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Abstract

In the following paper, we discuss how to design an ensemble of experiments through the use of
compressed sensing. Specifically, we show how to conduct a small number of physical experiments and
then use compressed sensing to reconstruct a larger set of data. In order to accomplish this, we organize
our results into four sections. We begin by extending the theory of compressed sensing to a finite product
of Hilbert spaces. Then, we show how these results apply to experiment design. Next, we develop an
efficient reconstruction algorithm that allows us to reconstruct experimental data projected onto a finite
element basis. Finally, we verify our approach with two computational experiments.
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1 Introduction

Traditional compressed sensing studies when the following equivalence holds

{x̄} = arg min
x∈Rp
{‖x‖1 : Φx = Φx̄}.

Here, x̄ ∈ Rp, ‖x‖1 =
∑p

i=1 |xi|, and Φ ∈ Rq×p where q < p. Note the vector x̄ on both sides of the
equality. Hence, compressed sensing studies when we can encode a vector with a sampling operator Φ in
such a way that we can exactly reconstruct the element through the solution of an optimization problem.
Although simple to state, the above equivalence has important implications in signal processing and other
fields. Notably, Candes, Romberg, and Tao show that a signal can be sampled below the Nyquist rate, yet
exactly recovered, as long as the signal is sparse in some basis and we sample the signal in a special way [2].

In the following presentation, we generalize this idea to a finite product of Hilbert spaces and consider
when the related equivalence holds

{x̄} = arg min
x∈Sp
{‖x‖1 : (Φ⊗ I)x = (Φ⊗ I)x̄}.

In this case, S denotes an arbitrary Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, Sp = S × · · · × S
designates the p-times Cartesian product of S, ‖x‖1 =

∑m
i=1 ‖xi‖, Φ ∈ Rq×p where q < p, and we define the

Kronecker-like product Φ⊗ I ∈ L (Sp, Sq) as

(Φ⊗ I)x =

Φ11 . . . Φ1p

...
. . .

...
Φq1 . . . Φqp


x1

...
xp

 =


p∑

i=1

Φ1ixi

...
p∑

i=1

Φqixi

 , (1)

where L (Sp, Sq) denotes the set of bounded linear operators that map Sp to Sq.

This generalization is important for two reasons. First, it allows us to generalize compressed sensing to
spaces of functions, which has implications in experiment design, parameter estimation, and PDE constrained
optimization. Second, it provides a simple way to apply compressed sensing to problems that contain group
sparsity. Group sparsity occurs when data can be divided into different groups and the majority of groups
contain zero data. Although Turlach, Venables, and Wright previously approached group sparsity using
LASSO [6], our theory provides a simple, unified framework.

We organize our presentation in the following manner. Motivated by our recent results in [9] and that of
Rauhut in [5], we generalize compressed sensing to a finite product of Hilbert spaces. Then, we show how
this generalization can be used to reduce the number of physical experiments required in order to generate
a large collection of data. In order to reconstruct this data, we develop an algorithm based on a version of
the alternating direction method of multipliers developed by Deng, Yin, and Zhang [3]. Next, using these
tools, we conduct two computational experiments. In the first, we show that our methods and algorithms
do extend to function spaces by encoding and reconstructing a collection of letters represented by piecewise
linear functions. In the second, we simulate a sequence of physical experiments where the underlying physics
are well-modeled by Poisson’s equation. Then, we show that we can use compressed sensing to reduce the
number of physical experiments required. Finally, we summarize our results and provide a final discussion.
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2 Generalization

In the following section, we generalize compressed sensing to a finite product of Hilbert spaces. This consists
of four steps. First, we discuss the null space property of linear operators and show that this property
is necessary and sufficient for compressed sensing to occur. Second, we examine the restricted isometry
property and its various properties. Using these properties, we show operators that possess the restricted
isometry property also possess the null space property. Third, we show that if a matrix possesses the
restricted isometry property, then the Kronecker-like product between the matrix and the identity operator
also possesses the restricted isometry property. Finally, we explain how we do not require sparsity per se for
compressed sensing to occur, but rather sparsity in some basis.

We begin with the definition of the null space property.

Definition 1 (Null Space Property). A linear operator Φ̃ ∈ L (Sp, Sq) satisfies the null space property of
order k when for all index sets α ⊆ {1, . . . , p} with |α| = k it holds

‖vα‖1 < ‖vαc‖1

for all v ∈ N (Φ̃)\{0}.

In the above definition, vα ∈ Sp denotes the projection Iαv where Iα ∈ L (Sp, Sp) and

[Iαx]i =
{

xi i ∈ α
0 i 6∈ α.

For future reference, we define Φ̃α = Φ̃Iα. In addition, αc = {1, . . . , p}\α denotes the complement of α

and N (Φ̃) = {x ∈ Sp : Φ̃(x) = 0} denotes the null space of Φ̃. Next, for x ∈ Sp, we define the support as
supp(x) = {i ∈ {1, . . . , p} : ‖xi‖ 6= 0}. Finally, for a set α, we use the notation |α| to denote the cardinality
of the set α.

Then, using the null space property, we prove our primary compressed sensing theorem.

Theorem 1 (Compressed Sensing). Let Φ̃ ∈ L (Sp, Sq). Then, every k-sparse element x̄ ∈ Sp satisfies

{x̄} = arg min
x∈Sp
{‖x‖1 : Φ̃x = Φ̃x̄}

if and only if Φ possesses the null space property of order k.

