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Abstract 

 

This report describes the theoretical background on modeling electron transport in the presence 
of electric and magnetic fields by incorporating the effects of the Lorentz force on electron 
motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy 
and trajectory continuously, and these effects can be characterized mathematically by differential 
operators in terms of electron energy and direction. Numerical solution techniques, based on the 
discrete-ordinates and finite-element methods, are developed and implemented in an existing 
radiation transport code, SCEPTRE. 
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1. Introduction 

In many radiation-effect studies, one critical assumption is typically made by treating electron 
transport totally independent from the electric field created by the deposited charge, which 
become invalid if the field strength is large enough to affect electron motion. An example of this 
is spacecraft charging due to the accumulation of low-energy electrons on the outside surface of 
a satellite which can cause electrical arcing, breakdown of dielectrics, and eventually lead to the 
destruction of electronics and failure of mission capability. With frequent buildup of potentials 
on the order of 10 kV on spacecraft surfaces, the effect of the high-flux, trapped electrons in the 
1-100 keV range could be significant. Current modeling tools for charging predictions 
oversimplify the relevant physics, such as the dynamic interaction between incident electrons 
and electric fields generated by deposited charge, and lead to inaccurate predictions and large 
safety margins are often imposed due to the significant uncertainty. 

To model electron transport in materials in the presence of electromagnetic (EM) fields, 
additional terms can be incorporated into the Boltzmann transport equation to represent the 
effects of the Lorentz force on particle motion and to describe how the EM fields alter the 
particle energy and direction continuously between collisions. These terms are significantly 
different from the other physical processes typically handled by the radiation transport codes. In 
traditional radiation transport, particles travel freely between interaction events following a 
straight-line path, and then undergo collision to a different streaming path with different energy. 
In the presence of electric and/or magnetic fields this paradigm is no longer valid, as particles 
travel in curved paths between collision sites and their energy changes continuously, 
consequently impairing many traditional solution methods. 

There are production, radiation transport codes, such as ITS [1] and PENELOPE [2], which can 
model electron transport in the presence of electromagnetic fields. These are Monte-Carlo codes 
based on the condensed-history algorithms and are limited to electric field in vacuum or weak 
field strength in material region so that the interaction properties of electrons (stopping power) 
are not substantially altered within a predetermined step. Moreover, Monte-Carlo codes are 
restricted to problems where limited information is sought and are difficult to interface with 
other finite-element-based electromagnetic code used in radiation effect analysis. 

In the early 1980’s, Bruce Wienke [3] demonstrated the feasibility of applying the multigroup, 
discrete-ordinates method to solve the one-dimensional, electron transport problem with fields. 
The energy redistribution term due to the electric field resembles the slowing–down operator and 
was treated with a multigroup-based differencing scheme. The angular redistribution terms due 
to the electric and magnetic fields were treated by using the spherical-harmonics expansion of 
the angular flux and cast into forms similar to the traditional collision and scattering operators. 
Our approach is an extension of his work to multi-dimensional geometries but includes 
discontinuous finite-element methods to treat the streaming operator and the energy-
redistribution term from the electric field. 

In the following sections, we describe the Boltzmann transport equation including operators 
representing the effects on electron motion from the Lorentz force. Detailed derivations are given 
to transform these operators from the velocity space to the energy-angle space common to the 
traditional radiation transport. We then apply the discrete-ordinates method to discretize the 
angular redistribution terms and demonstrate how to convert them into a form similar to the 
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within-group scattering and suitable for implementation into an existing discrete-ordinates code. 
Finally, we discuss the finite-element methods to treat the entire phase space including spatial, 
energy and angular dependence. Discussions on coupling to the electromagnetic solver and 
numerical results are provided in a companion SAND report. 
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2. Bololtzmann Transport Equation with Lorentz Force 

In the presence of external forces, the Boltzmann transport equation can be written as: 

∙ ∙

∙ ∙ ∙
 (1)

where 

particle	angular	density , , Ω,  

position	vector  

Ω direction	of	particle	motion  

particle	velocity Ω 	  

gradient	operator	in	space 	 

acceleration  

gradient	operator	in	velocity	space 	 

	the	scattering	and	external	sources 

with the vector components expressed in the Cartesian-coordinate system. The components of 
the velocity vector and the direction vector are related such that 

  
	  

Ω  

with  and 1. 

