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Abstract 

 

Kontek Industries (Kannapolis, NC) and their subsidiary, Stonewater Control 

Systems (Kannapolis, NC), have entered into a cooperative research and development 

agreement with Sandia to jointly develop and evaluate an integrated perimeter 

security system solution, one that couples access delay with detection and assessment.  

This novel perimeter solution was designed to be configurable for use at facilities 

ranging from high-security military sites to commercial power plants, to 

petro/chemical facilities of various kinds.  A prototype section of the perimeter has 

been produced and installed at the Sandia Test and Evaluation Center in 

Albuquerque, NM.  This prototype system integrated fiber optic break sensors, active 

infrared sensors, fence disturbance sensors, video motion detection, and ground 

sensors.  This report documents the design, testing, and performance evaluation of the 

developed ReKon system.  The ability of the system to properly detect pedestrian or 

vehicle attempts to bypass, breach, or otherwise defeat the system is characterized, as 

well as the Nuisance Alarm Rate. 

 

 



4 

ACKNOWLEDGMENTS 
 

This work was performed as part of CRADA 1775.00, a Cooperative Research and 

Development Agreement between Sandia National Laboratories and Kontek 

Industries, Inc.  All work performed under the CRADA was funded by Kontek.  The 

authors would like to acknowledge the work of Mariusz Stanisz and Paul Cappello 

with Stonewater Control Systems for the ReKon software design and integration.  

The authors would also like to thank Martin Aragon, Austin Heermann, Nader Khalil, 

Timothy Chavez, and Erica McDowell with Sandia National Laboratories, for their 

help in conducting the various tests on the system. 

 

 

 

 

 

 



5 

Contents 

 

Executive Summary ................................................................................................................. 9 

Nomenclature ..........................................................................................................................11 

1 Introduction ......................................................................................................................13 

1.1 Overview .................................................................................................................................... 13 
1.2 Design and Evaluation Objectives ............................................................................................. 14 

2 Design Overview ..............................................................................................................17 

2.1 Design Process .......................................................................................................................... 17 
2.2 Design Goals ............................................................................................................................. 17 
2.3 Barrier ........................................................................................................................................ 18 
2.4 Assessment ............................................................................................................................... 18 
2.5 Detection .................................................................................................................................... 18 

2.5.1 Photon Active Infrared Sensor .......................................................................................... 20 

2.5.2 Intrepid MicroPoint II Sensor ............................................................................................. 23 

2.5.3 REDS Sensor .................................................................................................................... 27 

2.5.4 VMD Sensor ...................................................................................................................... 29 

2.5.5 LightLOC Express Optical Break Sensor .......................................................................... 33 

2.6 Software ..................................................................................................................................... 36 
2.7 Modular Software Design .......................................................................................................... 37 
2.8 Software System Capabilities .................................................................................................... 38 
2.9 ReKon Prototype Hardware Configuration ................................................................................ 39 

3 Individual Sensor Characterization .................................................................................41 

3.1 Individual Sensor Test Methods ................................................................................................ 41 

3.1.1 Photon ............................................................................................................................... 42 

3.1.2 MicroPoint ......................................................................................................................... 42 

3.1.3 REDS ................................................................................................................................ 45 

3.1.4 VMD .................................................................................................................................. 46 

3.2 Individual Sensor Results .......................................................................................................... 47 

3.2.1 Nuisance Alarm Acquisition and Analysis ......................................................................... 47 

3.2.2 Performance Testing Results ............................................................................................ 48 

3.2.3 Individual Sensor Results Summary ................................................................................. 57 

4 Integrated System Testing ..............................................................................................59 

4.1 System Test Methods ................................................................................................................ 59 

4.1.1 Bridging Attempts .............................................................................................................. 59 

4.1.2 Tunneling Attempts ........................................................................................................... 59 

4.1.3 Climbing Attempts ............................................................................................................. 60 

4.1.4 Cutting Attempts ................................................................................................................ 60 

4.1.5 Maintenance Access Attempts .......................................................................................... 60 



6 

4.2 System Test Results .................................................................................................................. 60 

5 Sensor Fusion Demonstration ........................................................................................65 

5.1 Logical Inference Sensor Fusion ............................................................................................... 65 
5.2 Machine Learning Sensor Fusion .............................................................................................. 66 
5.3 Data Capture and Data Overview .............................................................................................. 67 
5.4 Sensor Fusion Analysis ............................................................................................................. 69 

6 Conclusion and Recommendations ................................................................................81 

7 References........................................................................................................................85 

Appendix A ............................................................................................................................ A-1 

 

Figures 

Figure 1:  ReKon System Prototype Installation ......................................................................................... 14 

Figure 2:  Sensor Layout in Prototype System ........................................................................................... 19 

Figure 3:  Photon Sensor ............................................................................................................................ 20 

Figure 4:  Photon Hub ................................................................................................................................. 21 

Figure 5:  Photon Installation Configuration ................................................................................................ 22 

Figure 6:  MicroPoint Sensor....................................................................................................................... 23 

Figure 7:  Typical MicroPoint Installation Configuration .............................................................................. 23 

Figure 8:  MicroPoint Installation on Fence ................................................................................................. 25 

Figure 9:  Top Tension Wire Installation ..................................................................................................... 25 

Figure 10:  Bottom Tension Wire Installation .............................................................................................. 26 

Figure 11:  (a) MicroPoint Fence Split and (b) Fence Split for Maintenance Access Portal ....................... 26 

Figure 12:  Fabric Deflection with 30 lbs. Force Applied Normal to Fabric ................................................. 27 

Figure 13:  REDS Sensor Node .................................................................................................................. 28 

Figure 14:  Detailed View of REDS Placement ........................................................................................... 29 

Figure 15:  Tower Integration with the Barrier ............................................................................................. 31 

Figure 16:  VMD Camera Tower ................................................................................................................. 32 

Figure 17:  VMD Dome Camera Field of View ............................................................................................ 33 

Figure 18:  LightLOC Express Monitoring System ...................................................................................... 34 

Figure 19:  LightLOC Conduit Installation ................................................................................................... 35 

Figure 20:  LightLOC Conveyance through Maintenance Access Portal ................................................... 35 

Figure 21:  ReKon Modular Software Architecture ..................................................................................... 38 

Figure 22:  FDB System Hardware Configuration ...................................................................................... 40 

Figure 23:  System Hardware Configuration in the NADS Control Room .................................................. 40 

Figure 24:  Diagram of Test Paths .............................................................................................................. 41 

Figure 25:  Photon Configuration Settings .................................................................................................. 42 

Figure 26:  MicroPoint Sensor Information ................................................................................................. 43 



7 

Figure 27:  MicroPoint Configuration Parameters ....................................................................................... 43 

Figure 28:  MicroPoint Target Location (a) Threshold, (b) Clutter, and (c) Target Plots ............................ 44 

Figure 29:  MicroPoint (a) Incremental Threshold and (b) Detection Level Settings .................................. 45 

Figure 30:  VMD Rule Configuration ........................................................................................................... 46 

Figure 31:  Histogram of Wind Speeds for Sign on Fence Alarm Events ................................................... 50 

Figure 32:  All Recorded Wind Speeds during the Period June 7 – 30, 2012 ............................................ 51 

Figure 33:  All Recorded Wind Speeds during the Nuisance Monitoring Period, July 1 – Oct 8 ................ 51 

Figure 34:  Machine Learning Sensor Fusion Results @95% Confidence, 200 Trials ............................... 75 

 

Tables 

Table 1: Sensor Suite Implemented on ReKon Prototype .......................................................................... 19 

Table 2:  REDS Sensor Node Algorithm Parameters ................................................................................. 45 

Table 3:  Photon IR Test Results ................................................................................................................ 48 

Table 4:  Photon Nuisance Sources and Alarm Rate ................................................................................. 48 

Table 5:  MicroPoint Test Results ............................................................................................................... 49 

Table 6:  MicroPoint Nuisance Sources and Alarm Rate ............................................................................ 49 

Table 7:  MicroPoint Nuisance Sources with Sign on Fence Excluded from Data ..................................... 52 

Table 8:  REDS Test Results ...................................................................................................................... 53 

Table 9:  REDS Footstep Nuisance Sources and Alarm Rate .................................................................... 54 

Table 10:  REDS Vehicle Nuisance Sources and Alarm Rate .................................................................... 54 

Table 11:  VMD Test Results ...................................................................................................................... 55 

Table 12:  VMD Nuisance Sources and Alarm Rate ................................................................................... 56 

Table 13:  Individual Sensor NAR/UAR Summary Results ......................................................................... 57 

Table 14:  System Test Results .................................................................................................................. 61 

Table 15:  Machine Learning Event Distribution ......................................................................................... 68 

Table 16:  Machine Learning Event Distribution for Secondary Sensors ................................................... 68 

Table 17:  Machine Learning Photon Test Results ..................................................................................... 70 

Table 18:  Logical Inference Photon Test Results ...................................................................................... 70 

Table 19:  Machine Learning Photon Results without Synthetic Training Data .......................................... 71 

Table 20:  Machine Learning MicroPoint Test Results ............................................................................... 71 

Table 21:  Logical Inference MicroPoint Test Results ................................................................................ 71 

Table 22:  Assigned Event Classification for Machine Learning and Logical Inference Passive Testing 
Datasets ...................................................................................................................................... 72 

Table 23:  Sensor Fusion Results for Passive Testing Phase .................................................................... 73 

Table 24:  Machine Learning Results without Synthetic Training Data for Passive Testing Phase ........... 73 

Table 25:  Sensor Fusion Performance on System Level Testing.............................................................. 74 

Table 26:  Machine Learning Sensor Fusion Results @95% Confidence, 200 Trials ................................ 76 



8 

Table 27:  Logical Inference Sensor Fusion Results .................................................................................. 76 

Table 28:  Machine Learning Sensor Fusion Results @95% Confidence, 200 Trials, No Synthetic Training 
Data ............................................................................................................................................ 78 

 

 



9 

Executive Summary 

Today’s increasingly complex and varied security environments emphasize the need for an agile, 

modular perimeter security system.  Many government and military sites continue to demand 

high performance security technologies such as those afforded by a traditional PIDAS, but 

require additional standoff beyond the existing perimeter.  Additionally, there are other 

customers whose requirements favor installation flexibility or cost over performance, but still 

demand better detection performance than granted by most commercially-available technology.  

To meet such varied needs, a perimeter security system needs to be configurable to meet the 

demands unique to each site, adaptable to the latest sensor technology and security requirements, 

and scalable to provide for installation at short temporary perimeters just as well as large multi-

mile perimeters. 

Kontek, Industries (Kannapolis, NC) and their subsidiary, Stonewater Control Systems, Inc. 

(Kannapolis, NC) have entered into a cooperative research and development agreement 

(CRADA) with Sandia National Laboratories to jointly develop and evaluate a new modular 

perimeter security solution that satisfies these requirements.  The resulting design, the ReKon™ 

System, integrates artificial intelligence techniques with a robust physical barrier to integrate 

improved detection with assessment and access delay.  ReKon allows integration of any type of 

sensor input from simple contact switch to video to rich XML data stream, and provides 

configurable data security options to meet the needs of a variety of sites.  The software and 

networking architecture are modular and scalable, to allow implementation on a wide range of 

sites.  ReKon allows high-level detection performance without requiring a full PIDAS 

installation through the use of multiple sensor types and innovative data fusion techniques that 

effectively manage the drawbacks faced by traditional sensor fusion methods.  

After an initial twelve-month conceptual design phase and a formal design review, a prototype 

section was fabricated and installed at the Sandia Test and Evaluation Center in Albuquerque, 

NM.  Testing was conducted over a period of five months, including two weeks of active 

performance testing to characterize the standard behavior of each sensor, and an additional two 

weeks of system testing designed to attempt surreptitious bypass of the entire suite of sensors.  A 

perimeter security system cannot sufficiently increase detection performance through the use of 

additional sensors without suffering a significant increase in the nuisance alarm rate unless 

innovative approaches are considered.  Thus, this project emphasized the evaluation of various 

sensor fusion techniques to reduce the nuisance alarm rate as compared to conventional methods.   

The ReKon prototype system was evaluated with a suite of sensors including a MicroPoint fence 

disturbance sensor, Photon active infrared detector, a commercially-available high-definition 

video motion detection system, a prototype Sandia-developed ground sensor solution, and the 

LightLOC fiber-optic break sensor. 

The conventional system simply performs a logical OR between all sensors.  If any single sensor 

alarms, the system is considered to be in alarm state.  The nuisance alarms are likewise 

combined.  The logical inference system represents common simplistic data fusion techniques 

involving a logical AND, where the system alarms only if specific sets of sensors both register 

alarms within a 30 second time window.  Finally, an innovative approach incorporating machine 

learning algorithms was also evaluated. 
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The conventional system achieved the high detection performance desired, with at least one of 

the sensors detecting each of the 173 system-level attacks attempted.  However, the NAR was 

unacceptably high at an average of 8.86 alarms per day when looking at the entire suite of 

sensors.  Machine learning requires rich data streams in order to achieve high accuracy, which 

were only provided by the MicroPoint, Photon, and video motion sensors.  Therefore, only the 

133 events involving MicroPoint and Photon sensors were evaluated by the machine learning 

algorithm, with the ground sensor and video motion sensor performing complementary sensing.  

To provide a clear comparison of performance differences between the two fusion methods and 

the conventional system, the MicroPoint/Photon subset of performance data is shown below. 

Results comparison between sensor data combination methods, 
for Photon and MicroPoint data 

 

Combined NAR Detection Performance 

Conventional System 1.78 133/133 

Logical Inference Fusion 0.16 95/133 

Machine Learning Fusion 0.02 132/133 

As expected, the logical inference method was able to significantly reduce the NAR, but at the 

expense of a large hit to detection performance.  However, the machine learning approach was 

able to achieve an even greater reduction in the NAR while maintaining high levels of detection 

performance. 

The ReKon system has been designed with capability for enhanced modularity, scalability, and 

provides for integrated delay, detection, and assessment.  ReKon enables the incorporation of 

advanced fusion algorithms that enable a low-cost perimeter to still maintain high detection 

performance while maintaining a low NAR.  Such a system may enable the use of high 

performance perimeter security for reduced cost in environments previously incapable of 

achieving such performance due to budget or installation constraints. 
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Nomenclature 

AC&D Alarm Communication and Display 

AIR  Active Infrared 

API  application programming interface 

COTS  commercial off-the-shelf 

DoD  Department of Defense 

DOE  Department of Energy 

FOV  field-of-view 

ft  feet  

ft
2
  square feet 

IP  Internet Protocol 

LED  light-emitting diode 

m
2
  square meters 

MNB  Modified Normandy Barrier 

ms  milliseconds 

NADS  Nuisance Alarm and Detection System 

NAR  nuisance alarm rate 

PD  probability of detection 

PIDAS Perimeter Intrusion Detection and Assessment System 

PM  processor module 

REDS  Rapid Extended Defense System 

REST  representational state transfer 

SEIWG Security Equipment Integration Working Group 

SME  subject matter expert 

SNL  Sandia National Laboratories (Sandia) 

SOA  service oriented architecture 

SOAP  simple object access protocol 

STEC  Sandia Test and Evaluation Center 

SWIM  Stonewater input module 

SWOM Stonewater output module 

TCP  transmission control protocol 
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TDR  time domain reflectometry 

TRL  technology readiness level 

TTI  Texas Transportation Institute 

UAR  unknown alarm rate 

UDP  universal datagram protocol 

VMD  video motion detection 

XML  Extensible Markup Language  
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1 Introduction 

1.1 Overview 

In today’s security environment of increasingly varied threat scenarios, many high-security 

military and government installations which already have fully functional perimeter intrusion 

detection and assessment systems (PIDAS) are currently evaluating how to increase standoff for 

important assets and incorporate extended detection beyond the current perimeter.  Additionally, 

some low- and medium-security industrial installations, such as commercial power, petroleum, 

or chemical processing facilities which cannot afford a full PIDAS are investigating the need to 

incorporate increased detection capability at their existing perimeter.  Some new facilities 

coming online may have need for a perimeter that can provide detection, threat assessment, and 

delay in one integrated system which does not require the intensive ground disturbance or 

protracted delays required by traditional PIDAS installation.  

A traditional PIDAS, with the benefit of an animal control fence and engineered clear zone, 

serves as the benchmark against which the performance of other perimeter security systems will 

be compared.  However, some applications as discussed above do not have the high performance 

requirements that would justify the expense of a full PIDAS.  Other applications may have 

similar high-level requirements, but may require installation more immediately than possible 

with a full PIDAS.  There exists an opportunity for a system flexible enough to meet the needs of 

these various customers, able to incorporate the varied sensor systems dictated by diverse facility 

requirements, and sufficiently configurable to provide higher performance in some installations, 

while allowing trade-offs to reduce cost or improve ease of installation in others.  With careful 

selection of components and sophisticated software-based nuisance and unknown alarm 

detection techniques, such a modular approach to implementing perimeter security may even 

allow the customer to assemble a solution that approaches the high probability of detection (PD) 

and low nuisance alarm rate (NAR) characteristic of a full PIDAS. 

In this environment, Kontek Industries, Inc. (Kannapolis, NC) and their subsidiary, Stonewater 

Control Systems, Inc. (Kannapolis, NC), have entered into a cooperative research and 

development agreement (CRADA) with Sandia National Laboratories (SNL) to jointly develop 

and evaluate an integrated perimeter security solution, one that couples access delay with 

detection and assessment.  This novel perimeter solution was designed to be sufficiently flexible 

for implementation at a wide range of facility types, from high security military and government 

installations to commercial power plants to industrial facilities of various kinds.  The underlying 

integration technology, derived from Stonewater’s Control 1st and Energy 1st platforms, will 

allow this perimeter detection/assessment topology to be integrated with nearly any vehicle 

barrier, including an existing barrier installation, and coupled with any sensor technology 

necessary to meet the performance requirements and security regulations of a given site. 
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The ReKon™
(1)

 system was the initial outcome of this collaboration.  A prototype section, 

shown in Figure 1, was installed at the Sandia Test and Evaluation Center (STEC) in 

Albuquerque, NM in February 2012.  The prototype system was implemented with a robust 

Sandia-designed Modified Normandy Barrier (MNB), and coupled with a variety of detection 

and assessment solutions to demonstrate both the effectiveness of such a solution, as well as the 

flexibility of the system to incorporate a wide variety of inputs.  In this prototype 

implementation, active infrared sensors, fence disturbance sensors, and a fiber-optic break sensor 

are coupled with a video motion detection (VMD) sensor and a Sandia-designed ground sensor.  

