices M ,,,,» are given in the table
below. The row index n corresponds to the discrete direction Q,,. The column index n’ is
determined by the indices [, m and the phase (cosine or sine).

M, forl>0andm>0

Cosine Components

Sine Components

gx C~lelC—1,m (-Qn) - l.unylgn(ﬂn) C~lmyls—1,m (-Qn) - l.unylin(ﬂn)
& —Hn COS @y, [Clmyvlc—l,m(ﬂn) - lﬂnYlsn(-Q-n)] —Hn COS @y, [C‘lels—l,m(-Qn) - lﬂnYl?n(-Q-n)]
Y| 4+msing, T (@) —m sin @, 5,(2,)
£ —HUn sin Pn [Elmylc—l,m(ﬂn) - l.unylgn(ﬂn)] —HUn sin (2% [élmylil,m(ﬂn) - l.un?lin(ﬂn)]
‘ —m cos @y, V5,(2y) +m cos @y, V5,(2n)
Bx mYlfn ('Qn) _mYlgn ('Qn)
B —sin @ [Con VS 1 1m (Qn) — ltn V5 (Q)] = sin @y [Con V21 () — L Vi3 ()]
y ~ ~
—m Uy, COS @p Yl}gn (Qn) +m UnCOS Py Ylgn (Qn)
B +cos Pn [Clelc—l,m(Qn) - l.unYlfn(-Qn)] COs ¢, [élmylil,m(ﬂn) - l.un?lin(ﬂn)]
‘ —M [y Sin @y, Yy, (Q) +m pysin @, Yy, (Qy)
M, forl=0
All 0 0
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For the case of u,, = %1, the elements M ,,,» take on different forms (see Appendix B for
details).

M, fory= t1landm #1

Cosine Moments Sine Moments

All 0 0

M, fory= +tlandm=1

Cosine Moments Sine Moments
£, 0 0
&y —uCy (1) 0
&, 0 —uC (W)
B, 0 0
B, 0 —C'(W
B, G (1) 0

I+ 12l + 1)1%

1
C'(1) = El(l +1)Cpy = I o

I+ 12l + 1)1%

1
€1 =5 =D+ DEy = (=1 [ 8m
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For the first-order transport (sweep) solver one can rewrite Eq. (56) for each direction Q,,

P 0y 1+ 4B%(E)
B ot + Gy Vi, + o, + q(E - n)[ DE) %l
=5, - DgE){e [ace] +€, [Mg] + &[] 1o (57)
_qcB(E)

D(E) Dy BelMal, + B, (M| +B.[05] fo

where y,, = 1/)(?, E, ﬁn, t), ¢ is a column vector containing the angular moments, [M],, is
the nth row of the moment-to-discrete matrix [M], and S,, contains the within-group scattering
source, the between-group scattering source and the external source for the direction ﬁn.

For the second-order solvers Eq. (56) may be the preferable form with all the angular flux cast in
a vector form:

1wy - L [0y 1+4B%(E)
A A AIC] s o
E
¥ qug)) {B" [.] + B, [MBy] +3B, [MBZ]} [Dlp =S
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4. Discontinuous Finite-Element Methods in Energy and Space

We have applied the discrete-ordinates method to treat the angular redistribution from the EM
fields. The other discretization schemes employed are

e Discontinuous finite-element method (DFEM) in space
e Discontinuous finite-element method in energy

More details of these discrization schemes can be found in References 7 and 8. We will first
ignore the time dependence and concentrate on the angularly discretized equations for the first-
order solver.

