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ABSTRACT 
 

The principal idea of this paper is to present the new capabilities available in the PHISICS toolkit, 
connected with the implementation of the depletion code MRTAU, a generic depletion/ 
decay/burn-up code developed at the Idaho National Laboratory. It is programmed in a modular 
structure and modern FORTRAN 95/2003. The code tracks the time evolution of the isotopic 
concentration of a given material accounting for nuclear reactions happening in presence of 
neutron flux and also due to natural decay. MRTAU has two different methods to perform the 
depletion calculation, in order to let the user choose the best on with respect to his needs. Both the 
methodologies and some significant results are reported in this paper. 
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1. INTRODUCTION 
 
The main purpose of this paper is to introduce the depletion module MRTAU (Multi-Reactor 
Transmutation Analysis Utility) [1] implemented in the newly developed Reactor Physics toolkit 
PHISICS (Parallel and Highly Innovative Simulation for INL Code System) [2,3]. This package is 
intended to provide a modern analysis tool for reactor physics investigation. It is designed with the 
mindset to maximize accuracy for a given availability of computational resources. This is obtained by 
implementing several different algorithms and meshing approaches among which the user will be able to 
choose in order to optimize his computational resources and accuracy needs. The software is completely 
modular in order to simplify the independent development of modules by different teams and future 
maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3] and composed by 
6 internally developed kernels: 
- Neutron transport solver INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced 

Neutron Transport); 
- Depletion code MRTAU; 
- Time dependent transport driver; 
- Cross section manipulation and interpolation module MIXER; 
- Criticality Search module; 
- Generalized perturbation theory (under development). 
MRTAU is a generic depletion/decay/burn-up code developed at the Idaho National Laboratory. It is 
programmed in a modular structure and modern FORTRAN 95/2003. The code tracks the time evolution 
of the isotopic concentration of a given material accounting for nuclear reaction happening in presence of 
neutron flux and also due to natural decay (Bateman equation). Moreover the code can provide as 
additional output information regarding integral quantities associate to different nuclear reactions like 
helium production and energy released (pseudo isotopes are used to simulate decay heat). The calculation 
flow could be controlled in such a way in core and out core periods could be alternated freely.  



Andrea Alfonsi, Cristian Rabiti, et al. 
 

2012 Advances in Reactor Physics – Linking Research, Industry, and Education (PHYSOR 2012), 
Knoxville, Tennessee, USA  April 15-20, 2012 

2/15 

 

The new version of the code here presented differs noticeably from the first version (2008) used to 
simulate sustained multi-recycle of MOX-UE to the point of Cf-252 equilibration (equilibrium cycle) [4]. 
Initially MRTAU tracked a fixed set of nuclides (27 actinides between U-234 and Cf-252) by hard coded 
decay-reaction chains and a second order Taylor Series approximation. By further developments in 2009, 
MRTAU has been equipped with new features such as the Fission Product tracking. This last version has 
been completely rewritten, new solution algorithms added to the original second order Taylor 
approximation of the exponential matrix, and no hardcoded libraries are present anymore to give to users 
a larger degree of freedom to solve their specific problems. 
  