The ability of the system to properly detect pedestrian or vehicle attempts to bypass, breach, or 

otherwise defeat the system will be characterized, as well as the NAR.  

 

Figure 1:  ReKon System Prototype Installation 

1.2 Design and Evaluation Objectives 

The main objective for this project involved designing an integrated hardware and software 

platform for use as a perimeter security system.  The goal was to develop a system capable of 

detecting vehicle and human traffic, with the potential to achieve PIDAS-like performance.  The 

design was to be of a sufficiently modular and scalable nature to allow integration of various 

                                                 

 

1
 ReKon™ is a trademark of Kontek Industries, Inc. 
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types of hardware and software protocols.  It was to be able to incorporate various commercially-

available cameras, sensors, and/or lighting systems.   

Additionally, the new design was to be prototyped and evaluated.  The goals for the evaluation 

included validation and benchmark performance testing of individual sensor systems; monitoring 

and collection of nuisance data with all sensor systems properly configured; evaluation of 

multiple types of sensor fusion algorithms; and conducting a comparison of the detection and 

nuisance alarm performance between the sensor fusion algorithms and the standard unenhanced 

collection of sensors. 
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2 Design Overview 

2.1 Design Process 

The design strategy for the ReKon project has focused on developing a flexible system which is 

capable of meeting the demonstrated needs of various customers throughout the world.  To 

ensure the project was properly focused on the right goals, the conceptual design phase started 

only after an initial brainstorming session in March 2011 with subject matter experts (SMEs) at 

Sandia in the fields of perimeter security, sensor design, sensor evaluation, vehicle barriers, 

access delay, and security system analysis. 

After a nine-month design cycle, a formal design review was held at Sandia in November 2011 

to ensure the ensuing prototype testing would incorporate features desired by the relevant 

security experts.  In addition to the security areas covered in the brainstorming session, the 

review panel contained expertise in response force, nuclear power plant security, alarm 

communication and display, secure networking, wireless sensors, robotics, and international 

security. 

Based on SME recommendations and a desire to showcase the system’s ability to integrate 

multiple disparate sensor technologies, the prototype system would incorporate LightLOC, 

MicroPoint, Photon IR, REDS (a prototype ground sensor developed at Sandia), and a 

commercially-available VMD system. 

2.2 Design Goals 

The goal is to develop a highly capable system, integrated with a vehicle barrier, that can provide 

effective detection and assessment for use outside an existing perimeter, or to provide a detection 

perimeter where none exists.  Not all applications need the full PD of a PIDAS, nor can they 

afford the price tag.  Thus, one of the primary design goals for the project is to develop a system 

that can be installed for less than the cost of a full PIDAS.  The principal performance goals for 

the prototype system include: robust vehicle barrier, detection of vehicle impact, detection of 

personnel crossing the barrier, detection of breach attempts, detection of attempts to move or 

dislodge the barrier, tamper detection, and video assessment. 

Additionally, the system should be modular and scalable.  Each customer site will have different 

needs, and the system should be able to accommodate the sensors and assessment technologies 

that best fulfill those needs.  The ReKon system was designed as an enhanced integration system.  

It is sufficiently flexible to allow installation on various types of vehicle barriers and integration 

of any available sensor, whether that sensor outputs XML, text, packed binary format protocols, 

analog voltage, or a dry contact closure.  To achieve the modular goal, the prototype was 

designed to be self-contained as much as possible, such that a section of the system could be 

built off-site, and dropped into place with little onsite construction.  To that end, a field 

distribution box was mounted directly to the barrier, and towers were integrated into the barrier 

design without need for separate foundations.  The towers and FDB can be seen in Figure 1.  

Although the integrated towers were not utilized in the performance testing discussed in this 
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report, they offer the capability of mounting cameras, illumination systems, or other equipment 

as desired. 

2.3 Barrier 

The barrier chosen for the prototype was the Modified Normandy Barrier (MNB, [1]), designed 

by SNL.  The intent of the ReKon system is to be barrier agnostic.  Thus, while this barrier has 

been chosen for the prototype, it is not meant to indicate that only the MNB can be used with this 

system.  The MNB was selected due to the high vehicle crash test rating [2], ability to install it 

with minimal digging, and current popularity with many customers due to the capability of a 

protective force to shoot through the barrier, making it ineffective for an adversary to hide 

behind the barrier.  It has been crash-tested at Texas Transportation Institute (TTI), and achieved 

an M50/P1 rating when configured with in-ground bollard supports installed every 40 ft (12.2 

m).  Additionally, characterization of the barrier against both mechanical and explosive 

breaching has previously been conducted [1]. 

2.4 Assessment 

This project achieved assessment through human verification via video feed, utilizing a 

commercial off-the-shelf (COTS) high definition day-night dome camera, purchased as part of a 

VMD system. 

The main purpose of this project was not to verify the capability of this COTS camera for 

assessment purposes, but to evaluate the VMD as part of the detection package.  Proper 

assessment for classification of a 1 ft target requires a minimum of 8 pixels (6 TV lines) of 

horizontal resolution, night illumination, and distribution of illumination (it is typical to aim for a 

4:1 light to dark ratio), which was not verified.  In a field deployment of this system, the video 

system would be designed to the criteria mentioned above.  Additional cameras would be 

incorporated to ensure adequate assessment for classification of targets [3]. 

2.5 Detection 

The prototype barrier section included various complementary sensors to better evaluate the 

capability of the system to integrate multiple types of inputs.  Table 1 tabulates the sensors used.  

A diagram demonstrating how the sensors were arranged on and around the barrier is shown in 

Figure 2.  The barrier was configured with a maintenance access pathway to mimic the needs of 

some installations which require breaks in outer perimeters for maintenance or patrol access.  An 

infrared break-beam sensor, the Photon IR system, was installed across this maintenance access.  

An 8 ft (2.44 m) chain link fence was mounted to the front of the barrier, as can be seen in Figure 

1, to enable installation of the MicroPoint according to the manufacturer’s recommendations.  

These sensors serve to provide line detection against pedestrian attempts to climb over the 

vehicle barrier, or unauthorized access through the pathway.  Thus, MicroPoint and Photon IR 

are mounted effectively in series, each protecting a different portion of perimeter (fenced versus 

maintenance access), and cannot be considered complementary.  The vulnerability associated 

with line sensors is the susceptibility to bypass by bridging or tunneling the sensor.   
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Table 1: Sensor Suite Implemented on ReKon Prototype 

Sensor Manufacturer Model 

Hardware 

Version 

Firmware/ 

Software Version 

Photon Active Infrared Deitech PHO-2515-06EXH PH-HUB-TC-S-01 — 

MicroPoint Southwest Microwave Intrepid II 0x0200 64A46370-A01, Rev F 

REDS Ground Sensor SNL — 1.1
1
 March 2011 

VMD
2
 — — — — 

LightLOC Fiber Optic Woven Electronics Express 8X00051-004-RC — 

Note 1:  REDS Hardware version 1.1, with mod 1 of the ‘pod’ enclosure system 
Note 2:  Specific details on the VMD system are withheld at the manufacturer’s request 

 

Figure 2:  Sensor Layout in Prototype System 

 

To provide complementary detection against pedestrian and vehicle threats, additional sensors 

were mounted off the barrier.  A commercially-available day/night high definition camera with 

integrated VMD was mounted on a mobile camera tower east of the barrier to enable full view of 

the entire test section and surrounding area.  A full installation may have used one of the 

integrated towers for the camera mount, but the short length of this test section dictated the need 

for a remote tower to keep the entire test site in the field of view (FOV).  The Rapid Extended 

Defense System (REDS, [4]), a prototype seismic ground sensor system developed by SNL, was 

installed in the ground on the unprotected (south) side of the barrier.  The LightLOC fiber optic 

system was used alone for detection of vehicle impact or breaching attacks, however it will 

provide little or no detection of personnel attempting to cross the barrier.  The cable was 

mounted on the secure side surface (north facing surface) of the horizontal beam of the MNB, to 

hold it securely and couple any deformation of the barrier to the fiber. 

The theory of operation, known degradation factors, and known nuisance sources for each 

individual sensor are detailed below. 
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2.5.1 Photon Active Infrared Sensor 

The Photon AIR System is manufactured by Deitech and distributed by Safeguards Technology, 

LLC.  Photon is a COTS intrusion-detection system that uses infrared technology to trigger 

alarms when an intruder crosses the plane of the detection field (i.e., breaks the sensor beams).  It 

can be ordered in modules that contain from 2 to 8 beams, with heights of 27 inches (.69 m) to 

over 83 inches (2.1 m).  

These modules, called bars, come in pairs and face each other to form a very narrow detection 

region the height of the upper beam, as illustrated in Figure 3.  Three different configurations are 

available, with maximum separation distances between bars of 25 m, 50 m, and 75 m.  Choosing 

the correct bar set with the proper separation distance during the application design is important.  

The two bars comprising the sensor pair must be purchased as a matched set and must stay 

configured together to ensure proper functionality.  If one sensor bar must be replaced due to a 

malfunction or other problem, the entire set must be replaced.   

Figure 3:  Photon Sensor 

2.5.1.1 Sensor Function 

Photon is comprised of sets of bars controlled by a hub.  Each bar in a set is both a transmitter 

and receiver and houses an infrared light-emitting diode (LED) with a corresponding infrared 

detector on the opposite bar at every beam location.  At every beam location (6 total for our 

version, with 8 possible), there are an opposing set of LEDs and detectors, which equates to one 

LED and one detector per beam location on the bar.  The LED and detector locations are spaced 
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vertically, approximately two inches apart at each beam location.  Deitech claims this 

configuration prevents a bright light source (rising or setting sun) from blinding the receiver.  

The bars can be setup in two different beam patterns, direct and crossed.  The minimum 

separation distance for the sensor bars is increased for the crossed configuration.  Previous work 

has investigated the crossed configuration and noted it worked as well as the direct beam but 

could potentially have a higher NAR because it covers more area than the direct beam pattern. 

To create an alarm, two IR beams must be blocked; if a small object (e.g., a large insect) blocks 

just one of the LEDs, the event will be ignored.  The bottom beam (beam 1) is specified to be 

7.87 inches from the bottom of the bar housing.  The same is true of the top beam relative to the 

top of the unit.  The rest of the beams are spaced 9.8 inches apart.  There is one aiming 

adjustment available.  For horizontal beam adjustment, the entire internal assembly can be 

rotated ± 90 degrees.  The unit should be able to operate with up to a 30 degree vertical 

misalignment.  The hub (Figure 4) communicates to the bars via RS 485. 

 

Figure 4:  Photon Hub 

Each hub can control up to 4 sets of bars.  The hub controls the beam sequencing to prevent 

interference between sets of bars and it allows various adjustments to each set.  These 

adjustments include: turning off individual beams, adjusting beam interruption time, beam 

sequencing time, and operating range.  The hub can be fitted with an optional expansion board to 

provide individual relay outputs for alarms from each set of bars. 

An important detection setting of note is the beam sequencing variable.  The default is 100 

milliseconds and this sequencing speed has been determined to not be sufficient to detect swiftly 

moving intruders, so it was determined in other evaluations that increasing the beam sequencing 

speed to 50 milliseconds is sufficient [5].  This results in a beam block duration setting of 0.05 

seconds for both single and multiple beams.  Additionally, the bars support tamper protection.  A 

tamper alarm is triggered if the front plates of the bars are removed or the bar is removed from 

its mounting surface. 

2.5.1.2 Known Degradation Factors 

Accumulated snow cover is a potential performance degradation source, as the manufacturer 

indicates snow levels may interfere with beam transmission, reception, or both.  Ice may divert 

the direction of the beam.  Deitech offers sensor bar arrays that incorporate an on-board heating 

system, claiming this nullifies the icing issue.  These issues are reported by Photon in the form of 
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a disqualify alarm that occurs if the infrared signal is severely attenuated for a length of time 

(i.e., due to heavy fog or the issues stated above).  The disqualify function has several 

adjustments available on the hub, and it can be disabled if desired.  During testing, when one 

beam was attenuated enough to cause a disqualify alarm; the sensor would still produce an 

intrusion alarm when any of the beams were interrupted.  The fail and disqualify alarms are 

common collector-type outputs and will likely need to drive relays in order to be compatible to 

most alarm data systems.  This has been fielded by SNL and worked in temperatures as low 

as -6° Fahrenheit.  Additionally, maintenance personnel must ensure that the bottom beam 

remains at the desired height from the ground to ensure crawling protection since the bottom 

beam by default is manufactured too high to detect a low profile crawler. 

2.5.1.3 Known Nuisance Alarm Sources 

The nuisance sources for this sensor are adverse weather conditions such as a heavy fog.  Rain 

tests have been conducted in 2 inches/hour conditions with no degraded intrusion detection 

results.  Other sources include small animals that will typically trigger the lower beam locations 

(beams 1 and 2), but also any large birds that fly through the sensor at speeds less than roughly 

27 ft/sec (18 mph).  The individual beams are sequenced every 50 ms, such that one beam on the 

sensor system is activated every 8.33 ms (for the 6-beam model).  

2.5.1.4 Sensor Placement 

Figure 5 shows the installation configuration of Photon protecting the maintenance access portal.  

The sensor bar was mounted to angle iron and the paired bar is directly opposite the bar shown in 

the figure.  

 

Figure 5:  Photon Installation Configuration 



23 

2.5.2 Intrepid MicroPoint II Sensor 

The Intrepid MicroPoint II sensor is manufactured by Southwest Microwave (Tempe, AZ).  It is 

a COTS intrusion-detection system that uses fence disturbances to trigger alarms.  It consists of a 

processor module (PM), fence cable, and link or termination units if necessary.  Figure 6 and 

Figure 7 show the sensor cable and a PM and the typical installation configuration.  It uses time 

domain reflectometry (TDR) technology to detect cuts and climb  attempts on the fence fabric.  

Each PM can support up to 400 meters of cable.  Up to eight PM units can be connected 

providing a total fence perimeter sensor of two miles in length.  MicroPoint does not require 

additional power and communications infrastructure since it multiplexes data and 

communications on the sensor cable’s center conductor.  The software allows free format zoning 

between three meters and the maximum zone length. 

 

Figure 6:  MicroPoint Sensor 

 

 

Figure 7:  Typical MicroPoint Installation Configuration 
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2.5.2.1 Sensor Function 

The PM sends pulses at a constant rate down the center conductor of the cable, creating an 

electric field within the cable.  When the fence is disturbed, sense wires in the cable move 

through the electric field inducing a pulse at the point of intrusion.  The pulse reflects back to the 

PM, which calculates the time delay to precisely locate the intrusion within three meters.  

Sensitivity leveling (dynamic threshold) is incorporated in the sensor cable on a meter by meter 

basis which automatically compensates for fence variations making each meter of fence equally 

sensitive to intrusions.  Once a sensitivity level profile is established a calibrated threshold is set 

for the entire length of the cable.  In addition, up to 20 control segments can be created to modify 

the threshold and detection window. 

Each PM has two sides, A and B, and supports up to 200 meters on either side.  It minimizes the 

NAR and unknown alarm rate (UAR) using point impact discrimination by dividing the cable 

into 190 subcells, each 1.1 meters long, and comparing disturbances in the source subcell and 

adjacent subcells.  The PM provides a fail alarm in the case of power failure, cable fault, or 

component failure.  The link unit is required between PMs when cable length exceeds 200 meters 

on one side of a processor module as illustrated in Figure 7.  The termination unit is required 

when the fence sensor is used in an open loop configuration as is the case for our prototype 

system. 

2.5.2.2 Known Degradation Factors 

High winds, hail, and heavy rain conditions can degrade performance on the fence sensor. 

2.5.2.3 Known Nuisance Alarm Sources 

Although the sensor uses the regional subcells to minimize the NAR from global disturbances 

during high winds and rain, nuisance alarms are still attributed with high wind and heavy rain.  

Small animals that can come into contact with the fence fabric can cause nuisance alarms. 

2.5.2.4 Sensor Placement 

MicroPoint was installed on the fence fabric with zip ties every three chain links as shown in 

Figure 8.  The PM was installed on the west-most fence fabric.  The sensor cable was configured 

as one continuous zone. 
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Figure 8:  MicroPoint Installation on Fence 
 

Figure 9 and Figure 10 show the fence installation, with top and bottom tension wires used to 

provide tension in the fence fabric.  The fence does not have all the recommended features of a 

fence that would be used for a PIDAS fence, but this was to mimic non-ideal conditions found in 

some installations.  The goal was to find a fence sensor that could perform well on a non-ideal 

fence installation to promote cost savings.  The fence does not have top or bottom rails installed.  

Additionally, the top tension wire was not secured to each fence post (Figure 9). 

 

 

Figure 9:  Top Tension Wire Installation 
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Figure 10:  Bottom Tension Wire Installation 

Figure 11(a) represents a case where a maintenance portal creates a discontinuity in the 

perimeter.  MicroPoint was routed down the fence pole into conduit and ran underneath the cable 

tray and then continues to the next fence sector.  Figure 11(b) shows the small fence sector after 

the maintenance access portal. 

  

(a) (b) 

Figure 11:  (a) MicroPoint Fence Split and (b) Fence Split for Maintenance Access Portal 



27 

Figure 12 shows the fence fabric deflection (measured in inches) in the center of each panel with 

a 30 pound force applied normal to the fabric.  There was no measureable deflection from the 

fence poles. 

