Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

October 2012

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

October 2012

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

CONTENTS

1.	PURPOSE	2
2.	INTRODUCTION	2
3.	PERMANENT CLOSURE	2
4.	SITE ASSESSMENT AND CONCLUSION	4
5.	APPENDIXES	7
	Appendix A, Notification of Closure (CCN 227777)	8
	Appendix B, Sampling and Analysis Plan Correspondence (CCN 228161)	16
	Appendix C, Notification of Underground Storage Tank Removal Correspondence (CCN 228291)	27
	Appendix D, Sample Analytical Report #1	
	Appendix E, DEQ Notification of Sample Results for MFC UST Closure (CCN 228521)	
	Appendix F, Sample Analytical Report #2	100
	Appendix G, Notification of Underground Storage Tank Soil Samples #2 (CCN 228585)	149
	Appendix H, Discussion and Verbal Approval Regarding the Use of EPA Region 9 Industrial Screening Levels (CCN 228607)	150
	Appendix I, Spreadsheet Comparison of EPA Region 9 Industrial Screening Levels vs. IDAPA Residential Screening Levels	151
	Appendix J, E-mail to DEQ with Soil Analytical Analysis #1 and #2 and Spreadsheet Comparison of EPA Region 9 Industrial Screening Levels vs. IDAPA Residential Screening Levels	160
	FIGURES	100
Figu	ure 1. MFC Biodiesel Underground Storage Tank Removal	5
Figu	ure 2 . Tank Rendered Unusable (holes punched in both sides)	6
Figu	ure 3. Tank Rendered Unusable (ports cut off)	6
Figu	ure 4. MFC Biodiesel Underground Storage Tank after Cleaning	7
	TABLES	
1.	Key personnel	2

Permanent Closure of MFC Biodiesel Underground Storage Tank

1. PURPOSE

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, "Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure."

2. INTRODUCTION

The MFC biodiesel underground storage tank 99ANL00013 is a 4,000-gallon, single-wall, asphalt coated steel tank with cathodic protection and safe suction above ground steel piping, and is located at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) facility. The tank is owned by the Department of Energy and operated by Battelle Energy Alliance (BEA). The tank was installed in 1980. The tank originally held gasoline for motor vehicle use and was later converted to diesel, then biodiesel for bus use via a fuel dispenser. This tank is identified under Facility ID 6-120614 as tank number 99ANL00013 in the Idaho Department of Environmental Quality (DEQ) underground storage tank database. The tank leak detection system was a Veeder-Root TLS-350 tank monitoring system with automatic tank gauging.

An Idaho Department of Environmental Quality (DEQ) Underground Storage Tank (UST) inspection in September 2011 identified two violations to this tank. Violation #1: failure to install a properly designed cathodic protection system for a metal tank (informal warning) and violation #2: failure to ensure proper operation of a cathodic protection within six (6) months of installation and every three (3) years thereafter (formal warning). As a result of these violations, BEA decided to remove this tank and replace it with an aboveground storage tank (AST) with aboveground piping. Key personnel that were involved in this closure/demolition activity are listed in Table 1.

Table 1. Key personnel.

Title/Organization	Name	Responsibilities
Project Manager	Mark Cole	Project execution and completion
Facility Manager	Scott Lyman	Manage/approve facility activities
Environmental Compliance	Kerry Nisson	Coordinate UST closure activity
Project Supervisor	Lucien Frederick	Project implementation

In preparation for demolition and permanent tank closure, the remaining fuel in the line and tank was pumped out on September 3, 2012, and the tank was removed on September 11, 2012 and permanently closed in accordance with 40 CFR 280.71.

3. PERMANENT CLOSURE

In accordance with 40 CFR 280.71(a), a 30-day closure notification was mailed on July 9, 2012, (Appendix A, CCN 227777) notifying Idaho DEQ of BEA's intent to permanently close MFC tank 99ANL00013 biodiesel underground storage tank. A sampling and analysis plan was developed for sampling the soils around and under the underground storage tank system. The Idaho DEQ Regional Office in Idaho Falls (i.e., Steve Heaton) requested a copy of the sampling and analysis plan in preparation for the closure.