The streaming operator in Eq. (1) is 
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∙ Ω ∙  (2)

The gradient operator in the velocity space is 

 (3)

which can be expressed in terms of the polar angle ( ) and the azimuthal angle ( ) in the 
spherical coordinates: 

cos 									 sin cos sin sin  (4a)

cos 									 sin cos sin sin  (4b)

Applying the chain rule of partial differentiation, we have 

1 cos 1 sin
cos

1

sin

1

0 1 sin 1 cos

 (5) 

1
0

1 cos
1

cos
sin

1

1 sin
1

sin
cos

1

											

1
0

η
1
η

1

 (6) 
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The gradient operator  becomes 

Ω 	
1

	 	
1 1

 (7) 

∙
																																	

∙ Ω
1

1
1

1

∙ Ω
1

	 ∙ Ω
1

1
Ω

 (8)

Similarly, the term ∙  can be written as 

∙

∙ Ω
1
1

		
1

1
1

1

 (9)

The particle angular flux is defined by 

, , Ω, ≡ , , Ω,  (10)

1
 

∙ Ω ∙ Ω ∙  

 

1
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The transport equation for the angular flux is then 

1
Ω ∙

∙ Ω 1

1
	 ∙ Ω

1
1

Ω ∙
 (11) 

Acceleration due to External Force 

The following derivations of the relationship between force and acceleration are taken from 
Reference [4]. In classic physics the Newton’s second law of mechanics is given as follows: 

 (12)

indicating that the acceleration  is parallel to the force , and the mass of the particle  is 
constant. 

In relativistic physics the acceleration  is not parallel to the force  at large velocities because 
the mass of the particle becomes a function of velocity so that the speed of the particle cannot 
exceed the speed of light in vacuum. 

 (13)

where the mass of the particle m is given by the Einstein expression 

m  (14)

rest	mass	of	the	particle 

γ
1

1

1

1 β
 

β particle	speed	normalized	to	speed	of	light 	 

speed	of	light	in	vacuum 

Substituting Eq. (14) into Eq. (13) gives 
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 (15)

The acceleration, , can be determined by taking the dot product between the force  and 

the velocity  

∙

∙ ∙

Ω
Ω ∙ Ω

1

 (16)

Solving the last equation for  

∙
 (17)

and substituting the result into Eq. (15), we have 

∙
∙ Ω Ω (18)

Solving  from this equation we obtain the relativistic relation between the force  and the 

acceleration  

1
∙ Ω Ω  (19)

For non-relativistic motion, → 0	and → 1, we obtain the classic expression   
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Lorentz Force 

The Lorentz force [5] on a point charge due to electromagnetic fields is given by 

 (20)

where 

electric	charge	of	the	point	charge 

electric	field ,  

magnetic	field ,  

Acceleration on the point charge including the relativistic effects is then 

1
∙ Ω Ω

			 ∙
c c

			
∙
c c

			 Ω ∙ Ω Ω

 (21)

∙ Ω Ω ∙ Ω Ω ∙ Ω ∙ Ω  (22)

Ω ∙ Ω  (23a) 

Ω ∙ Ω  (23b)

Ω ∙ Ω  (23c)
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The components of Ω  are 

Ω  (24)

∙ Ω  (25a)

∙ Ω  (25b)

∙ Ω  (25c)

 

For non-relativistic particles, → 0	and	 → 1, the acceleration due to the Lorentz force is 

 (26)

∙ Ω ∙ Ω  (27) 

 (28a)

 (28b)

 (28c)
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∙
 

The term 
∙

 in Eq. (11) involves the partial derivative of the angular flux with respect to the 

particle speed which can be converted to a more desirable form in terms of the kinetic energy 
(E). The total energy of a particle is the sum of the kinetic energy and the rest energy, or 

The term 
∙

 in Eq. (11) involves the partial derivative of the angular flux with respect to the 

particle speed which can be converted to a more desirable form in terms of the kinetic energy 
(E). The total energy of a particle is the sum of the kinetic energy and the rest energy, or 

				⟹ 1  (29)

Taking the derivative of the last expression with respect to v leads to 

1
/ ⟹ 	  

(30)

Thus, 

∙ Ω
∙ Ω  (31)

Substituting Eq. (22) into Eq. (31), it can be shown that the electric field can alter the particle 
energy through an operator similar to the CSD operator, 

∙ Ω
∙ Ω  (32)

 

∙  

It can be shown that 

 (33)
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2 2
 (34)