2. MRTAU STRUCTURE AND MAIN FEATURES 
 
As already mentioned, MRTAU has completely been rewritten in a modular approach. It makes extensive 
use of the FORTRAN derived data types in order to drive effortlessly and optimize the different 
calculation tasks. This structure makes easier and faster the access to the data and the sharing of them 
among the different modules. The new input deck of MRTAU is in XML (eXtensible Markup Language) 
format, but a option to read the old input form has also been preserved to ensure the compatibility with 
the tools developed by the INL Fuel Cycle Team [12]. The new version of MRTAU, as briefly explained 
before, has inherited all the features already present in the previous version: 
- multi transmutation and partitioning loops; 
- possibility for the user to deplete only the actinides or actinides and fission products; 
- the calculation can be performed keeping the flux or the thermal power constant (stand-alone mode); 
- power history specification; 
- separation efficiency specification for each isotope. 
The implementation of the code in PHISICS toolkit has been connected with the adding of new important 
features. The decay/reaction chains are now collected in external libraries, in order to make the code 
highly customizable. The chain libraries can be modified by the user to track a specific set of isotopes, to 
add new nuclides or light elements and, in addition, they can be inputted in XML format. In this way the 
construction of the transmutation matrix is completely user-dependent.   
MRTAU has been equipped with a decay heat module and a burn-up/power one. These two new features 
are pivotal for the coupling with the other elements present in the toolkit.  
The most important improvements have been localized on the depletion solvers itself. The Taylor series 
expansion based algorithm has been optimized through the nonzero matrix multiplication technique and 
generalized to any arbitrary order. The Chebyshev Rational Approximation Method (CRAM) for the 
computation of the exponential matrix has also been added as a new calculation option. The decision to 
introduce such a new methodology has been driven by the larger stability range [7-8] compared to the 
classic Taylor method without the need to perform exceptions for short living nuclides like, for example, 
in ORIGEN [13].As shown in the convergence study paragraph, the CRAM methodology has shown 
stability in the Xe-135 tracking up to a time step length of ten days out core and 100 days in core. 
MRTAU has been parallelized through a “depletion/burning zones” scheme. If the code runs in parallel, 
the burning zones, specified by input, will be treated in parallel. The following figure shows an example 
of how the nodes are distributed among the processors (73 nodes, 4 processors).  
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Figure 1 – Parallel distribution of processors 
 

3. THEORY 

3.1 Statement of the problem  
 
The main equation solved by MRTAU is the production/destruction equation (Bateman equation).    
For each homogeneous region of the reactor core (h) where we assume constant isotopic cross sections, 
fluxes, and nuclide densities the Bateman equation governing the depletion/burn-up of the material could 
be written as it follows: 
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Where a pricewise constant approximation has been assumed with respect to the energy dependency 
(multi-group approximation) and the variables have the following physical meaning: 
 ���  is the atomic density of isotope k, in region h; 
 	�,
is the neutron flux in energy group g and spatial region h; 
 ��,��,
 is the microscopic fission cross section for isotope i, in energy group g, and spatial region h; 
 ��,��,
 is the microscopic capture cross section for isotope z, in energy group g and spatial region h; 
 ��,��,
 is the microscopic absorption cross section for isotope k, in energy group g and spatial 
region h; 
 �� is the radioactive decay constant of nuclide j; 
 �� is the radioactive decay constant of nuclide k; 
�→�
  is the probability that a fission of isotope i will produce isotope k for a neutron in energy 

group g; ��→�
  is the probability that a neutron capture in nuclide z will produce isotope k for a neutron in 
energy group g. 
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What is not shown here is that the neutron flux depend itself from the nuclide density via the definition of 
the macroscopic cross section. This binding leads to a set of non linear coupled equation. The simplest 
approach to eliminate this non linearity is to assume that over small time step the fluxes could be assumed 
constant and compute the effect of the density changes on the flux itself at the end of each time step. This 
scheme clearly reproduce an operator splitting approach since it decouples, by lagging the coupling term, 
the transport equation from the Bateman equation. 
The operator splitting approach could be formally described by the introduction of a time index (subscript 
S). Equation (1) for time step ∆�� could be therefore written in the following form: 
 ���,"��� = � ��,"� � 	"#��,
 ��,��,

�→�
�


�� +���������
��� � ��,"� � 	"#��,
 ��,��,
��→�
�


��
���������

��� + � ��,"� ����→�
�������
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−����,"� − ��,"� � 	"#��,
 ��,��,
                                                         (2)�
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The operator splitting practically is performed as it follows: 
- The flux must be found for the desired region using the transport or diffusion equations (performed 

externally to MRTAU) at time S-1 
- This flux is then used in Eq. (2) to determine the isotopic concentrations at time S.   
- These new values are used to determine new material properties such as macroscopic cross section to 

calculate the flux at time S.  
- This process is used to march over in time. 

