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Abstract

Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as
mircrofludic mixers and electrical energy storage devices. Bringing this information into the tra-
ditionally continuum models used for engineering analysis has proved challenging. This work de-
scribes one such approach to address this issue by developing atomistic-to-continuum multi scale
and multi physics methods to enable molecular dynamics (MD) representations of atoms to incor-
porated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes
of conserved quantities between the two regions described by one of these models. The impact of
electric fields and surface charges are also critical, hence, methodologies to extend finite-element
(FE) MD electric field solvers have been derived to account for these effects. Finally, the contin-
uum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations
based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown
relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.
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Chapter 1

Introduction

The behavior at fluids taking place at the nanoscale plays an important role in applications relevant
to Sandia’s missions, such as microfluidic devices for chemical detection and reactor regulation
for biofuels, as well as battery and capacitor performance and safety for NW systems and CO2
mitigation. In particular, the interaction between an electrolyte solution often plays a critical role
in determining device performance. Microfluidic devices relying on electrokinetic flows often
produce velocities far below those predicted by established theories (e.g., Poisson-Boltzmann)
because they do not take into account finite packing of atoms and changes to the electrical media
near the surface. Similarly, energy storage devices rely on double layers, both for transport through
pores as well as directly for their capacitance. Improved simulation capabilities are therefore
needed to gain increased understanding and guide design of micro- and nanofluidic systems.

Significantly hindering predictive simulation technologies for flows at the nanoscale are the
divergent physical processes taking place. Adjacent to surfaces, atomistic effects dominate. The
lattice imposes a structure on the fluid atoms, preventing them from arranging randomly. As a
result, established fluid properties such as viscosity, to the extent they apply at all, can vary by
orders of magnitude from their bulk equilibrium values. The effects of defects and other surface
structures can similarly not be incorporated into continuum models.

By modeling the fluid as a continuum, however, significant computational savings are achieved
because each continuum element contains 100s or more fluid particles. To model systems of tech-
nologically relevant sizes, such approaches are necessary in order to perform the number of calcu-
lations needed to explore the relevant parameter space. Continuum descriptions are fundamentally
different from atomistic representation of matter so that the same computational infrastructure is
inappropriate for both. Additionally, different information and parameters in the form of consti-
tutive models and boundary conditions are required for each. The most direct way to obtain the
benefits of both while mitigating the drawbacks of each is to develop a multiscale framework in
which each approach is used in the domain to which it is best suited.

Sandia National Laboratories has established expertise in both atomistic modeling (through the
molecular dynamics (MD) code LAMMPS [106]) and continuum modeling (through the SIERRA
project). Previous efforts have also developed a multiscale atomistic-to-continuum (AtC) package
for post-processing atomic data in terms of continuum quantities [137, 138], heat transfer [129,
123], and electric fields [122]. Missing from this capability set has been the consideration of
fluids problems, which require the ability to simultaneously couple mass, momentum, and energy.
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Unlike problems in solid mechanics, fluids are often described in the Eulerian frame and concern
the convective transport of mass. It is also difficult to separate momentum and thermal transport
because shear flows will generate heat, which must then be propagated away from the atoms.
Finally, constituents in technologically important material systems tend to be molecular in nature,
rather than atomistic as in solids.

The goal of this project was to fill this capability gap by developing a computational frame-
work to enable AtC simulations of fluid-mediated transport at the nanoscale. Outcomes have been
new theoretical constructions for combined mass/momentum/energy multiscale coupling and in-
corporation of molecular data into a multiscale framework. This latter effort is described in the
next chapter. As the project advanced, it was discovered that the existing techniques to integrate
the governing equations in time were not sufficiently robust to meet these requirements. A new
time integration approach based on the fractional step method is described in Chapter 3. Chap-
ter 4 builds on this work by presenting a methodology for simultaneous control and regulation of
momentum and energy. The presentation then turns to a full mass/momentum/energy prescription
in a nanopore geometry in Chapter 5. Another important lesson-learned during this project was
that traditional continuum governing equations well known from macroscale physics can be inap-
propriate at both the nanoscale and in the context of multiscale simulations. Chapter 6 presents a
reformulation of the continuum Navier-Stokes equations by including Brownian fluctuations and
rescaling the equations to be appropriate for small-scale phenomena. This report concludes with
Chapter 7, which provides an overview of the methods as well as a description of the software
developed and released as part of this project.
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Chapter 2

Polarization as a field variable from
molecular dynamics simulations

2.1 Introduction

Polarization, P, is an important quantity in electromagnetism that signifies the density of dipole
moments in a dielectric material. These dipole moments can either be induced, for example in the
case of non-polar molecules where the nucleus and the electronic charge separate in the presence of
an electric field, or permanent in the case of polar molecules such as water. When in a fluid phase,
polar molecules, and hence their dipoles, are distributed in a random fashion. In the presence of
an electric field, these dipoles experience a torque that tends to align them in the direction of the
applied field. The resultant polarization vector P is then combined with the electric field E to
yield the electric displacement vector D = ε0E+P, which enters into the macroscopic Maxwell’s
equation, where ε0 is the vacuum permittivity [55]. An isotropic dielectric material is usually
modeled by proposing a linear constitutive relation between the polarization vector and the electric
field vector, P= ε0χeE, where χe is the dielectric susceptibility [73]. In this case, D= εE= ε0(1+
χe)E where ε is the dielectric constant of the material, which usually depends on the material and
its state parameters such as density, temperature, etc.

Electrical double layers (EDL) in electrolye solutions at a charged surface are typically mod-
eled using Poisson-Boltzmann [39, 16, 50], modified Poisson-Boltzmann [14, 15], and composite
diffuse-layer theories [63]. These theories are based on the assumption that the solvent through-
out the double layer can be modeled with the bulk dielectric constant, i.e., the polarization vector
is directly proportional to the local electric field with the constant of proportionality being the
bulk dielectric susceptibility of the solvent. However, this assumption breaks down close to the
interface, where the solvent is organized in a structured manner [76]. Therefore, new models are
required to accurately capture the effects of solvent close to the interface to represent the relation-
ship between the polarization vector and the electric field. Such models can be formulated with
the help of molecular dynamics (MD) simulations, where one may obtain solvent configurations
in great detail as a function of distance from the interface. In such cases, it would be convenient
to be able to obtain the spatially and temporally varying polarization vector, which can be related
to the resultant local electric fields. The main objective of this paper is to provide a theoretical

The primary authors of this chapter are K. Mandadapu, J. Templeton, and J. Lee. It was originally published in
[90].
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and computational framework for obtaining the polarization vector as a field variable from MD
simulations.

Earlier work on evaluating polarization vectors from MD simulations concerned calculations
of the bulk dielectric constant of systems such as water; however, these methods obtain the polar-
ization vector of the entire system [43]. A technique for computing the local polarization vector
for electrolyte systems (NaCl + water) in nanochannels was described in [64]. In this method,
the entire channel is divided into subregions and the spatial polarization vector is defined as the
dipole moment densities in every subregion. However, it is not entirely clear how the polarization
vector varies when one increases the size of the subregion. Moreover, obtaining polarization as a
density of dipole moments might be applicable only for small-molecular solvents with predefined
dipoles such as water. As the solvent size becomes bigger, it is not entirely clear how a spatial
polarization density can be obtained systematically as the solvent can exist in different bins at
the same time. Moreover, techniques of this kind have no way of quantifying the contribution of
higher order moments (quadrupole, etc) to the overall polarization density. For example, it is well
known that quadrupole moments contribute significantly to the dielectric constant of solvents such
as benzene [72, 9]. In this paper, a general theoretical and computational procedure is described
where the polarization vector so obtained does not depend on the specific structure of the system.
This procedure also provides a way to obtain the polarization density to the desired accuracy.

The paper is organized as follows: In Section 2.2, the Irving-Kirkwood theory [53], which is
developed for obtaining the stresses and heat-fluxes in terms of molecular positions and momenta,
and the procedure for obtaining instantaneous polarization vector as described by Jackson [55,
Chapter 6] are extended to the case of electrostatics. Here, the macroscopic electrostatic equation
is obtained by coarse-graining the microscopic electrostatic equation by means of a suitable coarse-
graining function and phase-space distribution function resulting in an expression for polarization
density as a function of molecular dipole, quadrupole, and higher-order moments. A computational
framework for evaluating the polarization density is described in Section 2.3. This theory is then
tested on bulk water to recover its bulk dielectric constant in Section 2.4.1. Finally, the theory is
applied to obtain the spatial polarization field in the electrical double layers of a 1:1 electrolyte
solution confined between equal and oppositely charged surfaces in Section 2.4.2.

2.2 Theory

In this section, a theory for obtaining the polarization vector P in terms of the molecular posi-
tions and charges is presented. Consider a system consisting of N atoms. Let x1,x2, . . . ,xN and
p1,p2, . . . ,pN denote the positions and momenta of all atoms, respectively. Let Γ = {(xi,pi), i =
1,2, . . . ,N} and f (Γ, t) denote the phase-space and the associated phase-space distribution, respec-
tively, such that ∫

Γ

f (Γ, t)dΓ = 1 . (2.1)

The trajectories of atoms in the system are obtained by integrating Newton’s equations of motion
miẋi = pi and ṗi = fi, given initial conditions, masses mi, and forces fi. The force fi on atom
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i is the sum of interatomic forces obtained using an interatomic potential, Coulomb forces, and
thermostat forces used to control the thermodynamic state of the system. The scale at which
individual atoms are described is defined as the microscale and is denoted by x. Let the scale
at which quantities defined as averages over infinitesimal volumes containing groups of atoms
and phase-space distribution be defined as the macroscale denoted by y. Since the objective of the
paper is to obtain the polarization vector, which is a macroscopic quantity entering the macroscopic
Maxwell’s equation, in terms of the molecular variables it is possible only by coarse-graining
the exact microscopic electrostatic equation and comparing it with the macroscopic electrostatic
equation.

To this end, the microscopic electrostatic equation at any instant is given by

∇ · e(x, t) =
ρm(x, t)

ε0
, (2.2)

where ρ(x, t) is the microscopic charge density and e(x, t) is the microscopic electric field at posi-
tion x and time t. The microscopic charge density ρm(x, t) is given by

ρ
m(x, t) =

N f

∑
f=1

q f δ (x−x f )+
Nm

∑
m=1

( Nm
n

∑
n=1

qm
n δ (x−xm

n )
)
, (2.3)

where δ (·) is the dirac-delta function, N f is the number of free charges, and Nm and Nm
n are the

number of molecules and number of charges in molecule m, respectively. Here, q f is the free
charge of atom f and qm

n is the charge of atom n corresponding to the molecule m.

The macroscopic Maxwell’s equation is given by,

∇ ·D(y, t) = ρ
M
f (y, t) , (2.4)

where D(y, t) is the macroscopic electric displacement vector and ρM
f (y, t) is the macroscopic

free-charge density at the spatial point y and time t. Note that usually the macroscopic free-charge
density ρM

f (y, t) excludes the solvent charges.

To obtain an equivalent macroscopic electrostatic equation starting from the microscopic coun-
terpart, an explicit expression between the charge densities at the two scales needs to be established.
To this end, since charge is an extensive quantity, the macroscopic total (free and bound) charge
density ρM(y, t) at the macroscale y may be defined as

ρ
M(y, t) ≡

∫
Γ

∫
R

ρ(x, t)∆(y−x) f (Γ, t)dxdΓ , (2.5)

where the integrals are performed over the entire phase-space Γ and volume R, respectively. Here,
∆(y− x) is a coarse-graining function which quantifies the contribution of the charge at x in the
point-wise definition of the macroscopic charge density at y. Note that the ∆(·) is different from
δ (·) in (2.3). In other words, the relation (2.5) states that the macroscopic charge in a small
volume around the continuum point is the weighted-sum of enclosed individual charges. The

coarse-graining function ∆(y−x) is assumed to have the following properties: (i)
∫
R

∆(y−x)dx=
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1, (ii) `m� supp∆�R, where “supp” denotes the support of a function and `m is the characteristic
microstructural length, which in this case refers to the spacing between individual atoms, (iii)
∆(y−x) = 0 on ∂R when y ∈R, where ∂R denotes the boundary of the system and (iv) ∆(y−x)
attains a maximum when x = y [89]. Assumption (i) is a standard normalization condition that
enforces consistency of the relation (2.5). Also, assumptions (ii) and (iv) signify the local nature
of the macroscopic quantities, while assumption (iii) implies that ∆(y− x) effects only interior
volumetric averaging. Since the coarse-graining function is dependent on the variable y−x, it can
be proved that

∂

∂x
∆(y−x) = − ∂

∂y
∆(y−x) . (2.6)

Finally, it should be noted that the time scale of change in the macroscopic charge density is
considerably smaller than the time scale involved in the changes of the microscopic charge density
because of the spatial and ensemble averaging [66].

Using (2.5) and the definition of the microscopic charge density ρm(x, t) given in (2.3), the
total macroscopic charge density is given by

ρ
M(y, t) =

∫
Γ

(
N f

∑
f=1

q f ∆(y−x f )+
Nm

∑
m=1

( Nm
n

∑
n=1

qm
n ∆(y−xm

n )
))

f (Γ, t)dΓ (2.7)

Now, following the procedure described in [55], let the position of the center of mass of a molecule
be denoted by xm and the relative position of the charge qm

n with respect to the center of mass be
defined as xnm ≡ xm

n −xm. Using these definitions and rewriting the weighting function ∆(y−xm
n )

in terms of the center of mass coordinate, equation (2.7) becomes

ρ
M(y, t) =

∫
Γ

(
N f

∑
f=1

q f ∆(y−x f )+
Nm

∑
m=1

( Nm
n

∑
n=1

qm
n ∆(y−xm−xnm)

))
f (Γ, t)dΓ . (2.8)

Employing Taylor series expansion of ∆(y− xm− xnm) about y− xm, equation (2.8) can be ex-
pressed as an infinite sum:

ρ
M(y, t) =

∫
Γ

(
N f

∑
f=1

q f ∆(y−x f )+
Nm

∑
m=1

( Nm
n

∑
n=1

qm
n ∆(y−xm)−

Nm
n

∑
n=1

qm
n xnm ·

∂

∂y
∆(y−xm)

+
Nm

n

∑
n=1

qm
n

xnm⊗xnm

2!
· ∂

∂y
∂

∂y
∆(y−xm)+ . . .

))
f (Γ, t)dΓ

=
∫

Γ

[
N f

∑
f=1

q f ∆(y−x f )+
Nm

∑
m=1

( Nm
n

∑
n=1

qm
n ∆(y−xm)

)]
f (Γ, t)dΓ

+
∂

∂y
·

(∫
Γ

(
−

Nm

∑
m=1

Nm
n

∑
n=1

qm
n xnm∆(y−xm)+

Nm

∑
m=1

Nm
n

∑
n=1

qm
n

xnm⊗xnm

2!
· ∂

∂y
∆(y−xm)+ . . .

)
f (Γ, t)dΓ

)
,

(2.9)
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where it can be seen that the first integral term on the right hand side of the second equality is
equivalent to the macroscopic free charge density ρM

f (y, t).

Next, to obtain the macroscopic Maxwell’s equation (2.4), one needs to coarse-grain the micro-
scopic electrostatic equation (2.2). To this end, multiplying (2.2) with the coarse-graining function
∆(y−x), integrating over the whole system R, and taking the ensemble average yields∫

Γ

∫
R

∂

∂x
·
(
ε0e(x, t)

)
∆(y−x) f (Γ, t)dxdΓ =

∫
Γ

∫
R

ρ
m(x, t)∆(y−x) f (Γ, t)dxdΓ . (2.10)

The left hand side of (2.10) can be rewritten as∫
Γ

∫
R

∂

∂x
·
(
ε0e(x, t)

)
∆(y−x) f (Γ, t)dxdΓ =

∫
R

∫
Γ

∂

∂x
·
(
ε0e(x, t)∆(y−x)

)
f (Γ, t)dΓdx

−
∫

Γ

∫
R

ε0e(x, t) · ∂

∂x
∆(y−x) f (Γ, t)dxdΓ

=
∫

∂R

∫
Γ

ε0e(x, t) ·n∆(y−x) f (Γ, t)dΓdx+
∫

Γ

∫
R

ε0e(x, t) · ∂

∂y
∆(y−x) f (Γ, t)dxdΓ

=
∂

∂y
·

(
ε0

∫
Γ

∫
R

e(x, t)∆(y−x) f (Γ, t)dxdΓ

)
,

(2.11)

where the second equality is obtained by divergence theorem and property (2.6) and the third
equality is obtained by employing assumption (iii) of the coarse-graining function.

Using (2.9) and (2.11), equation (2.10) can be reduced to

∂

∂y
·

(
ε0

∫
Γ

∫
R

e(x, t)∆(y−x) f (Γ, t)dxdΓ+

∫
Γ

( Nm

∑
m=1

Nm
n

∑
n=1

qm
n xnm∆(y−xm)−

Nm

∑
m=1

Nm
n

∑
n=1

qm
n

xnm⊗xnm

2!
· ∂

∂y
∆(y−xm)+ . . .

)
f (Γ, t)dΓ

)

=
∫

Γ

[
N f

∑
f=1

q f ∆(y−x f )+
Nm

∑
m=1

( Nm
n

∑
n=1

qm
n ∆(y−xm)

)]
f (Γ, t)dΓ = ρ

M
f (y, t) .

(2.12)

Comparing equations (2.12) and (2.4), the electric displacement vector D can be obtained as

D(y, t) = ε0

∫
Γ

∫
R

e(x, t)∆(y−x) f (Γ, t)dxdΓ+∫
Γ

(
Nm

∑
m=1

Nm
n

∑
n=1

qm
n xnm∆(y−xm)−

Nm

∑
m=1

Nm
n

∑
n=1

qm
n

xnm⊗xnm

2!
· ∂

∂x
∆(y−xm)+ . . .

)
f (Γ, t)dΓ

(2.13)

Defining the macroscopic electric field E(y, t) at the macroscale to be a spatial and ensemble
average of the microscopic electric field,

E(y, t) ≡
∫

Γ

∫
R

e(x, t)∆(y−x) f (Γ, t)dxdΓ , (2.14)
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the electric displacement vector D can be reduced to

D(y, t) = ε0E(y, t)+
∫

Γ

(
Nm

∑
m=1

pm∆(y−xm)−
∂

∂y
·

Nm

∑
m=1

(
qm∆(y−xm)

)
+ . . .

)
f (Γ, t)dΓ , (2.15)

where pm =
Nm

n

∑
n=1

qm
n xnm and qm =

Nm
n

∑
n=1

qm
n

xnm⊗xnm

2!
are the molecular dipole and quadrupole mo-

ments of molecule m, respectively. Using the relation D = ε0E+P, the macroscopic polarization
vector P(y, t) is given by

P(y, t) =
∫

Γ

(
Nm

∑
m=1

pm∆(y−xm)−
∂

∂y
·

Nm

∑
m=1

(
qm∆(y−xm)

)
+ . . .

)
f (Γ, t)dΓ . (2.16)

It can be seen from equation (2.16) that the macroscopic polarization vector contains contributions
from the molecular dipole, quadrupole, and higher order moments. For solvents consisting only of
dipoles in their bulk state, e.g. water, the contribution of dipole moments to the polarization density
is larger than that of the quadrupole moments. However, molecules can have no net dipole moment
but have a quadrupole moment which constitutes the main component of the polarization density
and hence the dielectric constant, such as a square with alternating positive and negative charges
at the vertices. Benzene is a real example of a molecule where the quadrupole moment contributes
significantly. Also, the accuracy of the macroscopic polarization vector depends on the order of
the polynomial used for the coarse-graining function. For example, if one uses a constant coarse-
graining function then only the dipole moments can be recovered. Similarly, if the coarse-graining
function is linear then the quadrupole moments may further be computed. MD simulations in this
paper are limited to constant and linear coarse-graining functions.

2.3 Computational Framework

All MD simulations in this paper are performed using the LAMMPS software [106] and its Atomistic-
to-Continuum (AtC) package [137]. The AtC method can be used to calculate spatial descriptions
of the continuum variables such as stress, temperature, mass density, etc. In order to calculate
these variables at various continuum points, the whole volume is subdivided into smaller regions,
similar to the concept of a mesh in the Finite Element Method [137]. The mesh size may be chosen
depending on the desired spatial resolution of the variables. Finally, the variables are calculated
at the nodal points using coarse-graining functions centered at these points. This method in con-
junction with MD simulations can perform only per-atom calculations and therefore can compute
variables expressed in terms of per-atom quantities. However, the polarization density in (2.16) is
expressed as a sum of per-molecule quantities. For this paper, the AtC method in [137] is extended
to perform the per-molecule computations. Since the size of the system and therefore the total
number of molecules required to obtain the polarization density are large, a novel parallelization
strategy is presented which can efficiently perform the per-molecule computations.

The new approach developed in this work is specifically designed to scale for large collections
of small molecules nearly as efficiently as established coarse-graining does for atomic quantities.
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In MD simulations, molecules are often defined with bond lists that contain for each atom all
the other atoms to which it is bonded. MD simulations also maintain lists of ghost atoms on
each processor based on a user-specified cutoff radius (usually that of the interatomic potential) to
account for the interactions with off-processor atoms. It is these data structures which are leveraged
to create representations of molecules as collections of atoms (herein referred to as a molecule list),
such that the sum over molecules and sum over atoms in a molecule (see (2.3)) may be computed
using the following algorithm. When beginning to construct the molecule list, each atom is marked
as unfound and the first local, i.e. non-ghost, atom on a processor, is placed in a first-in/first-out
queue [21]. The algorithm gets the first atom in the queue and traverses its bond list, marking
each atom as found and enqueuing it as it is discovered. This process is repeated until the queue
is empty, including processor ghosts. A molecule is then defined as the collection of those atoms
which were enqueued. The process repeats by placing the next unfound atom in another queue
until all local atoms are marked as found. At this point, all molecules are characterized as local to
a processor when at least one atom in the molecule is a local atom. Note this algorithm defines a
“small” molecule such that the maximum distance between any two atoms is less than the cutoff
radius, which guarantees that if a molecule contains at least one local atom then all the atoms in
that molecule are either local or ghost atoms.

Until this point only the atom and bond lists were needed to construct the molecule list. There-
fore, updating the local molecule list is only required when atoms are exchanged across processors,
thereby requiring no additional parallel communication. To compute the correct coarse-grained
quantities without incurring additional communication operations, the coarse-graining function in
(2.8) is scaled by the fraction of local atoms in the molecule on the present processor. A final
sum over all processors is required to assemble the molecular data into the coarse-grained contin-
uum fields. However, this summation is also necessary even for strictly atomic data. With these
operations, the run time scales as

O ((Nm
n Nm +NcNm)/Np +NcNp) , (2.17)

with the notation Np for number of processors and Nc for number of coarse-graining nodes. The
first term represents operations which scale in parallel, while the second is associated with summa-
tion across all processors. Costs arising from accessing processor ghosts are neglected, assuming
a dense system with Nm >> Np. A derivation of this result is provided in Appendix 2.6, as well
as a comparison with existing molecular computes in LAMMPS. Efficiency is realized because
there are significantly fewer coarse-graining points than atoms or molecules, and parallel data ex-
change is only applied to arrays of size equal to the number of continuum sample points. Thus, no
additional processor communication is needed beyond that which already occurs in MD and AtC
simulations. Redundant operations are only performed on the subset of molecules crossing pro-
cessor boundaries. In this paper, this algorithm is applied to bulk water and an electrolyte solution
using up to 64 processors.
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2.4 Applications to Small Polar Molecules

2.4.1 Bulk Water

To verify the theory and software implementation, the proposed method is applied to calculate the
bulk permittivity of water at a temperature of 300K and a density of 1000 kg/m3. Water is modeled
using the TIP3P interaction potential with its parameters given in [108]. Simulations are performed
in a volume of 50 Å×50 Å×42.6919 Å, consisting of 3158 molecules. The time-step is chosen to be
0.5 f s. Bond length and angle constraints for the water molecule are maintained using the SHAKE
algorithm [116]. Lennard-Jones and short-range Coulombic forces are calculated using a cut-off
radius of 13 Å. Long-range electrostatic forces are calculated using the PPPM method [45] with
slab geometry [133]. Periodic boundary conditions are applied in the x and y directions whereas
non-periodic boundary conditions are applied in the z direction. Boundaries in the z direction are
modeled using unstructured walls governed by 10-4-3 Lennard-Jones interaction potential, where
the characteristic distance and the characteristic energy are chosen to be 3.1507 Å and 0.1351eV ,
respectively [87].