2
 (35)

where 

≡
2

and
2

 (36a)

and → 	for		 ≪ . Hereafter, the symbol  will be used to represent the 

term  explicitly and  is still used for . Furthermore, 

γ
1

1

1

1
 

(36b)

1
1  (36c) 

 (36d)

The term  in Eq. (11) can then be written as 

 (37)

From Eq. (22), 

∙ Ω ∙ Ω   
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∙ Ω
∙ Ω ∙ Ω 1

 (38)

 

∙  

For non-relativistic motion, 

  

and 

∙ ∙ ∙ 0 (39)

For relativistic case, 

∙ Ω Ω   

 

∙ ∙ ∙ Ω Ω

∙ ∙ Ω Ω
1

∙ ∙ Ω Ω

∙ ∙ Ω Ω
1

∙ ∙ Ω Ω

∙ ∙
1

∙ ∙ Ω Ω

  

 

1 ∂
∂

1
Ω Ω  
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∙ ∙

∙ ∙ ∙

3 ∙
∂ ∙
∂

∂ ∙
∂

∂ ∙
∂

4 ∙

  

 

∙

∙ ∙
1

∙ ∙ Ω Ω

4
∙ Ω ∙ ∙ Ω Ω

4
∙ ∙ Ω ∙ Ω

4
∙ 1 ∙ Ω

4
∙ 1 ∙

4
∙ ∙

5
∙

 (40)

∙
5 ∙ Ω 5 ∙ Ω 5 ∙ Ω

E
	  (41)

 

	 ∙  

The acceleration due to the Lorentz force is given in Eq. (21): 

Ω ∙ Ω Ω   

Substituting the third term containing  of  into  leads to  
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	 ∙ Ω 		⟹		 ∙ Ω ∙ Ω 0  

 

and 

Ω 		⟹		Ω ∙ Ω Ω ∙ Ω Ω Ω 0  

The relativistic terms in particle acceleration have no contribution to  since those terms 
represent acceleration along the particle direction. Next, using the expressions of  and  

1 1 1 1
E

  

  

we can rewrite  to the following 

1
	 ∙ Ω

1
1

Ω

	 ∙ Ω
1

1
Ω

 (42) 

with 

≡ Ω  (43) 

≡
2

 (44) 

One can further simplify Eq. (42) by considering the following 

∙ Ω Ω ∙ Ω ∙ Ω   
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	 ∙ Ω ∙ Ω Ω

1
 (45) 

Ω

Ω 	Ω

Ω 	Ω Ω

Ω Ω Ω ∙ Ω ∙ Ω

Ω Ω ∙

1

 (46) 

Substituting Eqs. (32), (38), (41), (45) and (46) into Eq. (11) 

1
Ω ∙

∙ Ω
1 4

	 1

1
1

 (47)

 

cos 									 1 cos 1 sin   

 

2
 

2
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 ≪  ≫  

   

 
2

 1 

 2   

1
 

1
2

 
1

 

1 4
 

1
2

 
5

 

 
1

2
 1

 

 

From Eq. (47), 

1
Ω ∙

∙ Ω
1 4

	 1
1 1

1 1
S

 (47a)

 

cos 									 1 cos 1 sin   

2
 

2
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For non-relativistic electrons, 

1
Ω ∙

∙ Ω
1
2

2
	 1

1 1

2 1 1
S

 (47b)

 

2
	 0 2   

 

It is noted that Eq. (47) is the consequence from including two additional terms describing the 
change in velocity due to the Lorentz force, ∙ ∙ , to the Boltzmann transport 
equation. One can obtain a similar result by considering the effects in the momentum space. The 
only difference is in the energy redistribution term such that the coefficient 1 4  should 
be replaced by 1 . 
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3. Discrete-Ordinates Method 

In the discrete-ordinates approximation [6], the angular flux is determined at a set of discrete 
directions such that Ω → Ω 	for	 Ω . To evaluate the scattering source, the angular flux 
is often represented by a finite expansion in terms of spherical harmonics as 

Ω Ω Ω  (48)

The real and imaginary parts of the spherical harmonics are defined by  

Ω , cos  (49a) 

Ω , sin  (49b)

where  is the associated Legendre polynomial of order l and degree m,  

1 1 /  (49c)

2 1
4

2
!
!