 

 

Figure 12:  Fabric Deflection with 30 lbs. Force Applied Normal to Fabric 

For testing purposes the fence panels and poles were labeled according to the scheme in Figure 

12.  The pole numbers are denoted by “PX” where “X” is the number of the pole and the panels 

are labeled by the black square with the number. 

2.5.3 REDS Sensor 

Sandia National Laboratories has developed a beyond-the-perimeter sensor and assessment 

defense system called Rapid Extended Defense System [4].  Already tested in varying field 

environments, the REDS system is tailored to meet specific challenges.  Each REDS array 

consists of sensor nodes (Figure 13), which support various types and quantities of sensors.  The 

sensor used in this prototype is a geophone sensor.  The sensor data is fed into one of two 

different detection algorithms, footstep or vehicle.  A single node can be configured to run either 

algorithm, but not both simultaneously.  The system is still under development, with the footstep 

algorithm estimated at Technology Readiness Level 7 (TRL
2
), while the vehicle algorithm is 

more recent, and considered to be TRL 5.  These separate algorithms are intended to analyze the 

data and ignore nuisance sources, such as animal traffic, but specifically identify whether a target 

is a vehicle or a human.  

                                                 

 
2
 See Department of Defense, Technology Readiness Assessment (TRA) Guidance, April 2011.  

http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf 
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Figure 13:  REDS Sensor Node 

Sensor nodes communicate via radio frequency links with each other and send data to a 

Command Center, or to standalone systems in the field.  Security operators can alert responders 

immediately, allowing evaluation of the situation before adversaries reach the perimeter. 

REDS is flexible as it does not rely on any single sensor for detection.  Each sensor node can 

support up to four seismic sensors that can be used as validation that an alarm occurred.  REDS 

is designed with the goal of being rapidly deployed and tuned during initial system installation.  

Sensor nodes are powered by internal batteries and can last for extended periods when coupled 

with solar panels (as configured for this installation).  It can be integrated with many different 

types of sensors.  After installation, sensor node parameters can be modified remotely, allowing 

operators to adjust sensitivity settings or algorithm settings without field maintenance. 

2.5.3.1 Known Degradation Factors 

Any environmental conditions that raise the noise floor for the sensor will make it harder to 

discriminate signal from noise.  This includes heavy rain and hail conditions.  When using 

geophones in environments with soil that is not dense (e.g., sand) the detection range is reduced.  

2.5.3.2 Known Nuisance Alarm Sources 

Known nuisance sources for the seismic sensor include any type of ground/air shock waves that 

generate enough power in the correct frequency bands to look like a person or a vehicle, 

depending on the algorithm being used.  Nearby low-flying helicopters have been known to 

cause alarms in the footstep algorithm, while low-flying jets can cause issues with the vehicle 

algorithm.  Additionally, seismic activity outside the field of interest for detection, such as 

explosions, can cause nuisance alarms. 

2.5.3.3 Sensor Placement 

REDS was placed in order to detect adversaries before they get to the barrier, and is located on 

the unsecure side of the barrier with the sensor nodes 16 ft from the fence fabric.  A total of four 
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nodes and 12 sensors were used on the prototype ReKon system.  For each node, one sensor was 

located near the center node location, and three others arranged 16 to 22 ft away from the node, 

as shown in Figure 14, with two sets of nodes co-located with each other.  The sensors attached 

to nodes 1 and 3 utilized the vehicle detection algorithm, while the sensors from nodes 2 and 4 

utilized the footstep detection algorithm.  

 

Figure 14:  Detailed View of REDS Placement 

2.5.4 VMD Sensor 

The VMD system is a COTS intrusion-detection product that uses video to analyze an area of 

interest for intrusions.  The system functions by classifying objects in the FOV as intrusion 

attempts and then triggers an alarm if that object violates the detection rules defined.  It operates 

as an edge solution in that hardware and software required for analytics exist in the camera 

housing along with a local storage volume for video, whereas a centralized solution would locate 

all hardware and software off-camera in a remote location, such a centralized server room.  The 

vendor provides dome cameras with onboard VMD analytics and storage solutions.  

Additionally, they have encoders which provide the same functionality as the dome camera 

package, and allow integration of 3
rd

 party analog cameras and thermal imagers.  The advantage 

to the dome camera package is increased resolution of the HD camera.  At the time of the 

prototype install, the vendor could not yet take HD video from 3
rd

 party cameras through their 

encoder. 

2.5.4.1 Sensor Function 

The VMD system has many of the same rules that you would find on many VMD analytics 

engines (i.e., trip wire, region of interest, fence region, loitering, etc.).  The drastic difference 

between typical VMD systems and the one we are using is that no scene calibration is required.  

The operator can prepare the camera for the specific application, define a rule, and define the 

objects of interest, and it is ready to be used.  Typical VMD systems require that you teach them 

about the FOV, so that they can have a spatial understanding of the object and its environment.  

They are implemented using shape, movement, and size to classify targets of interest and filter 

nuisance sources.  They have an auto calibration feature which allows them to get better at 

classification over time.  

The system provides the usual list of alarm rules which define how alarms are generated.  Of 

greatest interest for our application are: sudden scene change detection, object moves in 

prohibited direction, object present in the region of interest, and object crosses a line of interest.  
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The typical rules define regions of interest within the FOV of the camera, target direction, target 

type (unidentified object, vehicle, and/or human) and a sensitivity setting.  

The vendor defines the following guidelines for proper installation and optimal performance of 

the sensor. 

 Object Size: In order for an object to be accurately classified, its height should be greater 

than 20 pixels (about 1/20th the height of the image) and less than 320 pixels (about 2/3rd 

the height of the image). 

 Expected Object Velocity: The processor needs to be able to observe a moving object 

for approximately two seconds before classifying it.  Fast moving vehicles might require 

a wider field of view so that the processor is able to observe them for more than a few 

frames. 

 Lens Selection:  Lenses should be selected and adjusted so that the objects to be detected 

are visible for at least four to five seconds, and are taller than five percent of the height of 

the field of view.  

 Blockages:  An object needs to appear unblocked for several frames in order for its 

classification to be accurate.  When the system is used outdoors, it is acceptable for an 

object to be blocked during some part of the time that it is in the field of view, but a full 

view of the object is necessary for a good fraction of that time.  When the system is 

configured for indoor analytics, it can detect the head and shoulders of a person. 

 Angle and Perspective:  The system expects the ground plane to be roughly horizontal, 

that is, people walking in the field of view are mostly upright and do not appear to be 

tilted due to perspective distortion.  The system will function accurately if it is mounted 

roughly ten feet or higher from the ground and tilted no more than 60 degrees off 

horizontal. 

 Reflected Light:  The camera should be positioned so that light sources, including the 

sun, do not shine directly into the lens.  Indirect light sources should also be carefully 

considered.  While the camera uses an ultra-wide dynamic range imager, optical 

imperfections in the enclosure or the lens might temporarily blind it. 

The system has two engines: an object classification and rules engine.  Objects are classified as 

human, vehicle, or unknown objects and each object has a classification confidence level.  The 

rules engine is aware of these objects and acts on set criteria to determine whether to trip an 

alarm.  Per conversations with the manufacturer, the sensitivity of a rule directly maps to the 

confidence level of a classified target to be passed to the rules engine to determine if an alarm 

event should occur. 

2.5.4.2 Known Degradation Factors 

The known degradation factors for VMD systems are conditions where the analytics cannot 

function properly due to a degraded FOV of the camera.  This is due to scene illumination during 

nighttime operation, heavy fog, inclement weather, and bright spots in the FOV. 
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2.5.4.3 Known Nuisance Sources 

The specific nuisance sources other than normal nuisance sources for this sensor are not known 

since no previous formal evaluation has been conducted.  However, known nuisance sources for 

VMD systems in general are adverse weather conditions (e.g., heavy rain, heavy snow, dust 

storms), small animals, and object shadows.  

2.5.4.4 Sensor Placement 

The barrier has two towers integrated with the MNB as seen in Figure 15.  The goal for the 

integration is to optimize cost and modularity of the towers for cameras, lighting, and potentially 

other sensors or systems. 

 

Figure 15:  Tower Integration with the Barrier 
 

Due to the location of the integrated towers a third tower offset from the barrier was required in 

order to obtain the FOV required by the VMD system for adequate coverage of the entire barrier 

(Figure 16). 
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Figure 16:  VMD Camera Tower 

Figure 16 shows the installation of the VMD dome camera on the top of the portable tower, 

while Figure 17 shows the FOV of the dome camera.  The camera was aimed so that the horizon 

was not visible in the FOV to minimize the camera blooming affects during sunset and sunrise 

conditions.  It is noted that this phenomenon was experienced during sunset conditions.  It is 

recommended to install a sunshade on the dome camera if it were to be deployed in a fielded 

system.  

VMD 
Dome 
Camera 
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Figure 17:  VMD Dome Camera Field of View 

2.5.5 LightLOC Express Optical Break Sensor 

LightLOC is division of Woven Electronics (Simpsonville, SC).  LightLOC manufacturers a 

fiber optic cable that uses optical power level and thresholds to detect intrusion attempts.  It is 

typically used in barriers and other components to detect tampering and/or damage.  It consists of 

a light source, optical receiver, and fiber optic cable that detect degraded or no light conditions. 

2.5.5.1 Sensor Function 

The Express monitoring system (Figure 18) consists of the source and receiver and ports for the 

fiber optic cable to connect to.  It can differentiate between a sensor breach and a fiber break and 

is rated for indoor or outdoor use.  It is capable of monitoring up to 25 km.  It generates a 

momentary breach and latched breach alarm in response to fiber tampering or a fiber break. 
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Figure 18:  LightLOC Express Monitoring System 

2.5.5.2 Known Degradation Factors 

There are no known degradation factors for this sensor except for hardware and fiber optic cable 

fatigue. 

2.5.5.3 Known Nuisance Sources 

There are no known nuisance sources for this sensor due to sense modality other than 

equipment/component failure either transient or permanent. 

2.5.5.4 Sensor Placement 

LightLOC was attached directly to the main beam of the barrier.  Square conduit was welded to 

the beam and the fiber optic cable was pulled through the conduit (Figure 19a).  Figure 19b 

shows the routing of the other cables for connectivity of all the other systems on the barrier.  

LightLOC was run in conduit and under the cable tray for the maintenance access portal (Figure 

20). 
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(a) (b) 

Figure 19:  LightLOC Conduit Installation 

 

 

 

 

Figure 20:  LightLOC Conveyance through Maintenance Access Portal 
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2.6 Software 

The system software architecture reflects the physical barrier’s use of modularity to adapt to 

diverse installation environments.  Like the barrier, the software must be able to accept 

specialized sensor suites and fusion rules to match site conditions, and accommodate customer-

specific security policies and legacy system integration requirements.  A major functional 

requirement of the system is to provide a convenient, unified platform to integrate, monitor, and 

manage disparate COTS sensors.  A significant problem with adding COTS sensors to a system 

is that each additional sensor increases the volume of nuisance alarms in the system.  To address 

this problem, the software provides a plug-in framework to support implementing and evaluating 

different methods of sensor fusion to reduce the NAR.  Just as there is no one-size-fits-all 

solution to integrated perimeter defense, the choice of algorithms to reduce the NAR will also 

need to be adjusted based on the sensors chosen, threat analysis, and environmental conditions.  

A final high-level functional requirement is to supply interfaces and adapters for integrating with 

existing legacy or modern command and control infrastructures.  Four high-level design criteria 

guided the architectural decisions: Interoperability, Extensibility, Scalability, and Security. 

Interoperability means supporting integration in two directions: sensor-to-system integration and 

system-to-system integration.  Both directions require open, documented message exchange 

formats and application programming interface (API) contracts.  Although there has been 

significant work to establish standardized message formats for sensors (SensorML, 

TransducerML, etc), few commercial sensors support these standards, and none of the sensors 

selected for the prototype system did.  For sensor-to-system integration, a sensor adapter layer is 

provided to transform the raw, proprietary sensor protocol data to an intermediate XML format.  

This format provides a common representation for sensor fusion logic as well as facilitates 

further transformation into formats understood by other external systems.  To provide system-to-

system level integration, message formats for external APIs are implemented in XML.  The APIs 

are exposed as representational state transfer (REST), simple object transfer protocol (SOAP), or 

Plain Old XML (POX) Web Services.  The extensible markup language (XML) message format 

is based on the Department of Defense (DoD) Security Equipment Integration Working Group 

(SEIWG) Interface Control Document for Command and Control Display Equipment 

Information Interchange [6].  SEIWG is a multi-service collaboration within DoD to develop and 

promote interoperability standards for physical security equipment vendors, with the ultimate 

goal of creating an environment where true plug-and-play systems integration is possible. 

To promote system extensibility and interoperability, the system was designed according to the 

principles of Service Oriented Architecture (SOA).  The core premise of SOA maintains that all 

components within a system should exist as independent services with documented APIs and 

message formats.  Applications are then constructed as compositions of these services.  Services 

can be altered without impacting the application as long as the API remains constant, and the 

application can be extended or modified by reconfiguring the composition of services without 

touching the services themselves.  The composite nature of SOA applications also improves the 

scalability of the system.  Since each component is built as an independent service, the system 

supports a true distributed computing paradigm where services can be relocated to new devices 

as their performance requirements increase.  
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The ReKon system can be configured to comply with stringent site security requirements 

through declarative security policy files.  The use of policy files allows security policy changes 

to be made non-invasively, without any code changes to the system software.  Security policies 

can be applied at the transport level with Transport Layer Security 1.2
3
 , or at the message level 

via WS-Security 1.1
4
 and WS-SecureConversation

5
 .  Declarative policies provide the customer 

flexibility to decide what type of encryption and authentication the system should employ to 

meet facility requirements.  Security policies can be executed at global enforcement points for all 

messages coming into or out of the system, or at local enforcement points for each system 

resource as it is requested.  Any messages without a local or global policy authorizing it will be 

rejected. 

2.7 Modular Software Design 

The Application uses a Message Bus construct to combine services into a loosely coupled, event-

driven architecture.  The Message Bus creates a mediation layer that separates message 

producers and message consumers, providing a powerful abstraction for assembling applications 

out of multiple independent software modules.  The Message Bus provides publish/subscribe 

semantics as well as lightweight orchestration of services into message-processing pipelines.  

Additionally, the Message Bus offers a convenient location for the consistent enforcement of 

security policies. 

Services can be registered for any number of message channels on the Message Bus through 

external configuration files.  The Message Bus applies security policies to incoming messages 

and then routes them to message channels based on rules expressed in a lightweight 

configuration language.  Any response from a service subscribed to that channel goes back to the 

Message Bus to be re-instrumented just like any other incoming message.  Such loosely coupled, 

event-driven architecture provides a powerful abstraction for creating applications out of 

multiple independent software modules.  To add new functionality to the system, a new service 

is subscribed to a new or existing channel, or a new message is published to a new or existing 

channel.  Changing the interaction between services is accomplished by altering the routing logic 

in the Message Bus.  The Message Bus also brokers communication with external systems, such 

as legacy Command and Control systems, by relaying the message from the event publishing 

system to the destination over the correct network transport or dry contact closure relay via a 

Relay Translation Service.  Figure 21 provides a component level overview of the ReKon 

System software architecture. 

 

                                                 

 
3
 https://datatracker.ietf.org/wg/tls/charter/ 

4
 http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf 

5
 http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.pdf 
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Figure 21:  ReKon Modular Software Architecture 

2.8 Software System Capabilities 

Sensor adapters harvest real-time sensor input over a variety of communication media: RS-

232/485, user datagram protocol (UDP), transmission control protocol (TCP), and hypertext 

transfer protocol (HTTP).  Each adapter converts the raw input into an intermediate XML format 

and sends it to the application Message Bus.  The Message Bus publishes the message to 

authorized internal and external consumers (services).  Internal consumers include a Logging 

Service which records every message for auditing and analysis; a SEIWG Conversion Service 

which understands how to transform all internal messages into their corresponding SEIWG 

representation; a Complex Event Processor for fusing message streams from the different 

sensors; a Rule Engine which executes actions based on rules concerning changes in system 

(including sensor) state; and a Relay Translation Service which converts XML alarm messages 

into relay outputs for communication to legacy annunciators.  The system also contains a service 

for external consumers to manage their subscriptions to message topics.  Messages can be 

dispatched to external services through a number of transports: SOAP, REST, HTTP/S, java 

message service, TCP, and UDP.  Custom security policies can be applied for each external 

endpoint.  

The Complex Event Processor subscribes to all message streams in the system and executes 

filters against those streams to select time windows over which the streams can be combined 

with various logic operators, producing aggregate, or complex, events which are fed back into 

the Message Bus.  The Rule Engine maintains a continuously updating picture of the system’s 

state and can trigger actions based on changes to the system, such as issuing an alarm report.  
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The facts the Rule Engine maintains about the system, the rules it evaluates against those facts, 

and the resulting actions are all configurable by the user through a simplified scripting interface.  

The Message Bus facilitates lightweight orchestration of services with an XML-based 

configuration language, allowing the construction of sophisticated processing pipelines while 

keeping the individual services separate and self-contained.   

A typical example is the REDS message workflow.  Detection or status data is received by the 

sensor adapter, converted into XML format, and passed to the Message Bus.  The Message Bus 

publishes the message to the appropriate topic, it is received by the Logging Service (the SEIWG 

Conversion Service) and the Complex Event Processor, and any responses are republished by the 

Message Bus.  The Complex Event Processor fuses the REDS message with matching VMD 

and/or Photon IR messages.  The Rule Engine picks up the response from the Complex Event 

Processor, updates its system state, evaluates any rules affected by the change, and sends the 

result of any triggered actions back to the Message Bus.  Responses from the Rule Engine are 

picked up by the SEIWG Conversion Service and then published to external subscribers, or sent 

to the Relay Translation Service if the system is tied to a legacy annunciator. 