Simulations are performed under various external electric fields Ee =(0,0,Eez) in the z-direction
by adding the electrostatic force qiEext to the total force on atom i. The system is initially equili-
brated using a Nosé-Hoover thermostat [48] to maintain a temperature of 300K. Once the system
reaches a steady state for a given external electric field, the resultant electric field E = (0,0,Ez) at
every microscopic point inside the system is obtained by applying Gauss’ law in the z direction.
This resultant electric field Ez is lesser in magnitude than the external field due to the alignment of
water molecules under the action of the imposed field. Finally, the polarization vector is calculated
at the center of the system by using (2.16), with constant and linear coarse-graining functions given
by

∆(x−xn) =

{
1

2LxLyL , if |z− zn|< L

0, else
(2.18)

and

∆(x−xn) =

{
1

LLxLy

(L−|z−zn|
L

)
, if |z− zn|< L

0, else
(2.19)

respectively. Here, L denotes the size of the averaging volume around a macroscopic point in the z
direction, and Lx and Ly are the total lengths of the system in the x and y directions, respectively.
It should be noted that the choice of center of the system for evaluating the polarization density is
made so that assumption (iii) of the coarse-graining function is satisfied.

Using a constant coarse-graining function (2.18) to obtain the macroscopic polarization density
includes contribution only from molecular dipole moments, as mentioned in Section 2.2. For this
case, Figure 2.1 shows the running time-average of the polarization vector in the z direction at
the center of box for various averaging volumes corresponding to L = {1 Å,2 Å,3 Å,4 Å,5 Å} and
external electric field of Eez = −0.72V/Å. It can be seen from Figure 2.1 that the polarization
vector converges to a non-zero value for all averaging volumes, albeit more quickly for the larger
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averaging volumes. Therefore, a region around the center can be defined as the bulk region where
the polarization vector is a constant value.

It is already noted in Section 2.2 that by using a linear coarse-graining function given by equa-
tion (2.19), the polarization density consists of not only the molecular dipole moments but also the
molecular quadrupole moments. In this case, Figure 2.2 shows the running time-average of the
dipole and quadrupole moments at the center of the system for an averaging volume corresponding
to L = 5Å. It can be seen that the dipole moment contributions from the linear coarse-graining
function is practically equal to the dipole moments from a constant coarse-graining function. Im-
portantly, the contribution from the quadrupole moments is practically zero. This shows that the
macroscopic polarization density is independent of the choice of coarse-graining function when
one averages over a sufficiently large volume.

Finally, Figure 2.3 shows the relationship between the macroscopic polarization and the resul-
tant electric field for a range of externally applied fields Eext . In every case, the polarization vector
and the resultant electric fields are calculated using an averaging volume corresponding to L = 5 Å
at the center of the box. The dielectric constant of water ε = 1+ χe is found to be 72± 3, which
is in agreement with the values obtained in [108]. It should be noted that the dielectric constant
obtained using the polarization density is approximately the same as the ratio of the externally
applied field to the resultant electric field in the linear range, which is found to be 79± 8. Also,
note that in calculating the dielectric constant of, for example, benzene, where the quadrupole
moment contribution is significant, a similar procedure described in this section can be followed.
In this case, at least a linear coarse-graining function should be used so that the quadrupole mo-
ments can be captured. The resultant bulk polarization density will not depend on the choice of the
coarse-graining function when the averaging volume is sufficiently large, thereby yielding a size
independent dielectric constant.

Another important example where quadrupole moments are of interest is the behavior of water
at an interface. Specifically, it is hypothesized that the surface potential and dielectric constants
contain significant contributions from the quadrupole moment [61, 60, 13]. However, to the best
of our knowledge, there are no direct quantitative results explicitly showing the contribution of
quadrupole moments in comparison with the dipole moments. The theoretical and computational
procedure described in this paper enables such a direct calculation of the contributions of individual
moments to the polarization vector. Figure 2.4 shows the spatial dipole and quadrupole moments

across the length of the channel calculated using the first

(∫
Γ ∑

Nm
m=1 pm∆(y−xm)dΓ

)
and second(∫

Γ
∂

∂y ·∑
Nm
m=1

(
qm∆(y− xm)

)
f (Γ, t)dΓ

)
terms of (2.16), respectively. A linear coarse-graining

function (2.19) and an averaging window corresponding to L = 0.05 Å are used. It can be seen
in Figure 2.4 that the quadrupole moment is practically zero in the bulk region away from the
interfaces. However, it is significant and non-zero close to both walls. Specifically, close to the left
wall, which is similar to an interface with a negative charge, the quadrupole moment contribution
to the polarization vector is in the direction opposite to the dipole moment. At the right wall,
which is similar to an interface with positive charge, the quadrupole contribution is in the same

23



direction as the dipole densities. Note that the resultant polarization vector (2.16) is the dipole
moment minus the quadrupole moment when the higher order terms are negligible. Using only the
dipole and the quadrupole moments, the resultant polarization vector in the z direction is shown in
Figure 2.5, where the density at the interface is significantly different from the bulk. Note that in
resolving the peaks corresponding to the dipole and quadrupole moments close to the interface, it
is important to use a sufficiently small averaging volume. If a large averaging volume is used, the
resulting moments are excessively smeared and depend on the averaging volume. Moreover, for
large averaging volumes, the assumption (iii) of the coarse-graining function is not satisfied and
the calculated moments lack clear physical meaning close to the interface.

2.4.2 Solid Liquid Interface – Electrical Double Layer

To demonstrate the method in an intended application, the theory and the computational framework
discussed in Sections 2.2 and 2.3 are applied to evaluate the spatially-varying polarization vector
in systems with electrolyte solutions where EDLs are formed at a charged surface. As our goal is
to study solvent effects in EDLs, a nanochannel with bounded walls in the z direction is chosen.
The walls have equal and opposite surface charge of 0.12872C/m2, which creates an external
electric field in the interior of the system. The system consists of a 1:1 electrolyte fluid with
water as the solvent. The width of the channel in the z direction is chosen so that the EDLs
near the walls do not overlap creating a sufficiently large bulk region around the center of the
system. Periodic boundary conditions are used in the x and y directions. Walls in the z direction
are modeled as unstructured walls using the 10-4-3 Lennard-Jones interaction potential, as in the
case of bulk water in Section 2.4.1. Ion concentration and water density in the bulk region are
targeted to be 100mM and 1000kg/m3, respectively, while the temperature is held at 300K using
the Nosé-Hoover thermostat. The Debye length of this system is approximately 1 nm. The size
of the simulated system is 25Å× 25Å× 150Å consisting of 3120 water molecules, 10 positive
and 10 negative ions. All the water molecules are modeled by TIP3P interaction potential as in
the case of bulk water. All the ions are modeled using Lennard-Jones interaction potential where
the characteristic energy and characteristic lengths are chosen to be that of the oxygen atom in
the TIP3P interaction potential. The masses of the positive and negative ion are chosen to be
39.0983g/mol and 35.4530g/mol, respectively. The simulations are carried out at a timestep of
0.5 f s. Once the system reaches a steady state for the given surface charge, the polarization vector
and the resultant electric field are evaluated as a function of space between the walls.

Figure 2.6 shows the z polarization density calculated using the constant coarse-graining func-
tion (2.18) for various averaging volumes corresponding to L = {0.05 Å,0.1 Å,0.5 Å,1 Å,2 Å,4 Å}.
The polarization values are obtained by time and ensemble averaging using five independent
simulations corresponding to different initial conditions, each containing data from 10 million
timesteps. It can be seen that the polarization density is non-zero very close to the walls and decays
to zero towards the center of the system, which is expected since the electric field is completely
screened by the ions present in the electrolytic solution. Figure 2.7 shows the polarization density
close to the wall with negative surface charge. This zoom-in shows that for a short distance from
the wall, the polarization density depends on the size of the averaging volume. This might be due
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to the following reasons: (a) specific structure of the solvent at the surface, or (b) assumption (iii)
of the coarse-graining function ∆(x−y), which is used for obtaining (2.11), is not satisfied as one
moves closer to the surface. However, beyond approximately 10Å, the polarization density ceases
to depend on the size of the averaging volume indicating an intermediate asymptotic length scale,
where intensive material properties may be identified [7, 127]. More generally, for each interme-
diate asymptotic scale, the intensive variables at that scale are governed by a unique continuum or
mean-field theory [7]. It can be seen in Figure 2.7 that the Poisson-Boltzmann mean-field theory
matches well with the simulation results only in that part of the region where there exists an in-
termediate asymptotic length scale. This region is typically referred to as the diffuse layer [63].
The region between the wall and the diffuse layer is a combination of Stern and condensed layers
[63]. The Stern layer is mainly due to adsorption effects adjacent to the surface. The condensed
layer is mainly due to steric packing of ions adjacent to the Stern layer usually at moderate to high
surface charges [63]. Therefore, by analyzing just the polarization vector, one may identify the
length scales of layers with different physical effects in the composite EDL, making it a valuable
tool for using MD simulations to guide design of new double layer models.

Another advantage of the present method is that the macroscopic polarization density is much
easier to analyze than total resultant electric fields. For example, Figure 2.8 shows the resultant
electric field calculated using Gauss’ law along the width of the channel. The electric field values
are obtained by time and ensemble averaging using 10 different simulations each consisting of 10
million timesteps, which is expensive compared to the polarization vector calculations. It can be
seen from Figure 2.9 that the electric field oscillates between positive and negative values making
it difficult to distinguish the length scales of the diffuse layer, where Poisson-Boltzmann theory
is valid, from the condensed layer close to the surface. Additionally, the electric field values are
not calculated accurately in the diffuse layer. On the other hand, the polarization vector yields
information about these layers with lower computational cost.

2.5 Discussion

In this paper, a theoretical and computational framework for evaluating polarization vectors from
MD simulations is presented by coarse-graining the microscopic charge density and electrostatic
equation. It is shown that the polarization vector can be calculated to desired accuracy by means
of changing the degree of coarse-graining function. It is also shown that the polarization vector is
more amenable for analyzing electric double layers than electric fields, due to the poor signal-to-
noise ratio involved in obtaining the local electric fields resulting from high dielectric constants.
Specifically, it is shown that the higher order terms such as quadrupole moments are non-zero and
significant in their contribution to the total polarization vector.

The computational framework presented in this paper will be applied to: (i) identify the con-
tributions of other higher order terms such as octupole moments etc., close to interfaces and (ii)
identify length scales of compact and diffuse layers in any electrical double layer for relevant
values of concentrations of solutions and surface charge densities. This will aid in multiscale elec-
trical double layer simulations, which can guide design of new theories, where the length scales
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corresponding to the Stern and condensed layers can be modeled by explicit molecular dynamics
simulations, and continuum simulations can be used to model the diffuse layer and the bulk.

2.6 Run-Time Cost Estimate for Molecular Coarse-Graining
Algorithm

The execution time associated with the molecular coarse-graining algorithm used in this work can
be analyzed by considering the individual operations required by each sub-computation. Algo-
rithm 1 shows the three main parts of the algorithm. The first two parts are performed locally on
each processor, while the third part requires summation across all processors to obtain the polar-
ization density at each coarse-graining node (the notation |l and |g denote local and global data,
respectively). Total operations associated with the first two loops are NmNm

n and NmNc, respec-
tively. Because these loops act on distributed data, they will be inversely proportional to Np as
long as the number of molecules crossing processors is small which holds when Nm >> Np; a
reasonable assumption for a set of dense molecules. Overall, the execution time scales as

O (Nm
n Nm/Np +NcNm/Np +NcNp) (2.20)

The key assumption making this algorithm attractive is that the vast majority of atoms are asso-
ciated with small molecules, specifically Nm

n ∼ O(1) and Nm
n Nm ∼ Na, Na being the number of

atoms. Parallel performance is then a byproduct of the underlying MD code’s scalability. With this
assumption, Algorithm 1 has run-time scaling of

O (Na (1+Nc)/Np +NcNp) . (2.21)

Advantages of Algorithm 1 for evaluating properties for large sets of small molecules can be
seen in comparison to Algorithm 2, which implements the same functionality using existing per-
molecule computations in LAMMPS. To the best of the authors’ knowledge, these per-molecule
algorithms represent the state of the art in MD with a terminal addition of the coarse-graining op-
eration. Some additional efficiency could be realized by incorporating the coarse-graining into the
third loop, followed by the cross-processor summation of Algorithm 1 on coarse-graining nodes.
However, the fundamental problem remains: loops over the global number of molecules on each
processor. The run-time scaling for Algorithm 2 is

O (Nm +Na/Np +NmNp +NmNc) . (2.22)

Comparing the performance of the two algorithms for cases relevant to this work is accom-
plished by bringing the appropriate assumptions: Nm ∼ Na and Nm

n ,Nc ∼ O(1). With this added
constraint, Algorithm 1 has a run-time cost scaling like

O (Na/Np +Np) , (2.23)

while Algorithm 2 scales as
O (Na/Np +Na +NaNp) . (2.24)
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Cost differences in the algorithms are partly attributable to dissimilar approaches in cross-processor
summation, in which Algorithm 1 scales as Np in contrast to the more expensive NaNp scaling of
Algorithm 2. Furthermore, Algorithm 2 has a constant time penalty on the order of the number
of atoms absent from Algorithm 1. This savings is achieved because Algorithm 1 can compute
molecular properties in parallel, as opposed to replicating information for each molecule across all
processors. For the cases of interest here, i.e., MD simulations where almost every atom is part of
a small molecule, Algorithm 1 makes realization of the theory developed in this work possible for
large systems.

Algorithm 1 Molecular Coarse-Graining
. Compute Dipole Moment for all Molecules, Performed in Parallel

for m = 1 to Nm|l do
pm = 0
for n = 1 to Nm

n do
pm+= qm

n xnm
end for

end for
. Coarse-Grain Dipole Moment, Performed in Parallel

for c = 1 to Nc|g do
Pp

c = 0
for m = 1 to Nm|l do

Pp
c+= pm∆(yc−xm)

end for
end for

. Cross-Processor Summation
for c = 1 to Nc|g do

Pc = 0
for p = 1 to Np|g do

Pc+= Pp
c

end for
end for
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Algorithm 2 Molecular Coarse-Graining Using LAMMPS Per-Molecule Computes
. Initialization for the Total Number of Molecules, Occurring on Each Processor

for m = 1 to Nm|g do
pm = 0

end for
. Compute Dipole Moment Contributions from Local Atoms, Performed in Parallel

for a = 1 to Na|l do
m = map from atom to molecule of a
pp

m+= qaxa
end for

. Cross-Processor Summation for each Molecule
for m = 1 to Nm|g do

pm = 0
for p = 1 to Np do

pm+= pp
m

end for
end for

. Coarse-Grain Dipole Moment, Performed on a Single Processor
for c = 1 to Nc do

Pc = 0
for m = 1 to Nm|g do

Pc+= pm∆(yc−xm)
end for

end for
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Figure 2.1. Bulk water: Running time-average of polarization
vector in the z direction at the center of the system for several
coarse-graining length scales and an applied electric field of Eez =
−0.72V/Å using a constant coarse-graining function (2.18).
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(a) Average dipole moment
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(b) Average quadrupole moment

Figure 2.2. Bulk water: Running time-average of the dipole and
quadrupole moment contributions to the total polarization vector
in the z direction at the center of the system for an applied electric
field of Eez = −0.72V/Å and a coarse-graining length of 5 Å using
constant and linear coarse-graining functions given by (2.18) and
(2.19), respectively.
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a linear fit to the data in the range where polarization varies lin-
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tional to the resultant electric field.
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Figure 2.4. Bulk water: Spatially varying dipole(∫
Γ ∑

Nm
m=1 pm∆(y − xm)dΓ

)
and quadrupole moment(∫

Γ

∂

∂y · ∑
Nm
m=1

(
qm∆(y − xm)

)
f (Γ, t)dΓ

)
contributions to

the total polarization density given by the first two terms on
the right hand side of (2.16). A linear coarse-graining function
corresponding to a coarse-graining length of 0.05 Å is used. The
left and right walls are located at −21.34595 Å and 21.34595 Å,
respectively
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Chapter 3

A Fractional Step Method for Conserved
Energy Exchange in Coupled
Atomistic-Finite Element Simulations

3.1 Introduction

Increasing miniaturization of many engineering devices necessitates new simulation techniques
capable of predictively modeling their behavior. As device scales reach the nanoscale, a multitude
of phenomena, such as grain boundaries, defects, and surface effects, significantly impact perfor-
mance. Nanotechnology is also leading to customized molecules and nanostructures which can
be guided by simulation for specific designs. While continuum models have excelled at describ-
ing system behavior at the macroscale, they have thus far had difficulty capturing many of these
effects peculiar to the nanoscale. At these small scales, continuum constitutive models such as
Fourier’s law for thermal diffusion can break down due to complex scattering processes and ballis-
tic phonon propagation. Augmenting continuum models with atomistic processes suggest the use
of multiscale coupling methods for atomic and continuous descriptions.

Atomistic-to-Continuum (AtC) modeling has emerged over the past two decades as a viable
approach to providing enhanced fidelity to constitutive models, usually for finite elements (FE)
and molecular dynamics (MD). The majority of this work has considered mechanical coupling in
solids. For an overview and performance comparison of many of these methods, the interested
reader is referred to the review by Miller & Tadmor [93] and the references therein. A focus in
this area has been on defects, often to correctly capture their formation and propagation. However,
there is a smaller body of literature regarding coupling atomistic and continuum descriptions of
the temperature field. Finite temperature coupling schemes have be derived from several of these
formulations: the quasi-continuum method [71], the bridging scale method [102], the bridging
domain method [2], and domain decomposition methods for fluids [80].

The present work is based on the approach of Wagner et al. [129], which is most similar to
the bridging scale method for mechanically coupling atoms and continua [130]. It’s formulation
generates two way interactions by 1) projecting the atomic degrees of freedom onto the FE basis,
and 2) adding and removing energy from the atoms based on the FE heat flux at the FE/MD

The primary authors of this chapter are J. Templeton and R. Jones.
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interface. Relevant to this work, the consistent heat flux between the FE and MD is enforced
by expressing it as a constraint on the atomic dynamics, which leads to an enhanced MD force
arising from Gauss’ principle of least constraint. Additionally, the FE dynamics are separated into
two terms based on the FE constitutive relation and the MD trajectories. An important distinction
between that method and this work is that both terms were integrated in time using the Gear
technique [35], while the atoms evolved using the velocity-Verlet algorithm [41]. These differences
led to drift between the two systems of O(∆t2) because of the different temporal discretizations and
how they evolved the intrinsic dynamics and the energy flux. It should be noted that numerical tests
demonstrated that these errors were sufficiently small for many systems of interest.

Following on the previous study, Templeton et al. [123] used the same AtC formulation to
apply standard FE boundary conditions to MD systems. Their main innovation was the derivation
of a new constraint that enforced the MD temperature to equal the FE temperature; thus, Dirichlet
and Neumann boundary conditions could both be used. However, Dirichlet conditions reduce the
stability even further because drift between the FE and MD temperatures can lead to energy being
incorrectly injected when it should be removed. In this work, it is desired to improve the stability
of the algorithm such that Eulerian systems could be considered. Given the drift that can occur
as atoms cross elements or due to errors in time integration involving shape function derivatives,
a new algorithm is needed to improve the overall stability of the time integration. Additionally,
it is desired to consider different temperature definitions than the kinetic definition. In many MD
codes, it is not possible to directly evaluate the time derivative of these definitions, so the time
integration algorithm must handle this difficulty as well.

The driving requirements for the time integration scheme, namely that it exactly satisfy the
constraints associated with multiscale coupling and boundary conditions as well as provide exact
integration of the projected MD motions suggest a specific time integration strategy: the fractional
step method. Originally due to Chorin [18] to evolve the incompressible Navier-Stokes equations
in time, fractional step integrators update hyperbolic or parabolic dynamics subject to elliptic con-
straints. While the equations of motion are subject to time integration error, the constraint is exactly
satisfied for the particular realization. An added benefit is that these methods split different physics
within differential equation so that each term can be updated using unique methods appropriate for
its mathematical properties. As an example, in the Navier-Stokes equations the dynamic equations
governing the momenta are constrained to conserve mass via the pressure, which satisfies a Pois-
son equation. The viscous and convective terms are also updated differently, for example using a
Runge-Kutta scheme for convection and a semi-implicit update for the viscous stresses [65]. In this
work, the analogies will be the algebraic constraint equation, which is mathematically has similari-
ties to a Poisson equation, which enforces the energy constraint on the MD, and the use of different
approaches to update the parts of the continuum right-hand side arising from the continuum con-
stitutive relationship versus those informed by the MD. In the next section, the time-continuous
equations will be derived, including the equation governing the coupling parameter. Section 3.3
will discretize these equations using a fractional step method. In section 4.5, some examples of the
method will be presented followed by some closing remarks in section 4.6.
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3.2 Derivation of the Temporally Continuous Equations

Consider the atomic energy density eα , its continuous counterpart e(x), and its finite element
representation eh(x) defined as a linear combination of a finite set of shape functions, NI:

eh(x) = ∑
I

NI(x)eI. (3.1)

The FE and continuous representations are related by minimizing the L2 error between them, i.e.∫
Ω

(
e(x)− eh(x)

)2
dV. (3.2)

Taking the variation of with respect to eh and setting it equal to zero gives∫
Ω

δeh(x)eh(x)dV =
∫

Ω

δeh(x)e(x)dV. (3.3)

where e is known data and eh is the unknown. These integrals can be split into integrals over the
MD and FE domains:∫

Ω f em

δeh(x)eh(x)dV +∑
α

δeh(xα)eh(xα)∆Vα =∫
Ω f em

δeh(x)e(x)dV +∑
α

δeh(xα)eα∆Vα , (3.4)

where ∆Vα is the quadrature volume associated with each atom. Thus the equations for the nodal
variables are

∑
J

(∫
Ω f em

NINJeJdV +∑
α

NIαNJαeJ∆Vα

)
=
∫

Ω f em

NIe(x)dV +∑
α

NIαeα∆Vα , (3.5)

with the spatial dependence absorbed into the shape function notation for convenience.

The primary consideration of this work is thermal transport problems where the primary depen-
dent variable is temperature. The equations will be derived for the energy density without kinetic
components so energy density is assumed to have the functional form e = ρcT such that ρ is the
mass density, c the specific heat capacity, and T is the temperature. Inserting this expression into
projection (3.5) results in the following equation:

∑
J

(∫
Ω f em

NINJ [ρcT ]J dV +∑
α

NIαNJα [ρcT ]J ∆Vα

)
=∫

Ω f em

NI [ρcT ]dV +∑
α

NIαeα∆Vα . (3.6)

To put the equations in a form more amenable to finite element (FE) analysis, we use the approxi-
mation that EI = [ρcT ]I ≈ ρcTI in the continuous integral and [ρcT ]I = ραcαTI in the atomic sum
to reflect the fact that the density and heat capacity will be given by equations of state appropriate
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to either the continuous or atomic description. Next, the atomic quadrature volume is used in the
expressions for both the mass density and energy density so that

ρα =
mα

∆Vα

eα =
Eα

∆Vα

,

where Eα is the total energy of the atom (see the next subsection for further discussion) given by

Eα = Kα +Pα =
1
2

mαv2
α +φα , (3.7)

with Kα and Pα being the atomic kinetic and potential energies, respectively. Dividing the total
potential energy amongst all atoms is not straightforward for complex interatomic potentials, but
reasonable values can be chosen for most of them; a simple equipartition of the energy of a bond
between the atoms that make constitute it is always available. The definition of Eα assumes that
all the atomic energy is fluctuating so it can be represented by a temperature. Note that defining
a temperature locally and instantaneously is not fully justified theoretically. This work, however,
focuses on non-equilibrium calculations under the assumption for certain length and timescales, a
temperature can be defined. It is these scales that define the FE mesh and the time filter window
discussed later in this work.

As a rough approximation, the correlation distances and times of energy fluctuations provide a
lower bound for the coarse-graining length and timescales. With these assumptions, the projection
becomes

∑
J

(∫
Ω f em

NINJρcTJdV +∑
α

NIαNJαmαcαTJ

)
= ∫

Ω f em

NI [ρcT ]dV +∑
α

NIαEα . (3.8)

A feature of these definitions is that the atomic volume is never required.

In writing the equations in this form, it is necessary to have an expression for the atomic heat
capacity. If the temperature is above the Debye temperature, the Dulong-Petit expression for the
specific heat capacity is reasonable: cα = 3kB/mα . The result of these assumptions is to arrive at
the following projection

∑
J

(∫
Ω f em

NINJρcdV +∑
α

NIαNJα3kB

)
TJ =

∫
Ω f em

NI [ρcT ]dV +∑
α

NIαEα . (3.9)

Finally, the dynamical equation for thermal transport is obtained by taking the time derivative:

∑
J

(∫
Ω f em

NINJρcdV +∑
α

NIαNJα3kB

)
dTJ

dt
=

−
∫

Ω f em

∇NI ·qh dV +
∫

∂Ω f em

NI qh ·nMD dS+∑
α

NIα Ėα . (3.10)
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The heat flux term, q, has been integrated by parts which results in the additional boundary integral
over the normal heat flux dotted with the inward normal vector nMD to the MD region (traditional
boundary fluxes to the FE domain are ignored for clarity in this presentation, but trivial to incor-
porate into the method).