/

 (49d)

Using the expansion Eq. (48), one can represent the angular derivatives   and 	  in terms of 

the angular moments (see Appendix A for details) 

	

1
1

Ω Ω Ω Ω

							
1

1
Ω Ω Ω Ω

	 (50) 

Ω Ω  (51) 

where the modified spherical harmonics are defined as 
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Ω ≡
Ω

1
 (52a) 

Y Ω ≡
Y Ω

1
(52b) 

Ω Ω 0 for (52c) 

2 1
2 1

/
(52d) 

The angular moments can be generated from the discrete angular flux through the following: 

(53) 

where 

	is	a	column	vector containing the angular moments  

	is	a	column	vector containing the discrete angular flux  

	is	the	discrete	to	moment matrix with a dimension of   

	is	the	number of angular moments  

	is	the number of directions  

The angular-moment vector is arranged in an orderly fashion 

⋯ (54) 

for 2D geometry, and 

⋯  (55) 

for 3D geometry such that there is a unique, bi-directional  mapping between the indices (l, m), 
the cosine- and sine-component and an index n’ (the location of the angular moment in ), 
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, , ⟺ ′  

With these, one can cast the angular redistribution terms into matrix form similar to that of the 
scattering term.  

1
Ω ∙ ∙ Ω

1 4

	  (56)

where  are the moment-to-discrete matrices due to the EM fields and have dimension of 
. The components of these moment-to-discrete matrices  are given in the table 

below. The row index  corresponds to the discrete direction Ω . The column index ′ is 
determined by the indices ,  and the phase (cosine or sine). 

 

 0 0 

 Cosine Components Sine Components 

 , Ω Ω  , Ω Ω  

 
cos , Ω Ω

sin Ω
 

cos , Ω Ω

sin Ω
 

 
sin , Ω Ω

cos Ω
 

sin , Ω Ω

cos Ω
 

 Ω  Ω  

 
sin , Ω Ω

cos Ω
 

sin , Ω Ω

cos Ω
 

 
cos , Ω Ω

sin Ω
 

cos , Ω Ω

sin Ω
 

  

All 0 0 
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For the case of 	 1, the elements  take on different forms (see Appendix B for 
details).  

 

  for   

 Cosine Moments Sine Moments 

All 0 0 

 
 for    

Cosine Moments Sine Moments 

 0 0 

 ∗  0 

 0 ∗  

 0 0 

 0 ∗  

 ∗  0 

∗ 1
1
2

1
1 2 1
8

 

∗ 1
1
2

1 1 1
1 2 1
8
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For the first-order transport (sweep) solver one can rewrite Eq. (56) for each direction Ω  

1
Ω ∙ ∙ Ω

1 4

	  (57)

where , , Ω , , 	is	a	column	vector	containing	the	angular	moments,  is 
the nth row of the moment-to-discrete matrix , and  contains the within-group scattering 
source, the between-group scattering source and the external source for the direction Ω . 

For the second-order solvers Eq. (56) may be the preferable form with all the angular flux cast in 
a vector form: 

1
Ω ∙ ∙ Ω

1 4

	  (56)
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4. Discontinuous Finite-Element Methods in Energy and Space 

We have applied the discrete-ordinates method to treat the angular redistribution from the EM 
fields. The other discretization schemes employed are 

 Discontinuous finite-element method (DFEM) in space 
 Discontinuous finite-element method in energy 

More details of these discrization schemes can be found in References 7 and 8. We will first 
ignore the time dependence and concentrate on the angularly discretized equations for the first-
order solver.  

Ω ∙ ∙ Ω
1 4

	  (57)

,

,

,

  

Expand the angular flux as 

, Ω  (58) 

where 	  is the ith basis function in space, 	  is the jth basis function in energy, and 

Ω  are the expansion coefficients. To derive the DFEM equations, we start by substituting 
the expansion Eq. (58) into Eq. (57), multiplying the result by 	 	  and integrating the 
result over an elemental volume  and an energy bin , ]. The integrals involving the 

gradient terms (Ω ∙  and ) are separated into a surface integral and a volume integral, 

which allow the angular flux at the surface to be different from the interior angular flux within an 
element. Details of DFEM formulation are given in Appendix D. 

For a given pair of element-group the angular fluxes (a total of IJ unknowns) can be arranged 
into a column vector: 
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⋮
 (59) 

Ω

Ω

⋮

Ω

 (60) 

For example, a piecewise linear differencing in energy with tetrahedral element will lead to 8 
angular unknowns. 

