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Abstract

This report summarizes existing statistical engines in VTK and presents both the serial and par-
allel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10]
which studied the parallel descriptive, correlative, multi-correlative, principal component anal-
ysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel
auto-correlative statistics engine is illustrated by the means of C++ code snippets and algo-
rithm verification is provided. This report justifies the design of the statistics engines with
parallel scalability in mind, and provides scalability and speed-up analysis results for the auto-
correlative statistics engine.
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1 Introduction

This report is a sequel to [PTO8, BPRT09b, PT09, BPT09, PT10], which respectively focused on
the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency,
k-means, and order engines which we designed and implemented as VTK parallel filters; please
refer to these references for a detailed presentation of these engines as well as an assessment of
their scalability and speed-up properties.

1.1 Imitial Motivation: The Titan Informatics Toolkit

The addition of a parallel, scalable statistics module to VTK was motivated by the Titan Informatics
Toolkit [WBSO08], a collaborative effort between Sandia National Laboratories and Kitware. This
effort significantly expanded the Visualization ToolKit (VTK) to support the ingestion, processing,
and display of informatics data. By leveraging the VTK data and execution models, Titan provides a
flexible, component based, pipeline architecture for the integration and deployment of algorithms
in the fields of intelligence, semantic graph and information analysis. A theoretical application

Figure 1. A theoretical application built with Titan.

built from Titan/VTK components is schematized in Figure 1. The flexibility of the pipeline ar-
chitecture of VTK allows for effective utilization of the Titan components for different problem
domains. For instance, an early implementation was OverView, a generalization of the ParaView
scientific visualization application dedicated to information visualization, leveraging the ParaView
client-server architecture to perform scalable analysis on distributed memory platforms.

In 2008, the parallel statistical engines were integrated into VTK, and the module has continued
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to grow as new engines have been developed in the context of the “Network Grand Challenge”
LDRD project at Sandia, and under a 3-year grant from the DOE/ASCR program to conduct broad
research in the topological and statistical analysis of petascale data. As part of this work, it was
discovered that auto-correlative statistics, which were not yet provided by the existing statistics
module VTK, where of particular interest to our colleagues in the CRF, due to its use in measuring
tubulence spectrum and length scales.

This report thus presents the new parallel, scalable auto-correlative statistics engine which we
developed in this context.

1.2 Algorithmic Details: Autocorrelation statistics

Since this report focuses on the parallelization of auto-correlative statistics, the following is a
brief summary of the definition of such statistical analyses and of their relevance to computational
physics, in this case post-processing of Direct Numerical Simulation (DNS) of reactive flows, see
Figure 2 for an example flame from a recent DNS run.

Figure 2. A lifted ethylene jet flame generated from a direct nu-
merical simulation (image courtesy of Hongfeng Yu and Jacque-
line Chen).

Auto-correlation is the cross-correlation of a signal with itself, providing a measure of the similar-
ity between observations as a function of the time separation between them. It is typically used to
discovery underlying repeating patterns in the presence of noise. Within the context of the analysis
of DNS computations, it is the prevalent method used by the combustion community to measure
the turbulence spectrum and the turbulence length scales. In an Eulerian framework, the turbulent
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eddies in a homogeneous turbulent flow can be perceived as being transported across a point of
observation at a rate equal to the mean velocity. The integral time scale, which is computed as
the time integration of the autocorrelation function, can be used to deduce the integral length scale
through a space-time transformation. The Fourier transform of the autocorrelation function yields
the turbulent frequency spectrum, whose integral is the mean square of the velocity fluctuation.

1.3 Statistics Functionality in VTK

A number of univariate, bivariate, and multivariate statistical tools have been implemented in VTK.
Each tool acts upon data stored in one or more tables; the first table serves as observations and
further tables serve as model data. Each row of the first table is an observation, while the form of
further tables depends on the type of statistical analysis. Each column of the first table is a variable.