Finally, in order to obtain comparable timescales between the atomistic and continuum dynam-
ics it is often necessary to filter the atomistic quantities in time as part of the interscale restriction
operation. The filtering operation for T is defined by:

〈T (t)〉=
∫ t

−∞

τ
−1T (t ′)e−(t−t)/τ dt ′, (3.11)

where τ is the timescale of the filter (see [129] for a discussion of the benefits of this functional
form). To derive the filtered equations, the filtering operator is applied to eq. (3.10):〈

∑
J

(∫
Ω f em

NINJρcdV +∑
α

NIαNJα3kB

)
dTJ

dt

〉
=

−
〈∫

Ω f em

∇NI ·qdV
〉
+

〈∫
∂Ω f em

NI qh ·nMD dS
〉
+

〈
∑
α

NIα Ėα

〉
. (3.12)

Making the previous equation tractable requires assuming equivalence between filtered and unfil-
tered continuous terms, resulting in the governing equation for filtered variables:

∑
J

(∫
Ω f em

NINJρcdV +

〈
∑
α

NIαNJα3kB

〉)
dTJ

dt
=

−
∫

Ω f em

∇NI ·qdV +
∫

∂Ω f em

NIqh ·nMDdS+
〈

∑
α

NIα Ėα

〉
. (3.13)

To simplify the presentation in the next section, equations will be presented without time filtering
but can be filtered in the same manner as eq. (3.13). The implications of time filtering on the
numerical methods will be considered in Section 3.3.1.

3.2.1 Coupling with Thermostats

The previous section derived the set of ODEs governing the FE degrees of freedom that account
for the molecular motions. In order to achieve two-way interactions, a set of constraints will be
posed on the MD based on FE information. A notable distinction between this work and previous
efforts ([129, 123]) is that the constraints are posed on conserved quantities rather than observed
quantities, e.g., energy rather than temperature, which generalizes the systems it can be applied
to. Specifically, the different formulation facilitates applying the method to fluid problems because
the mass matrix appears on the right-hand side rather than embedded in the left-hand side matrix.

The first coupling mode considered is that for fixing the MD energy to match that of the FE.
The constraint for the Ith node can be written as

∑
α

NIα Ėα −∑
J

MMD
IJ ṪJ = 0, (3.14)
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where the following shorthand has been used:

MMD
IJ = ∑

α

NIαNJα3kB.

In order to make further progress, it is necessary to substitute in eq. (3.7):

∑
α

NIα

(
vα · fα + φ̇α

)
−∑

J
MMD

IJ ṪJ = 0. (3.15)

This is a constraint in fα that can be solved by applying Gauss’ principle of least constraint [31] to
the velocity to obtain (specifically m−1

α

(
fα − fMD

α

)2 is minimized):

fα = fMD
α − mα

2
vα ∑

I
NIαλI, (3.16)

∑
α

∑
J

NIαKαNJαλJ = ∑
α

NIα

(
vα · fMD

α + φ̇α

)
−∑

J
MMD

IJ ṪJ. (3.17)

where ṪI is held constant. In eq. (3.17), the power added through fλ
α augments the local heat-

flux such that the MD temperature time derivative matches a prescribed value locally (“local” in
this case is with respect to integration against FE shape functions). An advantage of the present
framework can regulate the temperature for any definition of it that includes kinetic energy because
the constraint minimizes the change in acceleration by the application of the thermostat.

Similarly, consider also the flux-based thermostat based on the constraint

∑
α

NIα

(
∂Φ

∂xα

·vα +vα · fα

)
+
∫

Γ f em

NI qh ·nMD dS = 0, (3.18)

which expresses the requirement that the total rate of change of energy in both systems must be
equal and opposite. An important point is that the total potential energy is Φ 6= ∑α φα due to
contributions from any ghost atoms (fixed atoms used to give the free atoms a full complement of
neighbors) that are present. These atoms serve to apply an external potential that perfectly reflects
phonons leaving the set of real atoms. In this capacity, these atoms do not add or subtract energy
from the real atoms, i.e., they do no work because they are fixed. However, this form does enable
using ∂Φ/∂xα · vα = −vα · fMD

α to simplify the problem to one amenable to the application of
Gauss’ principle of least constraint to fα . It results in the following set of equations for λI:

fα = fMD
α − mα

2
vα ∑

I
NIαλI, (3.19)

∑
α

∑
J

NIαKαNJαλJ =
∫

Γ f em

NI qh ·nMD dS. (3.20)

The unknown boundary heat flux qh can be computed by FE face quadrature or approximate L2

projection citewagner08. However, in contrast to that previous work, this form will exactly cancel
the MD/FE boundary energy flux from the FE equations because the kinetic definition of tempera-
ture is used. Since the same matrix equation arises for both types of constraints (the RHS is simply
shifted based on the type), the cancelation will happen for both temperature and flux coupling.
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This cancelation, combined with the change in the definition of the temperature, will improve the
fidelity of the atomic temperature near the boundary.

Understanding how the cancellation of the boundary flux term in the FE equations occurs can
be done by considering an arbitrary fluctuating energy definition,

Eα = aKα +bPα , s.t. a+b = 2,

The governing equation for λ , eq. (3.17) becomes

∑
α

∑
J

NIαKαNJαλJ = a−1
(

∑
α

NIα

(
avα · fMD

α +bφ̇α

)
−MMDṪI

)
. (3.21)

This change also has an effect on the overall governing FE equation, eq. (3.10). The term repre-
senting the MD contributions to the finite element equations can be expressed as:

∑
α

NIα Ėα = ∑
α

NIα

(
avα · fMD

α +bφ̇α +avα · fλ
α

)
= ∑

α

NIα

(
avα · fMD

α +bφ̇α

)
−a∑

α

NIαKα ∑
J

NJαλJ

= ∑
α

NIα

(
avα · fMD

α +bφ̇α

)
−aRHSI,

where the RHS expression is used to denote the right-hand side of either constraint, i.e. eq. (3.20)
or eq. (3.21). Hence, eq. (3.10) becomes

∑
J

(∫
Ω f em

NINJρcdV +∑
α

NIαNJα3kB

)
dTJ

dt
=

−
∫

Ω f em

∇NI ·qdV +∑
α

NIα

(
avα · fMD

α +bφ̇α

)
+
∫

∂Ω f em

NI qh ·nMD dS−aRHSI. (3.22)

In the case of temperature coupling, the FE boundary flux is set to balance the energy added to the
MD, ∫

∂Ω f em

NI qh ·nMD dS =

(
∑
α

NIα

(
avα · fMD

α +bφ̇α

)
−MMDṪI

)
. (3.23)

For flux-based coupling, the boundary flux must be computed to have a closed set of equations to
solve. Denoting the nodes at which the flux constraint is enforced as I f ⊂ I, the total evolution
equation is

∑
J

(∫
Ω f em

NINJρcdV +∑
α

NIαNJα3kB

)
dTJ

dt
=

−
∫

Ω f em

∇NI ·qdV +∑
α

NIα

(
avα · fMD

α +bφ̇α

)
+(1−a)1I∈I f

∫
∂Ω f em

NI qh ·nMD dS. (3.24)
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For the case a = 1, the boundary flux terms will not appear in the FE governing equation

To complete all the needed functionality for this work with the new formulation, the rescaling
thermostat must also be changed from its form in [129]. For each atom, its atomic velocity is
rescaled using a local rescale parameter:

vα =
√

ψαvMD
α . (3.25)

To enforce a temperature field which varies on the FE scale, the rescale parameter will be repre-
sented using the FE basis,

ψα = ∑
I

NIαψI. (3.26)

The reciprocal of the atomic mass and weighted shape functions are used in eqs. (3.25) and (3.26)
in order to have the result utilize the same thermostat matrix as the constraint-based thermostats.
The constraint associated with the rescale is

∑
α

NIα (aKα +bPα) = MMDTI. (3.27)

By substituting eq. (3.25) into eq. (3.27), the equation for ψI is obtained

∑
α

∑
J

NIαKαNJαψI = a−1
(

MMDTI−b∑
α

NIαPα

)
. (3.28)

3.3 Fractional Step Time Advancement

3.3.1 Time Integration Scheme

Combining the temporal ODEs for the MD and FE degrees of freedom with the spatial differential
equation for the coupling parameter λ form a closed set of equations governing the evolution of
the entire system. However, developing a time integration scheme for this system poses several
challenges. First, not all of the terms in it have a time derivative that can be directly evaluated, e.g.,
φ̇α . In addition, when the atomic shape functions NIα are allowed to change with time (as for a
fluid), then integrating their time derivative,

ṄIα = ∇NIα ·vα , (3.29)

will pose problems. If linear shape functions are used, then mass will not be conserved when atoms
cross element boundaries. On the other hand, when using higher-order shape functions, integrating
the above equation over a finite time step will lead to errors in the mass because ∆NIα 6= ∆tṄIα . A
similar problem occurs if the time derivatives for the kinetic energy are directly used because the
temperature is a non-linear function of velocity. For example, consider the velocity updated from
step n to n+1 using explicit Euler:

vα

∣∣
n+1 = vα

∣∣
n +∆t m−1

α fα

∣∣
n. (3.30)
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The corresponding change in kinetic energy is

Kα

∣∣
n+1 =

mα

2
v2

α

∣∣
n+1

=
mα

2
(
vα

∣∣
n +∆t m−1

α fα

∣∣
n

)2

= Kα

∣∣
n +∆t vα

∣∣
n · fα

∣∣
n +∆t2 m−1

α

2
fα

∣∣
n · fα

∣∣
n

= Kα

∣∣
n +∆t K̇α

∣∣
n +O(∆t2)

Hence, application of the same time integration methods to both the MD and FE equations will
result in a drift between them which is aggravated because the error is strictly positive. Particu-
larly when using a fixed temperature constraint on the MD, temperature drift can lead to eventual
instabilities as the coupling scheme will start incorrectly adding or removing energy. This analysis
shows that the two difficulties in developing temporal integration techniques for these equations
are the need to satisfy a constraint to numerical precision and the need to use different methods for
different terms in the FE evolution. Such issues suggest development of a fractional step method
[18] to enable their resolution.

Time integration of the continuous temperature consists of two parts. The first part comes
from modifying the standard velocity Verlet integration scheme to incorporate the forces from the
thermostat to integrate the position at time level n to time level n+1 and to predict the velocity at
time level n+1 based on the velocity at time level n:

v̂α

∣∣
n+1/2 = vα

∣∣
n +

∆t
2

m−1
α fλ

α

∣∣
n (3.31)

vα

∣∣
n+1/2 = v̂α

∣∣
n+1/2 +

∆t
2

m−1
α fMD

α

∣∣
n (3.32)

xα

∣∣
n+1 = xα

∣∣
n +∆t vα

∣∣
n+1/2 (3.33)

v̂α

∣∣
n+1 = vα

∣∣
n+1/2 +

∆t
2

m−1
α fMD

α

∣∣
n+1 (3.34)

ṽα

∣∣
n+1 = v̂α

∣∣
n+1 +

∆t
2

m−1
α fλ

α

∣∣
n (3.35)

The notation used in the preceding equations is as follows. A q̂ indicates the first prediction of a
quantity while the q̃ denotes the second prediction. It is used in this case to represent the prediction
of atomic velocity at time level n+ 1 based on the older coupling force to maintain the second
order accuracy of the overall method. MD forces are determined by the atomic positions at time
level n, n+1, etc., and are calculated independently of the present method. The coupling force is
determined by the constraints, and is described in more detail in the next section.

In order to connect the atomic updates to the continuous system, first consider the change in
energy of atom α through this process. For example, the change in kinetic energy induced by
eq. (3.31) is

∆K̂α

∣∣
n+1/2 =

mα

2

(
v̂α

∣∣
n+1/2 · v̂α

∣∣
n+1/2−vα

∣∣
n ·vα

∣∣
n

)
=

∆t
2

vα

∣∣
n · f

λ
α

∣∣
n +

∆t2

8
m−1

α fλ
α

∣∣
n · f

λ
α

∣∣
n, (3.36)
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while the change in potential energy is simply due to the evaluation of the interatomic potential at
time level n+1:

∆Pα

∣∣
n+1 = φα

∣∣
n+1−φα

∣∣
n. (3.37)

The total change in atomic energy is then

∆Ẽα

∣∣
n+1 = ∆K̂α

∣∣
n+1/2 +∆Kα

∣∣
n+1/2 +∆Pα

∣∣
n+1 +∆K̂α

∣∣
n+1 +∆K̃α

∣∣
n+1. (3.38)

The next step in developing the appropriate time integration algorithm is to relate eq. (3.38) to
the exact PDE eq. (3.10). Throughout the remainder of this work, changes in atomic quantities will
be considered as differences between quantities at different time levels rather than time derivatives.
This point of view offers two advantages: the ability to account for any atomic quantity, e.g. φα ,
which may not have an evaluatable time derivative, and the definition of the numerically exact
energy exchange between the FE and MD systems. Direct application of this definition yields a
change in the FE temperature field of

∆

(
∑
J

MIJT̃J,A

)∣∣∣∣∣
n+1

= ∆

〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n+1

, (3.39)

where the subscript A denotes this is the temperature associated with the set of atoms. In addi-
tion, the terms multiplying TJ on the left-hand side of eq. (3.10) have been expressed succinctly
as the mass matrix MIJ . The expression in eq. (3.39) has dispensed with the assumptions of con-
stant mass matrices consistent with atomic shape functions based on reference positions, making
it appropriate for Eulerian frame calculations. To also account for the time filtering aspect of the
interscale operations, consider the following relationship between the nodal temperature and the
atomic energy as

∑
J

MIJTJ,A =

〈
∑
α

NIαEα

〉
= 〈EI〉 , (3.40)

which reduces atomic fluctuations to make the MD-FE coupling more appropriate for the FE con-
stitutive laws. We now briefly present the important features of the filtering operation as it pertains
to the time integration scheme.

The time filtering kernel takes the same form as in [129], i.e.,

〈EI(t)〉 ≡
∫ t

−∞

τ
−1EI(t ′)e−(t−t ′)/τ dt ′. (3.41)

This form is advantageous because its time derivative can be written analytically as

d
dt
〈EI〉=

EI−〈EI〉
τ

(3.42)

which forms the basis of the discrete filter used in this work. Following the velocity Verlet algo-
rithm, a two-stage explicit/implicit discretization is used:

〈EI〉
∣∣
n+1/2 = 〈EI〉

∣∣
n +

∆t
2τ

(
EI
∣∣
n−〈EI〉

∣∣
n

)
(3.43)

〈EI〉
∣∣
n+1 =

1
1+ ∆t

2τ

(
〈EI〉

∣∣
n+1/2 +

∆t
2τ

EI
∣∣
n+1

)
. (3.44)
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The salient part of this update is that there exists constants ζ , β , γ such that

〈EI〉
∣∣
n+1 = ζ EI

∣∣
n + γEI

∣∣
n+1 +β 〈EI〉

∣∣
n. (3.45)

Then the change in the filtered quantity over a time step is

∆〈EI〉
∣∣
n+1 = (β −1)〈EI〉

∣∣
n +(ζ + γ)EI

∣∣
n + γ∆EI

∣∣
n+1. (3.46)

To separate out the change in temperature needed in the time integration process, consider

∆T̃I,A
∣∣
n+1 = T̃I,A

∣∣
n+1− T̃J,A

∣∣
n

= ∑
J

M−1
IJ

∣∣
n+1

〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n+1

−∑
J

M−1
IJ

∣∣
n

〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n

= ∑
J

M−1
IJ

∣∣
n+1

(〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n

+∆

〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n+1

)
−∑

J
M−1

IJ

∣∣
n

〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n

= ∑
J

M−1
IJ

∣∣
n+1∆

〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n+1

+

(
∑
J

M−1
IJ

∣∣
n+1−∑

J
M−1

IJ

∣∣
n

)〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n

Using eq. (3.46) with eq. (3.39) gives an expression for the change in restricted energy due to the
atomic system:

∆

〈
∑
α

NIα Ẽα

〉∣∣∣∣∣
n+1

=

(β −1)
〈

∑
α

NIα Ẽα

〉∣∣∣∣∣
n

+(ζ + γ)

(
∑
α

NIαEα

)∣∣∣∣∣
n

+ γ
(
∑NIα∆Ẽα

)∣∣∣
n+1

. (3.47)

The second part of the time integration process accounts for the continuous scale contributions,
which come through either in coupled simulation or through integrating boundary conditions and
prescribed nodes. These are handled through a 3rd or 4th order Gear integration scheme, follow-
ing [129] depending on whether or not time filtering is used. The 4th order scheme produces a
predicted change in the temperature due to the set I of FE nodes:

∆T̃I,I
∣∣
n+1 = ∆tṪI,I

∣∣
n +

(
∆t
2

)2

T̈I,I
∣∣
n +

(
∆t
6

)3 ...
T I,I

∣∣
n (3.48)

∆
˜̇TI,I
∣∣
n+1 = ∆tT̈I,I

∣∣
n +

(
∆t
2

)2 ...
T I,I

∣∣
n (3.49)

∆T̃I,I
∣∣
n+1 = ∆tT̈I,I

∣∣
n. (3.50)

Finally, it is possible to arrive at a predicted nodal temperature field,

T̃I
∣∣
n+1 = TI

∣∣
n +∆T̃I,A

∣∣
n+1 +∆T̃I,I

∣∣
n+1, (3.51)
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with the FE temperature time derivatives updated in a similar manner.

The predicted temperature field is required for two reasons. First, as part of the Gear update, it
enables the time derivative at level n+1, ṪI,I

∣∣
n+1, to be computed. From it, the correction to the

temperature is applied using the Gear corrector step:

R
∣∣
n+1 = ∆t

(
ṪI,I

∣∣
n+1−

˜̇TI,I
∣∣
n+1

)
, (3.52)

∆TI,I
∣∣
n+1 = ∆T̃I,I

∣∣
n+1 +

3
8

R
∣∣
n+1 (3.53)

∆T̈I,I
∣∣
n+1 = ∆

˜̈TI,I
∣∣
n+1 +

3
2

∆t−2R
∣∣
n+1 (3.54)

∆
...
T I,I

∣∣
n+1 = ∆

.̃..
T I,I

∣∣
n+1 +∆t−3R

∣∣
n+1, (3.55)

T̂I
∣∣
n+1 = T̃I +∆TI,I

∣∣
n+1. (3.56)

With the correction to the FE temperature in place, the updated control variable λ n+1 and its
associated force can be determined. The specific discrete form for this equation is presented in
the next section, but for the purposes of time integration the germain points are that it depends
either on T̂I|n+1 or ∆T̂I|n+1. The only manner in which the control force can alter these quantities
(as will be shown) is by changing the temperature at interior nodes adjacent to boundary nodes
(the boundary flux cancels with the restricted control power at boundary nodes). However, by
predicting the temperature, the correction is second order in time.

Once computed, the updated control variable λI|n+1 is used to create the control force which
updates the atomic state variables as follows:

vα

∣∣
n+1 = ṽα

∣∣
n+1 +

∆t
2

m−1
α fλ

α

∣∣
n+1 (3.57)

∆KEλ
α

∣∣
n+1 =

∆t
2

ṽα

∣∣
n+1 · fα

∣∣
n+1 +

∆t2

2
fλ
α

∣∣
n+1 · f

λ
α

∣∣
n+1 (3.58)

Eα

∣∣
n+1 = Ẽα

∣∣
n+1 +∆KEλ

α

∣∣
n+1. (3.59)

The continuous temperature field at time level n+1 can then be fully determined by

MIJ
∣∣
n+1∆TJ,A

∣∣
n+1 = ∑NIα

∣∣
n+1∆KEλ

α

∣∣
n+1 (3.60)

TI
∣∣
n+1 = T̂I

∣∣
n+1 +∆TI,A

∣∣
n+1. (3.61)

Note that eqns. (3.48)-(3.61) could be solved iteratively in conjunction with the thermostat to
improve the estimate of the FE temperature, although no advantage to such an approach has been
observed.

While the above algorithm is more complex than previous work through the use of multiple
prediction steps and a direct form for the atomic contribution to the FE field, the additional com-
plexity is justified by its advantages. It is more stable because there is only very limited drift
between the FE and MD temperatures in overlapping regions. The effect is reduced error in the
right-hand side of eq. (3.17). In addition, energy is conserved to machine precision in the exchange
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between the FE and MD systems. The other benefit derived by this time integration scheme is that
it is appropriate for temperature definitions which cannot access an explicit time derivative, e.g., if
the time derivative analogous to eq. (3.37) cannot be evaluated from the MD code.

There is one final advantage to this algorithm: it is appropriate for Eulerian frame calculations
in which NIα is a function of time rather than held constant in the referential frame. This is because
direct calculation of the time derivative:

ṄIα = (∇NIα) ·vα (3.62)

can lead to large errors when atoms move out of the support of a shape function. Additionally, the
shape functions need not be updated every time step to reduce computational costs, at the expense
of the continuous time evolution for the atomic shape functions. Therefore, the present algorithm
enables an entirely new class of problems to be considered within the present AtC framework.

3.4 Thermostat Framework for Energy Conservation

3.4.1 Discrete Thermostats

While understanding the continuous form of the thermostats is useful, arbitrary discretizations of
their application during the time integration will not, in general, realize the exact enforcement of
the constraints. The principal problem is that the temperature is a quadratic function of the atomic
velocity. This can add a biased error between TI and the coarse-grained atomic temperature propor-
tional to ∆t2λ 2

I if λI is computed directly from the continuous equations. If uncorrected, this error
grows and eventually leads to instability, particularly when Gaussian isokinetic thermostatting is
used.

For nodes with temperature coupling without time filtering, the change in temperature arising
from application of the thermostat must satisfy the equation

MMD
IJ ∆TJ,C

∣∣
n+1 = ∑

α

Nα
I ∆Êα

∣∣
n+1 +∑

α

Nα
I ∆Kλ

α

∣∣
n+1. (3.63)

The constraint equation at each node becomes

−∑
α

Nα
I ∆Kλ

α

∣∣
n+1 = ∑

α

Nα
I ∆Êα

∣∣
n+1−MMD

IJ ∆TJ,C
∣∣
n+1 ≡ L

∣∣
n+1. (3.64)

Using the restriction operator allows us to write a system of equations governing λI:

∆t ∑
A

Nα
I K̃α

∣∣
n+1 ∑

J

Nα
J λJ−

∆t2

4 ∑
A

Nα
I K̃α

∣∣
n+1

(
∑
J

Nα
J λJ

)(
∑
K

Nα
K λK

)
= L
∣∣
n+1. (3.65)

For small time steps, the problem can be solved iteratively. The initial guess can be found by
solving the linear system and right hand side, ie:

∑
A

Nα
I K̃α

∣∣
n+1 ∑

J

Nα
J λ

0
J =

L
∣∣
n+1

∆t
, (3.66)
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which yields the standard equation for λ in the limit of ∆t→ 0. The ith iteration will then satisfy

∑
A

Nα
I K̃α

∣∣
n+1 ∑

J

Nα
J λ

i
J =

L
∣∣
n+1

∆t
+

∆t
4 ∑

A

Nα
I K̃α

∣∣
n+1

(
∑
J

Nα
J λ

i−1
J

)(
∑
K

Nα
K λ

i−1
K

)
. (3.67)

Due to the quadratic term this method is not guaranteed to converge. However, for sufficiently
small ∆t (∆tλ << 1), an asymptotic solution does exist. Therefore, if the solver is initialized with
the solution without the term linear in ∆t, convergence is guaranteed as the time step is refined.
This is a consequence of using a linear Gaussian Least constraint in the continuous formulation.

While we have derived the discrete thermostat for the isokinetic case, we can also transform the
flux thermostat by determining the amount of energy added by the flux. The continuous equation
reads:

MIJṪJ =
∫

Γ

NIq ·ndA+
∫

Ω

NIgdV, (3.68)

which accounts for boundary heat fluxes, q, due to coupling or prescription, as well as prescribed
volumetric heat sources g. Then, the amount of energy input into the system over the time step
can be used to compute ∆TI due to the fluxes. This can then be used on the right-hand side of the
equation for λI to discretely add the correct amount of energy.