The DFEM formulation leads to the following system for : 

 (61) 

The vectors , 	and	  are arranged in the order as . 

Streaming Term 

 (62) 

Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (62a) 

Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (62b) 
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an		 	 matrix of vectors  (62c) 

 (62d) 

an		 	 	 matrix of vectors  (62e) 

 (62f) 

 (62g) 

where  is the number of faces and  is the kth face of an element. It is noted that the term 
 consists of the angular fluxes on the surfaces and will be moved to RHS for ∙ Ω 0. 

Collision Term 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (63) 

an matrix  (63a) 

 (63b) 

Energy Redistribution from Electric Field   

 (64) 
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Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
				at		  (64a) 

 (64b) 

an		 	 matrix of vectors  (64c) 

 (64d) 

Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (64e) 

∂
∂

 (64f) 

It is noted that the terms  and  consist of the angular fluxes on the 

energy-bin boundaries and may be moved to RHS depending on the sign of Ω ∙  and the 
direction of sweep in energy. 

Energy Redistribution from Electric Field  

 

Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (65) 
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1 4

 (65a) 

Angular Redistribution due to Electric Field 

For a specific direction Ω , the angular redistribution term for the ith spatial basis function and 
the jth basis function in energy is 

 (66) 

 (66a) 

 (66b) 

1
 (66c) 

where the symbol    is used to denote one of the three components of the electric field 
, , ,  is the nth row of the moment-to-discrete matrix  defined previously 

and  is a column vector containing the expansion coefficients of the angular moments 
corresponding to the ith basis function in space and the jth basis function in energy. 

Angular Redistribution due to Magnetic Field 

For a specific direction Ω , the angular redistribution term for the ith spatial basis function and 
the jth basis function in energy is 

 (67) 

∗  (67a) 
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∗  (67b) 

 (67c) 

∗
 (67b) 

where the symbol    is used to denote one of the three components of the magnetic field 
, ,  and  is the nth row of the moment-to-discrete matrix  as given 

previously. 
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5. Finite-Element Methods in Angle 

Finite-element methods have also been applied to the angular variable, but to a less extent than to 
the spatial and energy variables. In this work, we have applied both continuous and 
discontinuous finite-element methods to treat the angular dependence of the EM terms. 

Expand the angular flux as 

, , Ω Ω  (68) 

where 	  is the ith basis function in space, 	  is the jth basis function in energy, Ω  
is the kth basis function in angle, and  are the expansion coefficients to be solved. 

Elemental equations for the expansion coefficients can be derived by applying the Galerkin 
method similar to that outlines in the previous section. Detailed descriptions of these can be 
found in References 9 and 10. 
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Conclusions 

We have developed a mathematical model, by including the effects of Lorentz force in the 
Boltzmann transport equation, for electron transport with electromagnetic fields.  Two 
deterministic, numerical techniques are developed to treat the energy- and angular-redistribution 
due to the electromagnetic fields. 

In the first approach, we apply the traditional discrete-ordinates method to discretize the 
differential, angular redistribution terms with the spatial- and energy-dependence are treated with 
discontinuous finite-element methods. The discrete system can be arranged into a form very 
similar to that encountered in standard radiation transport. More specifically, the energy- and 
angular-redistribution operators are transformed into a series of scattering matrices. However, 
convergence of this approach is highly problematic when applying the source iteration. In the 
second approach, we apply the discontinuous finite-element methods to the entire phase space in 
which the angular flux is represented by a triple-product of basis functions in space, energy and 
angle. Despite of its complexity, this approach offers two advantages: convergence of the source 
iteration is less problematic and improved accuracy in angular flux. 

We have also demonstrated full coupling between the transport and electromagnetic solvers via a 
staggered time advancing scheme on a problem involving propagation of an electron beam over a 
diode. There are significant discrepancies between our results and EMPHASI-PIC calculation 
which require further investigations. 

The finite-element methods and the software components developed in this research project 
should be productized and incorporated into the existing radiation transport capability at Sandia. 
In particular, 

1. Finite-element in angle can improve accuracy and mitigate the notorious ray-effects 
associated with the discrete-ordinates method for problems involving localized source, 

2. Finite-element in energy can be extended to the continuous slowing-down (CSD) 
approximation in electron transport and eliminate the numerical straggling associated with 
the finite-differencing scheme commonly applied to the Boltzmann-CSD equation.  
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Appendix A. Modified Spherical Harmonics 

In SCEPTRE, the angular flux is represented by a finite expansion in terms of spherical 
harmonics as 

Ω Ω Ω  (A1)

The real and imaginary parts of the spherical harmonics are defined by  

Ω , cos  (A2)

Ω , sin  (A3)

where  is the associated Legendre polynomial of order l and degree m,  

1 1 /  (A4) 

2 1
4

2
!
!