2.9 ReKon Prototype Hardware Configuration 

Block diagrams for the hardware configuration on the barrier and in the control room are shown 

in Figure 22 and Figure 23.  It is noted that in Figure 22, the VMD, REDS, MicroPoint, and 

Photon sensors report more data than only alarm state.  The Stonewater input modules (SWIMs) 

ingest alarm contacts and communicate with the Stonewater output modules (SWOMs) to change 

alarm state of the individual sensors.  MicroPoint and Photon did not have an IP interface so a 

third party serial-to-IP device was used to access the data.  The ReKon Fusion Engine interprets 

data from REDS and then drives two separate relays to signal an alarm event (one for REDS 

vehicle and footstep detection).  The third relay driven by the fusion engine is the logical fusion 

relay.  This relay represents the logical inference rule that was created in the system.  There is no 

machine learning relay since the analysis of this rule did not get implemented in real time.  All 

analysis of this rule was implemented off-line with data gathered during testing and nuisance 

monitoring described in Section 3.2.1.  Alarm signals were monitored via an alarm 

communication and display (AC&D) system developed by Sandia for use at STEC, the Nuisance 

Alarm and Detection System (NADS).  The barrier was connected to the NADS control room 

hardware via fiber optic cable over the network. 

Figure 23 (NADS control room) represents the hardware that would be located in the equipment 

room in a real installation.  The NADS computer monitored all alarm events from all the 

individual sensors.  Additionally, weather data was gathered from the weather station once per 

minute.  The NTP server synchronized time on all equipment.  The sensor data recording laptop 

collected data for off-line analysis of machine learning algorithms used for sensor fusion. 
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Figure 22:  FDB System Hardware Configuration 

 

 

Figure 23:  System Hardware Configuration in the NADS Control Room
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3 Individual Sensor Characterization 

Performance testing was split into two categories: individual sensor characterization and system 

level performance.  Individual sensor testing was necessary to characterize each sensor’s 

strengths and weaknesses, which were used to define the system-level performance testing to 

follow.  The threat was defined to be a walking, running, belly-crawling, or bear-crawling 

adversary with access to a vehicle.  Single adversaries and groups of three were utilized.  During 

performance testing, test path distances and intruder speeds were recorded along with timing 

information.  

3.1 Individual Sensor Test Methods 

Characterization tests were run on each sensor, except LightLOC.  It was tested only by bending 

the fiber or simulating a break in the fiber.  During the characterization testing, various approach 

paths were used by the subjects to evaluate the sensors’ response, as shown in Figure 24.  Each 

test path is numbered and referenced in the sections below. 

Vehicle tests were conducted using two different methods.  Unless otherwise specified, the tests 

were run using the “Start/Stop” method, which refers to stopping the vehicle just before reaching 

the barrier fence.  Continuous Movement, as referenced in the table III and IV by “Cont.”, refers 

to driving through the maintenance access.  For all vehicle testing, Polaris refers to a Polaris 

Ranger 2-seat ATV 4x4, while Minivan refers to a Dodge Caravan. 

 

Figure 24:  Diagram of Test Paths 
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3.1.1 Photon 

The Photon IR sensor was tuned to ensure an adversary could not crawl under the bottom beam, 

or run through faster than the phasing of the beams.  Testing included walking, running, and 

crawling subjects attempting to pass through the Photon IR sensor array undetected.  The 

configuration of Photon is shown in Figure 25. 

 

Figure 25:  Photon Configuration Settings 

Sandia has previous history with Photon and the settings were set according to previously 

conducted testing. 

3.1.2 MicroPoint 

MicroPoint testing consisted of subjects climbing the fence and simulated cuts.  There were a 

total of six poles tested when climbing (referenced as P1-P6 in Figure 12), where the subject 

would climb on the fence at the pole location.  When conducting fabric climb tests, the test 

subjects climbed on the fabric between poles 1–6 and an additional fabric panel adjacent to pole 

1.  For all climbing tests, the subject would climb to the top of the fence and hold position at the 

top for approximately two to three seconds.  The cut tests consisted of performing no more than 

eight simulated cuts, 1–2 seconds between cuts, in a pattern which would form an opening at the 

bottom of the fence fabric.  It is considered necessary to make at least 8 cuts to the fence to 

create an opening sufficiently large to crawl through, and thus the fence is configured to not 



43 

alarm unless a minimum threshold of events is detected.  Due to the installation of a tension wire 

through the bottom of the fabric, no significant movement of the fabric was possible, and thus 

attempts to bypass the fence by lifting the fabric off the ground were not explored.  The 

MicroPoint sensor information is shown below in Figure 26. 

 

Figure 26:  MicroPoint Sensor Information 

Figure 27 shows Cable A configuration parameters that were all set to default. 

 

Figure 27:  MicroPoint Configuration Parameters 

The calibration was performed per the Southwest Microwave manual for MicroPoint and yielded 

the default threshold with respect to the cell plot seen in Figure 28a. 
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(a) (b) (c) 

Figure 28:  MicroPoint Target Location (a) Threshold, (b) Clutter, and (c) Target Plots 

The green and red marking below the x-axis of Figure 28a denotes active and disabled cells 

respectively.  The x-axis for each of the MicroPoint configuration plots represents distance with 

respect to cells.  The cable is disabled from cell 9 to 13 to account for the maintenance access 

portal.  The cable ends at cell 20.  After the initial calibration was complete, preliminary testing 

was conducted to determine further tuning of the thresholds and count parameters to reach the 

desired performance.  Once calibrated, the installation was validated according to the clutter and 

target plots in the MicroPoint II Installation Tool (Figure 28b and Figure 28c). 

According to Southwest Microwave, the clutter should be between ±7168 counts and target 

should be between ±256 counts.  That was achieved in our installation.  This was checked 

throughout monitoring this sensor to ensure proper operation. 

Figure 29a shows the adjustments to the threshold that were made after the initial calibration and 

Figure 29b shows the detection level settings. 
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(a) (b) 

Figure 29:  MicroPoint (a) Incremental Threshold and (b) Detection Level Settings 

In response to poor performance on the corner poles and fabric in cells 1 through 3 (Figure 29b), 

the event count was lowered to one.  Typically it is recommended to leave this setting at a 

minimum of two counts, however adjusting the threshold proved unhelpful in our case, so 

lowering the event count was necessary. 

3.1.3 REDS 

A detection on REDS was defined to include triggering by either the footstep or vehicle 

detection algorithms during the test attempts.  In evaluating the data, it should be noted that 

REDS is a prototype system, and is not yet a commercially-fieldable system.  REDS data was 

monitored during the running, crawling, and vehicle tests already being performed for VMD, 

discussed below.  The footstep algorithm parameters were set according to Table 2.  The vehicle 

algorithm does not currently have any parameters to adjust. 

Table 2:  REDS Sensor Node Algorithm Parameters 

Parameter Value 

AspPreampGain 64 

AlgNumPersist 20 

AlgMinNumToDet 7 

AlgKurtosisThresh 5.0 

AlgNumSampPerWindow 128 
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3.1.4 VMD  

Testing for the VMD system was conducted both in color and monochrome mode, always in the 

daytime.  No testing was performed at night due to illuminator malfunction and project schedule.  

This specific VMD system did not require any initial calibration or algorithm training other than 

setting up user-defined rules, which were configured to alarm whenever any object classified as a 

person or vehicle was detected within a 6 ft (1.8 m) zone defined immediately south of the chain 

link fence.  As subject-to-background contrast can have a significant effect on VMD 

performance, the effect of contrast was evaluated by varying the color of clothing worn by the 

subjects in comparison to the tan colored sandy soil in the test field.  Thus, testing was 

performed at three clothing contrast levels, defined as H = high (bright white), M = medium 

(dark green), and L = low (light tan).  

The VMD dome camera was configured to be monochrome during the day and night based on 

preliminary testing results that indicated the algorithm triggered an alarm earlier than when in 

color mode for the same attack method.  The analytics engine was configured with noise filtering 

on and auto calibration on.  Three different rules were applied to the FOV which included 

change of scene, directional line of interest (LOI) (red line), and object present in region (green 

box) as seen in Figure 30. 

 

Figure 30:  VMD Rule Configuration 

Based on preliminary testing, it was determined that the sensitivity for the region of interest 

(ROI) should be set to 9 on a 1-to-10 scale (10 being most sensitive).  To attempt to reduce 

nuisance alarms, it was not set to 10.  The system had difficulty classifying several adversary 

approaches and commonly would not achieve classification until the adversary was against the 

barrier.  For that reason, the ROI was set to object present in region and the time the object had 

to be in the region was set to longer than one second.  The LOI rule had a sensitivity of 9 as well, 

and both ROI and LOI were set to trigger on only person or vehicle object types based on 

preliminary testing that indicated unknown object was not tripped on the conducted test sets.  

The scene change alarm was set with a sensitivity of 2, as higher sensitivities yielded nuisance 

alarms with passing cloud cover.  
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3.2 Individual Sensor Results 

The effectiveness of a sensor against a specific attack method in a given environment is most 

commonly measured with the PD, calculated with a confidence interval over the binomial 

distribution [7].  Additionally, the NAR is included in the results below.  

3.2.1 Nuisance Alarm Acquisition and Analysis 

Nuisance alarms were collected from all the individual sensors continuously from June 30 at 

11:59 PM through October 8 at 11:59 PM, 2012 for a total of 98.8 days (accounting for testing 

periods and maintenance).  NADS was used to collect alarm data for the sensors on the barrier 

along with weather data.  An electronic record of all alarm and weather data during the period 

defined above is available for review (STS02120).  For details of the NADS system 

configuration, see Figure 23.  While conducting tests and collecting nuisance alarm data during 

this period the sensor parameters were not altered.  Further, the alarms that were generated 

during testing and maintenance of the system and the time period associated with these events 

were not incorporated into the nuisance alarm rate calculations.  All alarm rates are specified in 

units of alarms per 24 hours unless noted otherwise.  

For the purposes of this work, a real alarm is when the video assessment can verify that either a 

human or vehicle caused the alarm.  A nuisance alarm is identified as alarm related to a non-

intrusion attempt (e.g. tumbleweed, rabbit, inclement weather, etc.).  An unknown alarm is one 

for which the cause is unidentified.  A fourth category of alarm was identified as Insufficient 

Data.  This means that the ability to assess the alarm was not possible for technical reasons (e.g., 

camera malfunction, poor camera visibility, etc.).  An insufficient data alarm could be a nuisance 

or an unknown alarm, but due to uncertainty this report considers those alarms as nuisances with 

no further classification.  All insufficient data alarms occurred during nighttime hours, with the 

exception of the alarms due to the camera being blinded at sunset (due to camera blooming), and 

were considered nuisance alarms for the purposes of this prototype evaluation, as the likelihood 

of human or vehicle traffic through the test site at those times is very small. 

The nuisance alarms for each sensor were categorized under daytime and nighttime occurrence.  

Daytime was defined as the time between sunrise to sunset and nighttime is the remaining time 

on that day.  Sunrise and sunset times were referenced from U.S. Naval Observatory data [8].  

The cumulative test period consisted of approximately 1288 hours classified as Daytime, and 

1082 hours classified as Nighttime.  Additionally, some nuisance alarms cause more than one 

alarm event within a defined time period (e.g., rabbit that continues to go in and out of the 

bottom beam of an AIR sensor).  Thus, if the same nuisance source continued to create alarms 

within 30 seconds of the last event created, the multiple redundant alarms were collapsed to a 

single alarm count in the final nuisance alarm and unknown alarm rate calculations.  However, 

Appendix A.2 includes the raw sensor alarm data for all sensors along with the corresponding 

nuisance alarm and unknown alarm rates and further explanation of the filter rule that was used. 

https://eims.sandia.gov/Workplace/getContent?vsId=%7B94C1F965-1A1E-4F24-89D1-4604E45E88CF%7D&objectStoreName=EIMS.__.Content&objectType=document
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3.2.2 Performance Testing Results 

3.2.2.1 Photon Results 

The Photon sensor functioned as expected, based on previous Sandia testing experience.  Table 3 

contains the test results from the varied adversary approaches.  The PD for the bear crawl is lower 

than the other approaches, but this is due to the number of trials run.  

Table 3:  Photon IR Test Results 

Approach Path 
Speed 
(ft/s) 

Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Walk 1 4 30 / 30 91 

Belly Crawl 1 1 40 / 40 93 

Bear Crawl 1 1 20 / 20 86 

Run 9 14 30 / 30 91 

Table 4 contains the nuisance sources and alarm rate recorded for the Photon sensor.  The Photon 

sensor is known for a low NAR in controlled PIDAS-like environments.  Sunrise and sunset are 

usually not an issue for this sensor; however, four alarms were generated during these events.  

This happened on three different days, each at different times.  The Photon has transceivers on 

both bars, so it can detect when it is being saturated by the sun.  However, upon further 

investigation for these events, photon data showed that bar 4 (bar facing sunset) was blinded and 

then beam 1 on the opposite bar tripped on each of the four occurrences.  A rabbit or other small 

animal is also a known nuisance source for this sensor.  One alarm event occurred in conditions 

with insufficient light to assess the cause.  Only one instance of the rabbit alarm event was 

filtered, but in general, the Photon will trip multiple times for an alarm source that is continually 

breaking the IR beams. 

Table 4:  Photon Nuisance Sources and Alarm Rate 

Alarm 
Source Alarms NAR UAR 

Daytime       

Rabbit 5 0.05 ---- 

sub total 5 0.05 0 

Nighttime       

Rabbit 1 0.01 ---- 

Sunset 4 0.04 ---- 
Poor Camera 
Visibility 

1 0.01 ---- 

sub total 6 0.06 0 

Total 11 0.11 0 
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3.2.2.2 MicroPoint Results 

The MicroPoint sensor functioned as expected, based on previous Sandia testing experience.  

Table 5 contains the climbing and cutting test results from the varied adversary approaches.  The 

30 climb tests on the fence poles were distributed by five tests per pole.  

Table 5:  MicroPoint Test Results 

Approach Location 
Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Climb On Poles 30 / 30 91 

Climb Between Poles 29 / 30 86 

Cut Between Poles 30 / 30 91 

The 30 climb tests between the poles on the fence fabric were distributed by four tests per fence 

panel with the exception of three tests on panel 1 and 2.  The one miss occurred on panel 8.  

Each of the three or four tests on the fence panel were distributed throughout the length of the 

panel.  The cut tests were distributed in the same fashion as the climbs on the fence panel, with 

the exception that the cuts were all repeated in the same location and at the bottom of the fabric 

as the previous test for each panel.   

Table 6 contains the nuisance sources and alarm rate recorded for MicroPoint.  The only 

nuisances observed were weather related; otherwise the alarms were not assessable.  During the 

nuisance monitoring period a sign was installed on the fence.  It was not completely secured to 

the fence and was able to move in the wind.  The data indicates that most of the high-wind 

alarms were due to the sign on the fence. 

Table 6:  MicroPoint Nuisance Sources and Alarm Rate 

Alarm Source Alarms NAR UAR 

Daytime       
Sign on Fence 64 0.65 ---- 
Poor Camera Visibility1 

2 0.02 ---- 

High Winds 11 0.11 ---- 
Unknown 48 ---- 0.49 

sub total 125 0.78 0.49 

Nighttime       
Sign on Fence 319 3.23 ---- 
Poor Camera Visibility 55 0.56 ---- 

Rain 30 0.30 ---- 
Unknown 19 ---- 0.19 

sub total 423 4.09 0.19 

Total 548 4.87 0.68 

Note 1: Refers to camera blooming during sunset condition 

The sign on the fence had no visible movement for the alarms labeled as high winds in Table 6.  

The unknown alarms had no assessable cause.  In order to determine whether the alarms ascribed 
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to sign on the fence were truly due to the sign, a histogram of the wind speed for those alarm 

events was created (Figure 31). 

 

Figure 31:  Histogram of Wind Speeds for Sign on Fence Alarm Events 

The peak occurrence of winds during this period was between 22 to 24 mph.  The sign was 

installed on 8/6/2012 and remained on the fence until 10/05/2012.  This covered nearly the entire 

period of nuisance monitoring.  However, MicroPoint was tested and calibrated by 6/6/2012.  

The period between 6/7 - 6/30/2012 was examined to investigate the wind speed and alarm 

events associated with MicroPoint.  During this period there was only one unknown alarm on 

6/21/2012 with recorded wind speed of 29 mph.  The histogram of the wind speeds that occurred 

during this period is shown in Figure 32, with wind speed data points taken every minute.  The 

histogram for all wind speeds during the nuisance monitoring period is shown in Figure 33. 
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Figure 32:  All Recorded Wind Speeds during the Period June 7 – 30, 2012 

 

Figure 33:  All Recorded Wind Speeds during the Nuisance Monitoring Period, July 1 – Oct 8 

Comparing Figure 32 and Figure 33, the distribution of wind speeds is nearly identical, and yet 

the occurrence of unknown alarms is significantly different.  Thus, it would appear that the high 

number of unknown alarms during the nuisance monitoring period is likely due to the poorly 
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installed sign.  If we take this into account, then Table 6 could have potentially resembled the 

alarm rates in Table 7. 

Table 7:  MicroPoint Nuisance Sources with Sign on Fence Excluded from Data 

Alarm Source Alarms NAR UAR 

Daytime       
Poor Camera Visibility1 

2 0.02 ---- 
High Winds 11 0.11 ---- 
Unknown 48 ---- 0.49 

sub total 61 0.13 0.49 

Nighttime     

Poor Camera Visibility 55 0.56 ---- 

Rain 30 0.30 ---- 
Unknown 19 ---- 0.19 

sub total 104 0.86 0.19 

Total 165 0.99 0.68 

Note 1: Refers to camera blooming during sunset condition 

On average, the NAR and UAR are at an acceptable rate with the sign alarms filtered out.  The 

other alarm events had similar wind distributions indicating that potentially other alarms could 

be due to the sign as well, but since there is no real evidence, further monitoring would need to 

be completed.  

3.2.2.3 REDS Results 

Due to limited funding, REDS was not tested independently, but was monitored during the 

testing of the other three sensors. 

Table 8 contains the test results.  Path 1 was approximately 5.5 ft from both REDS seismic 

sensors buried in the ground.  Path 9 and 11 represented motion parallel to the seismic sensors at 

an approximate distance of 16 ft from the sensor.  Paths 5, 6, and 7 were 45 degree motion 

toward the fence through the west-most seismic sensor.  The paths were described previously in 

Figure 24. 