On August 8, 2012, the sampling and analysis plan was e-mailed to the Idaho DEQ Regional Office (Appendix B, CCN 288161).

On August 9, 2012, an e-mail response from Idaho DEQ was received from Steve Heaton stating the sampling and analysis plan for pending UST work at MFC had been reviewed and the e-mail would serve as the Department's endorsement to execute the plan.

On August 27, 2012 a call was placed to Steve Heaton at the Idaho DEQ Regional Office informing him of BEA's intent to begin removal of the UST and to identify if DEQ wanted be present during any part of the removal process. Steve stated that DEQ did not plan to visit the INL during the UST removal and to keep him informed as the project progressed. It was stated that DEQ would be notified if there were any evidence of tank leakage during the removal (Appendix C - CCN 228291).

On September 10, 2012, INL's Environmental Monitoring personnel collected soil samples around and under the underground storage tank and supply line in accordance with the sampling and analysis plan. Soil samples were sent to ALS Environmental Fort Collins, Colorado for analysis. Laboratory analysis was requested for chemicals of interest for gasoline and diesel found in Tables 1 and 2 of IDAPA 58.01.24.800.

On September 19, 2012, the ALS Environmental sent the soil sample analytical report (Appendix D) to INL's Environmental Monitoring personnel. The analytical report identified semi-volatile levels of Benzo(A)Anthracene (Ground water Protection via petroleum contaminants in soil leaching to ground water), Benzo(B)Fluoranthene (direct contact), and Benzo(A)Pyrene (direct contact) above the residential screening levels for chemicals of interest identified in table 2, of IDAPA 58.01.24.800.

On September 20, 2012, a call was placed to notify the DEQ Regional Office (24 hour notification) of the sampling analysis results that the chemicals Benzo(A)Anthracene, Benzo(B)Fluoranthene, and Benzo(A)Pyrene exceeded the IDAPA residential screening levels (Appendix E - CCN 228521). As an option, DEQ suggested removing more soil and resampling, as this may bring the levels into the desired screening level range. DEQ agreed that this phone call would serve as the 24-hour notification.

On September 20, 2012, INL's Environmental Monitoring personnel collected a second set of soil samples including samples from the soil pile staged from the tank removal. Soil samples were sent to ALS Environmental Fort Collins, Colorado for analysis. The same analysis was requested.

On September 25, 2012, ALS Environmental sent the soil sample analytical report, to INL's Environmental Monitoring personnel (Appendix F). The analytical report only identified levels of Benzo(A)Pyrene above the screening levels identified in table 2 of IDAPA 58.01.24.800.

On September 26, the Idaho DEQ Regional Office was notified (Appendix G - CCN 228585) that sampling analytical analysis results still showed that Benzo(A)Pyrene exceeded the IDAPA residential screening levels. DEQ suggested that the Idaho National Laboratory (INL) use commercial screening levels, as the INL was not, nor ever would be residential. Commercial screening levels could not be found in the Idaho Risk Evaluation Manual for Petroleum Releases. A search for commercial screening levels revealed Region 9, Regional Screening Levels for Industrial Soil Supporting screening levels on the Environmental Protection Agency website. Both sets of analytical analysis results were compared to the Region 9 Industrial Soil Supporting table using ingestion for the target risk, as this was the most conservative value. The Benzo(A)Anthracene, Benzo(B)Fluoranthene, and Benzo(A)Pyrene were below the industrial screening levels. The INL developed a spreadsheet showing the comparison of EPA Region 9 Industrial Screening Levels vs. IDAPA Residential Screening Levels (Appendix H).

On September 27 (note – the e-mail attachment states September 26, which is a typographical error), a call was placed to the DEQ Regional Office explaining the actions taken above (Appendix H - CCN 228607). DEQ responded that if there was no guidance found for commercial screening levels in the Idaho Risk Evaluation Manual for Petroleum Releases, then it would be acceptable to use the EPA Region 9 guidance and gave verbal authorization to continue. DEQ requested that the EPA Region 9 information be included in this tank closure plan. An e-mail was sent to DEQ with the sampling analysis and the INL developed spreadsheet (Appendix I) for review. A request was made to contact the INL if any issues were encountered when reviewing the spreadsheet.