Proof. The following proof mirrors that from Rauhut [5].

In the forward direction, we assume that for any k-sparse x̄ ∈ Sp we have

{x̄} = arg min
x∈Sp
{‖x‖1 : Φ̃x = Φ̃x̄}.

Then, for any v ∈ N (Φ)\{0} and any index set α ⊆ {1, . . . , p} such that |α| = k, we have that

{vα} = arg min
x∈Sp
{‖x‖1 : Φ̃x = Φ̃vα}. (2)

Since v ∈ N (Φ̃)\{0}, we see that 0 = Φv = Φ(vα + vαc), which implies Φ(−vαc) = Φvα where −vαc 6= vα.
Hence, vαc is a feasible point to the optimization problem arg min

x∈Sp
{‖x‖1 : Φ̃x = Φ̃vα}. However, in Equation

2, we see that vα is the unique optimal solution, which means that ‖vα‖1 < ‖x‖1 for all x ∈ Sp such that
Φ̃x = Φ̃vα. Therefore, we have that ‖ − vαc‖1 = ‖vαc‖1 > ‖vα‖1, which proves the null space property of
order k for Φ̃.
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In the reverse direction, we assume that Φ̃ possesses the null space property of order k. Given a k-sparse
vector x̄ ∈ Sp and an arbitrary vector x ∈ Sp such that Φ̃x = Φ̃x̄ and x 6= x̄, we define v = x̄ − x. Since
Φ̃x = Φ̃x̄ and x 6= x̄, we see that v ∈ N (Φ̃)\{0}. Then, for α = supp(x̄), we use the null space property of
Φ̃ and notice that

‖x̄‖1 = ‖x̄− xα + xα‖1 ≤ ‖x̄− xα‖1 + ‖xα‖1 = ‖x̄α − xα‖1 + ‖xα‖1 = ‖vα‖1 + ‖xα‖1
< ‖vαc‖1 + ‖xα‖1 = ‖ − xαc‖1 + ‖xα‖1 = ‖x‖1.

Therefore, x̄ has a norm strictly lower than all other points and must be the unique minimizer to arg min
x∈Sp
{‖x‖1 :

Φ̃x = Φ̃x̄}.

In many applications, an element x̄ ∈ Sp may not be inherently sparse in the product space, but a linear
transformation of the element may induce sparsity. In this situation, we can still recover x̄ with a slightly
different equivalence.

Corollary 1 (Compressed Sensing with Change of Basis). Let Φ̃ ∈ L (Sp, Sq). Let Ψ ∈ L (Sp, Sq) be
invertible. Then, every k-sparse element Ψ−1x̄ ∈ Sp satisfies

{x̄} = arg min
x∈Sp
{‖Ψ−1x‖1 : Φ̃x = Φ̃x̄}

if and only if Φ̃ possesses the null space property of order k.

Proof. In the forward direction, we assume that for k-sparse Ψ−1x̄, we have

{x̄} = arg min
x∈Sp
{‖Ψ−1x‖1 : Φ̃x = Φ̃x̄}.

Let ȳ = Ψ−1x̄ and Θ = Φ̃Ψ. Then, we notice that

{ȳ} = Ψ−1{x̄}

= Ψ−1 arg min{‖Ψ−1x‖1 : Φ̃x = Φ̃x̄, x ∈ Ω}

= Ψ−1 arg min{‖Ψ−1x‖1 : Φ̃ΨΨ−1x = Φ̃x̄}

= arg min{‖y‖1 : Φ̃Ψy = Φ̃x̄}

= arg min{‖y‖1 : Φ̃Ψy = Φ̃Ψȳ}
= arg min{‖y‖1 : Θy = Θȳ}.

This states that for all k-sparse ȳ ∈ Sp, {ȳ} = arg min{‖y‖1 : Θy = Θȳ}. Hence, from Theorem 1, Θ
possesses the null space property of order k. However, since Ψ is invertible,

N (Θ) = N (Φ̃Ψ) = N (Φ̃). (3)

Therefore, Φ̃ possesses the null space property of order k.

In the reverse direction, we assume that Φ̃ possesses the null space property of order k. Since Ψ is
invertible, Equation (3) shows that Θ, where Θ = Φ̃Ψ, also possesses the nullspace property of order k.
Therefore, from Theorem 1, we have that

{ȳ} = arg min{‖y‖1 : Θy = Θȳ}.

Using the same sequence of equalities from the forward direction, we have that

{x̄} = arg min
x∈Sp
{‖Ψ−1x‖1 : Φ̃x = Φ̃x̄}.
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Due to difficulty in proving that an arbitrary operator possesses the nullspace property, we use a related
property called the restricted isometry property.

Definition 2 (Restricted Isometry Constant). For Φ̃ ∈ L (Sp, Sq), the value

δk = inf
x∈Sp
{δ ∈ R : (1− δ)‖x‖22 ≤ ‖Φ̃x‖22 ≤ (1 + δ)‖x‖22, |supp(x)| = k}

denotes the restricted isometry constant of order k.

In the above definition, ‖x‖2 =
√
〈x, x〉 where 〈x, y〉 =

∑p
i=1〈xi, yi〉. Using this definition, we say that a

matrix possesses the restricted isometry property of order k when δk ∈ (0, 1).

The restricted isometry constants possess several properties.