0P, 1+4B(E
oW+ g+ (€0 |G - =)
=5, - DgE){e [ace] +€, [Mg] + &[] 1o (57)
_qcB(E)

D@ BeMsl, + By [0, | +B.[00] }o

Yn = an(F.E)

¢ = $G.E)
Sp = Su(G E)
Expand the angular flux as
I J
Y@ E) = ) H ) Y 6By (@) (58)
SIS

where H;(#) is the ith basis function in space, G;( E) is the jth basis function in energy, and

Yi; (ﬁn) are the expansion coefficients. To derive the DFEM equations, we start by substituting
the expansion Eq. (58) into Eq. (57), multiplying the result by H;(7)G;(E) and integrating the
result over an elemental volume V. and an energy bin [E,, E;_4]. The integrals involving the
gradient terms (Q -V, and ) are separated into a surface integral and a volume integral,
which allow the angular flux at the surface to be different from the interior angular flux within an
element. Details of DFEM formulation are given in Appendix D.

For a given pair of element-group the angular fluxes (a total of 1J unknowns) can be arranged
into a column vector:
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Y= [ (59)
.

¥1;(D)]

2;(9) (60)

[,(0).

For example, a piecewise linear differencing in energy with tetrahedral element will lead to 8
angular unknowns.

The DFEM formulation leads to the following system for ¥
LI+ [CIP + [PIP - [Q]P =8 —R: — R3p (61)

The vectors §, Rs and Ry are arranged in the order as W.

Streaming Term

N
[L]W = Z[LAk]‘P — [Ly]® (62)
k=1
g117'[Ak glzﬂAk gl]}[Ak lIJ1
— [9217{@ gzzg{Ak QZJ%A,‘HWJ
[La]P=0-] | . . || : ‘ (62a)
g]lg-[Ak g]Z}[Ak g]]g-[Ak‘l lP]
GuHy GHy - Gy
i ]lp—ﬁ |9217'[V G2 Hy - gZJ}[V ¥,
ylr =4 . . .

Il
| (| ; | (62b)
[gjﬂfv GpHy - g]ﬂ'[vH‘l’]‘
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H,, =an I X I matrix of vectors = [f[Akl.i,]

}_)[Akii’ = | dAnH;(#)Hy (")

Ak

Hy =an I X [ matrix of vectors = [}TVii,]

Hyyr = f dV[VH;(?)]Hy ()

Ve

Eg_1
Gjjr = jE dE G;( E)G;(E)

g

(62c)

(62d)

(62e)

(62f)

(629)

where N,, is the number of faces and A, is the kth face of an element. It is noted that the term
[LAk]‘P consists of the angular fluxes on the surfaces and will be moved to RHS for 7, - Q<0.

Collision Term

G111 G3  GyH WP
G2 G I - Gy H || WP,
[cl¥=| . . . .
G GpH - GEHILY,

H =an I x [ matrix = [H;;]

Moy = f dAVH, ) Hy ()
V,

e

Energy Redistribution from Electric Field [‘;—'g]

P = [P, - [P,] - [P]w
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(63a)

(63b)

(64)



PuHe Pr¥e - PyIH

— ?21}[8 ?22‘7{8 ?2]‘7'[8 ll"2

[Py]¥ =q0- : : : | atEg

:P]lg{g :PJZ}[S A ?]]ﬂgJ[W]J
P;j(E) = G;(E)G;1(E)

He =an I X [ matrix of vectors = [ﬁ&.ir]

Hgyr = f dVEH;(#)Hy (7)

e

_73117{8 73127'[8 731]:7{3_ rl"l'l
plu =g | e Tt Fr %)
-:ﬁjl“}[f jj]zg'fg jj]]:}[g_ [W]J

P = ng_ldE [a% G;( E)] Gy (E)

Eg

It is noted that the terms [P,_;|¥ and [P ,|W consist of the angular fluxes on the
energy-bin boundaries and may be moved to RHS depending on the sign of Q- € and the

direction of sweep in energy.