Operations

In order to meet the two overlapping but not exactly congruent design requirements of matching
typical data analysis workflows and being conducive to scalable parallel implementation, our de-
sign partitions the statistical analysis algorithms into 4 disjoint operations: learn a model from
observations; derive statistics from a model; assess observations with a model, and test a hypothe-
sis. These operations, when all are executed, occur in order as shown in Figure 3. However, it is

Observations [}\ Il [H]\ 7 H Y []Oﬁservations

(perhaps assessed)
Model

Model [] A \U‘Uj \ [] [] A [] [] N [] (perhaps updated)

Learn Derive | Assess Test

Figure 3. The 4 operations of statistical analysis and their inter-
actions with input observations and models. When an operation is
not requested, it is eliminated by connecting input to output ports.

also possible to execute only a subset of these, for example when it is desired that previously com-
puted models, or models constructed with expert knowledge, be used in conjunction with existing
data. Note that in earlier publications (e.g., [BPRT09a, PTB10, Inc10]) only the first 3 operations
were mentioned; the Test operation, which we initially saw as a part of Derive, was separated out
for reasons we explained in [PTBM11]. These operations, performed on a request comprising a
set of columns of the input observations table, are further explained as follows:

Learn: Calculate a “raw” statistical model from an input data set. By “raw”, we mean the minimal
representation of the desired model, that contains only primary statistics. For example, in
the case of descriptive statistics: sample size, minimum, maximum, mean, and centered M»,
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M3 and M4 aggregates (cf. [POS]). For Table 1 with a request R; = {B}, these values are 6,
1, 11, 4.83, 68.83, 159.4, and 1759.8194, respectively.

Derive: Calculate a “full” statistical model from a raw model. By “full”’, we mean the complete
representation of the desired model, that contains both primary and derived statistics. For
example, in the case of descriptive statistics, the following derived statistics are calculated
from the raw model: unbiased variance estimator, standard deviation, and two estimators (g
and G) for both skewness and kurtosis. For Table 1 with a request Ry = {B}, these additional
values are 13.76, 3.7103, 0.520253, 0.936456, —1.4524, and —1.73616 respectively.

Assess: Given a statistical model — from the same or another data set — mark each datum of a
given data set. For example, in the case of descriptive statistics, each datum is marked with
its relative deviation with respect to the model mean and standard deviation (this amounts
to the one-dimensional Mahalanobis distance). Table 1 shows this distance for Rj = {B} in
column E.

Variables

A univariate statistics algorithm only uses information from a single column and, similarly, a
bivariate from 2 columns. Because an input table may have many more columns than an algorithm
can make use of, the API must provide a way for users to denote columns of interest. Because it
may be more efficient to perform multiple analyses of the same type on different sets of columns
at once as opposed to one after another, the VTK statistical engines provide a way for users to make
multiple analysis requests of a single filter.

Table 1. A table of observations that might serve as input to a
statistics algorithm.

row | A B C D E
110 1 O 1 1.03315
211 2 2 2 0.76363
310 3 4 6 0.49411
411 5 6 24 0.04492
510 7 8 120 0.58395
6|1 11 10 720 1.66202

As an example, consider Table 1. It has 6 observations of 5 variables. If univariate statistics of A,
B, and C are desired then three univariate requests must be made, one for each column. On the
other hand, if a multi-variate statistical analysis, such as PCA, is desired {A,B,C} then a single
request is sufficient.
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Algorithms

At the time of writing, the following algorithms are available in VTK:

1. Univariate statistics:

(a) Descriptive statistics:
Learn: calculate minimum, maximum, mean, and centered M,, M3 and M, aggre-
gates;

Derive: calculate unbiased variance estimator, standard deviation, skewness (1, and
G estimators), kurtosis (g2 and G, estimators);

Assess: mark with relative deviations (one-dimensional Mahalanobis distance).
(b) Order statistics:

Learn: calculate histogram;