This formulation fits directly within the framework of (3.63) if the total filtered thermostat
contribution is applied as the correction to the filtered temperatures:

−∆

〈
∑
α

Nα
I Kλ

α

〉∣∣∣∣∣
n+1

= L
∣∣
n+1, (3.69)

In the continuous sense, the right-hand side would be the filtered power due to λ , but in the discrete
sense the total change with each timestep update must be retained. The filtered contribution from
λ is determined with an implicit update in the second half of the timestep. Upon substitution of
eq. (3.44),

− ∆t/τ

1+∆t/τ
∑
α

Nα
I Kλ

α

∣∣
n+1 = L

∣∣
n+1 +

1
1+∆t/τ

〈
∑
α

Nα
I Kλ

α

∣∣
n

〉
. (3.70)

This equation allows λ , which acts in the instantaneous sense on the MD, to be related with the
continuous equations which act on the filtered scale. Note that this is slightly different that when
continuous equations are used. This right-hand side plays a similar role to the filter inverse present
in the continuous equations, but accounts for the discrete dynamics and filter updates that neces-
sarily occur in a simulation.

When the filter is used, the target atomic temperature must also be computed. It is integrated
identically to the MD contribution to the continuous temperature except that it is updated using
the restricted atomic power rather than the integrated one. This enables the corresponding error
to computed between the purely atomic and continuous temperatures for use with the thermostat.
As discussed in [123], it is possible to apply both forms of control simultaneously, however in that
work, it was not possible to do so with the control effects localized to the boundary. In Appendix
3.7 a framework is presented which proves there exists such an objective function with the required
properties, and provides an algorithm for computing an approximation of it.
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3.5 Example Problems

3.5.1 Thermal Conductivity of Liquid Argon

The first application demonstrates how the method can be used to perform non-equilibrium MD
calculations to estimate thermal conductivities of atomic fluids. A quasi-1D configuration is ar-
ranged, as shown in Fig. 3.1, with dimensions 64.86×32.43×32.43 Å. The FE mesh is truncated
to only overlap the AtC atoms. Fixed boundary atoms are used to constrain the fluid, while the
internal atoms are initially arranged in a FCC lattice with a length scale of 6.5 Å. The rescaling
thermostat, eq. 3.25, is used to thermalize the system to an initial temperature of 100K by being
applied every 10 time steps over a run of 200 time steps (the time step size is 2 fs). Atoms interact
with each other using the Lennard-Jones (LJ) potential based on the pairwise distance ri j between
atoms i and j,

U i j (ri j)= 4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
]
. (3.71)

The energy, ε , is 0.238 Kcal/mole while the length scale, σ , is 3.405 Å. A 13.5 Åcut-off radius is
used.

Following the thermal equilibration phase, the temperature at the left-most node is prescribed
to rise from 100K to 120K over 40000 fs using the temperature based constraints, eq. (3.16). Time
filtering is used to smooth this transition, with a timescale of τ = 10000 fs. By averaging the heat
flux applied by the thermostat and the known temperature difference, the thermal conductivity can
be estimated to be 1.54×10−9 AMU/fs3 K. The resulting temperature profile is shown in Fig. 3.2.

3.5.2 Multiscale Liquid Argon

The conductivity estimated in the previous example can be used to inform a multiscale model.
Using the same configuration, except with the FE mesh extended as in Fig. 3.1, a similar problem
is considered. Following equilibration, the temperature of the left-most node, which is strictly in
ΩFE , is ramped up to 120 K over 40000 fs. Coupling is achieved by means of the flux-based
thermostat eq. (3.20). Figure 3.3 illustrates the resulting velocity profile.

3.6 Conclusions

In this work, a fractional step method has been developed for accurately and robustly computing
coupled FE/MD problems involving heat transport. Fractional step methods have a significant
advantage for multiscale problems due to the attendant different dynamics exhibited at each scale:
different physics can be integrated in time using the method most appropriate for each. In this
case, the coarse-grained atomic temperature was treated differently from the FE temperature in
order to achieve consistency between the dynamic temperature field and the measured temperature
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Figure 3.1. Schematic of the quasi-1D test cases used in this
work. Atoms which are part of the AtC method are yellow while
boundary atoms used to confine the atoms and reflect phonons are
in blue. The FE mesh is in red.
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of the atoms, leading to long-term numerical stability. Additionally, the approach enabled the use
of temperature definitions including the potential energy. As was shown, arbitrary temperature
definitions are compatible with this method and an explicit formula for the time derivative is not
required.

The fractional step approach also has an advantage in that it prescribes how to subject dynam-
ical equations to constraint in which partial derivatives with respect to time do not appear. For
multiscale simulation, this is advantageous because the coupling conditions need not satisfy time
evolution equations. The present coupling approach is based on specifying constraints at each time
step. By solving for these constraints and applying them in a consistent manner with the fractional
step method, they can be enforced to machine precision. Thus, drift between the FE and MD
systems is minimized for fixed temperature constraints, while energy can be exactly conserved in
exchange between the two. Both properties contribute to enhanced stability as well.

As a demonstration of the method, it was applied to several stressing problems involving both
solid and liquid phases. The accuracy of method was demonstrated to be second order in time
for the most chaotic cases. Uses of the method were shown to include direct thermal conductivity
measurements, transient heating of a liquid, and heat transport at a fluid/solid interface. Future
work will apply these techniques to problems of more scientific and technological significance.

3.7 Consistent Formulation for Combined Fixed
Temperature/Energy Flux Localized Thermostats

It is important to demonstrate that there exists a unified constraint such that the Dirichlet and Neu-
mann boundary conditions can be used together in a localized constraint. To prove that such a
constraint exists, let C = CD

⋃
CN be the set of all nodes at which a constraint is not trivially

satisfied, where CD and CN are non-intersecting sets of nodes at which the matching accelera-
tion (Dirichlet) and stress (Neumann) constraints are desired, respectively. The set of free nodes
will be denoted by F = I \C . In order to retain the notion of a Gaussian least constraint, the
mathematical structure must retain the form of

∑
α

NIα ∑
J

NJαλJ = PI ∀ I,J ∈ C . (3.72)

Note in this equation λI is only non-zero for nodes in C and zero otherwise. The right-hand side
vector P denotes momentum rate of change need to enforce a constraint. It can be decomposed by
constraint as

PI = PD
I +PN

I (3.73)

where only one of PD
I or PN

I is non-zero for a given node. These equations can be written succinctly
over the subspace C in matrix notation:

MC λC = PD
C +PN

C , (3.74)

55



which due to its linearity admits superposition of solutions

λ
D
C = M−1

C PD
C (3.75)

λ
N
C = M−1

C PN
C (3.76)

Given this formulation, one mathematical preliminary remains: defining the projection operator
from I to C . This operator is

R =

[
ICD 0 0
0 ICN 0

]
(3.77)

where each identity matrix is appropriately sized based on the dimensionality of its sub-space. The
matrix RT then takes a vector in C to I with zero entries in the non-coincident nodes. It will be
of use later to write

RT R =

ICD 0 0
0 ICN 0
0 0 0

 , (3.78)

which transforms a vector in I back to a vector in I with zero entries at unconstrained nodes.

To begin the analysis, consider the statement of global energy conservation in matrix notation
is

1 ·Mλ
N = 1 ·PN , (3.79)

where the equation is defined over all the nodes, M is the standard matrix in the equation for λ

(e.g., in eq. (3.17)), and 1 is a row vector of 1’s with length corresponding to the cardinality of I .
This equation can be related to eq. (3.74) by using eq. (3.77):

1 ·MRT
λ

N
C = 1 ·PN , (3.80)

and further by using eq. (3.76):
1 ·MRT M−1

C PN
C = 1 ·PN . (3.81)

Inspired by this form, assume a relationship between the localized and global forces to be

PN
C = MC RM̃−1PN . (3.82)

What remains is to determine an approximate mass matrix, M̃ such that eq. (3.79) is satisfied.

To begin, substitute eq. (3.82) into the left-hand side of eq. (3.81):

1 ·MRT M−1
C PN

C = 1 ·MRT M−1
C MC RM̃−1PN

= 1 ·MRT RM̃−1PN .

To proceed further, note that the symmetric mass matrix is

M =

[
MC MFC

MT
FC MF

]
. (3.83)
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Therefore,

1 ·MRT M−1
C PN

C = 1 ·
[

MC MFC

MT
FC MF

][
IC 0
0 0

]
M̃−1PN

= 1 ·
[

MC 0
MT

FC 0

]
M̃−1PN

= 1 ·
[

MC 0
MT

FC 0

][
M̃C M̃FC

M̃C F M̃F

]−1[P̃N
C
0

]
.

Here the notation P̃N
C = RPN is used to denote the original non-zero constraint values, distinct PN

C
as defined by eq. (3.82). Given the form of the equation, only M̃C will be of importance in the final
expression, so let M̃FC = M̃C F = 0 and M̃F = IF . Then the expression is reduced to

1 ·MRT M−1
C PN

C = 1 ·
[

MC MFC

MT
FC MF

][
M̃−1

C 0
0 IF

][
P̃N

C
0

]
= 1 ·

[
MC MFC

MT
FC MF

][
M̃−1

C P̃N
C

0

]
= 1 ·

[
MC M̃−1

C P̃N
C

MT
FC M̃−1

C P̃N
C

]
.

The two terms in the final matrix have clear interpretations. The first term is the fraction of the
constraint force that will remain local to the constrained nodes after application to the atoms, while
the second term is amount that will “leak” to adjacent nodes. In this context, adjacent nodes means
nodes in F whose support overlaps nodes in C . In order to correctly account for this leakage,
define the lumping matrix L which takes vectors in F to C such that the sum of each column is
unity, i.e., it partitions the components amongst nodes in F while maintaining the total sum. If 1C

is vector of ones with length corresponding the to the cardinality of C , then

1 ·MRT M−1
C PN

C = 1C ·
(
MC M̃−1

C P̃N
C +LMT

FC M̃−1
C P̃N

C

)
= 1C ·

(
MC +LMT

FC

)
M̃−1

C P̃N
C

which satisfies energy conservation if (but not only if)

M̃C = MC +LMT
FC . (3.84)

For this to be a general method, it is also necessary for the boundary flux computations (see
Eq. 45 in [129]) to be localized as well due to the presence of the consistent mass and stiffness
matrices on its right-hand side. To demonstrate how this quantity can also be localized, consider
the unknown finite element heat flux, qh, is given by∫

∂Ω f em

NIqh ·nMD dS =−
∫

Ωmd

NI∇ ·qh dV −
∫

Ωmd

∇NI ·qh dV. (3.85)

To estimate the unknown heat flux divergence, a finite element approximate function is used:

L(x) = ∑
I

NILI ≈ ∇ ·qh, (3.86)
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which must satisfy ∫
Ω

NI ∑
J

NJLJ dV ≈
∫

Ω

NI∇ ·qh dV, (3.87)

which is further approximated using row-sum lumping:∫
Ω

NILI dV =
∫

Ω

NI∇ ·qh dV, (3.88)

Noting that qh is zero by construction on the boundaries, row-sum lumping of the left-hand side
and integration by parts of the right-hand side provides and expression for the unknown function

LI =−V−1
I

∫
Ω

∇NI ·qh dV, (3.89)

where V−1
I is the inverse of the lumped mass matrix. Substituting Eq. (3.89) into Eq. (3.88), and

that result into Eq. (3.85), a localized approximate reconstruction is obtained:∫
∂Ω f em

NIqh ·nMD dS =
∫

Ωmd

NIV−1
I

(∫
Ω

∇N′I ·qh dV ′
)

dV −
∫

Ωmd

∇NI ·qh dV. (3.90)

This equation can be simplified into weighted integrals of the FE heat flux in Ω f em and Ωmd which
provides a more illuminating and computationally straightforward equation for the heat flux from
the FE region into the MD region:∫

∂Ω f em

NIqh ·nMD dS =
V MD

I
VI

∫
Ω f em

∇NI ·qh dV +

(
V MD

I
VI
−1
)∫

Ωmd

∇NI ·qh dV (3.91)

Inspired by this result, a more efficient approach is taken in which a two step approach will be
used to guarantee locality and global energy conservation. However, this approximation will not
exactly correspond to a Gaussian least constraint problem posed at the nodes. The first step solves
the Neumann problem by fully lumping the mass matrix, followed by a fully matrix solution of the
Dirichlet problem including the Neumann nodes with zeros in the right-hand side.
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Chapter 4

A Method for Atomistic-to-Continuum
Combined Thermal and Mechanical
Coupling

4.1 Introduction

Increasing interest in nanotechnology motivates development of simulation capabilities which can
investigate and assess device performance in the context of physics which are greatly different than
those at the macroscale. One avenue to account for these differences is multiscale modeling, which
in the context of nanosystems implies utilization of an expensive discrete model in regions where
the dynamics of atoms are important, and a less expensive continuum model where materials can be
effectively modeled using field theories. An important distinction between these types of physics
are that continuum models can represent only a small number of the governing state variables,
e.g. velocity, while other variables such as temperature are only accounted for implicitly through
constitutive models. By contrast, atomic descriptions of matter require all the state variables to be
specified because the trajectory of each particle must be simulated.

In terms of atomistic-to-continuum (AtC) modeling, this implies that even only one set of
variables is of interest, all must be included in the computation for the atoms to have accurate
dynamics. A simple example is the canonical shear flow in which a fluid is driven across a no-slip
boundary by means of a slip velocity above it, referred to as Couette flow. The continuum solution
can be obtained solely by considering the fluid’s velocity, with the temperature only informing the
equations through the thermodynamic properties of density and viscosity. Because work is contin-
uously being done on the fluid, energy is transformed into heat on a continuous basis. Continuum
Navier-Stokes models omitting the degrees of freedom of the temperature are well-posed, however,
an atomic model will eventually break-down due to infinite addition of heat, which implies increas-
ingly large atomic kinetic energy. Hence, a means to correctly remove heat is required. Common
thermostats, e.g. Nose-Hoover [47], are inappropriate for such an inhomogeneous system because
the effective fluid viscosity increases within a few nanometers of the wall due to discrete packing
effects, so heat is non-uniformly generated while the thermostat removes heat uniformly.

The solution proposed in this paper is to develop an AtC framework which can transfer momen-

The primary authors of this chapter are J. Templeton, R. Jones, and J. Zimmerman.
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tum and energy between a molecular dynamics (MD) representation of the atoms and a continuum
finite element (FE) description of velocity and temperature fields. This approach builds upon the
substantial progress made in AtC modeling within the last two decades. In particular, many tech-
niques exist for quasi-zero temperature mechanical coupling, often motivated by capturing the
impact of material defects on devices. A review article by Miller & Tadmor [93] compares and
contrasts many of these methods. Generally speaking, they categorize them into methods which
interact via forces versus those which interact via energy, usually by modifying the system Hamil-
tonian. This work favors the former approach, as writing a continuum Hamiltonian including
temperature is non-trivial. For comparative purposes, the momentum equations within the present
method are most similar to the bridging scale method [130], which performed well in Miller &
Tadmor’s test suite.

While less mature, AtC methods for temperature have also been proposed. The popular quasi-
continuum method was modified for using temperature as a primary variable by Kulkarni et al.
[71]. An extension of the bridging scale method has also been made for simulating heat transfer
between and MD and FE region [102]. Recently, Anciaux et al. [2] developed a temperature cou-
pling scheme based on the bridging domain method. The preceding methods focused on temper-
ature coupling in solids. Iterative AtC approaches for fluid mechanics have also been constructed
[80, 131]. For the reasons previously given, these approaches use thermostats to regulate the MD
temperature and eliminate the excess energy generated by shear.

In a series of recent papers, Kobayashi et al. [68, 69] developed a concurrent finite temperature
mechanical coupling method a hybrid molecular dynamics/coarse-grained particle method. Their
primary motivation was crack propagation, which requires treatment of waves moving between the
MD and coarse-grained region which are of sufficiently small frequency to be unrepresentable at
the continuum scale. Their approach used a Langevin thermostat applied to a set of “extra” atoms
with the difference between the continuum and atomistic velocities used to inform the dissipation
terms. 2D Lennard-Jones and graphene crack growth problems have thus far been treated using this
technique. Rizzi et al. [110] have also derived a method to simultaneously prescribe a temperature
and velocity to atoms within a specified region and applied their method to simulate salt water flow
through a nanopore. Their method also provides for the concentration of constituent species to be
regulated in this region. However, the approach is based on fixed volumes within the MD domain
rather than being derived for multiscale modeling.

The framework proposed in this paper is based upon combining previous efforts in MD/FE
coupling for temperature ([129, 123]. Both approaches consider a domain Ω fully overlaid with a
FE mesh with a subset containing atoms, with approximation of the integral over the atoms given
by appropriate summations. Coupling is achieved by integrating by parts in the continuum, which
provides a surface flux from the FE to MD regions. The flux is imposed on the atoms by means
of modifying the forces they experience to conserve the desired quantity. Section 4.2 provides the
unified mathematical description of the combined MD/FE system tracking both momentum and
energy. Correctly coupling the MD and FE regions necessitates developing a regulation scheme
which can exactly and locally provide an exact stress or heat flux to the atoms, and is presented in
Section 4.3. Details are provided on the time integration schemes used to advance the equations in
Sections:integration, followed by some example problems in Section 4.5. Finally, a few concluding
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thoughts are offered in Section 4.6.

4.2 Coupled Finite Element/Atomistic Momentum and Tem-
perature Equations

In developing the present multiscale formalism, we follow the approach of [129] and present the
results for the displacement and velocity, which have not been previously derived in this frame-
work. The temperature equation is nearly identical to that found in Chapter 3, and the result will be
quoted at the end of this section with emphasis on the ways it differs when performing combined
thermal/mechanical coupling. First, consider a finite element space spanned by shape functions
(basis functions) NI such that all functions in the space can be expressed as:

Ph(x) = ∑
I

NI(x)PI, (4.1)

where PI are the nodal values of the finite element momentum density field. They are obtained by
minimizing the mean-squared difference between the continuous field P and the FE approximation:

min
PI

∫
Ω

(
P(x)−Ph(x)

)
dV. (4.2)

The nodal velocities are then given by the least-squares solution

∑
J

∫
Ω

NINJPJ dV =
∫

Ω

NIP(x)dV. (4.3)

In order to relate the integral on the right-hand side of eq. (4.3) to a set of discrete atomic
momenta, it is necessary to define an equivalent momentum density associated with an atom. This
is done by considering atom α to have an associated volume ∆Vα , enabling the definition of the
atomic momentum density to be

P(xα)≈ δ (xα)ραvα , (4.4)

where ρα is the approximate mass density of atom α , cα is its velocity, xα is its reference posi-
tion, and δ is the Dirac delta function. When applied to eq. (4.3), a mathematical connection is
established between the continuous FE field and the discrete representation of the atoms

∑
J

∑
α

NIαNJαPJ∆Vα ≈∑
α

NIαραvα∆Vα (4.5)

by using an approximate quadrature for the integral. The shorthand NIα = NI(xα) has been used
to simplify the notation.

To complete the mathematical framework, the assumption that the volume for each atom is
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chosen to be consistent with the density, e.g.. ρα = mα/∆Vα .. Then letting Pα = ραVI , with VI
being the nodal velocities,

∑
J

∑
α

NIαNJαmαVI ≈∑
α

NIαmαvα . (4.6)

For an extended domain in which the finite elements cover Ω while the atoms exist within a subset
ΩMD ⊂ Ω, the integral over the entire system is divided into part over the FE domain, ΩFE =
Ω\ΩMD: ∫

Ω

NINJPJ dV ≡
∫

ΩFE

NINJρVJ dV +∑
α

NIαNJαmαVI (4.7)

To incorporate dynamics, let

ρV̇(x) = ∇ ·σ(x) (4.8)
mα v̇α = fα (4.9)

Then the nodal variable dynamics are given by

∑
J

(∫
ΩFE

NINJρV̇JdV +∑
α

NIαNJαmαV̇J

)
= ∫

ΩFE

NI∇ ·σ(x)dV +∑
α

NIα fα . (4.10)

However, this equation cannot be solved computationally since σ(x) is not known. Instead, this
quantity is approximated with its FE representation, and in this work, either linear elasticity,

σ(x)≈ κ ∑
J

∇NJUJ, (4.11)

or linear viscosity,
σ(x)≈ µ ∑

J
∇NJVJ, (4.12)

Note that using this definition leads to the following expression for conservation of mass∫
Ωmd

NINJρJ dV ≈∑
α

NIα NJα ρJ∆Vα = ∑
α

NIα ρα ∆Vα

= ∑
α

NIα mα ,

while the atomic volumes would satisfy a consistency constraint,∫
Ωmd

NINJ dV = ∑
α

NIα NJα ∆Vα .

However, neither are needed when using eq. (4.6). Also note there is no explicit constraint forcing the atomic tributary
volume used to assess the atomic mass density to equal the atomic quadrature volume used to approximate volumetric
integrals as discrete atomic sums. Doing so is a choice which simplifies the mathematics but also results in consistency
between the finite element projection and standard averaging operators.

62



will be used for the stress tensor. Additionally, density in the MD domain will be assumed constant
in Lagrangian frame calculations. Therefore, after integrating the stress term by parts, the FE
governing equation is

∑
J

(∫
ΩFE

NINJρV̇JdV +∑
α

NIαNJαmαV̇J

)
=

−
∫

ΩFE

∇NI⊗σ dV +
∫

∂ΩMD

NIσ ⊗nMD dA+∑
α

NIα fα . (4.13)

The unknown stress across the the boundary of the FE and MD regions, ∂ΩMD, will be determined
in the next section.

The coupled FE equations used in this work are those for the nodal velocities, VI , for which
eq. (4.13) can be written using the short-hand

∂

∂ t
MV

IJVJ =−
∫

ΩFE
∇NI⊗σ dV +

∫
∂ΩFE

NIσ ⊗ndS+∑
α

NIα fα , (4.14)

and the temperature equation for the nodal temperatures, TI , as derived in Chapter 3,

∂

∂ t
MT

IJTJ =−
∫

ΩFE
∇NI ·qdV +

∫
∂ΩFE

NIq ·ndS+∑
α

NIα ė′α . (4.15)

The mass matrices are also decomposed between the FE and MD domains, and when using the
Galerkin procedure [49] they are:

MV
IJ =

∫
ΩFE

NIρNJ +∑
α

NIαmαNJα (4.16)

MT
IJ =

∫
ΩFE

NIρcpNJ +∑
α

NIα3kBNJα . (4.17)

In the preceding equations, NI is the shape function associated with the Ith node evaluated a spatial
location while NIα is evaluated at the location of atom α , σ is the stress, q the heat flux, ρ the
density, cp the specific heat capacity, kB is the Boltmann constant, fα is the force on atom α ,
while e′α is a measure of its fluctuating energy. Derivation of these equations can be found in the
indicated references.

In order to develop the present theoretical framework, a definition is required for e′α . For
simplicity, a kinetic definition will be used which is reasonable if equipartition holds and Ith shape
function’s support contains a large number of atoms. Kinetic temperatures are based on multiples
of the kinetic energy only, in this case two times it:

e′α = mα

∣∣v′α ∣∣2 , (4.18)

where mα is the atomic mass and v′α is the atom’s fluctuating velocity. (Using more general defi-
nitions of temperature, i.e. including potential energy contributions, can be fit into this framework
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in a straightforward manner by using the procedure in Chapter 3.) A convenient choice for the
fluctuating velocity is first to define the “mean” velocity of an atom based on the FE velocity:

v̄α ≡∑
I

NIαVI. (4.19)

The deviation of the atomic velocity, vα from this “mean” is the fluctuating velocity

v′α = vα − v̄α . (4.20)

This definition of the fluctuating kinetic energy, while not completely consistent with temper-
ature as a thermodynamic variable, nonetheless is consistent and meaningful within the multiscale
context. It enables the kinetic energy of an atom, kα = 1/2mα |v′α |

2, to be decomposed into mean
and fluctuating parts via the following equations

˙̄kα = v̄α · fα (4.21)

k̇′α = v′α · fα . (4.22)

Most notably in contrast to thermodynamic theory, the fluctuating kinetic energy, and hence the
temperature, is not independent of the length scales associated with the FE mesh. However defining
it in terms of the FE basis will have advantages in modifying the MD forces to enable coupling
with the FE.