Construction personnel accessed the inside of the tank through hole in both sides of the tank and removed all remaining liquids (i.e., a small amount at the slightly sloped end). The inside of the tank was mopped out with absorbent pads. Waste that was generated during this process was disposed of through INL's Waste Generator Services personnel. All liquids and accumulated sludges were removed, meeting the requirement in 40 CFR 280.71(b), "Permanent Closure and Changes-In-Service" (Figure 4).

4. SITE ASSESSMENT AND CONCLUSION

This site assessment was performed in accordance with IDAPA 58.01.24.200, "Risk Evaluation Process." A screening evaluation was performed according to the previously submitted sampling and analysis plan of the MFC biodiesel fuel tank (Appendix B). This included collection of media-specific (soil) samples and analysis for the chemicals of interest (benzene, toluene, xylenes, MTBE, and naphthalene) for gasoline, diesel, and biodiesel (IDAPA 58.01.24.200.a and b. and IDAPA 58.01.24.800.01, Table 1.)

Per 40 CFR 280.71"Permanent Closure and Changes-In-Service" All liquids and accumulated sludges were removed from the UST.

Sample results (Appendix E and G) were received on September 19 and September 25, 2012, respectively, and were compared to the maximum media-specific (soil) petroleum contaminant concentrations identified in IDAPA 58.01.24.800.02, Table 2. Both sample results showed semi-volatile detection for the chemicals of interest above the levels identified in Table 2.

The Idaho DEQ Regional Office advised the INL to look at commercial screening levels in the Idaho Risk Evaluation Manual for Petroleum Releases, as the site at MFC was not a residential site. The MFC biodiesel tank removal site is not near ground or surface water.

A search for commercial screening levels revealed Region 9, Regional Screening Levels for Industrial Soil Supporting screening levels on the Environmental Protection Agency website (http://www.epa.gov/region9/superfund/prg/).

Both sets of analytical sample results were compared to the Region 9 Industrial Soil Supporting table using the most conservative target risk value - ingestion. All chemicals of concern were below than the industrial screening levels for ingestion, found on the Region 9 Industrial Soil Supporting table.

A spreadsheet (Appendix I) was developed showing the sample analysis results with comparison between IDAPA 58.01.24.800.02, Table 2 Residential Use Screening levels and the Region 9, Regional Screening Level, Industrial Soil Supporting table, Screening Levels for Chemical Contaminants. The comparison shows the semi-volatiles (Benzo(A)Anthracene, Benzo(B)Fluoranthene, and Benzo(A)Pyrene) that were above the IDAPA Residential Use Screening levels were below the Region 9, Industrial Soil Supporting table, Screening Levels for Chemical Contaminants.

The Idaho DEQ Regional Office was called on September 26, 2012 explaining the actions taken, as mentioned above. DEQ responded that if there was no guidance found for commercial screening levels in the Idaho Risk Evaluation Manual for Petroleum Releases, then it would be acceptable to use the EPA Region 9 guidance and gave verbal authorization to continue. DEQ requested that the EPA Region 9

information be included in this tank closure plan. An e-mail was sent to DEQ with the sample analysis and the spreadsheet utilized for review. A request was made to DEQ to contact the INL if any issues were encountered when reviewing the spreadsheet.

Based on the methods used above and with the Idaho DEQ Regional Office verbal acceptance with using Region 9, industrial soil screening levels, the INL is petitioning for approval of site closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013. A final updated copy of the 30-day closure notification has been included.

Figure 1. MFC Biodiesel Underground Storage Tank Removal.