2
Energy Redistribution from Electric Field [—“:;fE)(E) 1/,]

QuHe Q1He - Q1 H W1

— 9213{8 szg'[s Qzﬂ'fe ‘112

[Q]¥ = qQ- . . :
Q/1~7{8 Q]zg'[e Q]]g'[g lq’]J
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(64a)

(64b)

(64c)

(64d)

(64e)

(64f)
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Fo-r 1+ 4B%*(E
ij’=j dEL()G;(E)GJ-'(E) (65a)

‘, D(E)

Angular Redistribution due to Electric Field

For a specific direction ﬁn, the angular redistribution term for the ith spatial basis function and
the jth basis function in energy is

Re = Re, + R, + Re, (66)
Renij = I :Hg [ M)+ Her M|+ He [P, Z Gy buy|  (662)
Hewr = fv VS ) (66b)

=] Ed B 5 61 E)Gy () (66¢)

where the symbol £ is used to denote one of the three components of the electric field

(&x Ey, &,), [M¢], is the nth row of the moment-to-discrete matrix [M ] defined previously
and ¢;; is a column vector containing the expansion coefficients of the angular moments
corresponding to the ith basis function in space and the jth basis function in energy.

Angular Redistribution due to Magnetic Field
For a specific direction Q,,, the angular redistribution term for the ith spatial basis function and
the jth basis function in energy is

RB = RBx + RBy + RBZ (67)

1
Renij = q 7{3 i [ Mz, |+ Hop [MBy] + M [Ms,] Z Gy buy (67a)

i j'=1
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I ]
:RBnij = Z}[Bu Zg i’ MB n¢l (67b)
i=1

j=1

}[Bii' = dVBHl(‘F )Hll(‘f‘)) (67C)
Ve
Gijr =ch dEZﬁ)EEgG (E)G;(E) (67b)

where the symbol B is used to denote one of the three components of the magnetic field
(Bx, By,BZ) and [M'z],, is the nth row of the moment-to-discrete matrix [Mz] as given
previously.
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5. Finite-Element Methods in Angle

Finite-element methods have also been applied to the angular variable, but to a less extent than to
the spatial and energy variables. In this work, we have applied both continuous and
discontinuous finite-element methods to treat the angular dependence of the EM terms.

Expand the angular flux as

1 J K
YERED) =) H @)Y GE) Y W (D) (69)
i=1 =1 k=1

where H; (7 ) is the ith basis function in space, G;( E) is the jth basis function in energy, W; (ﬁ)
is the kth basis function in angle, and v, ;; are the expansion coefficients to be solved.

Elemental equations for the expansion coefficients can be derived by applying the Galerkin
method similar to that outlines in the previous section. Detailed descriptions of these can be
found in References 9 and 10.
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Conclusions

We have developed a mathematical model, by including the effects of Lorentz force in the
Boltzmann transport equation, for electron transport with electromagnetic fields. Two
deterministic, numerical techniques are developed to treat the energy- and angular-redistribution
due to the electromagnetic fields.

In the first approach, we apply the traditional discrete-ordinates method to discretize the
differential, angular redistribution terms with the spatial- and energy-dependence are treated with
discontinuous finite-element methods. The discrete system can be arranged into a form very
similar to that encountered in standard radiation transport. More specifically, the energy- and
angular-redistribution operators are transformed into a series of scattering matrices. However,
convergence of this approach is highly problematic when applying the source iteration. In the
second approach, we apply the discontinuous finite-element methods to the entire phase space in
which the angular flux is represented by a triple-product of basis functions in space, energy and
angle. Despite of its complexity, this approach offers two advantages: convergence of the source
iteration is less problematic and improved accuracy in angular flux.

We have also demonstrated full coupling between the transport and electromagnetic solvers via a
staggered time advancing scheme on a problem involving propagation of an electron beam over a
diode. There are significant discrepancies between our results and EMPHASI-PIC calculation
which require further investigations.