Theorem 2 (Restricted Isometry Constants). Let Φ̃ ∈ L (Sp, Sq) have restricted isometry constants δk.
Then,

(a) The restricted isometry constants are ordered, δ1 ≤ δ2 ≤ δ3 ≤ . . . .

(b) The restricted isometry constants can be redefined as

δk = max
α⊆{1,...,p}

{
‖Φ̃∗αΦ̃α − Iα‖2 : |α| = k

}
.

(c) Let x, y ∈ Sp be such that supp(x) ∩ supp(y) = ∅ and define k = |supp(x)|+ |supp(y)|. Then,

|〈Φ̃x, Φ̃y〉| ≤ δk‖x‖2‖y‖2.

Proof. The following proof mirrors that from Rauhut [5].

Since k-sparse elements are also k + 1-sparse, part (a) immediately follows.

For part (b), notice that we can rewrite our definition of a restricted isometry constant as

δk = inf
x∈Sp
{δ ∈ R : (1− δ)‖x‖22 ≤ ‖Φ̃x‖22 ≤ (1 + δ)‖x‖22, |supp(x)| = k}

= inf
x∈Sp
{δ ∈ R : |‖Φ̃x‖22 − ‖x‖22| ≤ δ‖x‖22, |supp(x)| = k}

= inf
x∈Sp
{δ ∈ R : |‖Φ̃αx‖22 − ‖Iαx‖22| ≤ δ‖Iαx‖22, α ⊆ {1, . . . , p}, |α| = k}

= inf
x∈Sp
{δ ∈ R : |‖Φ̃αx‖22 − ‖Iαx‖22| ≤ δ‖x‖22, α ⊆ {1, . . . , p}, |α| = k} (4)

where the last equality follows since ‖Iαx‖2 ≤ ‖x‖2 and for all x ∈ Sp there exists y ∈ Sp such that Iαx = y.
Then, we see that

δk =Equation (4)

= inf
x∈Sp
{δ ∈ R : |〈Φ̃αx, Φ̃αx〉 − 〈Iαx, Iαx〉| ≤ δ〈x, x〉, α ⊆ {1, . . . , p}, |α| = k}

= inf
x∈Sp
{δ ∈ R : |〈Φ̃αx, Φ̃αx〉 − 〈I∗αIαx, x〉| ≤ δ〈x, x〉, α ⊆ {1, . . . , p}, |α| = k}

= inf
x∈Sp
{δ ∈ R : |〈Φ̃αx, Φ̃αx〉 − 〈Iαx, x〉| ≤ δ〈x, x〉, α ⊆ {1, . . . , p}, |α| = k}

= inf
x∈Sp

{
δ ∈ R :

∣∣∣∣∣ 〈(Φ̃∗αΦ̃α − Iα)x, x〉
〈x, x〉

∣∣∣∣∣ ≤ δ, α ⊆ {1, . . . , p}, |α| = k

}

= max
α⊆{1,...,p}

{
inf

x∈Sp

{
δ ∈ R :

∣∣∣∣∣ 〈(Φ̃∗αΦ̃α − Iα)x, x〉
〈x, x〉

∣∣∣∣∣ ≤ δ

}
: |α| = k

}
= max

α⊆{1,...,p}

{
‖Φ̃∗αΦ̃α − Iα‖2 : |α| = k

}
.
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In part (c), let x, y ∈ Sp where α = supp(x), β = supp(y), and α ∩ β = ∅. Due to the disjointness of
their supports, we see that 〈x, y〉 = 0. Keeping this in mind, we have that

|〈Φ̃x, Φ̃y〉| =|〈Φ̃α∪βx, Φ̃α∪βy〉|

=|〈Φ̃α∪βx, Φ̃α∪βy〉 − 〈Iα∪βx, Iα∪βy〉|

=|〈Φ̃α∪βx, Φ̃α∪βy〉 − 〈I∗α∪βIα∪βx, y〉|

=|〈Φ̃∗α∪βΦ̃α∪βx, y〉 − 〈Iα∪βx, y〉|

=|〈(Φ̃∗α∪βΦ̃α∪β − Iα∪β)x, y〉|

≤‖Φ̃∗α∪βΦ̃α∪β − Iα∪β‖2‖x‖2‖y‖2
≤δk‖x‖2‖y‖2.

Now, we connect the restricted isometry property with the null space property with the following theorem

Theorem 3 (Restricted Isometry Implies Null Space). If the restricted isometry constant of an operator
Φ ∈ L (Sp, Sq) satisfies

δ2k <
1
3
,

then Φ satisfies the null space property of order k.

Proof. The proof mirrors that of Rauhut [5].

Let v ∈ N (Φ)\{0} and αi ⊆ {1, . . . , p} a collection of index sets that partition {1, . . . , p} so that vα0

contains k elements of largest norm, vα1 contains the next k largest elements, and so on. In other words,

αi = arg max
α⊆βi

{‖vα‖1 : |α| = min{k, |βi|}}

β0 = {1, . . . , p}

βi = {1, . . . , p}\
i−1⋃
j=0

αj .

Note, the min{k, |βi|} term insures that we grab k elements at a time until we have fewer than k elements.
Then, we take the remaining elements. In this way, v =

∑
i≥0 vαi

and since v ∈ N (Φ), Φvα0 = Φ(
∑

i≥1−vαi
).