Before turning to adjustment of the MD forces based on the FE state, it is important to note
that in this work all the mass matrices are row-sum lumped [49]. While this was also the case in
the previously cited works, doing so has specific implications in this effort. Row-sum lumping is
used to diagonalize mass matrices by summing all the entries in a row and “lumping” the result on
the diagonal:

MV
IJ = δIJ

(∫
ΩFE

NIρ +∑
α

NIαmα

)
(4.23)

MT
IJ = δIJ

(∫
ΩFE

NIρcp +∑
α

NIα3kB

)
, (4.24)

with δIJ being one if I = J and zero otherwise. In AtC approaches, it has the advantage of localizing
the effects of the atoms such that each atom only contributes to shape functions whose support
overlaps with the element in which they reside. This is particularly useful in that when modifying
the atoms to be consistent with the FE state, only those atoms in elements near ∂ΩFE must be
adjusted so that the majority of atoms can evolve according to their unadulterated equations of
motion. However, row-sum lumping means that the FE approximation to a function is no longer
a project, i.e., v̄ and v′ are not orthogonal with respect to functions in the FE basis. As a result,
a spatially-varying kinetostat cannot be derived independently of the existing spatially-varying
thermostats in [129, 123] meaning a combined coupling algorithm is required.
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4.3 Combined Kinetostat/Thermostats

4.3.1 Direct Temperature and Velocity Imposition

Considering the extraction of the FE variables as an approximate projection of MD quantities only,
the nodal fields are

MT
IJ,αTJ = ∑

α

NIαmα (vα −vα)
2 (4.25)

MV
IJ,αVJ = ∑

α

NIαmαvα , (4.26)

where the mass matrix notation is short-hand for the atomic contribution in eqs. (4.23) and (4.24),

MV
IJ,αVJ ≡∑

α

NIαmαVI

MT
IJ,αTJ ≡ δIJ ∑

α

NIα3kBTI,

Following the derivation of successful regulation of atomic velocities to conform to specified FE
temperatures [129], assume a modified atomic velocity of the form

v∗α =
√

rαv′α + sα , (4.27)

recalling v′α ≡ vα − v̄α , such that rα ≡ ∑I NIαrI is a velocity rescaling factor while sα ≡ ∑I NIαsI
corrects the streaming velocity.

When applying this regulation scheme, the FE fields are held fixed so the equations for the
rescaling and streaming parameters are

MV
IJ,αVJ = ∑

α

NIαmα

(√
rαv′α + sα

)
, (4.28)

MT
IJ,αTJ = ∑

α

NIαmα

(√
rαv′α + sα − v̄α

)2
. (4.29)

Because v̄α ≡ ∑I NIαVI , it does not change as a result of applying this transformation. The tem-
perature equation can be rewritten as

MT
IJ,αTJ = ∑

α

NIαmα

(
rαv′2α +2

√
rαv′α · (sα − v̄α)+ |sα − v̄α |2

)
. (4.30)

It is anticipated that the difference between the streaming atomic velocity and the streaming correct
term will be small, which suggests an iterative solution process. Begin by setting sI = VI . Then
put eq. 4.30 into a form which can be solved for the next iteration of rI:

∑
α

NIαmαv′2α ∑
J

NJαrn+1
J = MT

IJ,αTJ−∑
α

NIαmα

(
2
√

rn
αv′α · (sn

α − v̄α)+ |sn
α − v̄α |2

)
. (4.31)

Equation 4.28 can then be used to solve for the streaming correction:

∑
α

NIαmα ∑
J

NJαsn+1
J = MV

IJ,αVJ−∑
α

NIαmα

√
rn+1

α v′α (4.32)

Adjusting these equations to account for more general temperature definitions, so long as they
contain a kinetic energy contribution, is straightforward (Chapter 3).
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4.3.2 Constraint-Based Atomistic-to-Continuum Coupling

Following previous efforts [129, 123], coupling between the MD and FE representations can be
effectively mediated by satisfying coupling constraints. These constraints arise from two sources:
1) ensuring the evolution of the FE and coarse-grained atomistic fields’ primary variables is con-
sistent, or 2) by preserving fluxes of conserved quantities across the MD/FE interface. The first set
of constraints is

gV,1
I =

∂

∂ t

(
∑
α

NIαmαvα −MV
IJ,αVJ

)
≡∑

α

NIα f∗α −
∂

∂ t
MV

IJ,αVJ = 0, (4.33)

gT,1
I =

∂

∂ t

(
∑
α

NIαmα

∣∣v′α ∣∣2−MT
IJ,αTJ

)
≡∑

α

NIαv′α · f∗α −
1
2

∂

∂ t
MT

IJ,αTJ = 0. (4.34)

The ·∗ notation is used to denote the modified atomic velocity satisfying the constraints, while
short-hand expressions for the atomic momentum and kinetic energy have been introduced to aid
in connecting the different coupling methodologies to a common mathematical framework.

Constraints of the second type are based conserved quantities, in this case momentum and
energy:

gV,2 =
∂

∂ t

(
∑
α

pα +∑
I

∫
ΩFE

MV
IJVJ dV

)
= 0 (4.35)

gT,2 =
∂

∂ t

(
∑
α

kα +Φ+∑
I

∫
ΩFE

MT
IJTJ dV

)
+∑

I

∫
ΩFE

(
VI ·

∂

∂ t
MV

IJVJ +VI ∇NIσ

)
dV = 0.

(4.36)

The total potential is taken to be the potential energy due to interactions of atoms in A with each
other as well as with ghost atoms. Additionally, the FE kinetic and potential energies have been
included. Upon application of the time derivative to the MD terms in both constraints, they reduce
to

gV,2 = ∑
α

fλ
α −∑

γ

fMD
γ +

∂

∂ t ∑
I

∫
ΩFE

MV
IJVJ dV = 0 (4.37)

gT,2 = ∑
α

v′α · fλ
α +∑

α

v̄α · fλ
α +∑

I

∫
ΩFE

(
∂

∂ t
MT

IJTJ dV +VI ·
∂

∂ t
MV

IJVJ +VI ∇NIσ

)
dV = 0.

(4.38)

The total potential of the MD system is included and therefore ghost atoms must be included
in the kinetic energy summation. The conservative form of the FE equations implies

∑
I

∂

∂ t

∫
ΩFE

MV
IJVJ dV = ∑

I

∫
∂ΩFE

NIσ ·ndS (4.39)

∑
I

∂

∂ t

∫
ΩFE

MT
IJTJ dV = ∑

I

∫
∂ΩFE

NIq ·ndS. (4.40)
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The mean kinetic energy equation is also

∑
I

∫
ΩFE

(
VI ·

∂

∂ t
MV

IJVJ +VI ∇NIσ

)
dV = ∑

I

∫
∂ΩFE

VINIσ ·ndS. (4.41)

By re-arranging terms in eq. (4.38), the mean component of the kinetic energy can also be included:

gT,2 = ∑
α

v′α · fλ
α +∑

I

∂

∂ t

∫
ΩFE

MT
IJTJ dV +∑

I

(
∑
α

NIαVI · fλ
α +

∫
∂ΩFE

VINIσ ·ndS
)
. (4.42)

Substituting these expressions back into eqs. (4.37) and (4.38) and applying the locally by FE
shape function rather than as a summation, a set of constraints associated with each FE node is
derived:

gV,2
I = ∑

α

NIα fλ
α −∑

γ

N∗Iγ fMD
γ +

∫
∂ΩFE

NIσ ·ndS = 0 (4.43)

gT,2
I = ∑

α

NIαv′α · fλ
α +

∫
∂ΩFE

NIq ·ndS+
(

∑
α

NIαVI · fλ
α +

∫
∂ΩFE

VINIσ ·ndS
)
= 0. (4.44)

By taking the inner product of VI with eq. (4.43), eq. (4.44) can be reduced to

gT,2
I = ∑

α

NIαv′α · fλ
α +

∫
∂ΩFE

NIq ·ndS+∑
γ

N∗IγVIfMD
γ = 0. (4.45)

The modified shape function N∗I is a partially lumped shape function for localizing restriction of
ghost atom quantities is defined as N∗Iγ

= β−1NIγ such that ∑I∈I∗NIγ = β . The set of nodes I∗ are
those with both real and ghost atoms in their support.

As both constraint sets involve time derivatives of the restricted atomic momenta and kinetic
energy, a general application of Gaussian least-constraints can be applied to the force using an
arbitrary target value for the FE data. In this case, the deviation of the atomic forces from the ones
from the MD force solver alone. Lagrange multipliers are used to augment this cost function into
one that can be minimized subject to the constraints:

J = ∑
α

1
2mα

∣∣f∗α − fMD
α

∣∣2 +∑
I

λ
V
I

(
∑
α

NIα fλ
α +RV

I

)
+∑

I
λ

T
I

(
∑
α

NIαv′α fλ
α +RT

I

)
(4.46)

Setting the variation of J with respect to f ∗α to be zero, the equation for the modified force is
obtained

f∗α = fMD
α −mα ∑

I
λ

V
I NIα −mα ∑

I
λ

T
I NIαv′α . (4.47)

The last two terms are fλ
α . From eq. (4.47), the alterations to the MD force consist of a uniform ac-

celeration and a drag force proportional to the fluctuating velocity. Note for flux-based constraints
the cost function is equivalent to minimizing the magnitude of the coupling force such that the
constraints are enforced.
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Equation (4.47) also determines the equations for the Lagrange multipliers. The modified force
is substituted into each constraint to obtain the following system of equations for λV

I and λ T
I :

∑
α

NIαmα ∑
J

NJαλ
V
I +∑

α

NIαmαv′α ∑
J

NJαλ
T
J = RV

I (4.48)

∑
α

NIαmαv′α ·∑
J

NJαλ
V
I +∑

α

NIαmα

∣∣v′α ∣∣2 ∑
J

NJαλ
T
J = RT

I (4.49)

The resulting matrix for λI has the form[
M C
CT 2K

][
λV

λ T

]
=

[
RV

RT

]
(4.50)

Being a symmetric matrix, it can be solved iteratively using a conjugate gradient method. However,
the coupling matrix C is small in this case. If the Galerkin procedure were used to construct the
FE equations without row-sum lumping, it would be zero because it is contains the product of
the difference between the true and FE velocities and a function represented on the FE basis,
and the two would be orthogonal with respect to any function spanned by the FE basis. Use
of row-sum lumping for localization implies that C is non-zero, but is still small. Therefore, an
iterative solution is preferred. Beginning with the previous value of λV , the temperature multiplier
is updated, which is then used to update the velocity multiplier. This approach is beneficial as the
fractional step update scheme necessitates an iterative solution for λ T (Chapter 3). Note also that
localization of the multipliers to the boundary nodes and use of combinations of fixed-value and
flux-based constraints can be performed using the same approaches as for the isolated constraints
in previous works ([123], Chapter 3).

4.4 Temporal Integration Scheme

In this section the velocity integration scheme for the atoms and nodal velocity and displacement
field is provided when solving problems in the Lagrangian frame. The temperature is always
advanced using the fractional step method from Chapter 3, as is the velocity field in Eulerian
frame calculations Following the standard velocity-Verlet algorithm [41], the velocities are first
updated:

vn+1/2
α = vn

α +
∆t
2

fn
α

mα

(4.51)

Vn+1/2
I = Vn

I +
∆t
2

V̇n
I , (4.52)

where V̇ is given by eq. (4.14). At this point, both the atomic positions and continuous displace-
ment are updated a full time step:

xn+1
α = xn

α +∆tvn+1/2
α (4.53)

Un+1
I = Un

I +∆tU̇n+1/2
I . (4.54)
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Given xn+1
α and Dn+1, both fn+1

α and V̇n+1 can be determined. Therefore, the atomic and
continuous velocities can finish updating according to the last step of the Verlet algorithm:

vn+1,∗
α = vn+1/2

α +
∆t
2

fn+1
α

mα

(4.55)

Vn+1,∗
I = Vn+1/2

I +
∆t
2

Ḋn+1
I . (4.56)

The superscript (·)n+1,∗ indicates a predicted quantity at time step n+ 1. This is again where a
constraint can be applied to the atomic velocities by solving eq. (4.50). As a result, the atomic
forces are modified according to eq. (4.47), so the the velocities must be corrected:

vn+1
α = vn+1,∗

α − ∆t
2

(
∑
I

λ
V
I NIα +∑

I
λ

T
I NIαv′α

)
(4.57)

Vn+1
I = Vn+1,∗

I +
∆t
2
(
MV

IJ
)−1
(

NIα ∑
J

λ
V
J NJα +NIα ∑

J
λ

T
J NJαv′α

)
. (4.58)

4.5 Examples

4.5.1 Couette Flow

Couette flow is a canonical problem in fluid mechanics in which shear flow is generated by means
of applying a fixed velocity at a plane a finite distance above a no-slip plane. Here it is used
to demonstrate the use of field-based constraints, eq. (4.33) and eq. (4.34), to impose a specified
boundary condition. The system considered is 32.43×32.43×64.86 Åbox containing 3564 atoms.
Periodic boundary conditions are used in the y and y directions while a layer of artificial atoms
above and below the system in the z direction is used to confine the atoms and provide the no-slip
condition at the lower boundary. Atoms interact using the Lennard-Jones (LJ) potential energy
based on the pairwise distance ri j between atoms i and j,

U i j (ri j)= 4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
]
, (4.59)

with an energy of ε = 0.238 Kcal/mole and a length scale of σ = 3.405 Åtruncated at 13.5 Å.
Each atom’s mass is 39.95 g/mole. Interactions between the internal atoms and boundary atoms
use ε = 0.15 Kcal/mole and σ = 10 Å. A schematic of the MD system is provided in Figure 4.1.
All examples in this paper were run using the LAMMPS MD simulator [106].

To determine a physically realistic initial configuration, each atom is assigned a randomly
generated velocity drawn from a Gaussian distribution corresponding to 100 K and run with a
Nosé-Hoover [99, 47] thermostat for 1 million time steps of size 5 fs. The rescaling formulation
eq. (4.27) is applied every 10 steps over a 2000 step equilibration to maintain this temperature while
obtaining a more thermodynamically correct state. Simultaneously, all velocity components at all
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Figure 4.1. Schematic of the Coutte flow MD configuration. Sur-
face atoms are yellow while fluid atoms are green.
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nodes is fixed at 0 except for the top node, which has the x velocity fixed at 0.1 Å/fs. Following
equilibration, the rescaling controller are removed from all nodes. The top node is then subject to
the field-based constraints to maintain the parallel velocity as previously stated and the temperature
at 100 K. The system is then allowed to relax, producing the velocity profile in Figure 4.2 over 1
ns.
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Figure 4.2. Time evolution of Coutte flow.

4.5.2 Electro-osmotic Flow

To demonstrate the method using the conservation constraints, eq. (4.43) and eq. (4.45), an ionic
solution driven by an electric field is considered. A coarse-grained salt-water model is used based
on the model obtained by [77]. The MD domain size is 48.96× 48.96× 51.69 Åwhile the FE
domain extends to 102 Åin the z direction. A total of 4000 solvent atoms are used in addition to 150
negative and 50 positive ions. They are augmented by an explicitly modeled substrate consisting
of 2016 atoms in a three layer deep FCC lattice with spacing 4.08 Å. Atoms are confined to the
MD region by use of a 9/3 LJ wall positioned at the top of the MD domain,

U iw (riw)= ε
w

[
2
15

(
σ2

riw

)9

−
(

σ2

riw

)3
]

(4.60)
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using an energy of εw = 0.1351 eV, a length scale of σw = 3.188 Å, and a 13 Åcut-off radius.
Parameters for the inter-atomic LJ self interactions are provided in Table 4.1 with interspecies
interactions computed using the Lorentz-Berthelot mixing rules [83, 11]. Electrical interactions
were computed using Coulomb’s law within the cut-off radius and the particle-particle/particle-
mesh algorithm [46] with a slab geometry correction [134], all of which incorporated a relative
dielectric constant of 80. Figure 4.3 illustrates the system setup.

Table 4.1. Self-interaction LJ potentials for all species used in
Section 4.5.2.

Atom mass (g/mol) ξLJ (eV) dLJ (Å) q (e)

Solvent 18.0154 0.004423 3.188 0
Negative Ion 35.453 0.004336 4.401 +1
Positive Ion 39.0983 0.004336 3.331 -1
Substrate 196.967 0.7244 2.598 0.3472 (first layer)/0 (other layers)

Similarly to the previous section, the atomic velocities are rescaled and shifted using eq. (4.27)
to maintain a local temperature of 100 K with no mean velocity, both as measured by the FE mesh.
Timestep size, rescaling frequency, and run time are all identical to those used in Section 4.5.1.
Following equilibration, flux-based constraints eq. (4.43) and eq. (4.44) are used to couple the MD
and FE systems using a localization approximation [123]. An external electric field is also applied
in the x direction with magnitude 0.05 V/Å. The velocity profile’s evolution over 50 ps is shown in
Figure 4.4.

4.6 Conclusion

This work presents the formulation for combined thermo-mechanical AtC coupling. As opposed
to strictly interpreting the atomic velocity as either a center-of-mass velocity or a thermal velocity,
it must be decomposed into a mean a fluctuating component. The FE basis functions are used
to generate this decomposition by approximately projecting the atomic velocities onto them. A
lumped mass matrix is used which localizes the effects of the atoms to only those nodes whose
support they are in, but the result is that the mean and fluctuating velocities are no longer orthogonal
with respect to the FE basis.

Due to this lack of orthogonality, previously derived methods for coupling the MD and FE
systems cannot be directly applied. Instead, a holistic approach is taken to derive three coupling
schemes: direct control of the mean and fluctuating atomic velocities using a modified rescaling
thermostat, AtC coupling using the primary variables, and AtC coupling using boundary fluxes.
The latter method is readily set up as an iterative problem with error terms in the right-hand sides
accounting for “leakage” between the restricted mean and fluctuating velocities due to the approx-
imate nature of the projection. This method is primarily used to set physically reasonable initial
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Figure 4.3. Schematic of the electrokinetic flow model configu-
ration. Surface atoms are yellow while fluid atoms are blue, posi-
tively charged ions are green, and negatively charged ions are or-
ange. The FE mesh is shown in red.
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Figure 4.4. Time evolution of the electrokinetic flow.
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conditions on the atomistic system such that they spatially vary consistently with the desired FE
initial conditions.

AtC coupling algorithms result in symmetric linear systems for a set of Lagrange multipliers
which impose constraints to make the FE and MD systems consistent. Because the fractional step
update requires a second order solution for the Lagrange multipliers associated with the tempera-
ture constraint, an iterative approach is preferred for these equations as well. Again, modification
of the right-hand side is necessary. When using flux-based constraints, both momentum and energy
are conserved, although part of the energy flux incorporates mean work on the ghost atoms.
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Chapter 5

Sensitivity to physical parameters in MD
simulations of concentration driven ionic
flow through a silica nanopore

5.1 Introduction

Synthetic nanopores, which are inspired by their biological counterparts, are widely used in the
industry, e.g. in the form of nanoporous membranes applied for desalination or other separation
tasks. Of particular interest in these applications is the control of transport through the nanopores,
namely by identifying and manipulating some of their properties or modulating key physical pro-
cesses, see e.g. Refs. [109, 121, 24, 97, 81, 10, 20, 1, 58, 105, 62, 96] and references therein.

Examples include directly manipulating the pore size during the fabrication process such that,
based on the target application, only certain molecules or ions can pass through. In this case,
nanopores are fabricated with a diameter just slightly larger than the size of the target molecule and
such that they can effectively differentiate the flow of (larger) secondary components. Nanoporous
membranes of this type are widely used in combination with electrophoretic methods, which in-
volve the transport of solute ions from a source stream into a sink stream, and are applied to water
purification or desalination systems.

The selective control of the pore flow can also be achieved by modulating the interactions
between the transported ions (or molecules) and the pore walls. In particular, the manipulation of
the surface charge on the nanopore walls, see e.g. Refs. [97, 81, 10, 58], has a direct influence on the
ionic transport by electrostatic interactions. A nanopore with a negative surface charge distribution
favors the permeation of positive ions (cations), while a positive charge distribution favors the flow
of negative ions (or anions). The surface charge is also referred to as “gating charge”, due to the
fact that its value can cause the nanopore to switch between an open and closed state toward a
target ionic species. Such nanopores thus become ion-selective, since the sign of the charge on the
pore surface can be chosen to allow the flow of a specific ionic species.

A key factor to leverage in designing optimal membranes is the strong dependence of their per-

The primary authors of this chapter are F. Rizzi, R. Jones, B. Debusschere and O. Knio. It was originally published
in [110]. This project supported R. Jones.
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meability on the physical processes characterizing nanopore flows. A detailed uncertainty quantifi-
cation (UQ) analysis of nanopore flows to characterize and describe their complexity can thus be
important for improving design capabilities, allowing one to better understand the main physical
processes involved in these systems by accounting for the effect of potential uncertainties in the
system.

In general, molecular dynamics (MD) simulations of nanopore flows are not new, see e.g. Refs.
[22, 124, 125, 4, 28, 29, 100, 79, 84, 51], but the application of UQ to this important system is
novel. UQ plays an important role particularly for complex, highly non-linear systems, where
even small input uncertainties can be amplified to yield substantial uncertainties in the observa-
tions or model predictions [95, 74]. We distinguish between two main sources of uncertainty:
parametric uncertainty and intrinsic noise. Parametric uncertainty arises when some model param-
eters and/or boundary conditions are assumed to be uncertain. Intrinsic noise, on the other hand,
is inherently present in MD simulations due to thermal molecular fluctuations. A complete UQ
analysis thus needs to properly describe and quantify these two sources of uncertainty. This task
becomes particularly challenging for problems where the two sources combine, yielding a complex
setting where the model predictions are both noisy, due to the effect of thermal fluctuations, and
random, since they depend on parametric uncertainty. Previous work in this context can be found
in Refs. [118, 117] and [111, 112]. In the latter, e.g., the authors focused on analyzing the effect of
parametric uncertainty and intrinsic noise in isothermal, isobaric MD simulations of TIP4P water.

In this work, we focus on a system involving a silica nanopore connecting two reservoirs with
a binary electrolyte, namely salt (NaCl) water. The heterogeneous nature of the system, due to the
several components involved, compounds the inherent complexity of the system. The crystalline
silica employed is suitable for the purposes of the present work; however, we envision a future
study with an amorphous (glassy) silica model like those obtained by annealing in Refs. [23, 84].
Also, unlike Brownian dynamics simulations such as in Ref. [52], we have chosen to explicitly
represent the water solvent in order to model steric effects accurately. In order to create a concen-
tration driven ionic flow through the dense solvent and the silica pore, we developed an efficient,
charge-neutral ad hoc concentration control algorithm. With this algorithm, concentration gradi-
ents of the ions are controlled such that the net flow of the Na+ ions is opposite to the flow of the
negative ions Cl−. The efficiency of this approach was necessary to make the scope of this study
feasible.

The UQ analysis presented in this article is organized into two separate parts, each focusing on
a specific aspect. First, we explore the dependence of the pore flow to the pore diameter, and, sec-
ondly, we investigate its sensitivity to a gating charge. In this work, we rely on Polynomial Chaos
(PC) expansions [132, 37, 74] to represent random variables. To determine the PC coefficients
of the stochastic model response, we apply a Bayesian inference approach [38, 118, 111], which
allows us to isolate the impact of parametric uncertainty on the noisy, random MD predictions by
properly accounting for the effect of MD thermal noise.

The article is organized as follows. In § 5.2, we discuss the atomistic system, the MD setting
and the concentration control algorithm. In § 5.3 we illustrate the dependence of the flow on the
pore diameter, while 5.4 presents the UQ analysis for the gating charge. Conclusions are presented
in § 5.5.
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5.2 Atomistic system and MD simulations

In this section we describe the system configuration, the force-field, the concentration control
algorithm and other details of the MD computations.

5.2.1 Atomistic system

We constructed a silica pore model connecting two reservoirs of a solution of sodium (Na+) and
chloride (Cl−) ions in water, as illustrated schematically in Figure 5.1.
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Figure 5.1. (a) Schematic of the dual-reservoir nanopore sys-
tem. The silica is a rectangular block with a cylindrical pore of
nominal radius R. Only few surface layers of the silica block
have dynamics (gray), shown in panel (b), while the rest com-
prises the “frozen” atoms (green). The volume of fluid is nomi-
nally Vf =

(
2LxLyL(w)

z +πR2L(s)
z

)
.

To build the silica structure, we took the primitive cell of the α-quartz crystal structure from
[75], and replicated it nx = 11, ny = 14, and nz = 6 times along x, y, and z respectively, to yield a
bulk crystal silica of dimensions (xyz) Lx ≈ 54, Ly ≈ 60 and L(s)

z ≈ 32 Å. Next, we removed silica
within a cylindrical region of radius R, such that the resulting pore axis is aligned with the z-axis.
The proper stoichiometry is then ensured by adding/removing a few atoms to enforce a ratio of two
oxygen atoms per one silicon. The removal procedure leaves some under-coordinated/dangling
oxygen and silicon atoms which have to be saturated [23, 84]. To this end, any surface oxygen
atom with a dangling bond is saturated with a hydrogen, while any surface silicon atom with one
or more dangling bonds is capped with a corresponding number of hydroxyl groups (OH−), to
yield the fully hydroxylated crystal silica model shown in Figure 5.2. Note that the capping of the
pore surface defects causes the final silica model to have an effective radius slightly smaller than
the nominal value R. The widths of the silica model along the x and y directions, i.e. Lx ≈ 54 Å and
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Ly ≈ 60 Å, are chosen to be larger than: (a) the maximum pore diameter studied in this work, and
(b) the largest cutoff radius used for the potential (defined in § 5.2.2), to prevent the pore feeling
the effect of its images [4].