Figure 2 . Tank Rendered Unusable (holes punched in both sides)

Figure 3. Tank Rendered Unusable (ports cut off)

Figure 4. MFC Biodiesel Underground Storage Tank after Cleaning

5. APPENDIXES

Appendix A, Notification of Closure (CCN 227777)

Appendix B, Sampling and Analysis Plan Correspondence (CCN 228161)

Appendix C, Notification of Underground Storage Tank Removal Correspondence (CCN 228291)

Appendix D, Sample Analytical Report #1

Appendix E, DEQ Notification of Sample Results for MFC UST Closure (CCN 228521)

Appendix F, Sample Analytical Report #2

Appendix G, Notification of Underground Storage Tank Soil Samples #2 (CCN 228585)

Appendix H, Discussion and Verbal Approval Regarding the Use of EPA Region 9 Industrial Screening Levels (CCN 228607)

Appendix I, Spreadsheet Comparison of EPA Region 9 Industrial Screening Levels vs. IDAPA Residential Screening Levels

Appendix J, E-mail to DEQ with Soil Analytical Analysis #1/#2 and Spreadsheet Comparison of EPA Region 9 Industrial Screening Levels vs. IDAPA Residential Screening Levels

Appendix A Notification of Closure (CCN 227777)

July 9, 2012

CCN 227777

Kristi Lowder UST Coordinator Idaho Department of Environmental Quality 1410 North Hilton Boise, ID 83706

SUBJECT:

Notification for Underground Storage Tank Closure at Idaho National Laboratory,

Materials and Fuel Complex

Dear Ms. Lowder:

This letter provides 30-day notification of intent to close an underground storage tank located at the Idaho National Laboratory, Materials and Fuels Complex (Site ID Number 7230/Facility ID Number 6-120614/ Tank ID Number 99ANL00013). This notice is submitted for Battelle Energy Alliance, LLC (BEA) as the operating contractor for this project.

The enclosed provides the necessary information and notification required by Title 40 CFR 280, Subpart G. Please note that a follow up notification will be submitted with the required site assessment and the information required in Section XI. BEA has communicated with the Idaho DEQ Regional Office in Idaho Falls (S. Heaton and S. Short) regarding this closure and will provide them with a sample plan and a 48-hour notification prior to closure.

If you have any questions, please contact Kerry Nisson (208) 533-7102.

Sincerel

Jo Anna Stenzel, Director Environmental Support & Services

KLN:AT

Enclosure

cc: J. Alvarez, INL, MS 3695

P. K. Bowers, DOE-ID, MS 1226

R. R. Chase, INL, MS 3695

S. D. Dossett, INL, MS 3405

R. A. Gallegos, DOE-ID, MS 1216

J. J. Grossenbacher, INL, MS 3695

S. Heaton, DEQ, Idaho Falls

R. M. Kauffman, DOE-ID, MS 1216

C. D. Melbihess, INL, MS 3406

S. M. Olson, DOE-ID, MS 1240

T. L. Perkins, DOE-ID, MS 1216

S. Short, DEQ, Idaho Falls

D. M. Storms, INL, MS 3898 J. R. Sturm, DOE-ID, MS 1216

P.O. Box 1625 • 2525 North Fremont Ave. • Idaho Falls, Idaho 83415 • 208-526-0111 • www.inl.gov

Battelle Energy Alliance, LLC

Ms. Kristi Lowder July 9, 2012 CCN 227777 Page 2

bcc: P. J. Breidenbach, MS 6146

A. E. Carvo, MS 6134 AC T. L. Carlson, MS 3405 THE PARKET

L. M. Coe-Leavitt, MS 6134
J. F. Graham, MS 3428
B. K. Griffith, MS 7113
BLG Gov Leleco

S. D. Lee, MS 3405

S. L. Lyman, MS 6172

C. D. Melbihess, MS 3406

T. A. Miller, MS 3428

R. V. Nelson, MS 3406

R. A. Nickelson, MS 3406

K. L. Nisson, MS 6134

Environmental Correspondence, MS 3405, email: ENVAFF@inl.gov

INL Correspondence Control, MS 3640, email: BEACC@inl.gov

J. A. Stenzel Letter Log (JAS-62-12)

Uniform File Code: 61043

Disposition Authority: ENV3-d-1

Retention Schedule: Cut off after certificate of closure is received. Destroy 10 years after cut off.

NOTE: Original disposition authority, retention schedule, and Uniform Filing Code applied by the sender may not be appropriate for all recipients. Make adjustments as needed.