Next, since Φ possesses the restricted isometry property, we have that

‖vα0‖22 ≤
1

1− δ2k
‖Φvα0‖22

=
1

1− δ2k
〈Φvα0 ,Φvα0〉

=
1

1− δ2k

〈
Φvα0 ,Φ

(∑
i≥1−vαi

)〉
=

1
1− δ2k

∑
i≥1

〈Φvα0 ,Φ(−vαi
)〉

≤ δ2k

1− δ2k

∑
i≥1

‖vα0‖2‖ − vαi
‖2

where the last line results from Theorem 2(c). Therefore,

‖vα0‖2 ≤
δ2k

1− δ2k

∑
i≥1

‖vαi
‖2. (5)

9



Now, we must bound ‖vαi
‖2 by ‖vαi−1‖1. Since we partition the index set {1, . . . , p} so that vαi−1 contains

elements with larger norm than vαi
, we have that for all j ∈ αi, ‖vj‖ ≤ 1

k‖vαi−1‖1. In other words, every
element in vαi

has smaller norm than the average norm of the elements in vαi−1 . Then, we notice that

‖vαi
‖2 =

√∑
j∈αi

‖vj‖2 ≤

√√√√∑
j∈αi

(
1
k
‖vαi−1‖1

)2

≤

√
k

(
1
k
‖vαi−1‖1

)2

=
1√
k
‖vαi−1‖1.

Therefore,

‖vαi
‖2 ≤

1√
k
‖vαi−1‖1. (6)

In addition, we must bound ‖vα‖1 by ‖vα‖2 for an arbitrary index set α. For any index set α ⊆ {1, . . . , p},
we see that (

1
|α|
‖vα‖1

)2

=

 1
|α|

∑
j∈α

‖vj‖

2

≤ 1
|α|

∑
j∈α

‖vj‖2 =
1
|α|
‖vα‖2

where the inequality results from Jensen’s inequality. Hence,

‖vα‖1 ≤
√
|α|‖vα‖2. (7)

Putting everything together, for an arbitrary index set α ⊆ {1, . . . , p} such that |α| = k, we see that

‖vα‖1 ≤ ‖vα0‖1 α0 contains indices with largest norm

≤
√

k‖vα0‖2 Inequality (7)

≤
√

k
(

δ2k

1−δ2k

) ∑
i≥1

‖vαi
‖2 Inequality (5)

≤
(

δ2k

1−δ2k

) ∑
i≥1

‖vαi−1‖1 Inequality (6)

≤
(

δ2k

1−δ2k

)
‖v‖1 Summing over i

< 1
2‖v‖1 Assumption that δ2k < 1

3

= 1
2 (‖vα‖1 + ‖vαc‖)

Therefore,
‖vα‖1 < ‖vαc‖1,

which proves the null space property of Φ̃ of order k.

At this point, we turn our attention to the so called sensing or encoding operator Φ̃ ∈ L (Sp, Sq). In
traditional compressed sensing, a large amount of work has been done in showing that random encoding
matrices possess the restricted isometry property with high probability. For example, Candes, Romberg,
and Tao [2] as well as Donoho [4] show that matrices with elements that are normally distributed with
mean zero and variance one have restricted isometry property with high probability. Baraniuk, Davenport,
DeVore, and Wakin prove a similar result for binary encoding operators [1]. Rather than duplicate these
proofs, we show that the operator Φ ⊗ I ∈ L (Sp, Sq) possesses the restricted isometry property whenever
Φ ∈ Rq×p does. In order to accomplish this, we require two intermediate results.

We begin by showing that the norm of Φ ⊗ I is bounded by Φ. Notationally, let ‖Φ ⊗ I‖2 denote the
operator norm of Φ⊗ I corresponding to the 2-norm in the product space Y q and ‖Φ‖2 denote the operator
norm of Φ corresponding to the 2-norm in Euclidean space. Then, we note that
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Lemma 1 (Norm Bound of Kronecker-like Product). For Φ ∈ Rp×q, I ∈ L (Y ), and Φ ⊗ I ∈ L (Y p, Y q),
we have that

‖Φ⊗ I‖2 ≤ ‖Φ‖2. (8)

Proof. The proof is completed as Lemma 2.1 of [9].

Next, we recall a result that states that the geometry in Rp differs only slightly from the geometry in Y p.

Lemma 2 (Geometry of a Product Space). Given Φ ∈ Rq×p where p > q and some y ∈ Y p, there exists an
x ∈ Rp such that

‖x‖2 = ‖y‖2 and ‖Φx‖2 = ‖(Φ⊗ I)y‖2.

and supp(x) = supp(y).

Proof. The proof is completed as Theorem 2.2 of [9].

Theorem 4 (Restricted Isometry of Kronecker-like Products). Let Φ ∈ Rp×q possess restricted isometry
constants δk and Φ⊗ I ∈ L (Sp, Sq) possess restricted isometry constants δ̂k. Then, δ̂k ≤ δk.