The limit of this approach is of course the assumption that the space-energy-averaged flux can be 
considered constant over a sufficiently small time interval, Δt. Similarly, it is assumed that a single 
set of burn-up-dependent neutron cross sections can be used over the same time step. The Bateman 
equation, as formulated in Eq 2 could be now treated as a linear differential equation. 
 

3.2 Taylor Method 
 
Eq. (2) represents, at each time step, a coupled set of linear, homogeneous, first-order differential 
equations with constant coefficients. As such, Eq. (2) can be written in matrix notation as 
 �$̇ = −&̿�$                                                                                 (3)                  

 
Where: �$ is a vector of nuclide concentrations; &̿ is the transition matrix containing decay/production constants plus absorbtion/fission cross 
section time the flux.  

 
Given the nuclide concentration at ��#�, �$�#� and assuming the neutronic flux constant for ��#� < � <��we can compute the exact nuclide density at ��. Equation (3) has the solution: 
 �$� = exp*−&̿�∆��- �$�#�                                                                   (4)                        

                        
Analogous to a series expansion for the exponential function, the matrix exponential 
function, ./0*&5∆�6-, appearing in Eq.(4), is defined as 
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exp*−&̿�∆��- = 7 ̿ − &̿�∆�� + (&̿�∆��)82 + ⋯ = � (−1): (&̿�∆��):;!
?

:�@ ≅ � (−1): (&̿�∆��):;!
B

:�@        (5) 

 
with 7  ̿being the unit matrix. Equations (4) and (5) constitute the Taylor approximation of the exponential 
matrix solution of the Bateman equation. 
 
3.3 Solution with the matrix exponential method: CRAM 
 
The Chebyshev rational approximation method (CRAM) is a matrix exponential method that is based on 
the observation that the eigenvalues of the depletion coefficient matrix &̅̅ appear to be close around the 
negative real axis [8]. This can be exploited by making a Chebyshev rational approximation of the 
exponential function for the interval (- , 0]. The resulting rational function is then decomposed into a 
pole-residue form to avoid numerical instability. When the denominator and numerator orders are selected 
equal and even in the Chebyshev approximation, the poles form conjugate pairs and the imaginary parts 
cancel out leading to a real variable.  
Let Пk,l represent the collection of all real rational functions rk,l(x) of the form: 
 E�,F = 0�(/)0F(/) , where pG is a polynomial of degree l or less                                     (8) 

 
From the approximation theory it is known that there exists an unique Ê�,F ∈  П�,F  that satisfy 
  sup#?LMN@ | Ê�,F(−/) − .M| = inf�̂O,P∈ QO,P R sup#?LMN@ | Ê�,F(−/) − .M|S , T ≤ V                            (9) 

 
To find Ê�,F  for a given k and l is not easy, but it can be done via the Remez algorithm [10]. It is 
extremely useful, for the application of the method, to consider a formulation with l=k (CPU time). It’s 
been shown that  Ê�,�  converges at the rate 9.3-k to the exact exponential matrix representation. The final 
form of the approximating expression is reported below: 
 

Ê�,�(X) = T� + � E.�X − 0Y�                                                                   (10) �
���  

 
Where kd is the limit of the function at infinity and the scalars rei are the residues at the poles poi.  
The fact that the poles {po1… pok} of the rational function Ê�,�  are distinct, allows computing it as a 
partial fraction expansion. As expected in an optimization problem the values of rei and poi depend on the 
global order of expansion k. As explained above, the poles of Ê�,�  are conjugate pairs, therefore for a real-
valued variable/ ∈ ℝ, the computational cost can be helve: 
 

Ê�,�(X) = T� + 2\. ]� E.�X − 0Y�
� 8⁄
��� ^ , T ._.`                                                     (11) 

 

Ê�,�(X) = T� + b2\. ]� E.�X − 0Y�
� 8⁄
��� ^ + E.�X − 0Y�c , T Y��                                           (12) 
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where k/2 is an integer division. 
When this approximation is applied to the matrix exponential representing the Bateman equation (3), it 
becomes: 

�$�j∆� = T���kkk − 2\. ]� E.�*&̿∆� + 0Y�7-̿
� 8⁄
��� ^ ��kkk, T ._.`                                           (13) 