DEQ Version of EPA 7530-1 (Revised 5/10)							
NOTIFICATION FOR UNDERGROUND STORAGE TANK	Systems	0 400044					
Idaho Department of Environmental Quality, 1410 N Hilton, Boi	se ID 83706	Facility ID <u>6-120614</u>					
TYPE OF NOTIFICATION							
Notice	sting docs required)	Updates ⊠Closure					
INSTRUCTIONS - See additional instructions on page 7							
Please type or use ink. This form must be completed for each loc five (5) tanks are owned at this location , photocopy the following she 5, & 6)							
GENERAL INFOR	MATION						
Notification is required by law for all underground tanks that have been used to store regulated substances since January 1, 1974, that are in the ground as of May 8, 1986, or that are brought into use after May 8, 1986. The information requested is required by Section 9002 of the Resource Conservation and Recovery Act, (RCRA), as amended. The primary purpose of this notification program is to locate and evaluate underground tanks that will store, do store, or have stored petroleum or hazardous substances. It is expected that the information you provide will be based on reasonably available records, or in the absence of such records, your knowledge, belief, or recollection. Who must notify? Unless exempted, owners of underground tank systems that store or will store regulated substances must notify DEQ. 1. Owner means - a) In the case of an underground storage tank in use on November 8, 1984, or brought into use after that date, any person who owns an underground storage tank used for the storage, use, or dispensing of regulated substances, and b) in the case of any underground storage tank in use before November 8, 1984, but no longer in use on that date, any person who owned such tank immediately before the discontinuation of its use c) in the case of an ew installation on or after April 2, 2008, any person who will install an underground storage tank closure, any person who will remove or close in place such tank e) any facility that has undergone any changes to facility information or tank system status (only amended tank information needs to be included). What tanks are included? Underground storage tank is defined as any one or combination of tanks that (1) is used to contain an accumulation of "regulated substances," and (2) whose volume (including connected underground tanks storing gasoline, used oil, diesel fuel, industrial solvents, pesticides, herbicides, or firmigants.	gas production and gathering or 9. storage tanks situated in an basement, cellar, mine working tank is situated upon or above it What substances are covered to underground storage tanks the includes any substance defined the Comprehensive Environmer Liability Act of 1980 (CERCLA), substances regulated as hazard It also includes petroleum, e.g., is ilquid at standard conditions of degrees Fahrenheit and 14.7 po Where to notify? Send com UST Coordinato UST Coordinato Idaho Departmee 1410 N. Hilton Boise, ID 83706 When to notify? Owners of that are still in the ground must underground storage tanks into within 30 days of bringing the ta an underground storage tank sy installation. Owners who will resingle underground storage tank sy installation. Owners who will replacement. Owners who will replacement.	underground area (such as a difference of the floor. The notification requirements apply at contain regulated substances. This as hazardous in section 101 (14) of the floor. Compensation and with the exception of those lous waste under Subtitle C of RCRA. Crude oil or any fraction thereof which of temperature and pressure (60 yands per square inch absolute), pleted forms to:					
What tanks are excluded? Tanks with a capacity of 110 gallons or less are not subject to notification. Other tanks excluded from notification are: 1. farm or residential tanks of 1,100 gallons or less capacity used for storing motor fuel for noncommercial purposes;	underground storage tank must	notify and indicate the date of closure. knowingly falls to notify or submits					
2. tanks used for storing heating oil for consumptive use on the premises where stored; 3. septic tanks; 4. pipeline facilities (including gathering lines) regulated under the Natural Gas Pipeline Safety Act of 1968, or the Hazardous Liquid Pipeline Safety Act of 1979, or which is an intrastate pipeline facility regulated under State laws; 5. surface impoundments, pits, ponds, or lagoons; 6. storm water or waste water collection systems; 7. flow-through process tanks;	minutes per response Including gathering and maintaining the d reviewing the form. Send comm Chief, Information Policy Brand Agency, 401 M Street, Washing Desk Officer for EPA. This form form as printed in 40 CFR Part	ata needed and completing and ents regarding this burden estimate to PM-223, US Environmental Protection ton D.C. 20460, marked "Attention a mends the previous notification 280. Appendix I.					
I. OWNERSHIP OF TANK(S)	II. LOCATI	ON OF TANK(S)					
Name <u>U.S. Department of Energy, Idaho Operations</u> Office (DOE-ID) Mailing Address <u>1955 Freemont Avenue</u> City <u>Idaho Falls</u> State <u>Idaho</u> ZIP Code <u>83401</u> County <u>Bonneville</u> Phone Number (With Area Code) (208) 526-2493 Email sturmir@id.doe.gov		on I, mark box here □) Fuels Complex - Idaho O Box)					