Figure 5.2. Silica pore model of dimensions (x,y,z) Lx ≈ 54,
Ly ≈ 60 and L(s)

z ≈ 32 Å obtained from a bulk crystal silica struc-
ture after carving a pore of nominal radius R, ensuring stoichiome-
try, and hydroxylating the surface and pore defects. Color legend:
silicon Si (ochre), bulk oxygens Obulk (blue), hydroxide oxygens
Ohy (yellow) and hydroxide hydrogens Hhy (black).

Next, we constructed the two connected reservoirs each having dimensions Lx ≈ 54, Ly ≈
60 and L(w)

z ≈ 36.75 Å. The width, L(w)
z , of each reservoir should ideally be chosen as large as

possible with respect to the pore radius, R. This choice, however, is constrained by the associated
computational cost. For the present system, we found L(w)

z ≈ 36.75 Å to be a suitable compromise
between the two requirements. Indeed, L(w)

z is more than twice the largest radius explored in this
study. The two reservoirs and the silica pore were then filled with water molecules such that the
total density is of order ∼ 1000 kg/m3, and, subsequently, a subset of these molecules is randomly
chosen and replaced with Na+ and Cl− ions to achieve a desired concentration of 1.5 (mol/l).
We anticipate that based on the four different pore diameters explored in this work, the water
density varies by nearly 1.5%. The resulting system has final length Lz ≈ 105.5 Å, and is shown
schematically in Figure 5.1 (a).

To account for momentum exchange between the aqueous solution and the silica surfaces and
to reduce computational expense, only few surface layers of the silica are allowed to have finite-
temperature dynamics. To this end, we define two sub-regions of the silica model, one identifying
the atoms with dynamics, and one including the “frozen” atoms. The geometry of the sub-region
having dynamics is shown in Figure 5.1 (b). The thickness of the surface layer with dynamics is
set to 6 Å, i.e. L1 = 6 Å and R2 = R+6 Å.

As alluded to, it is crucial that the two reservoirs of the system must communicate only through
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the pore. To effect this, we used hard wall reflectors at the right and left borders of the domain, to
contain the fluid. In addition, we minimized the long-range Coulombic interaction of the system
with its images along the z axis using the so-called “slab” particle-particle particle-mesh (PPPM)
method [46, 134], which employs a vacuum buffer region and a dipole correction. This approach
enables us to properly represent the concentration and electric potential gradients, and also the
representation of only one pore, as opposed to the two needed in a system that is truly periodic in
the flow direction.

The remaining parameters in Figure 5.1 are related to the concentration control algorithm which
will be discussed in § 5.2.3 and in the Appendix.

5.2.2 Force-field

The main complexity of the total potential energy Φ is due to the heterogeneous nature of the sys-
tem, which contains water, silica, and sodium and chloride ions. We represent Φ, with a functional
form,

Φ = Φbonded +ΦLJ +ΦCoul︸ ︷︷ ︸
non−bonded

, (5.1)

commonly used to describe both pre-defined intra-molecular (bonded) interactions and inter-molecular
(non-bonded) contributions that depend on proximity. Physically, the bonded interactions result
from covalent bonds which involve the stretching of pairs of atoms, bending of triplets of atoms,
and twisting of quadruplets of atoms. In the present study, all three contributions are modeled with
harmonic potentials.

The non-bonded contribution is due to Van der Waals interactions, ΦLJ , and electric forces,
ΦCoulomb:

ΦLJ =
N

∑
i=1, j>i

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

︸ ︷︷ ︸
ΦLJ(ri j)

, (5.2)

ΦCoulomb =
N

∑
i=1, j>i

qiq j

4πε0ri j
, (5.3)

where N is the total number of atoms, ri j is the distance between the i-th and j-th atoms, {εi j,σi j}
are the Lennard-Jones (LJ) well depth and reference distance, qi is the charge of atom i, and ε0 is the
vacuum permittivity. The non-bonded interactions are multiplied by a transition function that acts
in the range ri j ∈ [rc0,rc1 ], as in Ref. [86] and references therein, to ensure a smooth decay to zero
between the inner, rc0 , and outer cutoff, rc1 . For the cutoffs, we assume rc0 = 8 Å and rc1 = 10 Å,
which should be adequate and efficient given that the largest LJ parameter σ is 4.04470 Å, see
Table 5.1. The remaining long-range Coulomb interaction is enacted using the PPPM solver [46].

As commonly done, we define the LJ parameters for the self interactions, and use the Lorentz-
Berthelot mixing rules to calculate the cross-species interaction parameters. For the silica, the
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ε [eV] σ [Å] Reference Charge |e| Reference

Water Hw 0.0 0.0 [56, 88] 0.520 [56, 88]
Ow 0.006721438 3.15365 [56, 88] −1.040 [56, 88]

Silica

Ohy 0.006595682 3.15380 [82] −0.51 [82]
Hhy 0.00199475 0.40000 [82] 0.32 [82]
Si 0.02602000 3.91996 [82] bond incrementally [23, 84]

Obulk 0.006595682 3.15380 [82] −0.70 [82]

Ions Na+ 0.002033777 2.42990 [104] +1 [104]
Cl− 0.006504600 4.04470 [104] −1 [104]

Table 5.1. Lennard-Jones parameters (ε,σ ) and Coulombic
charge, in multiples of the electron charge |e|, for each atom type
present in the system: {Hw,Ow} are water hydrogen and oxygen
atoms, respectively, {Hhy,Ohy} are hydrogen and oxygen atoms
appearing in an hydroxide group, Obulk are oxygen atoms in the
bulk of the silica, Si are silicon atoms and {Na+,Cl−} are the salt
ions. The Lorentz-Berthelot mixing rules σαβ = 1

2

(
σα +σβ

)
, and

εαβ =
√

εαεβ are used to define the interspecies Lennard-Jones in-
teractions. For the remaining set of force-field parameters, refer to
Ref. [82] for silica, to Ref. [56, 88] for water and to Ref. [104] for
the ions.

potential parameters defining the bonded and LJ interactions are extracted from Lopes et al. [82].
All the partial atomic charges of the silica are also obtained from Ref. [82], except for those of the
silicon atoms. Some of these atoms are part of the bulk silica while others are bonded to hydroxide
groups. To account for these differences in the silica structure, we followed an approach similar
to Refs. [23, 84], by assigning the partial atomic charges to the silicons using a bond incremental
fashion, see e.g. Refs. [91, 92, 32]. Specifically, the charge of a silicon atom is equal to half the
sum of the charges of the atoms that are bonded to it. This method has the following advantages:
(a) the charge on each atom takes into account the nature of the other atoms to which it is bonded,
and (b) charge conservation is automatically ensured [91, 92, 32]. For water, we adopt the TIP4P
model [56, 57, 88]. Finally, for the ions, which are only subject to non-bonded interactions, all the
parameters are obtained from Ref. [104]. Table 5.1 summarizes the LJ parameters and the atomic
charges for each atom type.

5.2.3 MD simulations

The MD simulations are performed with LAMMPS [107, 106]. Each simulation consists of an
equilibration stage, followed by a data collection stage where the concentration control (CC) al-
gorithm is turned on. All simulations are run at T = 298.15 K. The bond lengths and angles for
each water molecule are held fixed using the SHAKE algorithm [116], as required by the TIP4P
model [56, 57]. In addition, we use a Verlet time integrator [128] with a time step ∆t = 1.5 fs for
the equilibration, and ∆t = 1.25 fs for the concentration driven flow.

82



Equilibration

In the equilibration phase, we use Nosé-Hoover thermostat [98] to control the temperature of the
silica pore, and a velocity rescale to enforce the temperature constraint on the water molecules
and the ions. Specifically, the temperature rescaling is applied to the water molecules during the
full equilibration run, whereas the ion velocities are only rescaled during the first 5× 105 steps
of the total equilibration run of 1.5× 106 time steps (2.25 ns). We found this approach most
efficient in forcing the overall system to equilibrium and the duration of 2.25 ns suitable for all
cases considered.

Concentration Control

The equilibrated system is used as an initial condition for the data collection stage of the simulation,
where the concentration control (CC) algorithm is applied. During this CC stage, the role of the
two control regions C1 and C2 shown in Figure 5.1(a) is twofold: (a), they are the regions where
the ions are inserted or deleted such that the target concentration difference |∆c| is achieved; (b),
they are used to control the temperature and momentum of the atoms that enter these regions (see
the Appendix for more details). In other words, during the measurement stage, only the fluid
molecules inside the two control regions are subject to temperature and momentum control, while
in rest of the system the fluid follows Newtonian dynamics.

To establish a concentration driven ionic flow through the pore, we did not employ the dual-
control volume grand-canonical molecular dynamics (GCMD) algorithm typically used [42, 4].
Instead, we developed a more efficient ad hoc approach to control the concentration (as opposed to
the chemical or electrochemical potential) in a charge-neutral manner compatible with the PPPM
Poisson solver. The algorithm, described in detail in the Appendix, borrows aspects of GCMD
[101, 42, 119] and thermodynamic integration [67, 33], as in Ref. [12]. It is based on the as-
sumption that if the control regions are as far away as feasible, taking into account the long-range
Coulomb effects, the proper concentrations and fluctuations occur near the pore entrance and the
dynamics represent physically accurate ion flow fields. As shown in Ref. [17], the electric potential
and the concentration profiles relax to constant values when the separation between the reservoirs
and the pore entrance is on the order of 10-100 Å. For the system under study, the distance from the
reservoir, where the charge density is effectively constant, to the pore surface is set to L(δ )

z ≈ 20 Å,
which is within this range (10-100 Å), and is as large as feasible for a study of this complexity. Fur-
thermore, L(δ )

z is larger than the maximum value of the pore radius investigated, and twice as large
as the cut-off used for the potential describing the interactions. Most importantly, the observed
flow rates were insensitive to L(δ )

z > 20 Åin preliminary studies. With reference to Figure 5.1(a),
the width, L(c)

z , of each control region is set to 10 Å, which was sufficiently large to make the
results insensitive also to this parameter.

For a given ionic species Na+ or Cl−, we define the corresponding concentration difference

∆c(t) = c2(t)− c1(t) =
N2(t)

V2
− N1(t)

V1
, (5.4)
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in terms of the molar concentrations c1(t) and c2(t) at time t in two measurement regions M1 and
M2. Here, N1 and N2 are the number of ions in volumes V1 and V2, respectively. As in GCMD,
∆c(t) is controlled by injecting or removing ions in the two control regions Ci ⊂Mi, i = 1,2,
shown in Figure 5.1 (a). In the present study, we employed a target concentration difference
|∆c| = 60/Vf (Vf is the nominal volume of fluid, refer to Figure 5.1a) for each ionic species such
that counter flow of oppositely charged ions is effected by opposing chemical gradients. Exchanges
of excess ions between the control regions occurred every 100 time steps. The target difference
and exchange interval were chosen to facilitate temporarily smooth flow of the ions through the
pore, while remaining as close to the linear response regime as possible. Additional parameters
and rationale for their values are specified in the Appendix.

The magnitude of the ionic flux J(t) is estimated with the running average

J(t) =
1
tA

Nexchanges(t), (5.5)

where Nexchanges(t) is the (net) number of exchanges (or swaps) of the particular ionic type over
the total data collection time t, and A is the cross-sectional area of the pore. We monitored J(t)
during the unsteady transient flow, and once steady flow is established, Nexchanges is reset to zero .
Steady state was determined by the coefficient of variation of the ionic flux based on the previous
500 samples. When it was below 1% for both Na+ and Cl− we assumed the transient phase was
complete. This transient stage was on the order of 5× 105 steps, which was followed by 5× 106

steps where the time averaged ionic fluxes and associated spatially resolved average flow data were
collected. Given that |∆cNa+|= |∆cCl−|, we defined an effective pore conductance

G(t) =
J(t)
|∆c|

. (5.6)

for each ionic species .

5.3 Dependence on the pore diameter

In this section we quantify the relationship between the nanopore flow and the nominal pore diam-
eter, D = 2R, by considering four values D = 12.5, 17, 21 and 27 Å . The four values of D yield

Note that we validated this method against a steady flux measured via integration of the velocity profiles of the
ions over the cross-section of the pore, but for brevity the comparison is omitted from the present discussion.

Here, for example, GNa+ =G+++G+−, with G++ being the contribution to the Na+ conductance due to a gradient
in cNa+ only, while G+− is the contribution to the Na+ conductance due to a gradient in cCl− . Given that the flux,
J, is measured relative to the pore area, G is primarily a property of the pore, not of the membrane, since increasing
the area of the membrane, while keeping the pore density in the membrane fixed, is expected to result in only small
changes in G. Given the limits on computational resources, the additional studies for (∆cNa+ > 0,∆cCl− = 0), and
(∆cNa+ = 0,∆cCl− > 0), needed to estimate the other contributions, i.e. G++, G−−, are left for future work.

Recall that the nominal value, D, identifies the pore size at the stage before the pore defects are saturated with
hydroxide groups. During the MD simulation, the effective pore diameter, Deff, is equal, on average, to Deff = D−
2(r

Ohy+Hhy
0 ), where r

Ohy+Hhy
0 is the equilibrium length of a hydroxide group. Considering that Deff changes during the

84



four systems with total number of atoms, N, ranging from N = 32124 for D = 12.5 Å, to 31630
for D = 27 Å, and are shown in Figure 5.3. The smallest D was chosen as the smallest practical
diameter that, for the present system, yields a measurable non-zero ionic flux through the pore.
The largest D was chosen such that the effects of the periodic images of the system along x and
y remain small. To account for the effect of the intrinsic (thermal) noise, for each value of D five
replica simulations are run, each of which used different initial velocities and a different random
seed for the stochastic insertion/deletion aspect of the CC.

(a) (b)

(c) (d)

Figure 5.3. Snapshots of cross-sectional views of the systems
for D = 12.5 (a), 17 (b), 21 (c) and 27 Å (d), taken during the
steady state of the CC stage. Color legend: Si (ochre), Obulk (blue),
Ohy (yellow), Hhy (black), Ow (red), Hw (white), Na+ (purple),
Cl− (cyan). The silica is nearly transparent for visualization con-
venience.

5.3.1 Velocity profiles

In this section, we examine the radial and axial profiles of the axial velocity, vz, of the fluid, i.e.
water and ions. These profiles are extracted using standard binning techniques and these coarse-
grained values are subsequently time-averaged using a window of 100 time steps to produce a time
series.

simulation due to thermal effects and depends on the hydroxide bonds equilibrium distances, the effective diameter,
Deff, is a well-defined quantity only as a thermal average. Hence, in the results section, we will always refer to the
nominal diameter, D, since it is known upon construction.
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Figure 5.4. (a) Time/bin-averaged radial profile of the axial ve-
locity vz, for Na+ and Cl− computed for one replica of the case
D = 21 Å during the steady phase of the CC stage. (b) Time/bin-
averaged axial velocity vz plotted as a function of the z-coordinate
computed for one replica of D = 21 Å at the final step of the CC
stage for water, Na+ and Cl−. In (a), for the sake of visualization,
the data obtained from the spatial binning are interpolated over a
finer mesh. In (b) the filled circles are plotted at the location of the
24 bins.

To construct the radial profile, we discretize the pore volume with thin, long 3D boxes of square
cross-sectional area equal to 1.52 Å2, thus resembling a “tessellation” method. Figure 5.4 (a) shows
the result of the radial dependence of the axial velocity vz computed for Na+ and Cl− from one
replica of the case D = 21 Å. The circular section displayed in the plot corresponds to the nominal
pore cross-section. Clearly, the profiles obtained for both Na+ and Cl− peak near the pore axis, and
decay to zero in the region closer to the pore walls. Although both profiles display nearly radial
symmetry, the Na+ profile is parabolic-like, whereas the Cl− profile displays a more cone-like
form. This difference suggests that the Na+ ions tend to flow across the full pore cross-section,
whereas the Cl− tend to be more concentrated near the pore centerline (probably due to their larger
size), thus yielding a more peaked profile. Note that vz decays to zero before the walls, due to the
fact that cross-section plotted in Figure 5.4 (a) corresponds to the nominal diameter, D, while the
effective pore diameter during the MD, as anticipated before, is smaller due to the presence of the
hydroxide groups saturating the pore surface. A key observation is that the area under the vz-profile
of Cl− is larger than that of Na+, thus indicating that the Cl− flux is larger than that of the sodium.
The physical explanation behind this result is addressed in more detail in § 5.3.2.

For the second quantity of interest, i.e. the z-dependence of the axial velocity, we discretize
the domain with 24 slabs orthogonal to the z-axis that span the full domain length along x and
y, and each slab has width, Lbin, along z equal to Lbin = Lz/24 ≈ 4.4 Å. Figure 5.4 (b) shows the
time/bin-averaged axial velocity for water, Na+ and Cl− as a function of the z-coordinate, obtained
using the data from one replica of D= 21 Å. The profiles of both ions are nearly zero in two narrow
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regions near the upper and lower domain boundaries, followed by an upward trend in the regions of
the reservoirs close to the pore entrances and finally settle into a constant trend that extends along
the entire pore length. This result indicates that the ions are essentially quiescent in the reservoirs,
then undergo a gradual change in velocity as they move toward to pore, and, finally, they maintain
a constant velocity in the pore. When the ions approach the pore, there is a weak deceleration,
which can be explained as follows. While some ions enter the pore in a neighborhood of its central
axis, other approach the pore from regions closer to the silica atoms, thus interacting with the latter
more strongly. This effect causes these ions to decelerate while approaching the pore. Hence, since
each velocity data point is obtained by averaging the contribution of all ions inside each slab, the
decelerating ions tend to lower the global slab-averaged velocity. The plot also reveals an evident
symmetry about the pore vertical mid-plane, thus indicating that the same dynamics and physical
processes occur on both sides of the pore and that the transport is in a linear regime. The ion
profiles also indicate that the Cl−-flux is larger than that for Na+, confirming the same observation
extracted from panel (a). Finally, Figure 5.4 (b) shows a nearly zero axial velocity vz(z) for water,
suggesting that at steady state the water molecules are on average stationary. Similar results are
obtained for the other three diameter values, but are omitted for brevity.

5.3.2 Ionic conductance

The top row of Figure 5.5 shows the time evolution of the running average of the conductance,
G(t), computed for (a) Na+ and (b) Cl−, obtained for all 5 replicas at each diameter value. In all
cases, G(t) becomes essentially constant, as is characteristic of a steady state. Figure 5.5 shows
that the pore diameter, D, has two main effects on the G(t). First, as the diameter D increases,
the estimated value of the conductance G substantially increases. Second, D only weakly affects
the needed sampling time in the running average such that a longer duration is needed to obtain a
steady value for smaller D, where fewer ions are passing through the pore.

Figure 5.6 (a) shows the steady-state value of G obtained for Na+ and Cl− plotted as a function
of the nominal pore diameter, D, for all 5 replicas. Clearly, for both ions, the conductance increases
as a function of D, but a distinct difference is observed in the slope of the trend, which is sharper
for the (effective) Cl− conductance, GCl− . Figure 5.6 (b) shows that the coefficient of variation,
σ/µ , monotonically decreases as the pore diameter, D, increases from 12.5 Å to 27 Å. In fact,
the value of σ/µ computed for Cl− is larger than the one obtained for Na+ for D = 12.5, 17 and
21 Å, while the trend reverses for D = 27 Å. For both ions, the observed trend of σ/µ suggests
that the variance in the replicas remains approximately constant as D varies and, also, on average,
the variance computed for GNa+ is smaller than that for GCl− .

The mean trends shown in Figure 5.6 (a) allow us to make a key physical observation. They
indicate that for D≥ 17 Å, the average Cl− conductance is substantially larger than that for Na+,
the values are comparable for D = 12.5 Å. This is the result of an interplay between size (steric)
effects and ionic mobility. For D = 12.5 Å, the cross-section of the pore limits the number of
water molecules that can enter it, see Figure 5.7 (a), and, thus, the water molecules tend to arrange
in a chain-like structure [136]. As a consequence, since these water molecules cannot effectively
surround the ions inside the pore, they cannot form a complete solvation shell, and, thus, the ions
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Figure 5.5. Time evolution of the running average conductance,
G(t), for Na+ (a) and Cl− (b) plotted for all 5 replicas and each
diameter value showing the variation in steady state values and the
timescale at which steady values are achieved.
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Figure 5.6. (a) Steady-state replica values (markers) of the
Na+ (blue) and Cl− (red) conductance as a function of the nominal
pore diameter D, with the superimposed lines outlining the replica-
averaged values. (b) Coefficient of variation, σ/µ , i.e. the ratio of
the standard deviation, σ , over the mean, µ , of the conductance
data plotted as function of the pore diameter, D, for both ions.

are strongly affected by the pore walls. This confinement effect favors the flow of the ions with
smaller size, i.e. Na+. Similar physical processes have been studied in Refs. [8, 85, 135, 44, 84].
In contrast, when the diameter D becomes sufficiently large, i.e. D ≥ 17 Å, the water molecules
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inside the pore can effectively create a complete solvation shell around the ions, as shown by
Figures 5.7 (b,c,d). Therefore, the dynamics of the ions is dominated by their mobility. In this
case, the resulting flux of Cl− is greater than Na+, because the diffusivity of Cl− is larger than that
of Na+ as reported, e.g., in Refs. [115, 78, 25, 70, 19, 27].

(a) (b)

(c) (d)

Figure 5.7. Snapshots obtained for D = 12.5 (a), 17 (b), 21 (c)
and 27 Å (d), during the steady state of the CC stage, showing the
distribution of water molecules around the ions passing through the
pore: Na+ is color-coded purple, while Cl− is color-coded cyan.

5.4 Sensitivity to the gating charge

This section explores how the silica system under study responds to a “gating charge,” for a fixed
pore diameter, D = 21 Å.

We denote with qsur f the target charge density that is added to the inner pore surface to effect
a gating charge. Since the actual charges are likely fluctuating and in the present case unknown,
a modeling assumption is needed to determine how the charge is distributed on the exposed pore
atoms. We assume that the distribution is uniform to mimic the addition of a uniform layer of
functionalized/charged groups on the surface of the pore.
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For a target value of the gating charge density, qsur f , we calculate the total charge, Qg, to be
added as

Qg = qsur f π D L(s)
z , (5.7)

where L(s)
z = 32 Å is the pore length along the z-axis. Next, given the Nhy = 162 hydroxide groups

on the pore surface, we calculate the local charge, qhy, to add to the charge of each group given by
the force-field parameterization in §5.2.2 as

qhy =
Qg

Nhy
, (5.8)

and equally split qhy between the oxygen, Ohy, and hydrogen, Hhy, of each OH-group.

Note that this procedure yields a system with an excess charge which must be compensated for
to have a neutral system . The approach we adopted consists of adding to the salt-water solution a
suitable number of positive, Na+, or negative, Cl−, ions to regain zero total charge. This approach
is motivated by the fact that the remainder of the molecules forming the pore surface functionalized
groups (which we do not model explicitly) typically remain in solution. A further constraint is
that for a given value of qsur f the resulting total charge, Qg, must be compensated by an integer
number of Na+ or Cl− ions. Consequently, this poses a limitation on the values of qsur f that can
be explored.

Also, due to the fact that the gating charge is compensated by adding ions to the solution, the
final concentration of Na+ and Cl− varies according to the target value of qsur f . Since the goal is
to assess the effect of the gating charge only, with all the other components effectively constant,
we apply another correction. For a given value of qsur f , we calculate a priori the number of ions
needed to compensate this gating charge, and we slightly change the original base concentration
(1.5 mol/l) such that the total final number of ions, i.e. after compensating for the gating charge,
remains constant for all systems considered. Of course, according to the sign of qsur f , one of the
two ionic species Na+ or Cl− will be in excess with respect to the other, but the overall differences
are small. For instance, the maximum charge studied here is compensated with 35 ions, whereas
the base concentration gives about 444 ions.

5.4.1 UQ Formulation

The goal is to explore the sensitivity of the ionic conductance on different charge distributions. In
this present case, this can be effectively achieved by applying a forward propagation of uncertainty,
where the charge density, qsur f , is assumed to be an uncertain parameter, and its uncertainty is
propagated and mapped to a response surface for the observables of interest. We parametrize the
uncertainty according to

qsur f = 0.3 ξ , [Coul/m2], (5.9)

Alternately, an equal and opposite charge could be introduced inside the core of the bulk silica. This method,
however, would create undesired asymmetries and inhomogeneities in the system.
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where ξ is a standard uniform random variable, i.e. ξ ∼U (−1,1), allowing us to explore a range
of variation between −0.3 and 0.3 Coul/m2, which has been chosen slightly larger than the one
studied in Ref. [26].