/

 (A5) 

cos sin

cos sin

	  

From Wolfran’s Mathworld (http://mathworld.wolfram.com/LegendrePolynomial.html) 

1 for 0 and	 	 (A6) 

1 for 0 (A7) 

0 for  (A8) 
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1
1

cos sin

							
1

1
cos sin

											
1

cos sin

	 (A9) 

From Eq. (A5), it can be shown that 

,

2 1
4 2 !

!

/

2 1
4 2 1 !

1 !

/

2 1
2 1

/

				

  

	
1

1
2 1
2 1

/

, Ω , Ω 	

											
1

Ω Ω

			
1

1
2 1
2 1

/

, Ω Ω

							
1

1
2 1
2 1

/

, Ω Ω

	 (A10)

Define the modified spherical harmonics as 

Ω
1

 (A11)

Ω
1

 (A12)

Ω Ω 0 for  (A13)
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2 1
2 1

/

 (A14)

	

1
1

Ω Ω Ω Ω

							
1

1
Ω Ω Ω Ω

	 (A15)

cos sin

				

cos sin

Ω Ω

 (A16)

More on Modified Spherical Harmonics 

The modified spherical harmonics are defined by 

Ω
1 1

cos cos  (A17)

Ω
1 1

sin sin 	 (A18)

where  is the modified, associated Legendre polynomial, 

1 1 /  (A19)

It can be easily shown that for 1 

lim
→

0 (A20)

For 1,   
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lim
→
P μ lim

→

1
2

1 (A21) 

lim
→

lim
→

1
2

1 1 (A22) 
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Appendix B. Moment-To-Discrete Matrices for  

Here we consider the limits of the elements in the moment-to-discrete matrices in the case of 
1. Since these elements consist of either the associated Legendre  

1 1 /  (B1) 

or the modified, associated Legendre   

1 1 /  (B2) 

and these polynomials vanish for the case 1	for 2 , 

0 for 2 (B3)

For 0	and	 0, we only need to examine terms consists of , Ω Ω  
since all other terms vanish for 1 

∝
2 1
2 1 , Ω Ω

													∝ 	
2 1
2 1

√2 1 √2 1

													∝ √2 1
1

  

lim
→

∝ lim
→ 1

lim
→

1

1
lim
→

1
1

0				 (B4)

lim
→

∝ lim
→ 1

																						 	 1 lim
→

1

1
1 lim

→

1
1

0

					 (B5)

  



43 

 

For 1,  becomes (from Eq. (63)) 

1
1

1 cos sin 	  

Since 

1 /   

the last expression of  can be written as 

1

1
1 cos sin 	  

Using the recurrence relation 

  

1

1
1 	 (B7) 

For 1,  becomes (from Eq. (64)) 

Ω Ω 1 sin cos (B8)

We will examine  for each EM field component individually using (B7) and (B8). 

 

1

1 / 1

⟶ 0					 		 	 ⟶	 1

	 (B9) 
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1

cos 1

			 sin sin cos

1 sin

			 1 cos sin cos sin

	  

The Legendre polynomials satisfy the differential equation 

1 2 1 0 (B10)

and satisfy the following: 

1

1 1
  

lim
→

lim
→

1
2

1
1
2

1 (B11) 

lim
→

1
2

1 (B11a) 

→ →

1
2

1
1
2

1 1 (B12) 

→

1
2

1 1 (B12a)
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→ 1
1
2

1 (B13) 

→ 1
1
2

1 1 	 (B14) 

 

1

sin 1

		 cos sin cos

1 cos sin cos sin

			 1 sin

	  

→ 1
1
2

1 (B15)

→ 1
1
2

1 1 	 (B16)
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1

cos 1

				 sin sin cos

1 sin

				 1 cos sin cos sin

	  

→ 1
1
2

1 (B17)

→ 1
1
2

1 1 (B18)

 

1

sin 1 cos sin

		 cos sin cos

1 cos sin cos sin

			 1 sin cos

	  

→ 1
1
2

1 (77a)
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→ 1
1
2

1 1 	 (77b)