Proof. By definition, we have that

δ̂k = inf{δ ∈ R : (1− δ)‖y‖22 ≤ ‖(Φ⊗ I)y‖22 ≤ (1 + δ)‖y‖22, y ∈ Sp, |supp(y)| = k}
= inf{δ ∈ R : (1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, x ∈ Rp,

‖x‖2 = ‖y‖2, ‖Φx‖2 = ‖Φy‖2, supp(x) = supp(y), y ∈ Sp, |supp(x)| = k} (9)

where the last equality arises from Theorem 2. Next, we eliminate the references to y, which increases the
number of inequality constraints on x and, hence, increases the infimum. This gives

δ̂k = Equation (9)

≤ inf{δ ∈ R : (1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, x ∈ Rp, |supp(x)| = k}
= δk.
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3 Application to Experiment Design

In the following section, we discuss the application of the theory in the previous section to experiment
design. Specifically, we demonstrate how to use compressed sensing in order to reduce the number of
physical experiments required in order to obtain a larger set of experimental data.

Consider a physical system that can be well modeled by the linear PDE (A(u) + B)yi = bi. Here,
A ∈ L (U,L (Y )) defines the spatial differential operator, B ∈ L (Y ) denotes the temporal differential
operator, U denotes a Hilbert space of possible parameters, Y denotes a Hilbert space of possible states, u
is the parameter that governs the behavior of the system, yi gives the state or result of the i-th physical
experiment, and bi describes the forcing term or source given by the i-th experiment. For example, in
Poisson’s equation, A(u)y = −∇ · (u∇y) and B = 0. Hence, the effect of p physical experiments can be
modeled by the system of differential equations

(A(u) + B)yi = bi i = 1, . . . , p.

For ease in notation later, we can rewrite this as the block system
A(u)

. . .
A(u)

 +

B
. . .

B




y1

...
yp

 =

b1

...
bp

 ,

which we abbreviate as (Ap(u)+Bp)y = b. Next, let us assume that there exists sparsity in the data in some
basis. Specifically, we assume there exists sparsity in the product space, which does not necessarily imply
sparsity in the state space. In order to manipulate sparsity in the product space, let Ψ ∈ Rp×p and Ψ⊗ I ∈
L (Y p) denote the change of basis operator where Ψ ⊗ I : sparse → dense and Ψ−1 ⊗ I : dense → sparse.
Finally, let Φ ∈ Rq×p denote a matrix that possesses the restricted isometry property of order k.

Next, we notice the following. From Theorems 1 and 4 and Corollary 1, we have that

{(Ap(u) + Bp)−1b} = arg min
y∈Y p

{‖(Ψ−1 ⊗ I)y‖1 : (Φ⊗ I)y = (Φ⊗ I)(Ap(u) + Bp)−1b}.

In other words, we can use compressed sensing to recover our experimental data (Ap(u) + Bp)−1b, which is
known to be sparse through the transformation Ψ−1⊗ I. However, due to the structure of Φ⊗ I, we see that

(Φ⊗ I)(Ap(u) + Bp) =

Φ11I . . . Φ1pI
...

. . .
...

Φq1I . . . ΦqpI


A(u) + B

. . .
A(u) + B


︸ ︷︷ ︸

p

=


p∑

i=1

Φ1i(A(u) + B)

...
p∑

i=1

Φqi(A(u) + B)

 =


(A(u) + B)

p∑
i=1

Φ1iI

...

(A(u) + B)
p∑

i=1

ΦqiI


=

A(u) + B
. . .

A(u) + B


︸ ︷︷ ︸

q

Φ11I . . . Φ1pI
...

. . .
...

Φq1I . . . ΦqpI


= (Aq(u) + Bq)(Φ⊗ I) .

In other words, we have a pseudo-commutative relationship where

(Φ⊗ I)(Ap(u) + Bp) = (Aq(u) + Bq)(Φ⊗ I).
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This allows us to rewrite the compressed sensing reconstruction problem as

{(Ap(u) + Bp)−1b} = arg min
y∈Y p

{‖(Ψ−1 ⊗ I)y‖1 : (Φ⊗ I)y = (Aq(u) + Bq)−1(Φ⊗ I)b}.

In other words, we can generate p pieces of data by conducting q experiments followed by a compressed
sensing reconstruction problem. The q experiments consist of the same experiment setup, but where each of
the q experiments consists of different linear combinations of the original p forcing terms or sources.

13



4 Finite Element Based Reconstruction

In this section, we discuss algorithms for solving the compressed sensing reconstruction problem. Since our
eventual goal is the application of this process to experiment design, we focus on formulations that can be
directly applied to finite element discretizations.

In this example, we assume that our experimental data can be accurately represented as functions in the
Sobolov space H1(Ω). In order to reconstruct our experiment data, we must solve the problem

{d} = arg min
y∈H1(Ω)p

{‖(Ψ−1 ⊗ I)y‖1 : (Φ⊗ I)y = d̃}

where d̃ ∈ H1(Ω)q denotes the compressed experimental data. If we use a finite element representation yh

of y, this becomes

arg min
yh∈Rmp

{
p∑

i=1

‖πi[(Ψ−1 ⊗ I)yh]‖M : (Φ⊗ I)yh = d̃h

}
where m denotes the number of finite element coefficients, πix = x1+(i−1)m:im, ⊗ denotes the Kronecker
product, rather than our previous Kronecker-like product, I ∈ Rm×m denotes the identity matrix, and M
denotes the mass matrix where Mij =