Derive: calculate arbitrary quantiles, such as “5-point” statistics (quantiles) for box
plots, deciles, percentiles, etc.;

Assess: mark with quantile index.
(c) Auto-correlative statistics:

Learn: calculate minimum, maximum, mean, and centered M, aggregates for a vari-
able with respect to itself for a set of specified time lags (i.e., time steps between
data sets of equal cardinality assumed to represent the same variable distributed in
space);

Derive: calculate unbiased auto-covariance matrix estimator and its determinant, Pear-
son auto-correlation coefficient, linear regressions (both ways), and fast Fourier
transform of the auto-correlation function, again for a set of specified time lags;

Assess: mark with squared two-dimensional Mahalanobis distance.
2. Bivariate statistics:

(a) Correlative statistics:

Learn: calculate minima, maxima, means, and centered M, aggregates;

Derive: calculate unbiased variance and covariance estimators, Pearson correlation co-
efficient, and linear regressions (both ways);

Assess: mark with squared two-dimensional Mahalanobis distance.
(b) Contingency statistics:

Learn: calculate contingency table;

Derive: calculate joint, conditional, and marginal probabilities, as well as information
entropies;

Assess: mark with joint and conditional PDF values, as well as pointwise mutual in-
formations.
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3. Multivariate statistics: These filters all accept requests containing n; variables upon which
simultaneous statistics should be computed.

(a) Multi-Correlative statistics:

Learn: calculate means and pairwise centered M, aggregates;

Derive: calculate the upper triangular portion of the symmetric n; X n; covariance ma-
trix and its (lower) Cholesky decomposition;

Assess: mark with squared multi-dimensional Mahalanobis distance.
(b) PCA statistics:

Learn: identical to the multi-correlative filter;

Derive: everything the multi-correlative filter provides, plus the n; eigenvalues and
eigenvectors of the covariance matrix;

Assess: perform a change of basis to the principal components (eigenvectors), op-
tionally projecting to the first m; components, where m; < n; is either some user-
specified value or is determined by the fraction of maximal eigenvalues whose sum
is above a user-specified threshold. This results in m; additional columns of data
for each request R;.

(c) k-means statistics:

Learn: compute optimized set(s) of cluster centers from initial set(s) of cluster centers.
In the default case, the initial set comprises the first k observations. However, the
user can specify one or more sets of cluster centers (with possibly differing num-
bers of clusters in each set) via an optional input table, in which case an optimized
set of cluster centers is computed for each of the input sets.

Derive: calculate the global and local rankings amongst the sets of clusters computed
in the learn operation. The global ranking is the determined by the error amongst
all new cluster centers, while the local rankings are computed amongst clusters
sets with the same number of clusters. The total error is also reported;

Assess: mark wth closest cluster id and associated distance for each set of cluster cen-
ters.

A utilization example of the statistical engines of VTK in ParaView is shown in Figure 4. Specifi-
cally, a PCA analysis is performed on a quadruple of variables of interest in a 2D flame simulation,
whereby the statistical model is calculated (learn and derive operations) on a randomly-sampled
subset of ll—o—th of the entire data set, after which all points in the data set are marked with their
respective relation deviations from this model.

1.4 Input and Output Ports

The statistics algorithms have by default 3 input ports and 3 output ports as follows:
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Figure 4. Several of the VTK parallel stastistics engines are inte-
grated into ParaView. Example using PCA on 4 data set attributes.

Input Port 0: This port is identified as vtkStatisticsAlgorithm: : INPUT_DATA and is used for
learn data.

Input Port 1: This port is identified as vtkStatisticsAlgorithm: : LEARN_PARAMETERS and is
used for learn parameters (e.g., initial cluster centers for k-means clustering, time lags for

auto-correlation).

Input Port 2: This port is identified as vtkStatisticsAlgorithm: : INPUT_MODEL and is used
for a priori models.