 

1 sin cos ⟶ 0 as 	 ⟶	 1	 (78) 

  

 
 for  

Cosine Moments Sine Moments 

 0 0 

 ∗  0 

 0 ∗  

 0 0 

 0 ∗  

 ∗  0 

∗ 1
1
2

1
1 2 1
8

 
 

∗ 1
1
2

1 1 1
1 2 1
8

	  

 

  



48 

 

Appendix C. Summary of Energy Dependent Quantities 

The following quantities are needed to generate the moment-to-discrete matrices. For a given 
kinetic energy (E)   

 

 Relativistic Non-Relativistic 
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1
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1
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2 2
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Appendix D 

Derivations of Discontinuous Finite-Element Equations in Space and Energy 

Expand the angular flux as 

, , Ω Ω  (D1) 

where 	  is the ith basis function in space, 	  is the jth basis function in energy, and 

Ω  are the expansion coefficients. We will ignore the time dependence for simplicity but 
will treat the time-derivative term at the end. 

Substitute the expansion (D1) into the transport equation, multiply the result by 	 	  and 
integrate the resultant equation over an elemental volume  and an energy bin , ] … 

Collision Term 

	 	 σ , 	 	 Ω

σ 	 	 	 	 Ω

σ Ω

  

for 1… 	and	 1… . Here we have assumed that the total cross section is constant within 
the element and the energy bin. Other functional forms are allowed if they are available from the 
cross-section library. The last expression can be arranged into a block matrix form with a total 
number of IJ unknowns: 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (D2) 
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Ω

Ω

⋮

Ω

 (D3) 

an matrix  (D4) 

 (D5) 

 (D6) 
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Streaming Term 

	 	 ∙ Ω , , Ω

	 ∙ Ω 	 , , Ω ∙ Ω 	 , , Ω

∙ Ω 	 	 , , Ω

				 	Ω ∙ 	 	 , , Ω

∙ Ω 	 	 	 	 Ω

					 		Ω ∙ 	 	 	 	 Ω

∙ Ω 	 	 	 	 Ω

					 		Ω ∙ 	 Ω

  

where  is the number of faces and  is the kth face of an element. 

 

 (D7) 

Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (D8) 
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Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (D9) 

an		 	 	 matrix of vectors  (D10) 

 (D11) 

an		 	 	 matrix of vectors  (D12) 

 (D13) 
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Energy Redistribution from Electric Field  

Ω ∙ 	 	
∂
∂

, , Ω

Ω ∙ 	
∂
∂

	 , , Ω
∂
∂

	 , , Ω

Ω ∙ 	 	 , , Ω
∂
∂

	 , , Ω

Ω ∙ 	 	 	 	 Ω

				 		 Ω ∙ 	 	
∂
∂

Ω

 

 (D14) 

Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
				at		  (D15) 

 (D16) 

an		 	 matrix of vectors  (D17) 

 (D18) 
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Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (D19) 

∂
∂

 (D20) 

Energy Redistribution from Electric Field  

Ω ∙ 	 	
1 4

, , Ω

Ω ∙ 	 	
1 4

	 	 Ω

Ω ∙ 	
1 4

Ω

 (D21)

Ω ∙

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (D22)

	
1 4

 (D23)

Angular Redistribution due to Electric Field 

The discrete angular redistribution from the electric field is 
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, ≡

,

,

⋮

,

,  (D24) 

where the symbol    is used to denote one of the three components of the electric field 
, , , ,  is a column vector containing the contribution from the electric field to all 

directions,  is the equivalent moment-to-discrete matrix for the electric field component ,  
and ,  is a column vector containing the angular moments. The angular moments can be 
represented by the same basis functions in space and energy: 

,  (D25)

 is a column vector containing the expansion coefficients of the angular moments 
corresponding to the ith basis function in space and the jth basis function in energy. 