In general REDS performed better against running versus walking adversaries.  More testing 

needs to be conducted to form conclusions regarding the detection performance of vehicles.   
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Table 8:  REDS Test Results 

Approach Distance (ft) Path 
Speed 
(ft/s) 

Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Walk 125 1 5 5 / 10 22 

Walk 125 9 5 22 / 30 57 

Walk 81 5, 6, 7 5 18 / 30 43 

Run 48 1 14 17 / 21 61 

Run 125 11 19 29 / 30 85 

Run 125 9 18 33 / 40 69 

Run 81 5, 6, 7 15 26 / 26 89 

Belly Crawl 18 1 1 35 / 35 92 

Belly Crawl 71 9 1 7 / 8 53 

Bear Crawl 18 1 1 0 / 20 0 

Bear Crawl 71 9 1 0 / 8 0 

Golf Cart 48 1 8 5 / 5 54 

Polaris 48 1 13 8 / 10 49 

Polaris, cont. 48 1 13 7 / 16 22 

Minivan 48 1 15 4 / 4 46 

 

Both the REDS footstep and vehicle sensor nodes tripped more unknown than known alarms.  

Table 9 contains the nuisance sources and alarm rate recorded for REDS footstep sensor nodes. 

The sensor test field does have periodic low-flying air traffic.  The majority of traffic is due to 

low-flying jets versus low-flying helicopters.  There is a road south of the barrier with light 

traffic (estimated 1 vehicle/hour during normal business hours) that is approximately 180 feet 

from the nearest seismic sensors connected to the sensor nodes.  Observation during light vehicle 

traffic on the road did not show any triggered alarms.  However, the test site sits proximal to an 

explosives test range, which undoubtedly caused several unknown alarms.  The explosives test 

range conducts explosion tests periodically, sometimes multiple per day.  REDS required 

periodic maintenance that left REDS incapable of relaying the nuisance data.  Instead of the 98.8 

days (2,371 hours) of monitoring, REDS had a total of 76.7 days (1841 hours) of nuisance 

monitoring.  

No obvious correlation between alarm counts and weather data (wind speed, temperature, and 

humidity) was determined for the REDS footstep and vehicle sensor nodes.  From observation, 

low-flying jets fly over the facility more often than low-flying helicopters.  This, in addition to 

the explosion tests, may explain the high number of unknown alarms observed.   

Table 10 contains the nuisance sources and alarm rate recorded for REDS vehicle sensor nodes.  

The number of unknown alarms was significantly larger than observed in the footstep sensor 

nodes.  It is noted that the majority of the air traffic is low-flying jets versus low-flying 

helicopters. 
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Table 9:  REDS Footstep Nuisance Sources and Alarm Rate 

Alarm Source Alarms NAR UAR 

Daytime       
Unknown 125 ---- 1.63 

sub total 125 0 1.63 

Nighttime       
Unknown 7 ---- 0.09 

Rain 8 0.10 ---- 
Poor Camera 
Visibility 7 

0.09 ---- 

sub total 22 0.20 0.09 

Total 147 0.20 1.72 

 

Table 10:  REDS Vehicle Nuisance Sources and Alarm Rate 

Alarm Source Alarms NAR UAR 

Daytime       
Poor Camera 
Visibility1 8 0.10 ---- 

Unknown 432 ---- 5.63 

sub total 440 0.10 5.63 

Nighttime       
Unknown 29 ---- 0.38 

Rain 8 0.10 ---- 
Poor Camera 
Visibility 

53 0.69 ---- 

Rabbit 1 0.01 ---- 

sub total 91 0.81 0.38 

Total 531 0.91 6.01 
Note 1: Refers to camera blooming during sunset 
condition 

 

3.2.2.4 VMD Results 

Table 11 contains the test results for the VMD sensor.  The sensor performed the best against 

walking intruders.  It exhibited nearly the same results for runners with the exception of traveling 

on the 45 degree paths (2 through 7).  The classification engine struggled to classify both the 

belly and bear crawlers.  Increasing the contrast between the intruder and the background did 

improve belly crawling results but did not improve bear crawling results.   
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Table 11:  VMD Test Results 

Mode1 Approach 
Distance 

(ft) Path 
Speed 
(ft/s) Contrast2 

Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Color Walk 21 1 4 M 30 / 30 91 

Walk 81 5, 6, 7 4 L 28 / 30 80 

Walk 81 2, 3, 4 4 L 10 / 10 73 

Walk 125 11 4 L 30 / 30 91 

Walk 125 9 4 L 10 / 10 91 

Run 48 1 14 M 29 / 30 85 

Run 125 11 19 M 30 / 30 91 

Run 125 11 19 L 29 / 30 85 

Run 125 9 16 L 10 / 10 73 

Run 81 2, 3, 4 15 L 14 / 25 37 

Run 81 5, 6, 7 14 L 9 / 26 19 

Belly Crawl 18 1 1 M 4 / 30 5 

Belly Crawl 18 1 1 H 10 / 10 73 

Belly Crawl 71 9 1 M 3 / 8 11 

Bear Crawl 18 1 1 M 1 / 10 1 

Bear Crawl 18 1 1 H 1 / 10 0.5 

Bear Crawl 71 9 1 M 3 / 8 11 

Polaris, Cont. 48 1 13 — 3 / 16 5 

Polaris 48 1 13 — 0 / 5 0 

Run 81 5, 6, 7 15 L 10 / 10 73 

Monochrome Polaris 48 1 13 — 3 / 5 18 

Minivan 48 1 15 — 0 / 4 0 

Golf Cart 48 1 8 — 2 / 5 7 

Run 81 5, 6, 7 15 L 10 / 10 73 

1 
Refers to the camera mode.  The IR cut filter used in color mode is removed in monochrome mode. 

2
 Refers to the intruder’s contrast with respect to the background scene 

It was noted that during the bear crawl tests with high contrast, after the test subject completed 

the travel path and stood up to return back to the starting location, the sensor alarmed nine out of 

the ten trials.  This suggests that once the adversary approaches the barrier, they would need to 

remain low to the ground to bypass the sensor.  The sensor performed poorly against vehicles 

approaching normal to the barrier (90 degree angle with respect to the barrier).  Based on 
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observations, this is due to the size of the vehicle and limited time traveling through the field of 

view of the camera.  The sensor was not able to classify the vehicle before it was in the rest 

position next to the barrier.  The VMD sensor performed better when the vehicle traveled 

radially in or out of the field of view.  Based on the results, the team decided to change the mode 

to monochrome to determine if this parameter affected performance.  A brief set of run and 

vehicle tests were performed under the same conditions to compare the performance results 

(Appendix A.1.1).  No detection difference was observed for the run tests; however, 

monochrome did perform better when comparing the Polaris vehicle test.  The important note on 

the run tests is that the response time of the sensor was decreased in monochrome mode.  That is 

the difference between the total time taken to complete the adversaries’ path to the time when the 

sensor triggered an alarm.  The average response time in monochrome mode was 230 ms, as 

opposed to 638 ms in color mode.  Based on this observation and the improved vehicle tests, the 

team decided to leave the camera in monochrome mode for the system tests and nuisance alarm 

period.  It is clear that more in-depth testing should be conducted to determine how monochrome 

mode handles the other adversary approaches.  

As the nighttime illumination equipment was malfunctioning for most of the test period, the 

nighttime alarms were not assessed against the VMD system.  The period of daytime was 53.7 

days and was used in the calculation of the NAR.  The breakdown of alarms by assessment 

category is shown in Table 12. 

Table 12:  VMD Nuisance Sources and Alarm Rate 

Alarm Source  Alarms NAR UAR 

Daytime    

Bird 1 0.02 ---- 

Rabbit 15 0.28 ---- 
Unknown 5 ---- 0.09 

Total 21 0.30 0.09 

Nighttime    

Rain 1 ---- ---- 
Poor Camera Visibility 16 ---- ---- 
Unknown 5 ---- ---- 
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3.2.3 Individual Sensor Results Summary 

Table 13 tabulates all the results from each of the sensors on the barrier to summarize the overall 

NAR for the system. 

Table 13:  Individual Sensor NAR/UAR Summary Results 

Nuisance Summary Photon MicroPoint 
REDS 
Footstep 

REDS 
Vehicle VMD Total 

Grand 
Total 

Daytime Alarms 5 61 125 440 21 652 

875 Nighttime Alarms 6 104 22 91 ----
 223 

NAR 0.11 0.99 0.20 0.91 0.30
1 2.132

 

8.86 UAR 0 0.68 1.72 6.01 0.09
1 6.73

2
 

Note 1: VMD alarm totals and rates do not include nighttime periods in alarm rate calculation 
Note 2: While the REDS system was only active for 76.7 days and the VMD system for 53.7 days, the Total alarm rates 
for the collective system were calculated over the entire 98.8 day test period to better represent total performance. 
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4 Integrated System Testing 

4.1 System Test Methods 

After characterizing each sensor against simple adversary behaviors, more complex methods 

were explored to attempt to bypass the entire system of sensors.  The individual sensor 

characterization tests addressed detection on single-method approach paths to the barrier.  

However, a successful adversary will do more than simply approach the barrier.  The ReKon 

system allows integration of multiple complementary sensors to combine their effectiveness.  

Thus, the integrated system testing will recreate actions necessary to bypass all the sensors, in an 

attempt to cross the barrier undetected.  There are essentially six fundamental ways to cross the 

barrier: bridge over the barrier, tunnel under the barrier, climb over the fence, cut through the 

fence, travel through the maintenance access, or drive a vehicle through the barrier.  The latter, a 

vehicle impact test, was not conducted during this effort.  Based on the findings in Section 3.1.4, 

the monochrome mode was used for VMD during system testing, otherwise all other sensors 

were tested as configured during sensor characterization.  The following tests were conducted for 

the system: 

4.1.1 Bridging Attempts 

All bridging attempts conducted without vehicles involved the subjects carrying a ladder to the 

barrier, then setting up and climbing the ladder to simulate a jump over the fence or Photon IR 

sensor.  The vehicle tests involved driving close to the barrier, climbing to the roof, and 

simulating the actions of jumping over the fence.  The list of tests conducted was as follows: 

 Three walking subjects, cloaked with tarp (path 1) 

 Three walking subjects, shoulder-to-shoulder (path 1) 

 Three walking subjects cloaked with styrofoam door, shoulder-to-shoulder (path 1) 

 Bear-crawling subject, dragging ladder (path 1) 

 Drive golf cart (paths 1, 9) 

 Drive Ford F-350 truck (paths 1, 9) 

4.1.2 Tunneling Attempts 

The test subjects used hand trowels to tunnel under the barrier, except in one attempt, where a 

shovel was used as noted.  Although the soil at the test site is all compacted dirt, some of the 

tunneling tests were conducted on a loose soil condition by digging out a hole and backfilling 

with loose soil, to better approximate digging in sandy conditions.  The list of tests conducted 

was as follows: 

 Three walking subjects, cloaked with rigid tarp (stretched out taut to 8 ft x 10 ft), digging 

with shovel (path 1) 

 Three bear-crawling subjects, cloaked with tarp (path 1) 

 Three subjects walking in group (path 1) 

 Bear-crawling subject (paths 1,8) 
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4.1.3 Climbing Attempts 

The list of tests conducted was as follows: 

 Walking subject climbs the fence on all fabric and pole locations noted 

4.1.4 Cutting Attempts 

The list of tests conducted was as follows: 

 Walking subject cloaked with styrofoam door cuts through fence fabric 

 Walking subject with backpack cut through fence fabric 

4.1.5 Maintenance Access Attempts 

The list of tests conducted was as follows: 

 Walking subject 

 Running subject 

 Bear-crawling subject 

 Belly-crawling subject 

4.2 System Test Results 

Table 14 summarizes the system testing results.  The System Detections/Repetitions column 

scores a detection for a trial if even only one of the four sensors alarmed during the test attempt 

(as expected, LightLOC did not alarm at any point during these tests).  The last four columns 

show how each sensor responded to each approach method.  All personnel wore low-contrast 

clothing during system tests unless noted otherwise.  On the Tunneling ‘bear crawl, dig loose 

soil’ attempt on path 10, and on the Maintenance Access ‘walk’ attempt, no results were 

recorded for REDS since the logging system failed.  Technical difficulties also prohibited 

collection of REDS data during the Cutting ‘walking with backpack’ attempt.  The discrepancy 

in number of repetitions for the Maintenance Access ‘run’ and ‘belly crawl (M contrast)’ 

attempts were due to logging errors rendering the data unrecoverable.  



 

Table 14:  System Test Results 

Method Approach Path 
Speed 
(ft/s) 

Distance 
(ft) 

Dig Rate 
(in3/s) / 

Duration (s) 

System 
Detections/ 
Repetitions 

MicroPoint 
Det./ Rep. 

VMD 
Det/ 
Rep 

REDS 
Det/ 
Rep 

Photon 
Det/ 
Rep 

Bridging 3 subjects walk w/ tarp 1 0.9 53 — 5 / 5 — 4 / 5 5 / 5 — 

3 subjects walk w/ tarp 1 5 53 — 2 / 2 — 2 / 2 2 / 2 — 

3 subjects walk abreast 1 1.3 45 — 2 / 2 — 2 / 2 2 / 2 — 

3 subjects walk abreast, w/ door 1 0.8 47 — 2 / 2 — 0 / 2 2 / 2 — 

Bear crawl 1 0.8 51 — 5 / 5 — 5 / 5 5 / 5 — 

Golf car, jump off roof 1 8.9 45 — 5 / 5 — 5 / 5 1 / 5 — 

Golf cart, jump off roof 9 10 69 — 3 / 3 — 3 / 3 1 / 3 — 

F-350, jump off roof 1 7.8 130 — 2 / 2 — 0 / 2 2 / 2 — 

F-350, jump off roof 9 7.8 130 — 3 / 3 — 3 / 3 3 / 3 — 

Tunneling 3 subjects bear crawl w/ tarp, dig soil 1 0.5 46 1.2 / 300 2 / 2 — 0 / 2 2 / 2 — 

3 subjects, group walk, dig loose soil 1 0.8 46 4.3 / 80 3 / 3 — 3 / 3 3 / 3 — 

Bear crawl, dig soil 10 0.6 51 3.2 / 180 1 / 1 — 1 / 1 1 / 1 — 

Bear crawl, dig soil 8 0.6 51 2.7 / 180 1 / 1 — 1 / 1 1 / 1 — 

Bear crawl, dig loose soil 10 0.8 51 3.2 / 180 1 / 1 — 1 / 1 n/a — 

Bear crawl, dig loose soil 8 0.7 51 2.7 / 180 1 / 1 — 1 / 1 0 / 1 — 

3 subjects walk w/ rigid tarp, dig soil 
w/ shovel 

1 1.9 70 4 / 180 2 / 2 — 0 / 2 2 / 2 — 

Climbing Walk, climb fence — 4 51 — 5 / 5 4 / 5 4 / 5 4 / 5 — 

Cutting Walk, cut fence  — 4 51 — 5 / 5 5 / 5 4 / 5 3 / 5 — 

Walk w/ backpack, cut fence — 4 51 — 3 / 3 3 / 3 3 / 3 n/a — 

Maintenance 
Access 

Walk 1 4 21 — 30 / 30 — 30 / 30 n/a 30 / 30 

Run 1 14 48 — 30 / 30 — 29 / 30 17 / 21 30 / 30 

Bear crawl (M contrast) 1 1 18 — 10 / 10 — 1 / 10 0 / 10 10 / 10 

Bear crawl (H contrast) 1 1 18 — 10 / 10 — 1 / 10 0 / 10 10 / 10 

Belly crawl (M contrast) 1 1 18 — 30 / 30 — 4 / 30 25 / 25 30 / 30 

Belly crawl (H contrast) 1 1 18 — 10 / 10 — 10 / 10 10 / 10 10 / 10 

6
1
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The system detected all bridging attempts.  Once the adversary reaches the barrier, VMD is the 

only remaining sensor to be bypassed.  VMD detected the subjects climbing the ladder as soon as 

the subject's body peaked the top of the ladder.  It was observed that to confound the system, 

camouflaging methods would need to be incorporated into the bridging attempts.  Results 

indicate the worst case for VMD detection is a large rigid surface used to disguise the adversary.  

During the ‘3 subject walk w/ tarp’ attempt at 5 ft/s, it was noted that VMD did not alarm until 

the subject climbed the ladder and peaked the top; however, the REDS sensor detected them 

early in the approach, possibly due to increased noise generation coupled to the ground.   

The system detected all tunneling attempts.  REDS detected all attempts except the loose soil 

tests.  VMD complemented most all the detections except during the ‘bear crawl w/ tarp’ 

attempt, and when the tarp was stretched to 8 ft x 10 ft to increase rigidity, decreasing tarp 

movement.  The other adversarial advantage to using any method where the subject is hidden by 

an object is that all additional movement after the adversary has reached the barrier is 

undetectable by VMD, unless some object loitering rule is implemented.   

The system detected all climbing and cutting attempts.  During one attempt, a backpack was used 

to simulate an adversary carrying tools to aide in the intrusion attempt, although results indicate 

the backpack does not reduce the VMD detection capabilities.   

The system detected all maintenance access attempts.  The bear crawl represents the worst case 

for both VMD and REDS, so the Photon IR is essentially the single line of detection for these 

attempts; however, the PD of Photon IR is high, even on its own.  VMD struggled to detect belly 

crawls, while REDS performed well against the belly crawls.  In all the Maintenance Access 

attempts, Photon IR sensed all intrusions. 

The methodology used to select the bypass methods used in the system testing was described in 

Section 4.1.  The methods used to approach the barrier were based on the collective weaknesses 

of all the sensors.  The sensor characterization results indicate that it is possible to bypass either 

REDS or VMD with the approach methods indicated to arrive at the fence, and, as mentioned 

previously, bridging or tunneling should be sufficient to bypass the MicroPoint or Photon IR.  