Output Port 0: This port is identified as vtkStatisticsAlgorithm: : OUTPUT _DATA and mirrors
the input data, plus optional assessment columns.

Output Port 1: This port is identified as vtkStatisticsAlgorithm: :OUTPUT_MODEL and con-
taints any generated model.

Output Port 2: This port is identified as vtkStatisticsAlgorithm: :OUTPUT_TEST and is cur-
rently experimental and not used by all statistics algorithms'.

'In earlier implementations and reports it was called vtkStatisticsAlgorithm: : ASSESSMENT, a key which has
been deprecated since.
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All input and output ports are of type vtkTable, with the exception of both input and output ports
1 which are of type vtkMultiBlockDataSet. Note that in earlier implementations of these filters
it was also possible for ports 1 to be of type vtkTable, however this is no longer the case.

In the following sections, we present implementation details on the serial and parallel versions of
the auto-correlative statistics algorithm, provide a basic user manual thereof, provide verification
results, and examine the scalability of the parallel implementation.

14



2 Parallel Statistics Classes

2.1 Implementation Details

We build a full statistical model in two separate operations, as this enables both database normal-
ization (resulting from the fact that there is no redundancy in the primary model) and parallel com-
putational efficiency. In our approach inter-processor communication and updates are performed
only for primary statistics. The calculations to obtain derived statistics from primary statistics are
typically fast and simple and need only be calculated once, without communication, upon comple-
tion of all parallel updates of primary variables. Data to be assessed is assumed to be distributed in
parallel across all processes participating in the computation, thus no communication is required
as each process assesses its own resident data.

Therefore, in the parallel versions of the statistical engines, inter-processor communication is re-
quired only for the Learn operation, while both Derive and Assess are executed in an embarrass-
ingly parallel fashion due to data parallelism. This design is consistent with the data parallelism
methodology used to enable parallelism within VTK, most notably in ParaView. Because the focus
of this report is on the parallel speed-up properties of statistics engines, we will not report on the
Derive or Assess operations, as these are executed independently from each other, on a separate
process for each part of the data partition. However, because the Derive operation provides the de-
rived quantities to which one is naturally accustomed (e.g., variance as opposed to M, aggregate),
the numerical results reported here are those that are yielded by the consecutive application of the
Learn and then Derive operations.

At the time of writing (February 2013), the following 8 parallel statistics engines are implemented
and available in the parallel statistics module of VTK.
1. vtkPAutoCorrelativeStatistics;
vtkPDescriptiveStatistics;
vtkPOrderStatistics;
vtkPCorrelativeStatistics;
vtkPContingencyStatistics;

vtkPMultiCorrelativeStatistics;

A e B

vtkPPCAStatistics;

8. vtkPKMeansStatistics.

Each of these parallel algorithms is implemented as a subclass of the respective serial version of
the algorithm and contains a vtkMultiProcessController to handle inter-processor commu-
nication. Within each of the parallel statistics classes, the Learn operation is the only operation
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whose behavior is changed (by reimplementing its virtual method or by reimplementing virtual
methods that are called by the Learn operation) due to the data parallelism inherent in the Derive
and Assess operations. The Learn operation of the parallel algorithms performs two primary tasks:

1. Calculate statistics on local data by executing the Learn code of the superclass.

2. If parallel updates are needed (i.e. the number of processes is greater than 1), perform
necessary data gathering and aggregation of local statistics into global statistics.