The finite-element methods and the software components developed in this research project
should be productized and incorporated into the existing radiation transport capability at Sandia.
In particular,

1. Finite-element in angle can improve accuracy and mitigate the notorious ray-effects
associated with the discrete-ordinates method for problems involving localized source,

2. Finite-element in energy can be extended to the continuous slowing-down (CSD)
approximation in electron transport and eliminate the numerical straggling associated with
the finite-differencing scheme commonly applied to the Boltzmann-CSD equation.
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Appendix A. Modified Spherical Harmonics

In SCEPTRE, the angular flux is represented by a finite expansion in terms of spherical
harmonics as

L l
W) = D (@b + Vin( @il
=0 m=0

The real and imaginary parts of the spherical harmonics are defined by

Y5, (Q) = Y5, (w, @) = C P™ (1) cosmep

Yo () = Y (, @) = Cipp P™ (1) sinmep

where P/™(u) is the associated Legendre polynomial of order | and degree m,

m

d
PG = (CD™ (L= i)™ PG

241 (L —m)1"?
m — 4‘7T ( mO) (l + m)'
L l
al[) a m c m : S
a = @Z Z [Clmpl ([,l) cosme ¢lm + ClmPl (ﬂ) sin mgoqblm]

=0 m=0

L l
-> Z [Cim €05 M9y + o 50 i1 3P

I=1m

O

From Wolfran’s Mathworld (http://mathworld.wolfram.com/LegendrePolynomial.html)

(1- 2)iP M) = +m)P™ (w) — wP™(w) for I >0andm <

9
(1- uz)@l’}(u) = —luPl(u) for1>0

PM™(u) =0 form >1
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(A8)



L l

d 1

_l/) = ; Z [Clm cos m(qufm + Cpp, SN m<pq,’>fm] [(l + m)P{fl(‘u) — l‘uplm(ﬂ)]
L

1
= (L + M) [Com P4 (1) cOS M bl + Cim Py ()Sin M@0 (A9)

=1 m=0

L l
Z Z l[Clmle(.u) cosmgy ¢lcm + Clm le(ﬂ)Sin m(p(ﬁfm]

=1 m=0

~

u
1-u

N

From Eq. (A5), it can be shown that

20+ 1 (1 —m)*?
[v@—@mo)m] 2L+ 1l—my?

(l—m—-DN? LI-11+m
(l+m—1)!]

Clm

Cioim  [20—1
" EEe-sw

L l
d 1 2l +1 1/2
- Z Z [21 — -m)+ m)] YiZ1m (D @im + Y21 m (D Pim]

L
__H z Y (D Pirn + Vi ()]

=1 m=0 (AlO)
L 1 1/2
1 20+ 1 . . .
== DA M+ m]| K@)~ ¥ @) 9
=1 m=0
L l
1 20+1 1/2
by Y B U m] 1@ - @] o
K =1 m=0
Define the modified spherical harmonics as
> Yim
75.(Q) = (A11)
1—pu?
> Vi
75.(Q) = (A12)
1—pu?
YS,(Q) =Y5,(Q) =0 form>1 (A13)
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. 21+ 1
=P maam] (AL)
al/) L l
=1 O ALV ~ W @195 + [T () ~ W ]3]
1=1 m=0 (A15)
L l
> > ([Comi () ~ T @0 + [Con i (D — W5 @]
K =1 m=o
L l
oy 0 s m ,
= 3 (B Com P () COS T + G Cin P 1) sin 0]
¢ ¢ =0 m=0
L l
= D> MIGin Cin P €05 12 = B Com P (1) sin 0] (A16)
=1 m=
L 0l
=) MY @ — Vi (D]
=1 m=0
More on Modified Spherical Harmonics
The modified spherical harmonics are defined by
" Yim P (1) .
c — — — m
Ylm(ﬂ) - 1— ’[,[2 - Clm \/1_—‘112(:08 me = ClmPl (,Ll) cosmy (A17)
- Y; P™(w) -
75 () =—— =, ———sinme = C,, P"(1) sinm A18
Im 1— ’[,[2 lm \/TMZ @ Imt1 ( ) @ ( )
where P/™(u) is the modified, associated Legendre polynomial,
- am
PG = (DM = D2 2 P k) (AL9)
It can be easily shown that form > 1
lim P"(u) =0 (A20)
p-t1