The stochastic reformulation in equation (5.9) implies that the observables extracted from the
MD simulations of the nanopore flow are considered as random variables. If it has finite variance,
any quantity of interest (QoI) can be expressed with a polynomial chaos expansion (PCe) based on
Legendre basis [74]. The PCe of a generic QoI, X , extracted from the present MD system can be
expressed as

X =
∞

∑
k=0

ckΨk(ξ ) , (5.10)

where {ck}∞
k=0 is the set of PC coefficients, and Ψk are Legendre basis functions. Note that for

the present 1D case, the basis functions coincide with the Legendre polynomials. Equation (5.10)
allows us to build a direct relationship between the uncertain input, qsur f , and a target observable,
and, thus, it represents a mapping of the uncertainty from the parameter to the observables. Note
that a similar formalism could also have been applied to the sensitivity of the system to the pore
diameter, but since the pore diameter is a discrete quantity, the associated UQ analysis would need
the use of discrete UQ methods. For brevity, however, this UQ analysis was omitted and is limited
to the gating charge only.

5.4.2 Bayesian regression

To determine the PC coefficients, we rely on a Bayesian regression approach [38, 118] that nat-
urally accommodates noisy MD data [111, 112]. In this approach, the PC expansion represents
the regression function [38, 118, 111, 112]. Its implementation consists of three main steps: (a)
collecting a set of the observations {ξi,Gi} of the Na+ and Cl− conductance by suitably sampling
the ξ variable, (b) formulating the Bayesian model and, finally, (c) sampling the target posterior
distribution.

Collection of observations

We sample the ξ -support with five points {ξi}n=5
i=1 , corresponding to gating charge values qsur f ≈

−0.265619083, −0.144193217, 0.0, 0.144193217, 0.265619083 Coul/m2, and at each of these
points we create the corresponding MD system. Note that this choice is not unique, because
a regression approach does not pose specific constraints on the sampling procedure. However,
for the present case, these points have been chosen because each one them yields a system sat-
isfying all the constraints defined previously, and because we are partially limited by the large
computational cost of the system. The stochastic reformulation in equation (5.9) implies that
when qsur f = 0.0 Coul/m2, the corresponding system coincides with the one studied in § 5.3 for
D = 21 Å.

To account for the effect of the intrinsic noise, at each grid point
{

ξi
}n=5

i=1 , we generate m = 3
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replicas of the corresponding MD system, by using 3 different sets of random numbers to initialize
the velocity field of the atoms and the CC algorithm. This set of 5×3 MD simulations, yields the
following set of observations

G =
{

Gi, j
} j=1,...,3

i=1,...,5 , (5.11)

where G denotes the steady-state value of the conductance computed for Na+ or Cl−, the index i
enumerates the 5 grid points along ξ , j enumerates the 3 replicas, and, consequently, Gi, j denotes
the j-th replica value obtained at the i-th sampling point ξi. Figure 5.8 (a) shows the conductance
data obtained for Na+ (blue) and Cl− (red) plotted as a function of the gating charge density
qsur f . The corresponding variances are plotted in Figure 5.8 (b). Note that the gating charge
qsur f = 0.265619083 Coul/m2 yields the three replicas of the Na+ conductance to be exactly zero
and, thus, the corresponding variance is not shown Figure 5.8 (b), due to the logarithmic scale in
the y-axis. This result is likely due to finite sampling, namely the fact that for a limited simulation
time and a limited number of replicas the observation of an ion transit through the pore may not
be observed. However, based on statistical mechanics, even at qsur f ∼ 0.27 Coul/m2 we expect a
non-zero probability for the Na+ to pass through the pore.

Figure 5.8 (a) shows that the pore can be made effectively anion or cation selective by prop-
erly tuning the value and sign of qsur f . Specifically, the pore becomes essentially completely
gated toward Na+ when qsur f > 0.2 Coul/m2, while becoming gated toward Cl− for qsur f <
−0.28 Coul/m2. The results also reveal that for both ions, the variance increases with the in-
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Figure 5.8. Panel (a): data set of the ionic conductance, G, com-
puted for all replicas as a function of the gating charge density
qsur f for Na+ and Cl−. The superimposed solid lines connect the
replica-averaged values. Panel (b) shows the corresponding vari-
ances plotted as function of qsur f with a logarithmic scale on the
y-axis. Note that since qsur f = 0.265619083 Coul/m2 yields van-
ishing Na+ conductance for all three replicas, the corresponding
variance is not shown panel (b).
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creasing conductance, see Figure 5.8 (b). This can be explained by examining the situation in the
limit of a completely gated pore. In this case, since the flux would be exactly zero for any given
replica, the variance would be zero as well, as occurs for the Na+ at qsur f = 0.265619083 Coul/m2.
We thus expect the variance to decrease as the conductance (flux) decreases. Figure 5.8 (b) shows
that the variances obtained for both ions approximately follow a linear behavior with respect to the
charge density, qsur f , when plotted with a logarithmic scale for the y-axis. This observation will
play a key role in defining the noise model of the Bayesian regression.

Finally, the results show that for a given qsur f , the associated Cl− conductance is larger than
the Na+ conductance obtained at the same charge magnitude. This is due to the fact that for the
current pore size, D = 21 Å, the ion’s mobility dominates the size (steric) effects, and, thus, the
larger mobility of Cl− yields a larger flux. Overall, the gating effect observed in the conductance is
relatively symmetric with a cross-over point at ≈−0.05 Coul/m2. The present results are in good
agreement with those in Ref. [26].

Note that one could reduce a priori the variance in the MD predictions of a target observable
by using a longer simulation time and/or larger number of atoms. This approach, however, is
constrained by the large computational cost associated with the present MD system. The Bayesian
approach thus provides the suitable framework to properly account for inherent noise, without the
need to act on the system a priori.

Noise model and likelihood function

The regression analysis aims at representing, for each ion, the conductance data, G, with respect
to changes in the gating charge using a truncated PC expansion model

M(ξ )
.
=

P

∑
k=0

gkΨk(ξ ), (5.12)

where {gk}P
k=0 are the set of PC coefficients, Ψk are the Legendre basis functions, and P+1 is the

dimension of the basis. Note that in the present 1D setting, P coincides with p, the highest order
of all polynomials retained in the truncated basis.

The problem thus translates into using Bayesian inference to obtain the PC coefficients {gk}P
k=0

appearing in the above representation, given a data-set, G, of the form in equation (5.11). To
formulate the likelihood, we assume an additive error model according to

G` = M(ξ`)+ γ`, `= 1, . . . ,15, (5.13)

where the index ` enumerates the 15 available data points for Na+ or Cl− shown in Figure 5.8 (a),
ξ` denotes the coordinate of the `-th observation G`, and γ` is random variable capturing the dis-
crepancy between the data point, G`, and the corresponding model prediction, M(ξ`). Again, G
generically denotes the conductance of one of the ions, Na+ or Cl−.

An important step concerns the choice of the distribution of the random variables {γ`}15
`=1. Due

to the fact that each data point, G`, is extracted from a running average in independent but statis-
tically equivalent MD simulations, based on central limit arguments we expect that as the number
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of atoms in the system and the number of time-averaged samples become large, the distribution of
the target observable, G, around the true mean tends to a Gaussian. Based on the previous argu-
ments, we assume {γ`}15

`=1 to be independent and normally distributed with mean zero. To model
the variances, σ2

` , of each random variable, γ`, we assume a ξ -dependent noise model, namely
σ2
` ≡ σ2(ξ ). This choice stems from the results shown in Figure 5.8, which reveal that the vari-

ance of the data varies approximately linearly with ξ in a semi-log plot. Hence, we translate this
observation in mathematical form by parametrizing the natural logarithm of the variance, ln(σ2),
with a linear PC representation according to

ln(σ2) = d0 +d1ξ . (5.14)

Higher-order polynomials could be used, but we tested that, for the present case, they would not
yield significant improvement in the final representation of the main target observable, i.e. the pore
conductance. Hence, in the present work, we argue that a linear approximation is a good compro-
mise between adequacy and simplicity. In the present work, we treat the coefficients {d0,d1} as
hyperparameters, i.e. they are become part of the set of unknowns. A key assumption, reflected
by the lack of a model discrepancy term in equation (5.13), is that, for a given observable, the
regression function, M(ξ ), properly captures the corresponding data set, G. This hypothesis can
be verified a posteriori by comparing the inferred trend of σ2 with its estimate based on the data.
For a given order, p, of the PC regression function, M(ξ ), if the inferred trend and magnitude of
σ2(ξ ) is in good agreement with its data-based estimate shown in Figure 5.8 (b), then this suggests
that the model representation is appropriate. On the contrary, if they are significantly different, the
regression function must be refined. An alternative but more delicate approach would be to set a
priori the model noise variance equal to its data-based estimate. In this case, a model discrepancy
term would be necessary to check the “goodness” of the chosen model.

The previous discussion yields the following likelihood function

L
.
= L

({
gk
}P

k=0,
{

d0,d1
}

;G
)

=
5

∏
i=1

3

∏
j=1

1√
2π[σ(ξi)]2

exp
(
−
[Gi, j−M(ξi)]

2

2[σ(ξi)]2

)
. (5.15)

Bayes’ theorem yields the target joint posterior distribution

π

({
gk
}P

k=0,
{

d0,d1
} ∣∣∣ G

)
∝ L

({
gk
}P

k=0,
{

d0,d1
}

;G
) 1

∏
k=0

q̂k
(
dk
) P

∏
k=0

qk
(
gk
)
, (5.16)

where q̂k(dk) and qk
(
gk
)

denote the presumed independent priors of the k-th PC coefficient, dk,
of the noise variance and the k-th PC coefficient, gk, of the regression function, respectively. For
qk
(
gk
)
, k = 0, . . . ,P, we assume uniform priors with the additional constraint that for any given

sample set g = {g0, . . . ,gP}, the corresponding model prediction, M(ξ ), must be non-negative over
the entire axis ξ . This is a key physical constraint, because we are modeling the magnitude of the
conductance, which must be non-negative, and the prior should suitably account for this constraint.
For the priors q̂k(dk), k = 0,1, the following distinction is made. In the inference run for Cl−, the
priors are chosen to be of the form q̂k(dk) = 1/dk, for k = 0,1. For the inference run for Na+,
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the priors q̂k(dk), k = 0,1, are still of the same form, but for q̂1(d1) we impose the additional
constraint that the resulting variance cannot be smaller than 10−2 over the ξ -space. This model
assumption stems from the fact that given the ξ -dependent noise, the zero variance obtained for the
Na+ conductance at qsur f = 0.265619083 Coul/m2, see Figure 5.8 (b), would make the inference
numerically ill-posed. However, as discussed before, this is an artifact resulting from the finite
sampling, and we therefore enforce a small, but non-zero, lower bound on the variance.

In the present work, we sample the posterior density in (5.16) with a Markov chain Monte Carlo
(MCMC) method based on the so-called adaptive Metropolis (AM) algorithm [40, 5, 3, 113, 114].
As proposal distribution, we adopt a multivariate Gaussian, centered around the current state of the
chain and whose covariance matrix, S , is built according to

S =

{
S0 for t < t0
β Cov1,2,...,t for t ≥ t0

(5.17)

where t0 defines the step at which the adaptation is triggered, S0 is a fixed covariance used for the
initial steps, Cov1,2,...,t denotes the covariance computed using the samples collected by the chain
during all previous steps, and β is a parameter that must be fixed before running the chain, and
tuned to achieve good mixing and an efficient exploration of the target distribution. In general, for
a given MCMC run, multiple trials are needed before the proper value of β is obtained. Conse-
quently, a single value of β does not work properly in all cases, but must be defined ad hoc. Unless
stated otherwise, the learning time, t0, is set to 500 steps and each chain is run for 35000 steps, with
the first 15000 steps discarded to eliminate the “burn-in” period, and only the remaining 20000 are
used for statistical post-processing.

5.4.3 Bayesian regression: results

The samples obtained from the MCMC sampling can be used via Kernel Density Estimation (KDE)
[103, 120, 126], to estimate joint posterior densities of the PC coefficients of the regression func-
tion and of the coefficients of the noise variance. Joint posteriors play, in fact, a key role since
they contain the information about correlations between the parameters. As a representative result,
Figures 5.9 (a,b) show the scatter plots of the chain samples, after removing the burn-in period,
obtained for the marginalized joint posterior π(g0,g1) computed for Na+ (a) and Cl− (b), by run-
ning the inference for a linear (P = 1), quadratic (P = 2), cubic (P = 3), and quartic (P = 4) PC
regression function. Note that Figures 5.9 (a,b) are plotted using the same range for the x-axis,
while, for clarity, a different range but with the same width is used for the y-axis. Figures 5.9 (a,b)
reveal, for both ions, strong correlations arising between the leading, g0, and the first-order, g1,
coefficient of the PC representation.

The Na+ results show a clear negative correlation, while the opposite is observed for the Cl−

results. This is expected and justified by the trends in the original conductance data shown in
Figure 5.8 (a). The result obtained by running the inference with a linear expansion substantially
deviates from the ones obtained by using higher-order regression functions, P >= 2, which are
in good agreement with each other and this is reflected in the plots by a clear overlapping. These
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differences will be discussed in detail in the following. For a given order, P, a comparison of the re-
sults in Figures 5.9 (a,b) reveals that the posterior samples obtained for Na+ have a narrow spread,
whereas those obtained for Cl− are wider. This indicates that the posterior uncertainty in the
regression parameters for Na+ is smaller than the corresponding uncertainty obtained for the Cl−

regression parameters. This result is in accordance with Figure 5.8 (b) which showed that the noise
level in the Cl− conductance data is, on average, larger than that for the Na+ data. This difference
in the noise level amplitude is thus reflected in the joint posteriors shown in Figures 5.9 (a,b). Even
though the previous discussion was limited to the posterior π(g0,g1), similar results are obtained
for the joint densities involving the higher-order coefficients, which are omitted for brevity.

Next, we perform a characterization of the posterior uncertainty arising in the full spectrum of
PC coefficients defining the regression function. The bottom row of Figure 5.9 shows the marginal-
ized posterior, π(gk), of each PC coefficient gk, k = 0, . . . ,4, obtained via kernel density estimation
(KDE) from the inference run using a linear (P = 1), quadratic (P = 2), cubic (P = 3), and quar-
tic (P = 4) PC regression function. The results are shown for Na+ (c) and Cl− (d). These plots
allow us to draw the following key observations. First, they show that the PDFs obtained for the
Na+ coefficients display small spread and are tight around the corresponding means, while those
for Cl− are wider, confirming that the posterior uncertainty arising for the Na+ results is smaller
than that for Cl− coefficients. Secondly, both cases share the feature of having shapes closely
resembling gaussian densities for most of the PC coefficients, thus implying that the maximum a
posteriori (MAP) estimates (i.e. the peak values) nearly coincide with the mean values. Finally,
note that the posteriors obtained using a linear regression function largely deviate from those based
on higher-order expansions.

Figure 5.9 (c) shows that the PC coefficients for Na+ oscillate between positive and negative
values, and that the associated uncertainty is relatively large for the intermediate orders, i.e. g1, g2
and g3, while being slightly smaller for g0 and g4. Figure 5.9 (d), on the contrary, shows that the
Cl− coefficients are confined within the positive semi-axis, and reveal mild oscillations. Moreover,
the uncertainty in the coefficients seems to be only weakly sensitive to the order, since pdf’s plotted
in Figures 5.9 (c,d) overall reveal a nearly constant spread across the orders. The previous analysis
is presented here to provide a characterization of the uncertainty in the PC coefficients and its
dependence on the order. As previously illustrated, however, since large correlations are present
between the PC coefficients, we remark that for the present analysis one should rely on the joint
posteriors of the PC coefficients to draw meaningful statistics. This is particularly important if
one is interested in drawing samples of the PC coefficients, since the marginalized posteriors,
π(gk), k = 0, . . . ,P, shown in Figure 5.9 do not contain, by construction, any information about the
correlation.

Figure 5.10 shows the data points (black circles) of the Na+ (a) and Cl− (b) conductance,
superimposed to the predictions (solid lines) obtained by evaluating the corresponding regression
function, M, using the maximum a posteriori (MAP) estimates of the inferred PC coefficients
computed from the joint posteriors π(g0, . . . ,gP). The results are plotted as a function of qsur f , and
obtained for a linear, quadratic, cubic, and quartic expansion. Figure 5.10 shows that for both ions,
a linear (P = 1) PC representation, M, accurately describes the data only over the limited region
of the domain where the conductance is small. This result can be explained as follows. Due to
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the fact that we formulated the inference with a ξ -dependent noise model, we are able to capture
the variation of the noise over the domain and, thus, regions of small noise impose tight constraint
on the regression function. Therefore, if we are inferring a low-order regression function, all its
degrees of freedom (i.e its coefficients) are constrained by the infinitesimal variance characterizing
the data points in the region of small conductance. Consequently, given that a linear expansion has
only two degrees of freedom, it cannot capture the remaining data points. These observation holds
for the results of both ions.

As we increase the order, more degrees of freedom are available, and the regression function
better approximates the MD conductance data. In particular, Figure 5.10 (a) shows that for the
Na+ conductance, GNa+ , a second-order expansion slightly underestimates the MD data near the
most negative value of qsur f . The third and fourth-order PC models, instead, both capture well
the overall trend of GNa+ . For the Cl− conductance, the results are similar, see Figure 5.10 (b).
The quadratic PC model provides a good approximation, but, similarly to panel (a), underestimates
the conductance near the largest value of qsur f . The result substantially improves for a third and
fourth-order expansions, which are nearly equivalent and provide a good representation of the data
across the entire range. Note, also, that in all cases the model predictions are always greater than or
equal to zero, as imposed by the prior distribution on the PC coefficients of the regression function.
The previous discussion provides a qualitative basis allowing us to draw a first conclusion, namely
that third and fourth-order expansions seem to be the most suitable models to capture the data for
both Na+ and Cl−.

As previously anticipated, we can properly assess a posteriori whether an inferred regres-
sion function properly captures the behavior of the data, by comparing the inferred behavior of
σ2 with its estimate extracted from the noisy data. Figure 5.11 (a) shows the data-based vari-
ances (black circles) of the Na+ conductance superimposed to the predictions of the correspond-
ing σ2(ξ ) obtained by evaluating its PC model (5.14) using the MAP estimate of the PC coeffi-
cients {d0,d1}. The results are plotted as a function of the order, P, of the regression function,
M(ξ ), with a logarithmic scale for the y-axis. The corresponding results for Cl− are shown in
Figure 5.11 (b). Note that, as before, the zero variance obtained for the Na+ conductance at
qsur f = 0.265619083 Coul/m2 is not shown for convenience.

Figures 5.11 (a,b) reflect the qualitative analysis illustrated above. For Na+, when the inference
is based on a linear PC expansion, the trend of the inferred noise σ2(ξ ) is substantially larger
than the corresponding data-based estimates across the entire domain, see Figure 5.11 (a). This
is due to the fact that a linear model does not capture the trend in the conductance data-points
well, as shown by Figure 5.10 (a), and, thus, a model discrepancy effect arises and raises the
magnitude of the inferred noise. The result drastically improves for P ≥ 2. In this case, the
corresponding inferred variance σ2(ξ ) recovers with good accuracy both the magnitude and trend
of the data-based estimate. A similar observation can be made for the variance of Cl−, as shown
by Figure 5.11 (b), where the fourth-order expansion seems to yield the best noise recovery.
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Bayes Factor

To substantiate the previous qualitative description, we now apply a model selection analysis using
Bayes factor [59]. The Bayes factor is a non-dimensional number that compares two “models” (or
hypotheses) made to describe a target set of data, and provides a quantitative measure to discrim-
inate between the two. Note that in this context, the term “model” refers to the complete set of
parameters that are being inferred. The Bayes factor, in fact, does not depend on a specific subset
of parameters, but it integrates over the entire parameter space. The second key property is that it
automatically includes a penalty for overfitting models [59].

In the present study, a “model” refers to the parameter vector θ = {g0, . . . ,gP,d0,d1}, compris-
ing the set of PC coefficients {g0, . . . ,gP} defining a p-th order regression function, M, and the two
PC coefficients {d0,d1} defining the PC expansion of the natural logarithm of the noise variance.
Since in our formulation we only vary the order, p, of the regression function, M(ξ ), while keeping
a fixed linear PCe of the noise variance, we can conveniently denote with θ p the “model” based on
a p-th order expansion for M.

Given two different models, namely θ p1 and θ p2 , associated with regression functions of order
p1 and p2, respectively, the corresponding Bayes factor, B(θ p1,θ p2), is given by

B(θ p1 ,θ p2) =

∫
L (θ p1 ;G) Pr(θ p1)dθ p1∫
L (θ p2 ;G) Pr(θ p2)dθ p2

, (5.18)

where G is the data set for GNa+ or GCl− used in the inference, and L (θ ;G) and Pr(θ) are
the likelihood function and the prior, respectively. Both the numerator and denominator can be
interpreted as the integrals of the posterior distribution π(θ

∣∣G) obtained for the model parameters
θ p1 and θ p2 . The Bayes factor B(θ p1,θ p2) has the following interpretation: the larger its value, the
stronger the evidence supporting the model θ p1 . In general, the Bayes factor has to be computed
numerically, and several methods are available [59]. In the present work, we rely on Monte Carlo
integration. It is customary to report and discuss the (natural) logarithm of the Bayes factor [59].
With this setting, the interpretation is as follows: the more positive the value of ln(B(θ p1,θ p2)),
the stronger the evidence supporting θ p1 . The statement is reversed for negative values.

The results computed for the present case using all models explored, i.e. from first (p = 1) to
fourth (p = 4) order, are reported in Table 5.2. The results obtained for Na+ indicate that using a
third-order PC regression function is the most suitable model, while the results for Cl− support a
fourth-order regression function.

The explanation of these results stems from the fact that the Bayes factor integrates over all
parameters involved in the inference and, thus, it accounts for the accuracy of both the PC regres-
sion model, M, as well as the PC model of the noise variance. The previous observations can be
explained by looking at Figures 5.10 and 5.11. For Na+, e.g., these figures show that a third-order
PC model represents with great accuracy the GNa+ data-set and, at the same time, also the corre-
sponding noise variance PC model captures well the spread and trend in the data-based variance.
A similar explanation based on a fourth-order PC model, holds for the Cl− results.
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Na+ Cl−

p2 = 1 p2 = 2 p2 = 3 p2 = 4 p2 = 1 p2 = 2 p2 = 3 p2 = 4
p1 = 1 – -18.456 -21.751 -20.542 – -12.189 -13.643 -18.503
p1 = 2 18.456 – -3.295 -2.085 12.189 – -1.453 -6.314
p1 = 3 21.751 3.295 – 1.209 13.643 1.453 – -4.860
p1 = 4 20.542 2.085 -1.209 – 18.503 6.314 4.860 –

Table 5.2. Computed values of lnB(θ p1 ,θ p2), obtained for all
four different models and each ion Na+ and Cl−. Note that due to
the logarithmic scale adopted, for a given ion, the corresponding
matrix of values is antisymmetric.

Posterior predictive check and predictive uncertainty

To assess the consistency of the inference analysis, we now perform a posterior predictive check
[36]. The analysis consists of the following steps. First, for a given observable and the associated
model selected previously, we sample the joint posterior, π({gk}P

k=0,d0,d1), to generate 50 sample
sets of model parameters, i.e. {gi,di}50

i=1. Secondly, each PC-spectrum {gi}50
i=1 is used to evaluate

the corresponding PC model, M(ξ ), over a fine grid in (−1,1), yielding 50 sets of predictions, fi,
i = 1, . . . ,50, for the conductance. Finally, each set of predictions, fi, i = 1, . . . ,50, is perturbed
at each grid point, ξ , with 30 i.i.d. samples, {γ j}30

j=1, drawn from a Gaussian with mean zero and
variance σ2(ξ ) calculated using its PC model (equation 5.14) based on the i-th PC spectrum di.

The samples of predictions resulting from this procedure are plotted as gray dots in Figure 5.12
for Na+ (a) and Cl− (b). Superimposed to the predictive samples, we report the original data color-
coded blue for Na+ (a) and red for Cl− (b), as well as error bars corresponding to µ±3 σ̃ , where
{µ, σ̃} are the mean and standard deviation estimated from the MD conductance data at a given
sampling node. The results are obtained using a third-order (p= 3) model for the PC representation
of the Na+ conductance, and a fourth-order (p = 4) expansion for the Cl− conductance.