Thus, when the adversary reaches the barrier, it would be necessary to either bridge or tunnel 

since cutting the fence, climbing over the fence, or walking through the maintenance access are 

not advisable paths for covert conveyance.  However, VMD and REDS collectively performed 

very well against the bridging and tunneling attacks, again confirming the importance of utilizing 

complementary sensors with line detection sensors.  While there were weaknesses in several of 

the individual sensors, the ability to incorporate multiple complementary sensors enabled the 

integrated system to perform much better.  Unfortunately, sufficient test data at the system level 

was not available at the time of this report to calculate PD for direct comparison to the individual 

sensor performance, but a simple comparison of the "detections/repetitions" data is nonetheless 

illustrative.  As previously mentioned, however, when a system simply involves adding several 

different sensors, the PD may go up, but the NAR/UAR will certainly go up unless something is 

done to counter that.  In the evaluation above, the system was considered successful if one sensor 

detected the subject.  However, such a simple combination with no intelligence or filtering also 

results in counting each nuisance and unknown alarm from every sensor.  Cumulating the results 

from Table 13, this would result in the integrated system having a high NAR of 2.13/day, but an 

even more egregious UAR of 6.73/day.  This would typically be considered unacceptable for 



63 

high-security applications, and would tax the patience of the alarm monitoring personnel at any 

installation.  While some measures could be taken to reduce this, such as correlating the 

assessment with the weather data, additional measures should be taken to reduce the NAR/UAR 

but still maintain acceptable detection performance
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5 Sensor Fusion Demonstration 

A primary objective of ReKon is to provision the barrier system with intelligent sensor fusion 

algorithms that can factor out nuisance and unknown alarms without diminishing the probability 

of detecting real alarms. It should be possible for a system with advanced sensor fusion software 

to exceed the detection performance of a conventional system in logical OR configuration 

because the powerful nuisance alarm filtering capability provided by sensor fusion will allow the 

sensors to be tuned to a greater level of sensitivity.  A system without high performance sensor 

fusion software will be required to tune down the sensitivity of individual sensors until an 

acceptable compromise is found between nuisance activity and PD. This compromise always 

provides an advantage to the adversary and it is the intention of ReKon to eliminate the need for 

that compromise so that the advantage is entirely pro-force.  

Two approaches to sensor fusion were evaluated.  The first approach used logical inference to 

fuse logic states output by the individual sensors by considering coincident events over a time 

window.  This approach, which is also known as decision level or rule-based sensor fusion, is the 

most common method applied in the security industry today. The second approach applied 

statistical machine learning techniques to more detailed assessment data extracted from the 

sensors after the fact (except for VMD, this data is not made available by the other sensor 

vendors as part of their online communication protocols), along with one minute averaged 

weather data available from a local weather station.   

5.1 Logical Inference Sensor Fusion 

Most COTS security sensors on the market today provide a relay output to indicate a binary 

alarm state.  All the sensors furnished on the barrier for this prototype use the relay interface as 

their defacto standard for integration into existing AC&D or Command and Control systems.  

Additionally, when a sensor does offer more sophisticated alternatives for data exchange, such as 

RS232 serial or IP, the information contained in that exchange still is reduced to little more than 

binary alarm state (and perhaps location).  These conditions explain the current industry 

emphasis on logical inference as the sensor fusion methodology of choice, and also why it was 

the first approach undertaken during development of the ReKon prototype. 

To implement Logical Inference Sensor Fusion, ReKon employs two main constructs: a holistic 

representation of system state referred to as the “Fact Base”, and a user scriptable set of rules that 

register to evaluate against the Fact Base when one or more fragments of the system state 

change.  System state is composed of several layers.  First there is the state of the individual line 

detection sensors: Photon, MicroPoint, and LightLoc.  Next there is a layer of virtual sensors 

derived from the output of the VMD and REDS systems.  Since both REDS and VMD report the 

presence of personnel or vehicles near the perimeter, the Fact Base has four virtual sensors to 

represent the combination of their states.  If only one of REDS or VMD detect personnel the 

virtual MaybePerson sensor is activated; if both REDS and VMD detect personnel, the 

DefinitePerson sensor is activated.  Likewise, if only one of REDS and VMD detect a vehicle, 

the MaybeVehicle sensor is activated; if both detect a vehicle, then the DefiniteVehicle sensor is 

activated.  Both physical and virtual sensors also maintain memory of their previous state so that 

logic rules combining them can be evaluated with respect to a time window.  Using a 

configurable time window allows the rules to account for synchronization differences between 
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sensor activations deriving from sensor placement and how rapidly individual sensors cycle 

between on/off states during a detection.  

Multi-layered system state and configurable time windows allow for straightforward expression 

of any number of sensor fusion rules via logical inference.  For the purpose of this evaluation, a 

rule was created to alarm on the coincidence of any alarm from Photon or MicroPoint with an 

active state in either MaybePerson or DefinitePerson within a 30 second time window.  The rule 

would also alarm immediately if LightLoc alarmed since this sensor was deemed to have 

virtually non-existent NAR.  This rule in effect combined the line of detection sensors with 

complementary volumetric sensing from VMD and REDS.  Once the rule-based fusion alarm 

tripped, it would remain active until all underlying causes for the alarm have cleared, even if 

those causes weren’t present when the alarm first activated.  For instance, if MaybePerson and 

Photon alarmed, the rule would trigger, but then if MicroPoint alarmed, the fusion rule would not 

clear until Photon, MicroPoint, and MaybePerson have all cleared first. 

5.2 Machine Learning Sensor Fusion  

Subject matter experts at Sandia raised several objections regarding shortcomings in the logical 

inference approach to sensor fusion during design reviews.  Most persuasive was the claim that 

logical inference will combine the weaknesses of the sensors as well as their strengths, producing 

a system that is overall easier to defeat.  A survey of other fusion methods revealed several 

techniques from the field of machine learning that promised the ability to combine sensor data in 

accordance with learned probabilities.  Using probabilistic decision boundaries allows the 

machine learning approach to avoid overruling a sensor when it is expressing high confidence in 

its detections, but also allows it to weigh corroborating evidence from other sensors when 

conditions matching lower confidence thresholds vulnerable to nuisance alarms are present.  

Machine learning algorithms require an existing dataset to learn how to accomplish their tasks.  

This learning process is called training.  It can involve data that is already classified with the 

labels the algorithm is supposed to learn (in our case, nuisance or true alarm), in which case it is 

referred to as supervised learning.  Or, it can be given a set of unlabeled training data for which it 

can learn latent regularities on its own, which is referred to as unsupervised learning.  There are 

also approaches that combine the two in various ways.  In all cases, the quality and quantity of 

training data have a significant impact on the performance of the algorithm for its given task.   

How much data a machine learning algorithm needs to train is an open question.  The answer 

depends heavily on the choice of algorithm and the predictive power of the features in the 

dataset.  A feature is defined as an individual measureable property of the phenomenon being 

observed.  In the ReKon system, the phenomenon being observed is activity on and around the 

barrier, and the features include data reported by Photon, MicroPoint, REDS, VMD, and 

weather.  These sensors all provided some data in addition to alarm state.  Photon provides the 

logic state for each beam on the vertical bar, giving some indication of the height of the object.  

MicroPoint provides the amplitude under or over threshold for each event detected along with 

cell location on the perimeter.  REDS only provided an on/off state for footstep and vehicle 

detections.  VMD provides a rich real-time metadata stream that includes object classification 

(human, vehicle, or other), confidence coefficient between 0 and 1 for the object classification, 

and approximate pixel location.  The weather provides one minute averages for wind speed, wind 
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direction, temperature, humidity, and rain.  Unfortunately, as is commonplace in the industry, the 

MicroPoint and Photon vendors do not support harvesting the additional sensor data in real-time.  

The data was instead extracted from log files generated by vendor software after the fact.  As a 

result, the machine learning algorithm and analysis had to be performed offline.  

The training data can be simulated as well as collected from real world events.  When simulated, 

the data is created from prior knowledge of the task the algorithm will be accomplishing and the 

natural range of its data inputs.  Similar to how children prepare for real life in the simulated 

learning environment of school, it is not uncommon for a machine learning algorithm to receive 

simulated training to classify data that would be too dangerous, costly or time consuming to 

acquire in the real world.  Also like a person, machine learning algorithms can keep learning 

once deployed by using feedback about the accuracy of its predictions to continuously refine its 

performance. 

5.3 Data Capture and Data Overview 

Since training a machine learning algorithm requires the acquisition of sufficient sample data, 

several data capture programs were used to accumulate event data for the five-month period from 

early May 2012 to early October 2012.  For live data entering and exiting the ReKon system, this 

task was simplified by the presence of a logging and auditing service that can record any 

messages matching a pattern to a persistent database.  Logging and auditing all activities from 

Photon, MicroPoint, REDS, and VMD, as well as events from the Complex Event Processor, 

state changes from the Rule Engine and logical inference alarm events generated approximately 

177MB of archived data.  Live data from Photon, MicroPoint, and REDS included alarm active 

and clear events generated by each sensor’s relay outputs.  The VMD offers an event notification 

API that sent detailed XML reports about each alarm event to web service endpoints hosted by 

ReKon.  Although both Photon IR and MicroPoint generate extra diagnostic data along with each 

alarm event, neither provides online, programmatic access to that data.  However, each system 

provides software that is able to display the diagnostic data, allowing a batch extraction strategy 

to be contrived granting non-realtime access to the data.  This data was compiled into files 

resulting in an additional 65MB of diagnostic data from Photon IR, and 968K from MicroPoint.  

Sandia was also able to provide one minute average weather data from a nearby weather station 

for the five month period adding 20MB of data. 

Every event involving Photon and MicroPoint was manually classified as either a real or 

nuisance alarm by staff at Stonewater Control Systems after reviewing video footage of the 

event.  These assessments were then cross-referenced with the separate assessments performed 

by Sandia staff for events captured by the NADS.  The verified assessments and approximately 

261MB of sensor data were then cross-correlated to produce two data files.  The first file 

contained data that allowed assessment of the logical inference sensor fusion system with respect 

to the performance of the individual sensors in the system.  Correlation of logical inference 

alarms with individual sensor alarms primarily helped to determine real alarms that logical 

inference failed to report.  Logical inference alarms were also matched to the manual event 

classifications assigned to the alarm rule’s component sensors, enabling calculation of 

performance metrics for the overall logical inference method (PD, NAR, and UAR). 
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The second file contained features correlated from each sensor for every event generated by the 

Photon or MicroPoint sensors.  These features were used for training and evaluating machine 

learning algorithms.  The file contains one record for each event, with each record containing 

rich data acquired from Photon, MicroPoint, VMD, and weather; footstep and vehicle detection 

status from REDS; and precise timestamp, index, and classification label.  To account for time 

synchronization and sensor placement variances in event response from each sensor, each record 

was compiled by accumulating VMD and REDS data from a window starting 15 seconds before 

and ending 15 seconds after events detected by Photon or MicroPoint.  Weather was already 

provided in one minute intervals so each record incorporated the weather data nearest to the 

Photon or MicroPoint event timestamp.  Records were generated for all events without 

discriminating for maintenance activity or any sensor downtime.  If a pedestrian or vehicle was 

identified as causing the event, it was marked as a real alarm.  Otherwise it was marked as a 

nuisance alarm. If a sensor was down for a particular event, data signifying non-detection for that 

particular sensor was assigned to that event.  Table 15 summarizes the distribution of data as it 

applies to the primary event sources. 

Table 15:  Machine Learning Event Distribution 

Sensor  Real Alarms 
Nuisance 
Alarms Total 

ALL 767 1046 1813 

MicroPoint 226 1017 1243 

Photon 541 29 570 

A deeper look at the data distribution as it pertains to complementary sensors (VMD, REDS) 

shows uneven participation by both across all event types.  Since individual component testing 

concluded that both the VMD and REDS sensors had a relatively low PD for some approach 

methods, inconsistent contributions represent likely real-world performance and provides 

confidence that the reported results transfer to expected conditions in a real-world environment.  

Table 16 documents the allocation of REDS and VMD data for real and nuisance alarms in the 

dataset. 

Table 16:  Machine Learning Event Distribution for Secondary Sensors 

Sensor / Status Real Alarms Nuisance Alarms Total 

REDS Footsteps Present 489 13 502 

REDS Footsteps Absent 278 1033 1311 

REDS Vehicle Present 279 17 296 

REDS Vehicle Absent 488 1029 1517 

VMD Present 694 61 755 

VMD Absent 73 985 1058 

The data in Table 16 reveals that REDS footsteps were present for about 64% of the real alarms, 

and VMD detected at some threshold for approximately 90% of the real alarms. Both sensors 

participated in nuisance alarms, but at extremely low rates (1.2% for REDS footstep, and near 

6% for VMD).  In the interest of full disclosure, events captured in the machine learning dataset 

include alarms generated by routine maintenance during which staff were stationary at the barrier 

(and therefore undetectable to REDS), or obscured from the camera on the safe side of the 
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barrier (and therefore undetectable to VMD).  Although these sensors both have a fairly low PD, 

the statistics presented above might represent lower than expected performance due to the 

inclusion of these records.  The decision was made to retain these records precisely because the 

lower PD of the sensors renders them more susceptible to defeat.  As such, events mimicking this 

defeat were valued for providing more realistic evidence of how the machine learning system 

would perform under adverse conditions or against a capable adversary.  Overall, gaps and other 

inconsistencies in the secondary sensor data demonstrate that there is no straightforward logic 

expression that can combine data from both the primary and complementary sensors to produce 

an accurate alarm classification in all cases. Under ideal circumstances there is a high probability 

that all sensors will report on a true alarm, but there is a significant number of cases where they 

will not.  The data contained in the machine learning dataset approximates these less-than-ideal 

conditions. 

The amount of data in the machine learning data set (1813 records) is quite small for a fairly 

complex classification task.  Additionally, training and evaluating the performance of the 

algorithms involves randomizing the data and breaking it down into even smaller segments for 

training, tuning, and testing.  Also, certain tests required moving all instances of a certain pattern 

of activity from the training set to the test set (e.g., bear crawl and belly crawl).  These 

requirements created conditions in which records in the test set had no analog in the training set.  

Such a split often occurs in real world machine learning development, and the recognized 

solution is to synthesize data that generalizes the missing pattern of activity and include it in the 

training set.  To account for the most egregious examples of missing data (bear crawl, belly 

crawl, and flapping sign (see Section 3.2.2.2)), 21 additional data records, a 1% increase, were 

synthesized to provide extra learning material.  Although this is a negligible amount, results will 

be presented with and without the synthesized data. 

5.4 Sensor Fusion Analysis 

The following statistics were computed to measure the effectiveness of the logical inference and 

machine learning approach to sensor fusion: 

 True Positives:  count of real alarms predicted as real alarms 

 False Positives:  count of nuisance alarms predicted as real alarms 

 False Negative:  count of real alarms predicted as nuisance alarms 

 True Negatives:  count of nuisance alarms predicted as nuisance alarms 

 Precision:   % alarm predictions that were correct 
  

              

                              
 

 

 Recall:   % real alarms properly classified as real alarms  
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 Specificity:   % nuisance alarms properly classified as nuisance alarms     
 

                                
PositivesFalseNegativesTrue

NegativesTrue


 

 F1 Score:   weighted average of precision and recall (harmonic mean) 
 

                                          
recallprecision

recallprecision



**2
 

These metrics were used to evaluate both logical inference and machine learning sensor fusion 

for four different test scenarios.  The first scenario calculates the PD for logical inference and 

machine learning for trials testing Photon and MicroPoint.  This will allow direct comparison 

with the conventional system benchmarks documented in Section 3.2 of this report.  The data in 

Table 17 and Table 18 present results for Photon that can be compared to Table 3. 

Table 17:  Machine Learning Photon Test Results 

Approach Path 
Speed 
(ft/s) 

Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Walk 1 4 30 / 30 91 

Belly Crawl 1 1 40 / 40 93 

Bear Crawl 1 1 20 / 20 86 

Run 9 14 30 / 30 91 

 

Table 18:  Logical Inference Photon Test Results 

Approach Path 
Speed 
(ft/s) 

Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Walk 1 4 30 / 30 91 

Belly Crawl 1 1 25 / 40 48 

Bear Crawl 1 1 0 / 20 0 

Run 9 14 30 / 30 91 

 

As the Logical Inference results show, the tests presented several challenges to achieving 

accurate prediction for sensor fusion.  First, the REDS sensor malfunctioned for one full day of 

testing which encompassed all of the walk tests and a portion of the belly crawl tests. Fortunately 

the VMD system provided strong detection for all the walk tests which allowed the Logical 

Inference approach to compensate for REDS absence (remember that either REDS or VMD can 

generate a MaybePerson virtual alarm, which creates an inference alarm when combined with 

Photon or MicroPoint).  However, VMD encountered serious difficulty discerning a crawling 

subject, failing to report for most of the belly and bear crawl tests.  When REDS was restored to 

proper functioning, it was able to pick up most of the belly crawls, but failed for all of the bear 

crawls.  These failures reinforce the concept that logical inference based sensor fusion combines 

the weakness of the sensors to produce a system that is overall easier to defeat than a system 

without such fusion.  
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In contrast, the Machine Learning results are on a par with the conventional system results.  

Despite malfunction and poor performance from contributing sensors, machine learning was able 

to learn a probability distribution over the data that could accurately distinguish real alarms in 

conditions that foil traditional sensor fusion methods.  The algorithm did require some synthetic 

data to discern the belly crawl tests that occurred when REDS was malfunctioning.  The test set 

contained the only instances of this unique circumstance in the dataset, and the only other events 

close to it were obvious nuisance alarms caused by rabbits.  Without the synthetic data, the 

machine learning would not have had examples to learn to separate the belly crawls from the 

other nuisance alarms.  Table 19 presents the test results with the synthetic data excluded. 