< d
Form =1, P}(n) = —d—#Pl(u)
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- d 1
imPl(w) = — lim — = _Z A21
ngq P (W }gq an P(w) S+ 1) (A21)

- d 1
' Yu) = — lim — =—(-1)! A22
Jim, PG = = Jim PG = 2 (-DUE+ D (A22)
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Appendix B. Moment-To-Discrete Matrices for u = +1

Here we consider the limits of the elements in the moment-to-discrete matrices in the case of
u = *1. Since these elements consist of either the associated Legendre P/™(u)

PG = (DM - e 4w (B1)

or the modified, associated Legendre P/™(u)

m

PI'G) = (~)™ (1= )P L) (B2)

and these polynomials vanish for the case u = +1 form > 2,

M, =0 formz=2 (B3)

nn

For I > 0 and m = 0, we only need to examine terms consists of C;,, /<1 ,,(Q,) — I, V5, (Q,)
since all other terms vanish for y = +1

2041\ ~C
My < (m) lYl—1 o () — luY;5(Q)

o« 1(5 ) VET = 1Py () — VLT TR ()

2l—-1
_ — uP
o« W2l 1 Py 1(#3 ﬂzl(ﬂ)
vi—Hu

P,_ — uP
lim M, < lim () — K l(u) = lim =

u-1 u—-1 /1 — Hz u—>1

(B4)

P,_ — uP
lim M, o lim 1—1(u) — uP(w)

u--1 u—--1 m

+
= (=D lim —E = 1) fim
u-

1
LW po

= m i
. "
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Form =1, Z—Z becomes (from Eq. (63))

L

o __1 .

T = T 2, Culll DPLL () — WP (0] cos 9y + sin o)
=1

Since

d
le(li) =—(1- .Uz)l/zapl(li)

the last expression of % can be written as

W
Em \/?

Using the recurrence relation

d d
Z Ciy [lﬂapl(li) -(+1) @Pl—l(.u) (cos @iy + sin @)

d d

@Pl—l(ﬂ) = M@Pz(u) — LP, (1)
alp i B7
ou \/?Z Cn [l(l +DP W) —u i Pl(u)] (cos oty + sinpdsy) (B7)

Form =1, % becomes (from Eq. (64))

W

30 Z[YM(Q)(f’lm Yi Q) oim]l =1 - Z Cu Pl (W(sin ¢y — cos @ ¢jy) (B8)

We will examine M ,,,,» for each EM field component individually using (B7) and (B8).
Ex

a-ur l”

d (B9)
= (1 — p?)1/2 Z Ciy [l(l + DP(u) — ﬂapl(li) (cos iy + sinpdry)
=1

— 0 as,u—:il

43



& o
“"ay 1—u?de

= —ucosg Z Ca [1€0+ DRG0 = - P Ccos 9, + singpt)
—sing Z Cu Pl (W) (sing ¢i; — cos @ dyy)
- d d
Z Cua {u |10+ DR = 1 PG | cos? o + PG sin o} o
L - d

= aufufta+ vR@ - ud—Pl(m] cos g sin ¢ — 7 Pi) cos ¢ sin g ¢

=1

The Legendre polynomials satisfy the differential equation

d?y dy
— 2L 9 L =0 (B10)
(1-—x )dxz 2x ™ +I(l+ 1y

and satisfy the following:

d
I l(l+1)Pz(H)—HaPz(#)

235“1 M;—Mpz(ll) = Li_r)r}%l(l + DP(p) = %z(z +1) (B11)
lim dipl(,,o SEII(E) (B11a)

um U dd P = um —l(l +DP () = —( DU+ 1) (B12)
llm iPl(y) =5 (- DU+ 1) (B12a)
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L
. oy § oYy 1 c (B13)
;gq( g —l_uzﬁ)— Zgzaﬂ)cmu