,  (D26)

For a specific direction Ω , 

, 	 	

																				

 (D27)

where  is the nth row of the matrix 	 and is independent of space or energy. 
Multiplying Eq. (D27) by 	 	  and integrating the result over an element  and an 
energy bin , ] yield 
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 (D28)

 (D29)

1
 (D30)

Angular Redistribution due to Magnetic Field 

The discrete angular redistribution from the Magnetic field is 

, ≡

,

,

⋮

,

,  (D31) 

where the symbol    is used to denote one of the three components of the magnetic field 
, , , ,  is a column vector containing the contribution from the magnetic field to 

all directions,  is the moment-to-discrete matrix due to the magnetic field component ,  
and ,  is a column vector containing the angular moments. Using the spatial and energy 
expansion in Eq. (D25) we obtain 

,  (D32)

For a specific direction Ω , the last expression can be written as 
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, 	 	

												 							

 (D33)

where  is the nth row of the matrix . Multiplying Eq. (D33) by 	 	  and 
integrating the result over an element  and an energy bin , ] yield 

	 	 	 	

												 ∗

 (D34)

 (D35)

∗
 (D36)

Time-Derivative Term 

	 	
1

	 	 Ω,

	
1

Ω,

 (D37) 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮
 (D38)
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Ω,

Ω,

Ω,

⋮

Ω,

 (D39)

an matrix  (D4) 

 (D5) 

1
 (D40)
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Appendix E. Second-Order Discrete-Ordinates Equations with DFEM in 
Energy and CFEM in Space 

We will start with the time-independent, angularly discretized transport equation. 

Ω ∙ ∙ Ω
1 4

	  (E1)

, ,

,

Spatial	dependence in the components of EM fields

  

,

,

,

⋮

,

 (E2)

Expand the angular flux as 

,  (E3) 

,  (E4) 

 

Substitute the expansions (E3) and (E4) into (E1), multiply the result by 	  and integrate the 
resultant equation over an energy bin , ] … 
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Streaming Term 

	 Ω ∙ ,

	 	 Ω ∙

Ω ∙ Ω ∙

 (E5)

 (E6)

Collision Term 

	 σ , 	

σ 	 	

σ 	 	

σ

 (E7)

  



61 

 

Energy Redistribution from Electric Field  

∙ Ω 	
∂
∂

,

∙ Ω
∂
∂

	 ,
∂
∂

	 ,

∙ Ω 	 ,
∂
∂

	 ,

∙ Ω 	 	
∂
∂

	 	

∙ Ω

 (E8) 

E  (E9) 

∂
∂  (E10) 

Energy Redistribution from Electric Field  

∙ Ω 	
1 4

,

∙ Ω 	
1 4

	

∙ Ω
1 4

	 	

∙ Ω

 (E11) 
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1 4

 (E12) 

Angular Redistribution due to Electric Field 

For a specific direction Ω , 

, ,  (E13) 

where the symbol    is used to denote one of the three components of the electric field 
, ,  and  is the nth row of the matrix . Multiplying Eq. (E13) by 	  and 

integrating the result over an energy bin , ] yield 

	 	

 (E14) 

1
 (E15) 

Angular Redistribution due to Magnetic Field 

For a specific direction Ω , 

, ,  (E16) 

where the symbol    is used to denote one of the three components of the magnetic field 
, ,  and  is the nth row of the matrix . Multiplying Eq. (E16) by 	  and 

integrating the result and an energy bin , ] yield 
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 (E17) 

∗
 (E18) 

Source Term 

,  (E19) 

 

Combining Eqs. (E5), (E7), (E8), (E11), (E14), (E17) and (E19), we obtain the equation for the 
jth expansion coefficient (in energy) of ,  

Ω ∙ σ

∙ Ω

∗

 (E20)

Define a column vector containing the expansion coefficients for all directions 
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a	vector	of	length	
⋮

 (E21) 

a	vector	of	length	
⋮

 (E23) 

 (E24) 

 (E24a) 

 (E24b)

 (E24c) 

 

where 

,  and  are block matrices   

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (E25)

⋯  (E26)
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a	 	block	matrix		

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (E27)

⋯  (E28)

a	 	block	matrix		

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (E29)

 (E30)

∙ Ω ∙ Ω ⋯ ∙ Ω  (E31)

a	 	block	matrix		

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (E32)

 (E33)

a	 	block	matrix		

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (E34)

 (E35)
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where  is the discrete-to-moment matrix. It is noted that part of the operator  will be 
moved to the RHS depending on the direction of energy sweep. 

Least-Squares Finite Element Method (LSFEM) in Space 

Expand the angular-flux vector  in Eq. (E21) in terms of the spatial basis function as 

 (E36)

with each  containing  unknowns. 

Applying LSFEM to Eq. (E24) leads to the following linear algebraic equations for each 
element: 

 (E37) 

⋮
 (E37a)

⋮
 (E37b)

 is a  block matrix where each block has a size of  

 (E37c)

 (E37d)
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