Table 19:  Machine Learning Photon Results without Synthetic Training Data 

Approach Path 
Speed 
(ft/s) 

Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Walk 1 4 30 / 30 91 

Belly Crawl 1 1 34 / 40 72 

Bear Crawl 1 1 20 / 20 86 

Run 9 14 30 / 30 91 

The machine learning was still intelligent enough to pick up all of the bear crawl events that 

consistently thwarted detection by REDS, VMD, and the logical inference system.  As 

mentioned previously, the belly crawl events that it missed had no counterpart outside of the test 

set except a few nuisance alarms by rabbits.  The addition of four synthetic events provided 

enough reinforcement that the learning algorithm could consistently distinguish attacks from 

relatively similar nuisances. 

Table 20 and Table 21 present data comparable to the MicroPoint test data presented in Table 5. 

Table 20:  Machine Learning MicroPoint Test Results 

Approach Location 
Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Climb On Poles 30 / 30 91 

Climb Between Poles 30 / 30 91 

Cut Between Poles 26 / 30 72 

 

Table 21:  Logical Inference MicroPoint Test Results 

Approach Location 
Detections/ 
Repetitions 

PD @ 95% 
Confidence 

Climb On Poles 20 / 30 50 

Climb Between Poles 28 / 30 80 

Cut Between Poles 11 / 30 22 

The results demonstrate again how logical inference rule-based systems fail to be reliable in the 

face of inconsistent sensor performance.  Unfortunately, many of the MicroPoint tests were 

performed in quick succession without moving away from the barrier.  The VMD struggled to 
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identify targets when they overlapped the pixel location of the barrier in the video image.  

Without the test subject stepping away from the barrier between tests, neither REDS nor VMD 

could reliably detect a human presence.  The machine learning was consistently able to learn a 

decision boundary that accounted for these performance gaps.  The one set of tests where it 

achieved lower accuracy involved cuts on the fence that terminated as soon as MicroPoint 

triggered instead of continuing through to the recommended number of eight cuts per attack.  A 

cluster of eight closely packed events would likely have given enough information to the 

machine learning algorithm to look beyond the relatively low amplitude of the cuts reported by 

MicroPoint.  Without the extra information, the closest matching event patterns in the dataset 

were low amplitude nuisance alarms caused by wind.  Synthetic data representing the abridged 

fence cut events as real alarms had the effect of turning the previously eliminated nuisance 

alarms caused by wind back in to actual nuisance alarms.  Although these abnormal attack 

attempts would not have yielded an opening sufficient to breach the fence, examining the test 

conditions here yields useful insight: since both REDS and VMD have a fairly low PD (for some 

approaches) , they are susceptible to defeat by a capable adversary, so the machine learning 

algorithm must be able to detect attempts to cut through the fence without corroborating data 

from the secondary sensors.  To detect fence cuts, the machine learning algorithm will require 

more detailed event data that captures multiple low-amplitude cuts in rapid succession, which the 

MicroPoint currently does not provide. 

The purpose of the second test scenario was to assess the NAR experienced by both sensor 

fusion methods for the 100 days of passive testing from July 1 to October 8.  This scenario 

provides data for comparison to the reported NAR for the conventional system for the same time 

period.  Table 22 describes the manually assigned classifications for the data subset used for the 

nuisance alarm analysis for machine learning and logical inference. 

Table 22:  Assigned Event Classification for Machine Learning and 

Logical Inference Passive Testing Datasets 

 

Classified 
Real 

Classified 
Nuisance  Total 

Machine Learning 127 780 907 

Logical Inference 140 779 919 

The difference in alarm counts between Machine Learning and Logical Inference results from a 

misconfiguration in the Photon data capture software that occurred twice after a Windows update 

resulted in a reboot.  The Logical Inference dataset includes those alarms because it recorded live 

data from alarm relays that were reported to the ReKon system.  Fortunately, during that time 

period no nuisance alarms occurred, only maintenance activity that has been classified as “real” 

because human activity triggered the alarms.  For machine learning, the training set included all 

records with a timestamp before July 1 plus the 21 synthetic data records used in the previous 

test scenario.  The test data for which the scores are reported include all records with a timestamp 

greater than June 30 and less than October 9.  Results will also be presented without the synthetic 

training records.  For logical inference the dataset was filtered so that any alarms occurring 

within 30 seconds of another were combined to count as one.  This same processing was applied 

to the conventional system dataset for the passive testing analysis.  The machine learning dataset 

did not undergo the same processing because it was able to achieve high accuracy without it.  

Table 23 displays the results for the passive testing period. 
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Table 23:  Sensor Fusion Results for Passive Testing Phase 

 Recall Precision Specificity F1 

True 
Positive 

False 
Positive 

True 
Negative 

False 
Negative 

Machine 
Learning 1.0 .985 .997 .992 127 2 778 0 

Logical 
Inference .82 .92 .987 .867 116 10 769 24 

The results provide an impressive example of the benefits offered by the machine learning 

approach to sensor fusion.  Most importantly, the machine learning algorithm correctly classified 

every event on the barrier that had a human cause.  As mentioned previously, a major flaw of 

logical inference is that it reduces the overall capability of the system by combining sensors’ 

weaknesses as well as their strengths.  The machine learning approach shows there is a way 

beyond this dilemma.  Additionally, of the 780 nuisance alarms recorded in the dataset, machine 

learning correctly classified all but two as nuisances.  Examination of those two events shows 

they were both caused by rabbits loitering in the maintenance access for a period of several 

seconds.  Since this event signature matches the signature of a belly or bear crawling adversary 

that has defeated both REDS and VMD, classifying the events as true alarms is an acceptable 

tradeoff for protection against the more damaging security breech.  The logical inference results 

support the claim that this approach to sensor fusion achieves its ability to reduce the NAR 

through a corresponding reduction in detection capability.  Although precision and specificity 

were admirably high, recall suffered a significant drop, proving that the overall security of the 

system has been diminished.  

Table 24 displays the results for the passive testing period for machine learning without the 

advantage of synthetic training data. 

Table 24:  Machine Learning Results without Synthetic Training Data for Passive Testing Phase 

 
Recall Precision Specificity F1 

True 
Positive 

False 
Positive 

True 
Negative 

False 
Negative 

Machine 
Learning .921 .959 .994 .939 117 5 775 10 

Without the synthetic data the machine learning scores drop a noticeable amount but still remain 

high.  The largest change is in recall, mostly because a number of system tests occurred after 

July 1 that have no analogue in the training data set.  These tests involved concerted efforts to 

defeat the system by exploiting known weaknesses in the barrier’s sensor configuration.  Most of 

these attacks involved obscuring attackers behind some kind of camouflage to prevent VMD 

detection and then executing one simulated cut on the fence that produced a low amplitude signal 

to MicroPoint.  However, generating a small number of representative training events allowed it 

to learn the proper classification, as shown in Table 25. 

The third test scenario evaluated the results of both sensor fusion algorithms on attacks devised 

for the system level testing.  The attacks in the system level tests represent an increase in 

difficulty because they were designed to exploit known weaknesses in individual component 
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sensors.  Only the subset of system level attacks presented in section 4.2 that involved Photon or 

MicroPoint are relevant to this analysis. 

Table 25:  Sensor Fusion Performance on System Level Testing 

Method Approach 
Logical 

Inference 
Machine 
Learning 

Climbing Walk, climb fence 4 / 5 4 / 5 

Cutting Walk, cut fence 5 / 5 5 / 5 

Walk w/ backpack, cut fence 3 / 3 3 / 3 

Maintenance 
Access 

Walk 30 / 30 30 / 30 

Run 30 / 30 30 / 30 

Bear Crawl 0 / 20 20 / 20 

Belly Crawl 25 / 40 40 / 40 

The evidence presented above supports the conclusion that logical inference will have a difficult 

time defending against a sophisticated adversary who knows how to exploit the weakest sensor 

in the system.  Machine learning does not suffer from this same defect.  The trial that machine 

learning did not identify involved a climb on the fence that the MicroPoint sensor did not report.  

Combined with the difficulty that the VMD system had identifying targets overlapping the fence 

structure in the field of view, there was just simply not enough data in the system to identify this 

attack.  Enhancing the system to detect this attack is straightforward: improve the VMD to ignore 

static background features such as the barrier structure, simplifying the identification of occluded 

targets, and incorporate a ground sensor that exports more than just an alarm state, thus making it 

a suitable candidate for machine learning fusion.  Additionally, MicroPoint only provides data 

once a threshold has been breached.  If MicroPoint always provided data for every stimulus, 

there would have been information available for the algorithm to use in its decision-making 

process.  Unfortunately for this isolated case, there was no information available. 

The fourth test scenario was developed with two main goals in mind: one, provide a more 

general assessment of the machine learning performance over all the data in the dataset; and two, 

perform a sensitivity analysis to determine how the test scores change as sensors are added and 

removed.  As discussed previously, training and testing the machine learning algorithm involves 

randomizing the entire dataset, and then dividing respectively by 60%/40% for the already small 

dataset into training and test subsets.  The accuracy of the algorithm varies by how well the 

training data reflects the test data and also by how many of the most difficult examples get 

excluded from the score by ending up in the training set.  A better picture of the algorithms 

performance can be obtained by running 200 randomized trials and calculating the score at a 

95% confidence interval.  The randomized trials were performed on the complete dataset, and 

also on every other permutation of sensors considered by the algorithm to provide the sensitivity 

analysis.  Figure 34 and Table 26 show the results of this test scenario for machine learning with 

the 21 synthetic training events included. 
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Figure 34:  Machine Learning Sensor Fusion Results @95% Confidence, 200 Trials 
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Table 26:  Machine Learning Sensor Fusion Results @95% Confidence, 200 Trials 

Dataset Precision (%) Recall (%) Specificity (%) F1 (%) 

Photon Only 95.7 94.0 26.5 94.7 

Photon and REDS 99.4 93.1 99.3 95.9 

Photon and VMD 99.1 96.4 91.7 97.6 

Photon and Weather 97.1 91.7 57.3 94.2 

Photon,  REDS, and VMD 99.4 95.2 99.4 97.1 

Photon, REDS, and Weather 99.4 91.7 96.1 95.2 

Photon, VMD, and Weather 99.4 95.9 95.2 97.3 

Photon, VMD, REDS, and 
Weather 

99.4 94.5 98.4 
96.8 

MicroPoint Only 79.6 33.6 87.4 49.6 

MicroPoint and REDS 98.5 79.4 99.3 87.9 

MicroPoint and VMD 79.6 73.5 95.2 76.2 

MicroPoint and Weather 93.3 96.6 97.9 94.9 

MicroPoint, REDS, and VMD 98.5 81.5 99.3 89.0 

MicroPoint, REDS, and Weather 95.5 97.6 98.3 96.3 

MicroPoint, VMD, and Weather 95.9 98.5 98.5 97.1 

MicroPoint, REDS, VMD, and 
Weather 

98.2 99.4 99.1 98.5 

Photon, MicroPoint, REDS, VMD, 
and Weather 

99.1 97.9 99.1 98.4 

 

The logical inference sensor fusion results for the overall test period are presented separately 

because the trial was run live and only once. 

Table 27:  Logical Inference Sensor Fusion Results 

Dataset  Precision (%) Recall (%) Specificity (%) F1 (%) 

Logical Inference 94.0 81.8 96.2 87.5 

The results listed in Table 27 again reinforce the obvious weaknesses in sensor fusion using 

logical inference as well as demonstrate the significant promise of the application of machine 

learning to the problem domain.  For both tests, the results are skewed somewhat by the absence 

of some sensor data due to equipment malfunction, but it is clear that machine learning offers 

significantly more resilience in the face of sensor loss or defeat.  The test data was not scrubbed 

for records that could be deemed questionable, such as events that are consistently false negative 

even though they are bracketed on both sides by positive identifications a few seconds apart (this 
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would happen when large groups of people were inspecting the fence), or when the barrier 

sensors were undergoing maintenance and would have normally been placed into access mode.  

For the machine learning experiment, most if not all the false negatives can be accounted for by 

these circumstances.  However, any sensor fusion system for perimeter security clearly should 

sacrifice precision for recall when tuning the algorithm.  Since a large perimeter will obviously 

have vastly more fence line than maintenance access gates, the most important dataset in the 

machine learning sensor fusion results is the one for “MicroPoint, REDS, VMD, and Weather”.  

This configuration achieves 99.4% recall, including cut tests which stopped short of the 

recommended number of cuts as well as many other instances in which REDS and VMD were 

unable to detect human presence.  At the same time, the machine learning was able to eliminate 

over 99% of nuisance alarms for the same dataset over the test period.  The scores for logical 

inference show that while it was able to meaningfully reduce nuisance alarms, eliminating 

96.2%, it was only able to do this at the cost of dramatically lower recall (81.8%) 

The machine learning sensitivity analysis reveals that the largest contributors to correct nuisance 

classification (specificity) are the VMD for Photon IR, and weather for MicroPoint.  Largely this 

is because these sensors provide the most detailed stream of information.  REDS provided 

significant improvement to the effectiveness of machine learning with the Photon IR dataset, but 

since REDS provides only truth state values regarding detection, its contribution was 

overshadowed by that of VMD.  Similarly, the combination of weather data with MicroPoint 

proved so effective there was little room for REDS to make a contribution with the limited data it 

provides.  Overall, machine learning displayed outstanding results with the ability to correctly 

classify 99% of the nuisance alarms with the best sensor combinations, and still maintain 

excellent recall for true alarms.  Correct classification of nuisance alarms enables the system 

with multiple options, such as forwarding them to the alarm station labeled as nuisance or lower 

priority, or not forwarding them at all, depending on the security policies in place.  Most if not 

all false negatives can be explained by sensor malfunction, situations with other alarms already 

present, or the system undergoing maintenance. 

An interesting insight can be drawn from the performance differences between both Photon and 

MicroPoint when combined separately with REDS and VMD.  The combination of Photon and 

VMD outperforms the combination of Photon with REDS.  However, with MicroPoint the 

opposite is true.  This highlights the difficulty experienced by VMD distinguishing targets 

overlapping the fence on the image.  Efforts to improve the VMD system’s performance in this 

area would undoubtedly yield higher scores when fusing MicroPoint and VMD together. 

Results for test scenario three machine learning sensor fusion without any synthetic training data 

are presented in Table 28. 
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Table 28:  Machine Learning Sensor Fusion Results @95% Confidence, 200 Trials, 

No Synthetic Training Data 

Dataset Precision (%) Recall (%) Specificity (%) F1 (%) 

Photon Only 94.9 93 36.1 93.5 

Photon and REDS 98.1 80.4 82.9 87.7 

Photon and VMD 98.4 94.7 96.0 96.3 

Photon and Weather 96.6 89.4 60.5 92.9 

Photon,  REDS, and VMD 98.7 93.0 90.6 95.8 

Photon, REDS, and Weather 98.7 89.4 91.5 93.0 

Photon, VMD, and Weather 99.0 93.8 92.4 96.1 

Photon, VMD, REDS, and Weather 99.0 92.2 92.9 95.2 

MicroPoint Only 78.0 33.1 97.1 47.0 

MicroPoint and REDS 93.5 73.1 98.2 82.3 

MicroPoint and VMD 77.8 70.8 94.7 74.3 

MicroPoint and Weather 93.1 95.6 97.9 94.5 

MicroPoint, REDS, and VMD 93.1 75.8 98.1 83.4 

MicroPoint, REDS, and Weather 94.9 96.3 98.4 95.6 

MicroPoint, VMD, and Weather 95.2 96.6 98.4 95.8 

MicroPoint, REDS, VMD, and Weather 96.9 97.1 98.7 97.1 

Photon, MicroPoint, REDS, VMD, and 
Weather 

97.9 96.6 98.2 97.1 

 

The scores without synthetic training are only marginally lower than the scores with it.  Recall 

for the best case combination of sensors (MicroPoint, REDS, VMD, and Weather) dropped a 

little more than 2%, and specificity dropped a little less than 1%.  These results show that the 

algorithm was already learning quite well even though the number of training records is 

relatively small for the problem being solved.  Also, the source data was generated without any 

forethought applied as to the requirements of training a machine learning algorithm, resulting in 

many difficult corner cases having only limited number of examples, examples which were often 

barely distinguishable from known nuisance alarm sources.  These circumstances suggest that 

more emphasis on analysis and the methodical generation of training cases provide an 

opportunity for even greater improvements in the reported results. 

Although the machine learning approach was evaluated with offline datasets, this was only done 

because the required data could not be extracted from the sensors in real-time.  If the sensors did 

provide this information live, then it would have been a simple exercise to add a machine 

learning prediction service to the existing software architecture.  The Complex Event Processor 
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already supports aggregating and transforming multiple sensor feeds into new data formats, 

which can be published for processing by the prediction service.  In fact, it is envisioned that 

machine learning prediction will be just one facet of a multi-layered approach to the NAR 

reduction that will combine heuristics, statistical analysis and logical inference to reduce the 

likelihood of false negatives.  The ReKon™ software architecture was developed to make the 

expression of such concepts straightforward through service composition. 

The results of our sensor fusion analysis show promising advantages to be gained by applying 

machine learning to multi-sensor intrusion detection systems. At the same time, the analysis 

demonstrates that rule-based logical inference sensor fusion is too simple to handle sensors with 

inconsistent detection performance across a range of threat scenarios, which results in a system 

that is far less capable than one in which each sensor is evaluated independently. In the first three 

test scenarios (individual sensor characterization for Photon and MicroPoint, Long-term NAR 

analysis, and aggressive system level testing), machine learning displayed an ability to reason 

accurately about the source of an alarm even when one or more sensors were defeated or 

malfunctioning. The defeats that machine learning did experience were largely the result of 

insufficient information provided by the sensor manufacturers.  Except for the VMD system, the 

sensors assembled for this project only report data after an alarm threshold has been breached. 

Using sensors that offer more data at higher frequency will allow the machine learning 

algorithms to draw increasingly accurate decision boundaries between nuisance and real alarm 

events, all but eliminating the few corner cases discovered in the course of  testing.  Without 

sensor fusion, the increased detection performance gained from deploying additional sensors on 

the perimeter is overwhelmed by the increase in NAR, rendering the system unusable.  As our 

long term NAR analysis results show, machine learning was able to eliminate all but two 

nuisance alarms for the 100-day period, and those nuisance alarms matched exactly the signature 

of a bear crawling intruder who has defeated the VMD and ground sensors to penetrate the 

maintenance access. Without the attendant decrease in detection capability that accompanies 

other sensor fusion alternatives, customers who equip their perimeters with multi-sensor machine 

learning fusion algorithms will no longer have to sacrifice PD to obtain acceptable NAR. 