The descriptive, correlative, auto-correlative and multi-correlative statistics algorithms perform
the aggregation necessary for the statistics which they are computing using the arbitrary-order
update and covariance update formulas presented in [PO8]. Because the PCA statistics class derives
from the multi-correlative statistics algorithm and inherits its Learn operation, a static method is
defined within the parallel multi-correlative statistics algorithm to gather all necessary statistics,
cf. [BPRTO09b] for details. As explained in the aforementioned references, all of these parallel
classes exhibit optimal parallel speed-up properties. Similarly, the contingency statistics class
derives from the bivariate statistics class and implements its own aggregation mechanism for the
Learn operation. However, unlike the other statistics algorithms which rely on statistical moments
(descriptive, correlative, auto-correlative, multi-correlative, PCA, and k-means), this aggregation
operation is, in general, not embarrassingly parallel and, therefore, optimal parallel scale-up is
not observed when this class is used outside of its intended domain of applicability, as explained
in [PT09]. The same is the case for the order statistics, since the parallel update of a histogram
involves in general more than negligibly small amounts of data as compared to the overall data set
size.

2.2 Usage

It is fairly easy to use the serial statistics classes of VTK; it is not much harder to use their parallel
versions. All that is required is a parallel build of VTK and a version of MPI installed on your
system.

For example, Listing 1 demonstrates how to calculate auto-correlative statistics, in parallel, on
each column of an input set inData of type vtkTable* with an associated set of input parameters
and no subsequent data assessment. It is assumed that this input data type be of numeric type (i.e.,
double), with the following storage convention: each time-step corresponds to a block of data of
the same size, denoted nvVals above. Each such block is often referred to as a time-slab. As a
result, there are as many data points for each variable as there are time steps, times the slab size
nVals. Last, a parameter table paramTable contains the list of time lags of interest, i.e., those time
steps for which the auto-correlation must be computed with respect to the initial time step (the first
slab in the data set). In particular, if this parameter table contains only one entry with value 0,
then the auto-correlation of the entire dataset against itself will be calculated, which will lead to a
covariance matrix with all coefficients equal to the variance of the variable, and the auto-correlation
coefficient will be equal to 1.

16


http://www.vtk.org/
http://www.vtk.org/

For univariate statistics algorithms, calling AddColumn () for each column of interest is sufficient
— each request R; can by definition only reference a single column and so the filter automatically
turns each column of interest into a separate request. However, this is not sufficient for multivariate
filters as each request might have a different number of columns of interest. In this case, requests
for columns of interest are specified by calling SetColumnStatus () multiple times to identify the
variables to be used, followed by a call to RequestSelectedColumns (). For more details on the
use of multivariate filters, please refer to, e.g., [BPT(09].

The examples thus far assume that a MPI communicator was previously prepared within the parallel
environment used to execute the parallel auto-correlative statistics engine. It is outside the scope
of this report to discuss I/O issues, and in particular how a vtkTable can be created and filled with
the values of the variables of interest. See VTK’s online documentation for details [vtk]. However,
we include a small amount of code to prepare a parallel controller.

In the code example from Listing 1, the vtkMultiProcessController object passed to Foo () is
used to determine the set of processes (which may be a subset of a larger job) among which input
data is distributed. VTK uses subroutines of this form to execute code across many processes. In
Listing 2 we demonstrate that, to prepare a parallel controller to execute Foo () in parallel using
MPI, one must first (e.g. in the main routine) create a vt kMPIController and pass it the address of
Foo (). Note that, when using MPI, the number of processes is determined by the external program
which launches the application.
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void Foo( vtkMultiProcessController* controller, void* arg )

{
// Use the specified controller on all parallel filters by default:
vtkMultiProcessController::SetGlobalController( controller );

// Assume the input dataset is passed to us:
vtkTable* inputData = static_cast<vtkTable*>( arg );

// Create parallel auto-correlative statistics class
vtkPAutoCorrelativeStatistics* pas = vtkPAutoCorrelativeStatistics::New();

// Set input data port
pas->SetInput ( 0, inputData );

// Select all columns in inputData

for ( int ¢ = 0; c < inputData->GetNumberOfColumns(); ++ c )
{
pas—>AddColumn ( inputData->GetColumnName[c] );
}

// Set spatial cardinality
pas—>SetSliceCardinality( nVals );

// Set parameters for autocorrelation of whole data set with respect to itself
pas—->SetInputData( vtkStatisticsAlgorithm::LEARN_PARAMETERS, paramTable );

// Calculate statistics with Learn and Derive operations only
pas->SetLearnOption( true );

pas->SetDeriveOption( true );

pas—>SetAssessOption( false );

pas—->SetTest ( false );

pas—->Update () ;

Listing 1: A subroutine — that should be run in parallel — for calculating auto-correlative statistics.