∫
Ω

bh
i bh

j for some basis functions bi ∈ H1(Ω). Let M = LLT be the
Choleski factorization of M . Then, we notice that

min
yh∈Rmp

{
p∑

i=1

‖πi[(Ψ−1 ⊗ I)yh]‖M : (Φ⊗ I)yh = d̃h

}

= min
yh∈Rmp

{
p∑

i=1

‖LT πi[(Ψ−1 ⊗ I)yh]‖2 : (Φ⊗ I)yh = d̃h

}

= min
yh∈Rmp

{
p∑

i=1

‖πi[(Ψ−1 ⊗ LT )yh]‖2 : (Φ⊗ I)yh = d̃h

}

= min
yh ∈ Rmp,
w ∈ Rmp

{
p∑

i=1

‖πiw‖2 : (Φ⊗ I)yh = d̃h, w = (Ψ−1 ⊗ LT )yh

}

= min
w ∈ Rmp

{
p∑

i=1

‖πiw‖2 : (Φ⊗ I)(Ψ⊗ L−T )w = d̃h

}

= min
w ∈ Rmp

{
p∑

i=1

‖πiw‖2 : (ΦΨ⊗ L−T )w = d̃h

}

= min
z ∈ Rp,
w ∈ Rmp

{
p∑

i=1

zi : (ΦΨ⊗ L−T )w = d̃h, (zi, πiw) �Q 0

}
(10)

where (zi, πiw) �Q 0 can also be written as zi ≥ ‖πiw‖2 and denotes a second order cone constraint. Using
this final formulation, we reconstruct the state with

yh = (Ψ⊗ L−T )w.

Together, this gives a second-order cone program. Note, this differs from traditional compressed sensing,
which requires the solution to a linear program in order to recover a sparse solution.

Although we can solve the above formulation using an interior point method, such as one provided by
SDPT3 [7], the size of the problem quickly becomes intractable. For example, consider an experimental where
we conduct 32 encoded experiments and attempt to reconstruct 256 pieces of data. In order to discretize
the problem, we sample the data on a 32× 32 grid and represent the result using piecewise linear elements.

14



In this case, we have m = (32 + 1)2 = 1089, p = 256, and q = 32, which yields a second order cone program
with 279873 variables, 34848 linear equality constraints, and 256 second order cone constraints of size 1090.

In order to more efficiently compute a solution to the discretized problem, we apply a variant of the
alternating direction method of multipliers (ADM) developed by Deng, Yin, and Zhang [3], which generalizes
the algorithm developed by Yang and Zhang [8] to problems with group sparsity. In the ADM algorithm,
we reformulate our compressed sensing problem as

min
yh∈Rmp

{
p∑

i=1

‖πi[(Ψ−1 ⊗ I)yh]‖M : (Φ⊗ I)yh = d̃h

}

= min
yh ∈ Rmp

z ∈ Rmp

{
p∑

i=1

‖z‖I⊗M : z = (Ψ−1 ⊗ I)yh, (Φ⊗ I)yh = d̃h

}
.

Then, we find a solution by minimizing the augmented Lagrangian

LA(yh, z, λ1, λ2) = ‖z‖I⊗M

−λT
1 (I ⊗M)(z − (Ψ−1 ⊗ I)yh)

+β1
2 ‖z − (Ψ−1 ⊗ I)yh‖2I⊗M

−λT
2 (I ⊗M)((Φ⊗ I)yh − d̃h)

+β2
2 ‖(Φ⊗ I)yh − d̃h‖2I⊗M ,

with respect to yh and z. Here, λ1, λ2 denote an estimate of the Lagrange multipliers, and β1, β2 denote
penalty parameters. Rather than minimize over yh and z simultaneously, we alternate between fixing z and
solving for yh and fixing yh and solving for z. Hence, for a fixed z, notice that

arg min
yh∈Rmp

LA(yh, z, λ1, λ2)

= arg min
yh∈Rmp

−λT
1 (I ⊗M)(−(Ψ−1 ⊗ I)yh)

+β1(−zT (I ⊗M)(Ψ−1 ⊗ I)yh + 1
2 (yh)T (Ψ−1 ⊗ I)T (I ⊗M)(Ψ−1 ⊗ I)yh)

−λT
2 (I ⊗M)((Φ⊗ I)yh)

+β2( 1
2 (yh)T (Φ⊗ I)T (I ⊗M)(Φ⊗ I)yh − (yh)T (Φ⊗ I)T (I ⊗M)d̃h)

= arg min
yh∈Rmp

λT
1 (Ψ−1 ⊗M)yh

+β1(−zT (Ψ−1 ⊗M)yh + 1
2 (yh)T (Ψ−T Ψ−1 ⊗M)yh)

−λT
2 (Φ⊗M)yh

+β2( 1
2 (yh)T (ΦT Φ⊗M)yh − (yh)T (ΦT ⊗M)d̃h).

This minimum can be found analytically by yh = A−1b where

A = (β1Ψ−T Ψ−1 + β2ΦT Φ)⊗M

b = (Ψ−T ⊗M)(β1z − λ1) + (ΦT ⊗M)(β2d̃
h + λ2).
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In a similar manner, for a fixed yh, notice that

arg min
z∈Rmp

LA(yh, z, λ1, λ2)

= arg min
z∈Rmp

‖z‖I⊗M

−λT
1 (I ⊗M)z

+β1( 1
2zT (I ⊗M)z − zT (I ⊗M)(Ψ−1 ⊗ I)yh)

= arg min
z∈Rmp

‖z‖I⊗M + β1

(
1
2
zT (I ⊗M)z − zT (Ψ−1 ⊗M)yh − 1

β1
zT (I ⊗M)λ1

)
=arg min

z∈Rmp
‖z‖I⊗M +

β1

2

∥∥∥∥(I ⊗M)z − (Ψ−1 ⊗M)yh − 1
β1

(I ⊗M)λ1

∥∥∥∥2

2

=arg min
z∈Rmp

‖z‖I⊗M +
β1

2

∥∥∥∥z − (Ψ−1 ⊗ I)yh − 1
β1

λ1

∥∥∥∥2

I⊗M

.