Figure 5.12 shows that the predictive samples form a “cloud” demonstrating that these predic-
tions accurately match the distribution of the original conductance data. More specifically, they
indicate that the noise model adopted in the inference is appropriate to capture the actual spread
in the data and its trend over the space. The results thus confirm that both the parameters of the
regression function, i.e. the PC coefficients of M, as well as the hyperparameters, i.e. the coeffi-
cients of the PCe of the noise variance, have been properly inferred, and that the model structure
is adequate.

To finalize the UQ analysis, we perform a “predictive uncertainty” evaluation to analyze how
the posterior uncertainty in the inferred PC coefficients of the model, M(ξ ), affects the predictions.
The importance of this analysis stems from the fact that for prediction purposes one typically relies
on the regression function only, without accounting for the noise model. Exploring the prediction
capability of the inferred regression functions for this system is thus a key step. We remark that
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the key advantage of inferring a response surface is that it allows one to obtain corresponding
predictions for the target conductance over the whole range of the wall charge, i.e. not only at the
given sampling locations. The inference also yields an even better accuracy in the predictions at
the locations where the MD data were collected, since the response surface reflects the macroscale
smoothness of the conductance versus the gating wall charge.

To this end, we proceed as follows. For a given observable, we generate 250 sample PC-spectra
{gi}250

i=1, from the corresponding joint posterior distribution, π(g), and use these sample spectra to
evaluate the corresponding PC model, M(ξ ), on a suitably fine grid over (−1,1). This yields 250
sets of predictions, {fi}250

i=1, of the conductance of a given ion over the stochastic domain (−1,1).
The analysis is run using a third-order (p = 3) model for the PCe of the Na+ conductance, and a
fourth-order (p = 4) expansion for that of the Cl− conductance. Figure 5.13 shows the 250 curves
obtained for Na+ (a) and Cl− (b), and, for reference, we superimpose the original observations
(black circles), plotted as a function of the gating charge density, qsur f .

Figure 5.13 shows that, in both cases, the curves suitably capture the trend in the original noisy
data used to run the inference. Due to the constraints imposed on the PC coefficients during the
inference, all curves are non-negative over the space qsur f ∈ (−0.3,0.3) Coul/m2. For the Na+

results, the “envelope” of predictions has very small variance for large positive values of the gating
charge, and spreads out increasingly more as the gating charge becomes negative and large. The
opposite holds for the negative ions, where the envelope of realizations is narrow for negative
values of the gating charge and widens as the gating charge becomes increasingly positive. These
trends were observed before, and reproduce with great accuracy the real trends underlying the
data where the variance of G increases with the flux of the particular ionic species. The results
reflect the posterior uncertainty in the regression functions obtained from the inference due to the
noise in the conductance data. This posterior uncertainty can be reduced, e.g., by running the
inference with more data points. In this case, in fact, since more information would be available,
the inference would yield posterior distributions for the PC coefficients of the regression function,
M(ξ ), characterized by smaller uncertainty.

5.5 Conclusions

This article focused on MD simulations of concentration driven ionic flow through a silica nanopore.
The system involved a silica pore model connecting two reservoirs containing a solution of sodium
(Na+) and chloride (Cl−) ions in water. An ad hoc concentration control algorithm was developed
and implemented to create a counter flow of ions through the pore.

We first explored the dependence of the system on the pore diameter. The behavior of the
system at small pore diameters is dominated by size (or steric) effects, favoring the flow of Na+.
On the other hand, as the pore becomes larger, size effects become weaker and the individual
mobilities of the ions become increasingly more important, thus favoring the flow of Cl−.

We then analyzed the sensitivity of the system to a gating charge. The analysis was imple-
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mented using an approach based on a forward propagation of uncertainty. As expected, a negative
gating charge enhances the flow of Na+ while counteracting the flux of Cl−. Likewise, a positive
gating charge enhances the flow of Cl− and effectively counteracts the flux of Na+. The results
showed that by varying the magnitude and sign of the gating charge, the nanopore can be made
effectively open or closed toward a target ionic species. The results also revealed that, for both
ions, the variance obtained from the replica values is positively correlated with the corresponding
conductance.

PC representations, constructed using Bayesian regression, were exploited to capture the ef-
fect of parametric uncertainty and intrinsic noise in the conductance of both ions. This approach
allowed us to properly describe the dependence of the observable on the uncertain input, i.e. the
gating charge, and suitably capture the effect of the intrinsic noise in terms of uncertain PC coeffi-
cients. To define the noise model, we exploited the observation that the variance of the conductance
data for both ions varies approximately linearly with gating charge in a semi-log plot. Hence, the
logarithm of the noise variance was parametrized with a linear PC model to capture its space de-
pendence. The results revealed large correlations in the PC coefficients obtained for both ionic
conductances, suggesting that, for this case, the joint posteriors play a key role. A Bayes factor
analysis was applied to choose the most suitable regression model describing the conductance data
of both ions. The results indicated that a third-order PC regression function is the best model to
represent the Na+ data, while a fourth-order expansion is the best model for the Cl− data. Fi-
nally, the UQ analysis was complemented with a posterior predictive check and a model prediction
analysis, allowing us to confirm that the noise model adopted in the inference was appropriate to
capture the actual spread in the data, its trend over the space, and confirmed the adequacy of the
regression model and the underlying assumptions.

The UQ analysis of the silica nanopore flow investigated here is complemented in the second
part of the article, which focuses on studying the effect of parametric uncertainties in a subset
of the potential parameters. As shown in this article, the inherent noise and heterogeneity of the
system sets the need for the application of UQ methods, which can play a key role for improving
design capabilities. In fact, they allow one to understand the effect of uncertainties in the nanopore
system by providing the theoretical framework and mathematical tools to properly quantify and
characterize these sources of uncertainty.

5.6 Appendix: Dual control volume concentration control al-
gorithm

Grand canonical molecular dynamics (GCMD) [101, 42, 119] is well-known and often applied
to concentration-driven transport in a dual control volume configuration [4, 100]. It is based on
controlling the chemical potential of a given species in target regions using Monte Carlo (MC)
techniques to manipulate the corresponding concentrations. For a charged system, however, diffi-
culties arise since the possibility of a net creation or destruction of charge with a GCMD method
conflicts with the requirement of a Fast Fourier Transform-based Poisson solver, e.g. PPPM, for
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the system to be charge neutral. Also, the inefficiency of MC algorithms in inserting atoms into a
dense liquid is well-known [4, 12] and poses a serious limitation on the present study.

5.6.1 Concentration control

We developed a more efficient ad hoc approach to control the concentration in two control regions
C1 and C2, in a manner compatible with the PPPM Poisson solver which requires overall charge
neutrality. In fact, the improved efficiency was necessary to make the intensive UQ study feasible.
As mentioned, the algorithm was developed by borrowing aspects of GCMD and thermodynamic
integration. In contrast to GCMD, the algorithm employed in this study controls the concentration
directly and, in some sense, deterministically, as in the well-known thermostats described in [30,
94].

Specifically, the algorithm controls, for a given ionic species, the concentration difference ∆c(t)
defined in Eq. eq. (5.4). The target concentration difference ∆c is obtained by injecting or deleting
ions in two control regions Ci ⊂Mi, i = 1,2. The measurement regions M1 and M2 are chosen
to be the left and right halves of the fluid component of the system, shown in Figure 5.1, so that
N1(t)+N2(t) is equal to the total number of ions of a particular ionic species, and V1 =V2 =

1
2Vf ,

where Vf is the volume of the fluid. Although the measurement regions could coincide with the
control regions where insertions and deletions take place, they are chosen to be the left and right
halves of the fluid volume, shown in Figure 5.1, since this enables conservation of the total number
of atoms throughout the simulation and, hence, some numerical efficiencies. In the limit that the
pore volume πR2L(s)

z is small compared to the reservoir volume 2LxLyL(w)
z , the concentration based

on the control volume will converge to that based on the reservoir volume.

Given a target concentration difference, ∆c, the algorithm monitors the error

error∆c ≡ ∆c(t)−∆c =
N2(t)

V2
− N1(t)

V1
−∆c =

∆N(t)
V
−∆c, (5.19)

during the simulation, where ∆N(t)≡ N2(t)−N1(t) for a given ionic species. If ∆c(t) 6= ∆c, then
a integer number ∆n = round[1/2(∆N−V ∆c)] of ions are taken from the control region with an
excess of ions and transferred to the control region with a deficit. In addition to the geometric
parameters of reservoir size and placement, the ad hoc concentration control (CC) introduces a
maximum insertion/deletion energy, εE , a frequency, n, of swaps of ions between the reservoirs,
and a transition number of steps, m, to relax the interaction energy of inserted atoms to the nominal
value, εi→ ε . Every n steps, the concentration error (5.19) is computed and if it is non-zero ions
are swapped. The appropriate ions are chosen based on the local insertion/deletion energy, as in
a GCMC procedure, where the changes to the Lennard-Jones and short-range Coulomb energies
are calculated from Eqs. eq. (5.2) and eq. (5.3), and the long-range Coulomb energy is assumed
constant. Upon insertion of the ions, the LJ energy parameter ε of the transferred ions is decreased
to ε0/m, where ε0 is its original value before the insertion. This is to minimize the disturbance to
the existing molecules. Note that the charge of the inserted ions is unchanged to preserve charge
neutrality of the system and for simplicity. Subsequently, over m < n steps, ε is returned to its
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original value. Note that this gradual transition could also be applied to the deletion of ions, but
this was found to be unnecessary with respect to short range interactions. An extension of the
present algorithm where the deletions are gradual and applied to the charge, as well as to the short-
range interaction ε , would also preserve charge neutrality. Beside modifying the energy of the
inserted ion, it is assigned a velocity that is the sum of a velocity from the appropriate Boltzmann
distribution and the reservoir streaming velocity.

The transition parameters are adjusted to suit the expected flux so that disturbances are mini-
mized and the ions are swapped frequently enough to produce a sufficiently continuous flow. For
the present study, we used n = 100 steps and εE = 1eV (compared to kBT ≈ 0.03eV ). Preliminary
studies showed that these where roughly the minimal values for which a similar flow was observed
given our target concentration difference of approximately 30 ions. It is possible to extend this
algorithm to control the time averaged concentration 〈∆c(t)〉, instead of the instantaneous ∆c(t)
as in the present study, by replacing ∆c(t) in equation (eq. (5.19)) by 〈∆c(t)〉 ≈ 1

Ns
∑

Ns
i=1 ∆c(ti).

This running average would be calculated on a sampling interval ns, such that Ns = floor[t/(ns∆t)],
smaller than that of the control interval n. This modification would allow for fluctuations in the
flow range, and perhaps would be more in-line with a GCMD-based simulation, since only the
long-time average concentration difference would be constrained but preliminary studies indicated
that this modification produced no significant effects on the observables.

5.6.2 Temperature and momentum control

In addition to controlling the concentration in the control regions C1 and C2, the temperature and
momentum are controlled via a isokinetic thermostat [30, 54]. Gaussian least constraint minimiza-
tion [30] leads to augmented Newtonian dynamics

mα

d2xα

dt2 = f∗α +mαζ +λmαv′α , (5.20)

where xα is the position of the α-th atom, mα its mass, f∗α = −∂xα
Φ is the force from the inter-

atomic potential Φ, ζ is a Lagrange multiplier for a momentum constraint, and λ is a multiplier for
the temperature constraint. The velocity v′α is defined as v′α = vα − v̄, where vα is the velocity of
atom α and v̄ = 1

M P the average/streaming velocity of the control region. Furthermore, we define
as M = ∑α mα and P = ∑α mαvα the mass and momentum of the control region, respectively, and
N the number of atoms in the control region. The momentum constraint is g = P− P̄ = 0, where
P̄ is the prescribed value of momentum; while the temperature constraint is h = 3kBN(T − T̄ ) = 0,
with T̄ being the target temperature and T is the computed temperature given by a kinetic defini-
tion:

T =
1

3kBN ∑
α

mαv′α ·v′α

=
1

3kBN

[
∑
α

mαvα ·vα −
1
M

P ·P
]
. (5.21)
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The approximations of ˙̄P = 1
∆t

(
P̄−P

)
and ˙̄T = 1

∆t (T̄ −T ) are made to control the thermodynamic
variables P and T directly, i.e. not their rates. These constraints lead to

ζ =
1
M

[
˙̄P−∑

α

f∗α

]
≈ 1

M

[
1
∆t

(
P̄−P

)
−∑

α

f∗α

]
, (5.22)

and

λ =
1

2T

[
˙̄T − 2

3kB
∑
α

f∗α ·v′α
]

≈ 1
2T

[
1
∆t

(T̄ −T )− 2
3kB

∑
α

f∗α ·v′α
]
, (5.23)

if we assume the momentum constraint is satisfied for λ and ignore terms dependent on the rates
of N and M which vanish at steady state. Note that ˙̄P = 0 for momentum preservation.

Given the SHAKE constraints on the TIP4P water, which affect the rigidity of the water
molecules, and the significantly different expectations of streaming velocity for the different ionic
species, the temperature and momentum control for the water and the ions is performed indepen-
dently. More specifically, the temperatures are all the same, and the ions are allowed to preserve
their momentum, while the water momentum in the control regions is zeroed.
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Figure 5.9. Top row: Scatter plots of 20000 MCMC chain sam-
ples obtained for π(g0,g1) for Na+ (a) and Cl− (b), extracted from
the original MCMC chain by removing the burn-in period compris-
ing the first 15000 samples. Bottom row: marginalized posterior,
π(gk), of each PC coefficient gk, k = 0, . . . ,4, obtained via KDE
for Na+ (c) and Cl− (d). All panels show the results for a lin-
ear (P = 1), quadratic (P = 2), cubic (P = 3), and quartic (P = 4)
expansion.
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Figure 5.10. Panel (a) shows the comparison between the data
points of the Na+ (black circles) conductance and the correspond-
ing predictions obtained from the MAP estimate of the PC re-
gression function, M(ξ ), computed for a linear (P = 1), quadratic
(P = 2), cubic (P = 3), and quartic (P = 4) expansion as a function
of qsur f . The corresponding results for Cl− are shown in panel (b).
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Figure 5.11. Panel (a) shows the data-based variance (black
circles) of the Na+ conductance versus the corresponding predic-
tions obtained from the MAP estimate of the noise PC coefficients
{d0,d1}, as a function of the order, P, of the regression function,
M(ξ ). The corresponding results for Cl− are shown in panel (b).
Both plots are presented with a log scale on the y-axis.
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Figure 5.12. Results showing the posterior predictive check sam-
ples (gray) obtained for the Na+ (a) and Cl− (b) conductance using
a third-order and fourth-order PC representation, respectively. Su-
perimposed to the plots, we report the original data color-coded
blue for Na+ and red for Cl−, and the mean (black square) and
error bars for ±3σ̃ , where σ̃ is the standard deviation calculated
from the original data-set of conductances used in the inference.
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Figure 5.13. Results of the “model uncertainty” analysis ob-
tained for Na+ (a) and Cl− (b) showing how the posterior uncer-
tainty in the inferred PC representations of the conductances is
reflected in the corresponding predictions.
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Chapter 6

Finite Element Methods for Fluctuating
Hydrodynamics

==========================================================

6.1 Introduction

6.2 Strong Form of Fluctuating Hydrodynamic Equations

The local form for the fluctuating hydrodynamics equations are given by

∂ρ

∂ t
+

∂

∂x
· (ρv) = 0 ,

ρ
∂v
∂ t

+ρ
∂v
∂x
·v = −∇p+

∂

∂x
· (T) ,

(6.1)

where ρ , v, p and T are the density, velocity, pressure and the deviatoric stress tensor, respectively.
These quantities may be decomposed as

ρ = ρ0 + ρ̃ ,

v = v0 + ṽ ,

p = p0 + p̃ ,

T = T0 + T̃ ,

(6.2)

where (·)0 denote the averages and (·̃) denote the fluctuations about the average. The average stress
tensor is defined as

T0 = η
(
∇v+∇vT − 2

3
I(∇ ·v)

)
+ζ I(∇ ·v) , (6.3)

where η and ζ are the viscosity coefficients. Moreover, the random stress tensor T̃ follows the
flucutuation-dissipation theorem and is given by the correlation tensor

< T̃ik(r1, t1)T̃lm(r2, t2)> = 2T [η(δilδkm)+(ζ − 2
3

η)δikδlm]δ (r1− r2)δ (t1− t2) , (6.4)

The primary authors of this chapter are K. Mandadapu and J. Templeton.
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and can be modeled as Gaussian noise in space and time for all practical purposes. The basic
problem is to solve the fluctuating hydrodynamics equations eq. (6.1) under well-posed boundary
conditions.

Assuming that the fluctuations are sufficiently small, the fluctuating hydrodynamics equations
eq. (6.1) can be linearized about the steady state (ρ0,v0, p0) to yield

∂ ρ̃

∂ t
+

∂

∂x
· (ρ0ṽ+ ρ̃v0) = 0 ,

ρ0
∂ ṽ
∂ t

+ ρ̃(
∂v0

∂x
·v0)+ρ0

∂ ṽ
∂x
·v0 +ρ0

∂v0

∂x
· ṽ = −∇ p̃+∇ · (η

(
∇ṽ+∇ṽT − 2

3
I(∇ · ṽ)

)
+ζ I(∇ · ṽ))+ ∂

∂x
· (T̃) .

(6.5)

The linearized fluctuating hydrodynamics equations can be rewritten in a concise notation as

∂ ρ̃

∂ t
= ∇ ·J1 ,

ρ0
∂ ṽ
∂ t

= −∇p̃+∇ ·J2 +
∂

∂x
· (T̃) .

(6.6)

where the corresponding fluxes are given by

J1 = −(ρ0ṽ+ ρ̃v0) ,

J2 = η
(
∇ṽ+∇ṽT − 2

3
I(∇ · ṽ)

)
+ζ I(∇ · ṽ) .

(6.7)

6.3 Weak Form of Fluctuating Hydrodynamic Equations

In this section, to apply the finite element approximations to the primary dependent variables, weak
forms for the fluctuating hydrodynamics equations are derived. It is assumed that the trial functions
satisfy the standard conditions in the space of finite elements. Assuming wρ to be the trail function
corresponding to the density ρ̃ , the weak form for the density equation is given by∫

Ω

∂ ρ̃

∂ t
wρ dv =

∫
Ω

∇ ·J1wρ dv . (6.8)

In this case, one has two options: (i) Use the standard integration by parts to reduce the derivative
on the flux J1 by one order and then use the finite element approximations for the density and trial
functions. Here, boundary conditions for the density or the pressure must be used to solve the
problem. (ii) Use the standard derivative as it is in eq. (6.8) and then perform the standard finite
element approximations.

Similarly, assuming the trial function for the velocity operator to be wv, the weak form for the
linear momentum equation can be written as∫

Ω

ρ0
∂ ṽ
∂ t
·wv dv =

∫
Ω

−∇ p̃ ·wv dv+
∫

Ω

(∇ ·J2) ·wv dv+
∫

Ω

(
∂

∂x
· (T̃)

)
·wv dv . (6.9)
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All operations on the terms except the last term on the right-hand side of eq. (6.9) can be performed
using standard finite element framework. To this end, using standard integration by parts, eq. (6.9)
can be rewritten as∫

Ω

ρ0
∂ ṽ
∂ t
·wv dv =

∫
Ω

−∇p̃ ·wv dv−
∫

Ω

J2 ·∇wv dv+
∫

Γt

J2n ·wv dv+
∫

Ω

(
∂

∂x
· (T̃)

)
·wv dv ,

(6.10)
where Γt defines the boundary on which the traction boundary conditions are specified. However,
the last term on the right-hand side of eq. (6.9) should be described in detail as it entails spatial
white noise and follows Brownian process. It should be mentioned that the integral of the stochastic
term in the right-hand side of eq. (6.10) should be understood as an Ito-integral and therefore can
be calculated as a limit of the Riemann sums. To this end, it is best to introduce the finite element
approximation for the primary dependent variables (ρ̃, ṽ, p̃) given by

ρ̃ ≈ ρ̃h = ∑
I

ρ̃INI(x) ,

ṽ ≈ ṽh = ∑
I

ṽINI(x) ,

p̃ ≈ p̃h = ∑
I

p̃INI(x) ,

(6.11)

where (·)I are the values of the quantities at the element nodes and NI(x) are the shape functions
corresponding to the node I. To understand the effects of the random term in the momentum
equation eq. (6.10), consider the case of 1-dimensional shape function of any node I corresponding
to an element Ωe of size L given by

NI(x) = 1− (
x
L
) , x ∈ [0,L] . (6.12)

In this case, the integral of the random term over the element Ωe is given by∫
Ωe

∂

∂x
T̃NI(x)dx =

∫ L

0

∂ T̃
∂x

(
1− x

L

)
dx

= lim
N→∞

N

∑
n=1

(
T̃ (n∆x)− T̃ ((n−1)∆x)

)
(1− n

N
)

(6.13)

where the second equality is rewritten as the limit of a Reimann sum over length intervals of
∆x = L

N as mentioned above. Since T̃ (x) is modeled as a Weiner process, T̃ (x1)− T̃ (x2) is a
Guassian distribution with mean 0 and variance x1−x2. Therefore, the term on the right-hand side
of eq. (6.13) can be calculated as a limit of the sum of Gaussian random variables where the mean
is zero and the variance is given by

Var

(
lim

N→∞

N

∑
n=1

(
T̃ (n∆x)− T̃ ((n−1)∆x)

)
(1− n

N
)

)

= lim
N→∞

N

∑
n=1

Var

((
T̃ (n∆x)− T̃ ((n−1)∆x)

)
(1− n

N
)

)
,

= lim
N→∞

N

∑
n=1

(
1− n

N

)2 L
N

,

= L/3 .

(6.14)

111



It can be seen that the variance scales as the size of the size of the element. If the noise is normalized
with the volume with the element, then the fluctuations or the random term has a variance of 1

3L .
This shows that the fluctuations drop as the averaging process includes larger volumes and the
system of equations yield the regular Navier-Stokes equations. It is important to note that the
random term in eq. (6.9) should not be converted using integration by parts like in regular finite
element method and should be calculated in its original form to be able to utilize the Ito calculus
for stochastic processes.
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Chapter 7

Conclusions

The efforts in this work have focused on developing capabilities to predictively and efficiently
simulate fluid processes at the nanoscale by combining atomistic and continuum descriptions of
materials. Of particular importance are electrolyte flows through nanopores and at solid/fluid in-
terfaces with molecular solvents. Progress in addressing both types of problems has been made
in this project. Fluid-based problems require conserving mass and species between the continuum
and atomic regions, so a concentration regulation methodology based on approximating Grand-
Canonical Monte Carlo methods has been developed and demonstrated. Simultaneous control of
both momentum and energy is as needed, and it too has solved. Finally, this project has derived,
to the best of the authors’ knowledge, the first theory for incorporating molecules into a multiscale
framework.

Complementing the theory and methods development has been software engineering. The
methods described in this work are available through LAMMPS’ AtC package. It includes example
problems demonstrating these techniques in their intended application to guide domain-specific
experts in utilizing the code to solve their problems. Indeed, some of the methods presented in
this work are already being applied to model electric double layers and compare those models with
experiments. Further development efforts are planned to concurrently couple molecular fluids to
a continuum model and complete new theories which describe the charge distribution in semi-
conducting electrodes.

To increase the utility of the code, this project also has partially sponsored two computer sci-
ence clinic projects at Harvey Mudd College. Associated reports can be found in [34, 6]. Both
clinics worked on parallelizing the finite element operations in the code. While the data is not
decomposed, calculation of finite element integrals is now distributed as are finite element ma-
trix/vector multiplications. Atomistic calculations were already parallelized within the LAMMPS
code. The result is a code which is significantly more scalable software package which can be
applied to a greater range of problems. Further increasing the code’s usefulness was the imple-
mentation of an unstructured mesh capability to better represent realistic geometries. Supporting
this feature has been the addition of different element types, e.g. tetrahedrons, and higher-order
polynomial bases.

The combination of new theory and enhanced software features has provided Sandia National
Laboratories with a distinguishing capability to model nano- and micro-fluidic devices relevant
to its nuclear weapons and energy storage missions. Future work remains to extend the elec-
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tric field models and molecular multiscale coupling. However, the most important next step is
to develop mesoscale models, i.e., atomistically-informed continuum models, for next generation
fidelity. There is also a strong need for improved coupling between atomistic and quantum descrip-
tions of matter to improve modeling of electron transport and fluid/solid interactions. The current
AtC framework provides an excellent starting point for such efforts, as well as being immediately
relevant to perform previously infeasible calculations to better understand fluid processes at the
nanoscale.
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