18



vtkTable* inputData;
vtkMPIController* controller = vtkMPIController::New();
controller->Initialize( &argc, &argv );

// Execute the function named Foo on all processes
controller->SetSingleMethod( Foo, &inputData );
controller->SingleMethodExecute () ;

// Clean up
controller->Finalize();
controller->Delete();

Listing 2: A snippet of code demonstrating how to execute a subroutine (Foo () ) in parallel. In
reality, inData would be prepared in parallel by Foo () but is assumed to be pre-populated here to
simplify the example.
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3 Results

We performed a series of tests on Titan, the primary system of the National Center for Computa-
tional Sciences at Oak Ridge National Laboratory. The Cray XK7 system contains 18,688 nodes
connected by a Gemini interconnect, with each holding a 16-core AMD Opteron 6274 processor
and 32 GB of memory.

3.1 Algorithm Scalability

In order to assess speed-up independently of the load-balancing scheme, a series of (pseudo-)
randomly-generated samples is used. Specifically, input tables are created at run time by gener-
ating 4 separate samples of independent pseudo-random variables, the two first (resp. last) vari-
ables having a standard normal (resp. standard uniform) distribution. Since our objective is to
assess the scalability of the parallel statistics engines only, equally-sized slabs of data are created
by each process in order to work with perfectly load-balanced cases. For the same reason, the
amount of time needed to create the input data table is excluded from the analysis. In this test,
vtkPAutoCorrelativeStatistics, with Learn, Derive, and Assess modes on, is executed for
each of the 4 columns, and the corresponding wall clock time is reported.

With this synthetic test case, we assess:

1. relative speed-up (at constant total work), and

2. scalability of the rate of computation (at constant work per processor).

Strong Scaling

Given a problem of size N (as measured in our case by sample size), the wall clock time measured

to complete the work with p processors is denoted Ty (p). Then, strong scaling with p processors

is defined as the following ratio:

_ Iy(y)
In(p)

Optimal (linear) speedup is attained with p processors when Sy(p) = p and, therefore, strong

scaling results for Sy may be visually inspected by plotting Sy versus the number of processors:
optimal speed-up is revealed by a line, the angle bisector of the first quadrant.

Sn(p)

In order to assess strong scaling, we use a test case that with a pseudo-random samples of total size
N = 1,562,624 per time step, with increasing number of processors p = 2X with k € {6,...,15}.
As the smallest number of processors is 64 and not 1, for convenience and legibility of the results
we normalize the formula for Sy(p) with a multiplicative factor of 64: this allows us to keep the
handy visual comparison versus the first bisector.
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Table 2. Strong scaling (at constant total work), with a total sam-
ple size of N = 1,562,624 doubles per time step.

N/p p  Auto-correlative
(sec. / Sy(p))
1,562,624 64 18.1521/ 64

781,312 128  9.23122/125.85
390,656 256  4.83677/240.19
195,328 512 2.62850/441.98
97,664 1024  1.53182/758.40
48,832 2048 0.973303/1193.6
24,416 4096 0.750859 /1547.2
12,208 8192 0.581591/1997.5
6,104 16384 0.580288/2002.0
3,052 32768 0.598636/1940.6

The wall clock times obtained on titan are provided in Table 2 and the corresponding strong
scaling numbers are plotted in Figure 5. As expected based on the embarrassingly parallel nature
of the Learn-Derive-Assess pattern for moment-based statistics, which we explained in detail in
particular in [BPRT09a], we observe that the measured strong scaling numbers are optimal until
the decreasing amount of work per process ultimately results in a situation where overheads, even
small in absolute terms, become dominant as compared to the amount of actual computational
work. In this current example, it appears that with 1024 processes, i.e., with a per-process of load
below 10° points per time step, strong scaling begins to tail off. Furthermore, with less than 10*
points per time step and per process, noticeable speed down begins to appear, as expected with
such a small load per process where operating sytem overheads become dominant.