 

�$�j∆� = T���kkk − b2\. ]� E.�*&̿∆� + 0Y�7-̿
� 8⁄
��� ^ + E.�*&̿∆� + 0Y�7-̿c ��kkk, T Y��                          (14) 

 
The matrix inversions can be calculated efficiently thank to the sparse structure of the matrix & ̿Using the 
LAPACK package [14]. 
It is easily understandable that it is not convenient to compute the CRAM of an odd degree, since the 
matrix inversions to be performed in this case are the same of those must be computed in a higher, by one, 
order approximation. 
 
3.3.1 Remez algorithm  
 
The Chebyshev coefficients (pole-residue form) are tabulated in an internal MRTAU library up to the 30th 
order. This tabulation has been obtained using an internal subroutine of the PHISICS package that uses 
the Remez Algorithm and perform the partial fraction decomposition. In case the required order is higher 
the code will automatically use this tool to collect the missed coefficients.  
This module is based on the mini-max Remez algorithm [10]. The mini-max approximation seeks the 
polynomial of degree n that approximates the given function (in our case ex) in the given interval such 
that the absolute maximum error (the difference between the function and the polynomial) is minimized. 
As explained before through the equation (9), Chebyshev proved that such polynomial exists and that it is 
unique and gave the criteria to asses if a polynomial is a mini-max polynomial. Although the algorithm is 
applicable for a generic function F(x), here it will be described for the particular case of F(x) = ex. 
Assuming that the given interval is [a, b], Chebyshev’s criteria states that if Pn(X) is the mini-max 
polynomial of degree n then there must be at least (n+2) points in this interval at which the error function 
attains the absolute maximum value with alternating sign and by the following equations: 
 .Mq − v�(/�) = (−1)�z                                                                  (15) 

 .Mq − [}@ + }�(/� − ~) + }8(/� − ~)8 + ⋯ + }�(/� − ~)�] = (−1)�z                        (16) 
 }@ + }�ℎ� + ⋯ + }�ℎ�� + (−1)�z = .Mq                                                   (17) 
 � = 0,1,2, … , ` + 1 

 
Equation (17) is a system of (n + 2) linear equations in the (n + 2) unknowns {c0, c1, …, cn, E}. These 
equations are proved to be independent hence they can be solved using any method from linear algebra to 
get the values of the coefficients as well as the error at the given (n + 2) points. After the first step the 
coefficients are computed such that the error function at the given (n + 2) points is equal in magnitude and 
alternating in sign. The magnitude of this error is not the absolute maximum in the given interval [a, b] 
and the mini-max criterion is not still satisfied. It is needed to move to a new set of points. The second 
step of Remez algorithm, called “exchange step”, seeks a new set of (n + 2) points that approach the (n + 
2) points of the mini-max condition. In this exchange step, all the points of the current set of (n + 2) 
points are exchanged to get new set points.  
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It can be noted that the error alternates in sign at the (n + 2) points of the first step therefore the error 
function has (n + 1) roots, one root in each of the intervals (Fig.1): [x0, x1], [x1, x2], . . . , [xn, xn+1]. These 
roots can be computed using any numerical root finding algorithm. Denoting these roots by z0, z1,… , zn, 
the interval [a, b] is divided into the (n + 2) intervals: [a, z0], [z0, z1], [z1, z2],…, [zn−1, zn], [zn, b]. In each 
of these intervals, it is calculated the point at which the error attains its maximum or minimum value (x0*, 
x1*,…, xn+1*). The last step can be carried out numerically by computing the root of the derivative of the 
error function if such root exists, otherwise the error function at the endpoints of the interval is computed 
and it is picked the one that gives larger absolute value. Let define k such that  T = max� |.Mq∗ −  v�(/�∗)|                                                               (18) 

 
After the exchanging step, this new set of (n + 2) points is used in the first step of the following iteration. 
The two steps are repeated a number of times until the difference between the                           
old (n + 2) points and the new (n + 2) ones lie below a given threshold.  
 