Again, we can find the minimum analytically through the following procedure. Let

r = (Ψ−1 ⊗ I)yh − 1
β1

λ1.

Then, for i = 1→ p, set

πiz =
{

0 α < ε
max{α− 1

β1
, 0}πir

α otherwise

where α ← ‖πir‖M and ε > 0 is small. We summarize the entire ADM algorithm in Algorithm 1. Exper-
imentally, we have found that setting β1 = 3

mean(|b|) , β2 = .3
mean(|b|) , ε = 10−8, stopping tolerance = 10−6,

and max iteration = 2000 where mean(|b|) denotes the average of the absolute values of the elements in b
provides effective results.
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Algorithm 1: Primal ADM algorithm for reconstructing compressed experimental data that has been
represented with finite elements

1. Initialize z ∈ Rmp, λ1 ∈ Rmp, λ2 ∈ Rmq, β1, β2 > 0, γ1, γ2 > 0, ε > 0, max iteration,
and stopping tolerance.

2. for i = 1→ max iteration do

(a) yh
old ← yh

(b) yh ← A−1b where

A = (β1Ψ−T Ψ−1 + β2ΦT Φ)⊗M

b = (Ψ−T ⊗M)(β1z − λ1) + (ΦT ⊗M)(β2d̃
h + λ2)

(c) r ← (Ψ−1 ⊗ I)yh + 1
β1

λ1

(d) for i = 1→ p do

i. α← ‖πir‖M

ii. πiz =
{

0 α < ε
max{α− 1

β1
, 0}πir

α otherwise

(e) λ1 ← λ1 − γ1β1(z − (Ψ−1 ⊗ I)yh)

(f) λ2 ← λ2 − γ2β2((Φ⊗ I)yh − d̃h)

(g) if ‖yh − yh
old‖I⊗M < (stopping tolerance)‖yh

old‖I⊗M then stop

17



5 Computational Study

In the following section, we conduct two computational studies. In the first, we verify that the ADM
algorithm derived above provides fast, accurate solutions to the compressed sensing reconstruction problem.
In the second, we demonstrate that compressed sensing can be successfully integrated into the experiment
design process.

In the following experiment, we encode and recover four different letters represented by piecewise linear
functions. Specifically, we represent the letters using a piecewise linear finite element basis on a 20 × 20
regular mesh composed of triangles over the domain Ω = [−1, 1] × [−1, 1]. These functions can be seen in
Figure 1. Next, we generate a collection of p = 50 functions and store the result in ỹ. Each of the functions in

Figure 1. Letters A, B, C, and D represented as piecewise linear
functions. These functions serve as the true set of data in our first
computational experiment.

ỹ is zero except for four different, randomly determined elements, which contain the letters generated above.
Then, we generate a random change of basis operator Ψ ∈ Rp×p whose elements are normally distributed
with mean 0 and variance 1. Using this operator, we generate a dense set of data ȳ = (Ψ ⊗ I)ỹ. Next, we
generate a random encoding operator Φ ∈ Rq×p where q = 15 and the entries of Φ are normally distributed
with mean 0 and variance 1. This allows us to generate our compressed data as d̃ = (Φ ⊗ I)d̄. Finally,
we solve the compressed sensing reconstruction problem described in Section 4. We do so in two different
ways. First, we apply SDPT3 to the cone formulation in (10). Second, we use the ADM algorithm described
in Algorithm 1 where we have set the stopping tolerance to 10−8. We summarize the relative error in the
reconstruction and running time of the algorithms in Table 1 and show the letters reconstructed by the ADM
algorithm after we apply Ψ−1 ⊗ I to the result in Figure 2. As we can see, both SDPT3 and the ADM

Relative Error Iterations Time (HH:MM:SS)
SDPT3 1.93e-08 13 (04:27:12)

ADM 1.01e-07 185 (00:00:23)

Table 1. Relative error, number of iterations, and running time of
SDPT3 and the ADM algorithm applied to the letters example. In this
experiment, we calculate the relative error by ‖yrecon − ytrue‖I⊗M/(1 +
‖ytrue‖I⊗M ). As we can see, both algorithms produce accurate recon-
structions of the encoded data, but ADM produces the reconstruction
much faster than SDPT3.

algorithm produce accurate reconstructions of the true data. Nonetheless, the ADM algorithm produces a
solution far more quickly than SDPT3.