Weak Scaling

Weak scaling is defined as the following ratio:

where N(p), the sample size, now varies with the number of processors p. We then measure
its scalability by normalizing it with respect to the rate of computation obtained with a single
processor, as follows:
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Figure 5. Strong scaling at constant total work with a total data
size of N = 1,562,624 doubles per time step.

In particular, if the sample size is made to vary in proportion to the number of processors, i.e., if
N(p) = pN(1), then
~ pIvay(1)  pInay(1)  Tyay(1)

Tovey(P)  PInay(P)  Tnay(p)’

and thus, optimal (linear) scalability is also attained with p processors when R(p) = p. Note
that without linear dependency between N and p, the latter equality no longer implies optimal
scalability. Hence, under the above assumptions, scalability can also be visually inspected, with a
plot of R versus the number of processors, where optimal scalability is also indicated by the angle
bisector of the first quadrant.

R(p)

Weak scaling is now assessed using the same test case as in § 3.1, with the difference that, in order
to maintain a constant work per processor, increasingly large samples are created: specifically, each
data sets contains N(p) = np doubles per time step, where n = 10° and p = 2¥ withk € {6,...,15}
respectively denote the number of sample points per processor and the number of processes.

The wall clock times measured on titan are given in Table 3 and the corresponding weak scaling
numbers are plotted in Figure 6. These exhibit near-optimal scalability, with an overall order
above 0.98. These findings confirm what we explained theoretically for all parallel, moment-
based statistics algorithms using the Learn-Derive-Assess pattern, and confirm experimentally for
concrete types of such algorithms, in particular in [BPRT09a].
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Table 3. Weak scaling (at constant load per processor) with a per
processor load of N(p) = p x 10° doubles per time step.

N(p) p  Auto-correlative
(x10%) (sec. / R)
64 64 1.49354/ 64

128 128 1.48828/128.52
256 256 1.50946 /253.30
512 512 1.55391/492.11
1024 1024 1.53471/996.53
2048 2048 1.57202/1945.8
4096 4096 1.61576/3786.2
8192 8192 1.60698/7613.7
16384 16384 1.66449 /14701
32768 32768 1.67711/29181

32768 T i
theoretical optimum ——
measured
16384 +— _
8192 - g _
4096 - ///// -

2048 - /
1024 .
512 /

256 e .

128 & |

Weak Scaling, R(p)

64 . | | | | | | | |
64 128 256 512 1024 2048 4096 8192 16384 32768

Number of Cores, p

Figure 6. Weak scaling at constant work per processor of
N(p)/p=10".
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3.2 Algorithm Correctness

In order to assess the algorithm correctness of vtkPAutoCorrelativeStatistics, we have ex-
amined the statistical models obtained when both Learn and Derive options are turned on with a
variety of input data sets, both very small (which could then be verified point by point) and very
large.

In this report, we do not report on each of these test cases, which would present very little interest,
other than saying that for those who were too large to for manual verification, the validation method
verifies that:

1. when the time lag is chosen to be 0, and the spatial cardinality is equal to the total data set
cardinality, then the calculated covariance matrix has all coefficients equal to the variance
calculated over the entire data set with vtkPCorrelativeStatistics, which has already
been validated independently [PTO8].

2. when the time lag is chosen to be greater than 0, and the input tables are generated at run
time by pseudo-random, independent sampling, then the Pearson auto-correlation coefficient
must be equal to 0 within a very small numerical tolerance.
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