 

Figure 2 – Remez algorithm second step. 
 

4. APPLICATIONS AND RESULTS 
 
In this section some results are shown in order to attest the capabilities of the code itself and its 
implementation inside the PHISICS toolkit environment. The first subsection refers to the convergence 
analysis performed to verify the two matrix exponential methods used by MRTAU. The second 
subsection presents the results of the benchmark [11]. 
The first test is a self comparison of the two methodologies implemented while in the second we compare 
with a literature benchmark the CRAM implementation. It is outside of the scope of this paper to provide 
a validation of the libraries. 
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4.1 Convergence analysis 
 
As already mention the in the first test the convergence of the two methodologies has been verified in a 
comparative test. The main test case specifications are collected in the table below. 
 

Table I – Convergence test case specifications 
  

Specifications Notes 
Cycle Length (days) 300.0  
Power history steps 3 100 days each 

Power history (% of nominal power) 0.0 % 100.0 % 0.0 %  
Actinides – Fission products tracked 29 182  

Fuel MOX 10% enrichment  
 
This study has been performed through more than 70 calculations, acting on the order of the methods and 
the number of time steps (as shown in the tables II and III).  
 

Table II – CRAM calculation run 
 

 
 
 
 
 
 
 
 
 
 

Table III – Taylor calculation run 
 
 
 
 
 
 
 
 
    
 
                                  
Three isotopes have chosen as representative of three isotope groups based on half life: 
 

- I Group - Actinides: Isotope representative Pu-239; 
- II Group - Fission products (half life > 0.5 years):  Isotope representative Kr-85;  
- III Group - Fission products (half life < 0.5 years): Isotope representative Xe-135. 

 
 
 

Chebyshev Rational Approximation Method  
TS 

number  Approximation Order 
3  IV  VI  VIII  X  XII  XIV  

30  IV  VI  VIII  X  XII  XIV  
300  IV  VI  VIII  X  XII  XIV  

3000 II  IV  VI  VIII  X  XII  XIV  
30000 XIV  → Reference  

Taylor Series Approximation Method 
TS 

number Approximation Order 

30 II III IV V VI VII VIII IX X 
300 II III IV V VI VII VIII IX X 
3000 II III IV V VI VII VIII IX X 

30000 II III IV V VI VII VIII IX X 
300000 II III IV V VI VII VIII IX X 
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The reference is given by the 14th order CRAM approximation with a time step length of 864 seconds 
(30,000 time steps). 
The comparative test has been performed computing the relative errors for each representative isotope, 
order and time step number. 
The two points in time here reported are those at 200 (100 cooling and 100 in core) and 300 days (post-
burning cooling). As expected, the III group is the stiffest one and for that reason only its relative errors 
are reported (Table IV and V).   
 

Table IV – Taylor Series relative error III group 

 
Table V – CRAM relative error III group 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taylor Series – Relative error (%)  
Post-burning cooling – III Group 

    Order   
TS 
number 

II III IV V VI VII VIII IX X 

30 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
300 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

3000 100.000 73.980 73.190 73.190 73.190 73.190 73.190 73.190 73.190 
30000 1.023 0.508 0.507 0.507 0.507 0.507 0.507 0.507 0.507 
300000 0.177 0.172 0.170 0.169 0.169 0.169 0.169 0.169 0.169 

Initial cooling + burning – III Group 
30 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
300 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

3000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
30000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
300000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CRAM – Relative error (%)  
Post-burning cooling – III Group 

   Order   
TS 
number 

II IV VI VIII X XII XIV 

3  100.000 100.000 100.000 100.000 100.000 100.000 100.000 
30  100.000 100.000 100.000 100.000 10.240 0.120 0.001 

300  100.000 100.000 0.157 0.002 0.001 0.000 0.000 
3000 100.000 1.256 0.657 0.001 0.000 0.000 0.000 

Initial cooling + burning – III Group 
3 100.000 15.880 0.201 0.002 0.000 0.000 0.000 
30 100.000 1.707 0.019 0.000 0.000 0.000 0.000 