L
: p & opy_ 1 141 ¢ (B14)
Jinl( SUPm 1_—112%) = 2;( DA+ DCy o

0y n_oy
s
ou 1—p?ade

L
d
= —using )" Cu |10+ DR ~ u g PG| (cos @y + sin o)
1=
L ! d
+cos¢ Z Cia @PI (W (sing ¢p; — cos ¢ Piy)
=1

L
d d
== > Cufr 10+ DPG) — PG| cos g sing - 2 PG cos g sin )
=1

L
d d
= {1+ DR — g PG | sin g+ 2 i) cos? o)
=1

du
tim (—ue 2 4 a—¢=_1Ll s (B15)
/Hl( w 6M+1—u26<p) 2; U+ Dl dix
. oY no oy 1 L B16)
Lim, (—Mfa+ 1= .2 %) = —Eg(—l)”ll(l +1)Cpy B3, (
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o K Y
”au 1— u? de

_C05<PZC11 1+ DG — 5 | o5 095, + sim )

+using Z Cll Pz (W) (sin @ ¢f; — cos @ ¢7y)

iql{[zcu DRG) = gz PG| cos? ¢+ - PG s o o
=1

L
d d
+chl{[z(z+1m(u> ud—Pl(m]cosgosmw g Pl(u)cosqosingo}wl

=1

L
. 61/) ué oy _1 ¢ (B17)
ftll’)q,( e 1 2%)—§;l(l+1)cll¢ll
dy  pE P\ 1w
: H N1y c (B18)
,}im1< 6u+ 26<p> 2;( DI+ DCy ¢
B,
op un oY
— __I_ —_—
ou 1—pu?de
L

d
= —sing )" Cu [I+ DPGD) — 17 PG| (cos 9fs + sin o)
=1
d : c N
+ucosg Z Ci @PI (W (sing ¢fy — cos ¢ ¢71)
L = d
z {1+ DRG0 = g PG)] cos 9 sin o - PG cos o sin )

L
d d
-G {1+ DG = g P [sin? g -+ 2 Piw) cos? o
=

L
, oY un oY\ 12 s (77a)
tim (5 + 7 5.) = 2,1+ DG
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lim( oy  un oY

uo-1\ Cop  1—p?dep

L
1
) - _Ez(_l)ll(l +1)Cn ¢71
=1

= Vi-4 ZCM PW)(sin @ ¢ — cos @ §fy) — 0 as u — £1

(77b)

(78)

M, foruy= +1
Cosine Moments Sine Moments
E, 0 0
&y —uCy (1) 0
&, 0 —uC (W)
B, 0 0
B, 0 —C (W)
B, ¢ (W) 0

1
I+ 121+ 1)]?
8m

G0 =310+ 160 =|

(-1 = 5 (~DUA + DG = (-1) [“”1)(2”1)]

47



Appendix C. Summary of Energy Dependent Quantities

The following quantities are needed to generate the moment-to-discrete matrices. For a given

kinetic energy (E)

_ E
"~ m,c?
Relativistic Non-Relativistic
T(E) E +m,c? E + m,c?
B(E) vt +2) 0
7+1
1 T+11 1
D(E) T+2E 2E
cB(E) T C v(E) _ ¢
D(E) T+2E D(E) \[2m,c?E
1+ 4B%(E) 1+ 4B%(E) 1
D(E) D(E) 2E
2E 2E
v(E) cB(E) /_ = / X
m, m,c
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Appendix D

Derivations of Discontinuous Finite-Element Equations in Space and Energy

Expand the angular flux as

I J
YR ET) =) H @) ) 6EWy(@) (D1)
i=1 =1

where H; (7 ) is the ith basis function in space, G;( E) is the jth basis