In the second computational experiment, we simulate the experiment design process. In order to accom-
plish this, we generate experimental data d̃ according to Poisson’s equation, −∇ · (u∇y) = b. In order to
generate this data, we use a piecewise linear finite element basis on a 128×128 regular mesh composed of tri-
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Figure 2. Letters reconstruction using ADM. The result is virtually
identical to the true set of letters.

angles over the domain Ω = [−1, 1]× [−1, 1]. For the parameters u, we use a true set of parameters shown in
Figure 3. For the sources b, we use 256 Gaussians with variance 0.01 and a base amplitude 10 spaced evenly

Figure 3. The true parameter for the experiment design study.
The parameter equals 1000 within the circle of radius 0.3 centered at
(−0.25,−0.25), 500 within the square with side length .4 centered at
(0.3, 0.7), and 1 everywhere else.

on a square grid over the domain [−.25, .25]× [−.25, .25]. Then, we generate q = 32, 64, or 128 experimental
pieces of data by solving Poisson’s equation where we use all q sources simultaneously where the amplitude
of the ith source in the jth experiment has been scaled by Φij where Φij is normally distributed with mean
0 and variance 1. Next, we sample this data at the nodal points of a 32 × 32 regular mesh composed of
triangles over the same domain. This gives us our sampled, encoded experimental data d̃. For the change of
basis operator, we use a discrete Haar wavelet transform in two dimensions where the level of the coarsest
scale is 1, Ψ ∈ R256×256. Note, this is the discretized transform for 16 × 16 images where the image has
been reshaped into a 256 × 1 vector. Finally, we apply ADM to reconstruct experimental data that would
have been generated by running all p = 256 experiments individually. We summarize the relative errors,
with respect to the [L2(Ω)]p norm, in this reconstruction in Table 2 and show a visual reconstruction of two
different experiments in Figures 4 and 5. As we can see, the compressed sensing reconstruction generates
data whose relative error varies between 2% and 9%. The amount of error is lower when we conduct a larger
number of encoded experiments. The reason that we do not achieve an exact reconstruction is that we lack
perfect sparsity in the true experimental data. In order to see that, we show the sparsity structure of the
data in Figures 6 and 7. Nonetheless, in spite of the lack of exact sparsity, the reconstructed data is still
relatively accurate.

19



Encoded Experiments (q) Relative Error ADM Iterations
128 2.29e-02 475
64 4.17e-02 545
32 9.27e-02 551

Table 2. Relative error and number of iterations ADM used when
applied to the experiment design example. Here, we calculate the relative
error by ‖drecon − dsampled‖I⊗M/(1 + ‖dsampled‖I⊗M ) where dsampled is
the data generated by running each experiment individually followed by
sampling the result on the same grid used for the compressed sensing
reconstruction. As we can see, the amount of error in the reconstructed
solution varies from 2% to 9% where the error is smaller when conduct
a larger number of encoded experiments. Nonetheless, we see that it is
possible to reduce the number of physical experiments by 87.5% and still
generate data that contains less than 10% additional error than running
the experiments separately.

Figure 4. Result generated by the 241st experiment. The top left plot
denotes the result of sampling the experiment directly. The top right
plot shows the result of the compressed sensing reconstruction where
q = 128; bottom left, q = 64; bottom right, q = 32. The reconstructions
reproduce the experimental result relatively accurately where we notice
less error when conducting a larger number of encoded experiments.
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Figure 5. Result generated by the 256th experiment. The top left plot
denotes the result of sampling the experiment directly. The top right
plot shows the result of the compressed sensing reconstruction where
q = 128; bottom left, q = 64; bottom right, q = 32. The reconstructions
reproduce the experimental result relatively accurately where we notice
less error when conducting a larger number of encoded experiments.

Figure 6. Sparsity structure of the experimental data. Each plot
denotes the magnitudes of the coefficients of the finite element represen-
tation of the data after applying the change of basis operator Ψ−1. In
addition, each column of the plot denotes a different experiment. The
top plot denotes the data when sampled directly; second plot, q=128;
third plot, q=64; fourth plot, q=32. As we can see, there are four
dominant components in the product space (the two dark stripes de-
note two experiments each) in addition to several minor components. In
each case, the compressed sensing reconstruction correctly identifies the
dominant components, but does not exactly reproduce all of the minor
components.
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Figure 7. Sparsity structure of the experimental data. Each plot con-
tains the sorted magnitudes of the individual experiments after applying
the change of basis operator Ψ−1. The top left plot denotes the data
when sampled directly; top right, q=128; bottom left, q=64; bottom
right, q=32. Here, we see that each set of data contains four dominant
components whereas the remaining components have magnitudes that
decrease rapidly.
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6 Conclusion

In the preceding discussion, we have discussed how to apply compressed sensing to experiment design. We
accomplish this by first extending the theory of compressed sensing to a finite product of Hilbert spaces.
This allows a clean extension of the theory of compressed sensing to group sparsity as well as collections of
functional representations of experimental data. Next, we have shown how to use these results to conduct
a small number of physical experiments and then reconstruct a larger collection of experimental data. In
order to reconstruct this data, we have presented an efficient reconstruction algorithm for this generalization
based on the alternating direction method of multipliers. Then, using these tools, we have demonstrated that
compressed sensing can be used in an experimental context to reduce the number of physical experiments
conducted by nearly 90% while simultaneously preserving the fidelity of the data.

Several theoretical questions remain open. In traditional compressed sensing, an alternative reconstruc-
tion algorithm based on a second-order cone program can be used when it is known that the data lacks exact
sparsity. This formulation must still be generalized to the product-space setting. In addition, in order for this
method to be an effective tool for experiment design, a good sparsifying operator must be known. Although
there has been much work in finding a sparse basis for images or acoustic signals, there has been less work
on the application of these bases for experiment design. In the future, we look forward to addressing both
of these questions.
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