300 100.000 1.647 0.006 0.000 0.000 0.000 0.000 
3000 100.000 0.006 0.001 0.000 0.000 0.000 0.000 
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The following graphs show the order and the time step size for which the condition (relative error) < 0.3% 
was satisfied. In the graphs, the region above the lines is the one with the error under the above specified 
value. It could be depicted, for example, that the after irradiation situation is the most difficult to capture 
in fact the curves rise earlier (thus it is required an higher degree of accuracy for a given time-step size) 
Another consideration that arises from the analysis of the results is that CRAM below the 4th order has 
problem but overall it can effort large time step, while Taylor has a low sensibility to the order and 
require smaller time step. The poor performance of CRAM at low order is a well know phenomena [5] 
while the low impact of the order on the Taylor method is probably due to numerical round off that could 
be probably improved. 
 

Figure 3 - Decay accuracy curves 
 

 
Figure 4 - Burning accuracy curves 
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The following table gives a good indication on the computational time of both methodologies1. The 
Chebyshev rational approximation method is not penalized in term of order-to-order comparison with 
Taylor, even if it requires several inversion of the transmutation matrix. This is due by the much stronger 
optimization performed on this methodology. 
 

Table VI – Computational Time (single processor) 
 

Computational time 
(sec/iteration) 

Method 
Approximation Order 

II III IV V VI VII VIII IX X XII XIV 
Taylor 0.0155 0.0177 0.0198 0.0225 0.0250 0.0275 0.0302 0.0327 0.0352 / / 
CRAM 0.0069 / 0.0079 / 0.0087 / 0.0095 / 0.0103 0.0111 0.0119 

 
 
4.2 Two-dimensional PWR model, two load cycle model 
 
4.2.1 Specifications  
 
This benchmark, proposed by K. Koebke, R. Wagner at all in 1985 [11], has been designed to provide a 
test for the capabilities of coarse mesh methods for PWR fuel management calculations. It is set up to 
allow the use of computer codes which model either a quarter of a core or a reactor octant. The 2D 
geometry consists of 5 assembly types, characterized by different cross sections and compositions 
(presence or absence of burnable poison - BP). The benchmark is a two groups and two depletion cycles 
problem. The reactor is maintained critical at all times by adjusting the amount (ppm) of soluble boron 
(SB). The Xenon in the benchmark is treated as in equilibrium while we solve the transient equation 
(Bateman). The scattering matrix is given as a macro cross section attributed to the structural material 
STRM. The cycle length is defined by requiring the critical boron concentration to become equal to zero.  
Since a refueling pattern module is not present in the PHISICS package so far, it has been decided to run 
the first cycle only and not to model the insertion of the control rods at the begin of the cycle. The 
problem has been solved considering 3 different models, in order to certify the convergence trend: 
 

I. 5 depletion zones, corresponding to the different assembly types; 
II. 56 depletion zones, one for assembly; 

III. 504 depletion zones, 9 nodes for assembly. 
 
The square assemblies have a side 23.0 cm long and the global dimension of the core is approximately 
195.5 x 195.5 cm. 
The initial nuclide densities and the assembly/core geometry are summarized in the tables below, where 
the initials “C.S.” mean the densities are computed through the criticality search module and the assembly 
type 6 is the reflector (modeled by macro cross sections). 
 
 
 
 
                                                
1 PC: Intel Core 2 Duo, CPU E8400 3.00 GHz, 3.25 GB of RAM. 
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Table VII – Initial densities 
 

Initial Densities (Atoms/(barn*cm)) 
 Type 1 Type 2 Type 3 Type 4  Type 5 

U235 1.40E-4 1.60E-4 1.60E-4 2.20E-4 2.20E-4 
U236 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 
U238 6.31E-03 6.29E-03 6.29E-03 6.23E-03 6.23E-03 

PU239 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 
PU240 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 
PU241 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 
PU242 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 
XE135 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 

BP 0.00E+0 0.00E+0 8.00E-06 0.00E+0 8.00E-06 
FP 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 
SB C.S. C.S. C.S. C.S. C.S. 