Intelligent cooperation between sensors in a multi-sensor intrusion detection system promises to 

be the next generation advance in perimeter security, and these tests document the real benefits 

machine learning can offer in achieving such cooperation. 
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6 Conclusion and Recommendations 

The security world is advancing, and a need exists for a new type of perimeter security that 

integrates intelligent detection with assessment and delay.  An ideal system would permit 

integration of varied sensor phenomenologies, and allow for modular construction to expedite 

deployment and reduce cost.  It would be scalable to integrate well with both large and small 

sites.  Additionally, it should be configurable to allow the system to be tailored to the specific 

performance and security needs of a specific site.  The ReKon system has been demonstrated, 

which meet these goals through integration of various types of detection and assessment inputs 

on virtually any physical barrier, and incorporation of advanced algorithms to provide enhanced 

data fusion.   

A suite of complementary and disparate sensors was implemented on this prototype to highlight 

the effectiveness of complementary sensing, and to evaluate the systems’ ability to incorporate 

various input types.  The capability exists for the sensor suite to be customized to the needs of a 

particular installation, whether the threats of concern consist of vehicles, personnel, aerial, 

underground, or a combination of all.  Whichever sensors are chosen, an effective perimeter will 

use complementary sensor technologies to allow complete coverage of the assessed threat 

definition, overcome individual sensor weaknesses, and combine their strengths.   

The prototype was built on the MNB with integrated camera towers and fencing, which allowed 

for modular construction and reduced on-site installation time.  The software and electronics 

hardware architecture of ReKon is also modular, allowing the detection and assessment functions 

to be abstracted from the barrier, such that integration with any other type of barrier is 

permissible.  Additionally, the scalable features in ReKon allow the system to be expanded with 

additional hardware to increase the perimeter distance or increase the detection capabilities if 

needed.  It is also able to incorporate the latest cyber security standards, and permits configuring 

the system to the unique security needs of each site.  The modularity, scalability, and 

configurability allow ReKon to be customized to provide the most secure solution matching the 

requirements of each site. 

A common drawback of a system that can incorporate multiple sensors to provide adequate delay 

would normally be substantially increased NAR over a single-sensor solution.  In the 

performance testing of the ReKon system, the ability of the system in a conventional 

configuration (logical ‘OR’ combination of sensors) to detect each attack was demonstrated with 

success.  The individual sensors were characterized, and the weaknesses of each sensor were 

exploited in designing attempts to bypass the entire system. These included running through 

Photon, climbing the fence, attempting to bypass the fence by ladder or by digging under, and 

involved the use of obscuration techniques and vehicles.  All were successfully detected by at 

least one of the sensors.  As expected, the increased detection capability came at a cost of very 

high NAR when the sensors were evaluated in this simple configuration.  Results were presented 

which compared and contrasted the performance of this conventional system with more 

advanced sensor fusion techniques. 

An effective sensor fusion solution must not diminish the detection capability of the system 

when compared to each sensor evaluated independently, but also must meaningfully reduce the 

increased volume of nuisance alarms that accompany the addition of new sensors.  The ideal 
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fusion scenario is the one which emphasizes each sensor's strengths while mitigating its 

weaknesses.  Weakness, in this case, means either reporting a situation as an alarm when it is 

not, or not reporting an alarm when there is one.  The current industry standard approach to 

sensor fusion is to use logical inference in a rule engine. The net effect of logical inference is to 

simply perform a logical AND on the outputs of two or more sensors, in effect combining 

multiple sensors into one. Intuitively we can understand that combining sensors this way 

combines their weaknesses as well as their strengths. This approach to sensor fusion actually 

provides an advantage to the adversary: where previously he needed to defeat multiple sensors, 

now he only needs to defeat the weakest sensor to compromise the perimeter. The test results 

presented bear this out: NAR and UAR are meaningfully reduced, but unfortunately so is the 

detection performance. This fails to create truly synergistic sensor fusion, and clearly we can do 

better.    

The results show that logical inference is too simple, and may produce a system with a lower PD 

than a system without fusion, whereas the machine learning approach can produce a system with 

a comparable PD to a system without fusion, yet eliminates many of the nuisance alarms to which 

such a system is usually susceptible.  Not only was the machine learning algorithm able to 

capture nearly all attempts of a sophisticated adversary to subvert detection by the system 

through exploiting known weaknesses, it reduced the combined NAR/UAR to barely 

measureable levels. Indeed, examination of the two nuisance alarms experienced by the system 

over 3 months of passive testing show they were caused by rabbits loitering in the maintenance 

access in a way that matches the signature of a crawling adversary using stealth to bypass both 

the seismic sensors and VMD.  Machine learning is able to succeed decisively where the industry 

standard rule-based approach fails, because it employs advanced data analysis techniques to 

extract patterns of correlation between sensors.  This allows them to report as if they were 

independent when their probability of detection is known to be strong, but combines them with 

others when their probability is known to be weak. This allows machine learning to avoid the 

pitfall of combining sensor weaknesses that limits the effectiveness of logical inference. Indeed, 

significant gaps in sensor performance that occurred during testing demonstrate that machine 

learning is able to draw accurate decision boundaries between real and nuisance alarms even in 

the face of inconsistent data that would foil rule-based approaches to sensor fusion.  A key to 

enabling such performance is sensor technology which provides detailed data to properly inform 

decision-making algorithms.  Currently, few vendors are willing to provide such data to the user 

in a straight-forward fashion, but as the security industry moves to demanding higher 

performance, the best systems will incorporate only those sensors capable of doing so.  

The promising results motivate the continued work in this line of research.  It would be 

worthwhile to continue this work by evaluating additional sensor types, perhaps focusing on 

sensors that will provide additional detection against threats of bridging over a barrier, or 

tunneling underneath, and enhancing the fusion algorithms to minimize the NAR from those 

sensors.  Enabling the system and sensors to run the machine learning algorithms live should also 

be a focus, and performing sensor characterization and system bypass testing on the live system, 

verifying the results found in this study by post-processing the sensor data through the 

algorithms.  Furthermore, it is hypothesized that the effectiveness of the machine learning 

approach in reducing the NAR will alter the conventional tradeoff between detection sensitivity 

and NAR, allowing sensors to be tuned to higher levels of sensitivity, improving complex 

decision-making capability, and increasing detection performance.  Additional testing should 



83 

evaluate that hypothesis, in addition to incorporating nighttime and winter test conditions to 

allow a more thorough evaluation of the NAR-reduction capabilities of the machine learning 

process.   
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Appendix A  

A.1 TESTING DATA 

A.1.1 VMD Sensor 

Table A-1 contains the results for the run tests comparing monochrome and color mode 

performance on the VMD sensor.  The raw times for the tests are contained in the table.



 

Table A-1:  VMD Results for Run Tests in Monochrome versus Color Mode 

Trial  Mode Approach 
Distance 
(ft) Path  

Speed 
(ft/s) Contrast 

Total Test 
Duration (s) 

VMD 
Detection 

Time until 
Detection (s) 

VMD 
Confi-
dence 
Level 

Response 
Time (s) 

1 Monochrome Run 81 4 15.8 L 5.12 Y 6   0.88 

2       4 15.0 L 5.39 Y 5.39 19% 0 

3       4 14.6 L 5.53 Y 7.36 42% 1.83 

4       4 15.9 L 5.09 Y 5.09 43.3% 0 

5       3 15.9 L 5.11 Y 5.11 42% 0 

6       3 14.2 L 5.69 Y 6 11% 0.31 

7       3 15.4 L 5.26 Y 5.26 36% 0 

8       2 14.8 L 5.48 Y 5.48 18% 0 
9       2 13.9 L 5.84 Y 5.12 28% -0.72 

10       2 15.5 L 5.24 Y 5.24 33% 0 

1 Color Run 81 4 18.2 L 4.46 Y 4.46 23% 0 

2       4 16.4 L 4.95 Y 4.95 16% 0 

3       4 15.9 L 5.08 Y 4.25 22% -0.83 

4       4 16.7 L 4.85 Y 4.85   0 

5       3 13.2 L 6.13 Y 7.13 36% 1 

6       3 16.7 L 4.86 Y 5.86   1 
7       3 16.0 L 5.07 Y 7.82 22% 2.75 

8       2 10.6 L 7.65 Y 8.65 40% 1 

9       2 14.4 L 5.63 Y 5.63 16% 0 

10       2 14.6 L 5.54 Y 7 52% 1.46 
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Table A-2 contains the results for the vehicle tests comparing monochrome and color mode performance on the VMD sensor.  The 

raw times for the tests are contained in the table. 

Table A-2:  VMD Results for Vehicle Tests in Monochrome versus Color Mode 

Trial  Mode Approach 
Distance 
(ft) Path  

Avg 
Velocity 
(MPH) Detection 

Total Test 
Duration (s) 

Time until 
Detection (s) 

Response 
Time (s) 

1 Color Polaris 48 1 9 N ---- ----   

2         8 N ---- ---- ---- 

3         9 N ---- ---- ---- 

4         9.5 N ---- ---- ---- 

5         11 N ---- ---- ---- 

1 Monochrome Polaris 48 1 7.5 Y 8 7.5 -0.5 

2         9 N 8.7 0 ---- 

3         9 N 7 0 ---- 

4         10 Y 6.5 6.5 0 

5         8 Y 6.4 7 0.6 
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A.2 NUISANCE DATA 

All nuisance and unknown alarm rates are with respect to the raw number of alarms that occurred 

for the tables that follow. 

A.2.1 Nuisance Summary 

Table A-3 tabulates the raw nuisance alarms triggered by all the sensors. 

Table A-3:  Summary of Raw Nuisance Sources and Alarm Rates for All Sensors 

Nuisance Summary Photon MicroPoint REDS 
Footstep 

REDS 
Vehicle 

VMD Total Grand 
Total 

Daytime Raw Alarms 6 66 180 450 24 726 
971 

Nighttime Raw Alarms 6 116 31 92 ---- 
245 

NAR 0.12 1.10 0.30 0.93 0.361 
2.372  

9.83 
UAR 0 0.74 2.45 6.14 0.091 7.462  

Note 1: Alarm rates do not include nighttime periods in alarm rate calculation 
Note 2: While the REDS system was only active for 76.7 days and the VMD system for 53.7 days, the Total 
alarm rates for the collective system were calculated over the entire 98.8 day test period to better represent 
total performance. 

 

A.2.1 Alarm Filter Explanation 

Figure A-1 shows an example alarm sequence of sensor X for the same alarm source on the same 

day at the noted times.  The alarm event occurs at 2:36:45 PM and the next at 2:36:50 PM which 

is a time difference of five seconds.  According to the rule we developed since this is less than or 

equal to 30 seconds this second alarm is filtered and not counted.  Likewise the third alarm 

happens nine seconds after the second alarm which by the same logic is filtered.  Thus, this 

example series of three total alarms is filtered to only one alarm. 
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Figure A-1: Alarm Filter Applied to the Example Alarm Sequence for Sensor X 

It is noted that this filter rule was implemented because the same alarm stimulus (e.g., rabbit 

tripping Photon IR beams) causing multiple alarms would most likely be counted as one event in 

a real installation.  The operator can see that the alarm has tripped multiple times from the same 

source.  Moreover, the operator would not secure the alarm on the AC&D system until the rabbit 

or nuisance source was cleared from the area by response or maintenance personnel.  The 30 

second rule to separate events as unique was chosen arbitrarily.  There is no standard for the 

number of seconds between alarm events that considers those events unique.  The raw number of 

alarms is presented in the tables below. 

All individual sensor results are presented in the tables below. 
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A.2.2 Photon 

Table A-4:  Raw Photon Nuisance Sources and Alarm Rate 

Alarm Source 
Raw 
Alarms 

Filtered 
Alarms 

Raw 
NAR 

Raw 
UAR 

Daytime        
Rabbit

 
6 5 0.06 ---- 

sub total 6 5 0.06 0 

Nighttime        
Rabbit 1 1 0.01 ---- 
Sunset 4 4 0.04 ---- 
Poor Camera 
Visibility 1 1 0.01 ---- 

sub total 6 6 0.06 0 

Total 12 11 0.12 0 
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A.2.3 MicroPoint  

Table A-5:  Raw MicroPoint Nuisance Sources and Alarm Rate 

Alarm Source  
Raw 
Alarms 

Filtered 
Alarms 

Raw 
NAR 

Raw 
UAR 

Daytime    0.88 ---- 

Sign on fence
 

87 64 0.02 ---- 
Poor Camera1 
Visibility 2 2 

---- 
0.54 

Unknown 53 48 0.11 ---- 

High Winds 11 11 0.88 ---- 

sub total 153 125 1.01 0.54 

Nighttime        

Sign on fence 449 319 4.55 ---- 

Unknown 20 19 ---- 0.20 
Rain 36 30 0.36 ---- 
Poor Camera 
Visibility 60 55 0.61 

---- 

sub total 565 423 5.52 0.20 

Total 718 548 6.53 0.74 

Note 1: Refers to camera blooming during sunset condition 

 

Table A-6:  Raw MicroPoint Nuisance Sources and Alarm Rates with Sign on Fence Event Excluded 

Alarm Source  
Raw 
Alarms 

Filtered 
Alarms 

Raw 
NAR 

Raw 
UAR 

Daytime        
Poor Camera1 
Visibility 2 2 0.02 

---- 

Unknown 53 48 ---- 0.54 

High Winds 11 11 0.11 ---- 

sub total 66 61 0.13 0.54 

Nighttime        
Unknown 20 19 ---- 0.20 
Rain 36 30 0.36 ---- 
Poor Camera 
Visibility 60 55 0.61 ---- 

sub total 116 104 0.97 0.20 

Total 182 165 1.10 0.74 

Note 1: Refers to camera blooming during sunset condition 
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A.2.4 REDS 

Table A-7:  Raw REDS Footstep Nuisance Sources and Alarm Rate 

Alarm Source 
Raw 
Alarms 

Filtered 
Alarms 

Raw 
NAR 

Raw 
UAR 

Daytime        
Unknown 180 125 ---- 2.35 

sub total 180 125 0 2.35 

Nighttime        
Unknown 8 7 ---- 0.10 

Rain 16 8 0.21 ---- 
Poor Camera 
Visibility 7 7 

0.09 ---- 

sub total 31 22 0.30 0.10 

Total 211 147 0.30 2.45 

 

 

 

Table A-8:  Raw REDS Vehicle Nuisance Sources and Alarm Rate 

Alarm Source 
Raw 
Alarms 

Filtered 
Alarms 

Raw 
NAR 

Raw 
UAR 

Daytime        

Unknown 442 432 ---- 5.76 
Poor Camera1 
Visibility 8 8 

0.10 ---- 

sub total 450 440 0.10 5.76 

Nighttime        
Unknown 29 29 ---- 0.38 

Rain 8 8 0.10 ---- 
Poor Camera 
Visibility 54 53 

0.70 ---- 

Rabbit 1 1 0.01 ---- 

sub total 92 91 0.82 0.38 

Total 542 531 0.93 6.14 

Note 1: Refers to camera blooming during sunset condition 
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A.2.5 VMD  

Table A-9:  Raw VMD Nuisance Sources and Alarm Rate 

Alarm Source  
Raw 
Alarms 

Filtered 
Alarms 

Raw 
NAR 

Raw  
UAR 

Daytime        
Bird 1 1 0.02 ---- 

Unknown 5 5 ---- 0.09 
Rabbit 18 15 0.34 ---- 

Total 24 21 0.36 0.09 

Nighttime        
Rain 1 1 ---- ---- 
Poor Camera 
Visibility 16 16 ---- ---- 
Unknown 5 5 ---- ---- 

 



A-10 

  



 

Distribution: 

External Distribution: 

James O. McLaughlin, jim@stonewatercontrols.com (electronic copy) 

Stonewater Software Controls, Inc. 

805 McCombs Avenue 

Kannapolis, NC 28083 

 

R. Allen Nolte, allennolte@msn.com (electronic copy) 

Kontek Industries, Inc. 

805 McCombs Avenue 

Kannapolis, NC 28083 

 

Kim Pocock, kpocock@kontekindustries.com (electronic copy) 

Kontek Industries, Inc. 

805 McCombs Avenue 

Kannapolis, NC 28083 

 

Barclay J. Tullis, barc@novelthink.com (electronic copy) 

Novelthink 

1795 Guinda Street 

Palo Alto, CA 94303 

 

Internal Distribution: 

 

 MS 1125 Jason J. Andersen 6532 (electronic copy) 

 MS 1361 Anthony R. Aragon 6833 (electronic copy) 

 MS 1361 Robert B. Berry 6833 (electronic copy) 

 MS 1010 Jeffrey G. Dabling 6533 (electronic copy) 

 MS 1125 Jake Deuel  6532 (electronic copy) 

 MS 1361 Ruth A. Duggan 6833 (electronic copy) 

 MS 1361 Calvin D. Jaeger 6833 (electronic copy) 

 MS 1361 Pamela Kissock 6833 (electronic copy) 

 MS 1125 Thomas K. Mack 6532 (electronic copy) 

 MS 0783 Ruben Martinez 6634 (electronic copy) 

 MS 0783 Chad W. Monthan 6634 (electronic copy)  

 MS 1361 Riyaz M. Natha 6833 (electronic copy) 

 MS 1361 Stephen Ortiz  6833 (electronic copy) 

 MS 0781 Jason Pelowitz  6523 (electronic copy) 

 MS 0136 J. Anthony Romero 0215 (electronic copy) 

 MS 1361 Carol Scharmer 6833 (electronic copy) 

 MS 1361 Mark K. Snell  6833 (electronic copy) 

 

 MS 0899 Technical Library 9536 (electronic copy) 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