 
Table VIII – Quarter core geometry 

 
1 3 1 3 1 3 2 5 6 
3 1 3 1 3 1 3 4 6 
1 3 1 3 1 3 1 5 6 
3 1 3 1 3 1 5 4 6 
1 3 1 3 1 3 4 6 6 
3 1 3 1 3 2 5 6 
2 3 1 5 4 5 6 6 
5 4 3 4 6 6 6 
6 6 6 6 6 

 
4.2.2 Results 
 
The results of the first model (5 depletion zones) will not be shown in this paper, excepting the end of 
cycle time, since the relative errors are too large.  
The following tables and graphs summarize the main results obtained by the three different models, 
focusing the attention on the end of cycle time, critical boron concentration evolution and the relative 
errors for the final nuclide densities per Fuel Batch. 
 

Table IX – End of cycle time 
 

End of cycle (days) 
                     Depletion  Regions 
Time Steps 5 56 504 

Benchmark 
reference 

45 410.11 399.44 393.11 381.49 
100 409.10 398.43 392.09 
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Figure 5 – Critical boron concentration evolution 
 
The two tables below show the relative errors for the nuclide densities at the end of cycle and at the 
benchmark reference value for that.  
 

Table X – Relative errors for nuclide densities for each fuel batch at EOC  
 

Time (days) 392.09 Regions 504 
Nuclide A type 1 A type 2 A type 3 A type 4 A type 5 

U235 -2.33% -2.07% -2.31% -1.28% -1.33% 

U236 1.77% 2.14% 1.95% 2.58% 2.55% 

U238 -0.04% -0.03% -0.04% -0.02% -0.03% 

PU239 0.72% 0.99% 0.69% 1.72% 1.60% 
PU240 2.37% 2.89% 2.43% 3.69% 3.55% 
PU241 4.52% 5.33% 4.84% 5.89% 5.87% 
PU242 8.29% 9.22% 8.90% 8.87% 9.18% 

XE135 -0.20% -0.30% -0.34% -0.19% -0.23% 

FP -4.25% -3.12% -3.93% -1.35% -1.62% 
BP / / -6.42% / -3.76% 
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Table XI – Relative errors for nuclide densities for each fuel batch at benchmark reference 
EOC 

 
Time (days) 381.00 Regions 504 

Nuclide A type 1 A type 2 A type 3 A type 4 A type 5 
U235 0.20% 0.08% 0.09% 0.04% 0.04% 
U236 -0.12% -0.07% -0.06% -0.03% -0.06% 
U238 0.00% 0.00% 0.00% 0.00% 0.00% 

PU239 0.13% 0.10% 0.06% 0.21% 0.14% 
PU240 0.00% 0.00% 0.00% -0.14% -0.16% 
PU241 -0.19% -0.18% -0.10% -0.82% -0.67% 
PU242 -0.55% -0.46% -0.28% -0.90% -0.80% 
XE135 0.11% 0.00% 0.04% 0.03% -0.02% 

FP -0.20% -0.10% -0.08% -0.07% -0.05% 
BP / / 0.25% / -0.14% 

 
 

5. CONCLUSIONS 
 
The main purpose of this paper was to present the new capabilities in the PHISICS toolkit, connected 
with the depletion module MRTAU. The convergence test has demonstrated and verified the two 
methodologies converge to the same values and the different stability requirements. The CRAM is highly 
dependent on the order of the approximation but weakly from the time step size (above the 8th with 100 
days time step in core the Xe-135 is accurate); the Taylor series method is dependent on the length of the 
time step instead. Thus, it is advisable to choose the Chebyshev rational approximation in calculations 
characterized by the possibility of using very long time steps. The benchmark results had the main 
purpose to testify the capabilities of the entire package. Since the end of cycle is about 10 days off, the 
final densities are affected by large relative errors. These errors are very small if we would instead 
compare the densities at the 381 days where the calculation in the reported results ends. The depletion 
capability of PHISICS has been tested and results are congruent therefore this could be a new highly 
flexible tool in the hands of nuclear engineers.    
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