Page 1

III. TYPE O	SEL AND GERALES OF THE SELECTION OF THE							
Commercial Privat	te State Government							
	Local Government							
IV. TYPE OF Select the Appropriate Facility Description	FACILITY							
Gas Station Petroleum Distributor Air Taxi (Airline) Aircraft Owner Auto Dealership Railroad Local Governm State Governm Federal – Non-I Commercial Industrial Hospital	ent Trucking/Transport Military Utilities							
V. CONTACT PERSON I	N CHARGE OF TANKS							
Name <u>Scott Lyman</u> Title <u>Manager, Facility Support Services</u> Address <u>PO Box 1625</u>	City Idaho Falls State Idaho ZIP Code 83415 Phone (208) 533-7438 Email Scott.Lyman&inl.gov							
VI. CERTIFICATION (Read and si	gn after completing all sections)							
I certify under penalty of law that I have personally examin and all attached documents, and that based on my inquiry obtaining the information, I believe that the submitted information.	of those individuals immediately responsible for							
Name and official title of owner or owner's authorized representative (Print) Name Jo Anna Stenzel	Signature Data Signad							
Title <u>Director</u> , <u>Environmental Support and Services</u>	Date Signed							
VII. FINANCIAL R	ESPONSIBILITY							
I have met the financial responsibility requirements in acco								
Check All That Apply								
	☐Surety Bond							
☐Commercial Insurance	☐Letter of Credit							
☐Risk Retention Group	Self insurance							
☐ Guarantee	□Trust Fund							
☐Other Method Allowed, Specify	/							

	VII	I. Notices			
IDENTIFICATION NUMBER	Tank No. 99ANL00013	Tank No.	Tank No.	Tank No.	Tank No.
A. 30-day Tank and Piping Installation/24-	hr Piping Replacer	nent Notifications	s (see Page 8)		
When will tank be installed or replaced? (mo./day/year)	N/A		•		
When will piping be installed or replaced? (mo./day/year)	N/A				
B. 30-day Notice of Closures (see Page 8)					
When will tank be closed? (mo./day/year)	~8/15/12				
Date tank was last used? (mo./day/year)	~8/6/12				
Closure to be performed by:		•			
Phone: (209) 503,7805	upervisor: Lucien F				3.4
	X. Ground Wate	er Protection M	easures		
(Check the applicable box)				•	
The underground storage tank system	ı İS within 1000'	of a drinking wa	iter source or s	∕stem. ⊠	
The underground storage tank system	ı IS NOT within	1000' of a drink	ing water sourc	e or system. 🗋	
if the owner and installer certify that the undergrour well, the owner or operator must provide and maint	nd storage tank system tain documentation sho	n is not within 1000' o wing that a reasonat	of an existing public was investigation of wa	rater system or potable ater systems and drink	e drinking water ing water wells
was undertaken. X. DESCRIPTION OF UNDER	GPOUND STORA	CE TANKS (Co	mplote for each	tank at this loca	tion)
IDENTIFICATION NUMBER	Tank No. 99ANL00013	Tank No.	Tank No.	Tank No.	Tank No.
Compartmentalized/Manifolded Tanks?	Select	Select	Select	Select	Select
Emergency Generator Tank?	No	Select	Select	Select	Select
A. Status of Tank			· ·		
Currently in Use	Yes	Select	Select	Select	Select
Temporarily Out of Use				-	
(Complete Section XI, Estimated Date Last Used) Permanently Out of Use	Select	Select	Select	Select	Select
(Complete Section XI, tanks removed or closed in place) Date of Installation (mo./day/year)	. 1980				
Total Capacity (gallons)	4000				
B. Material of Tank Construction (Mark all t		<u> </u>	<u> </u>		
Fiberglass Reinforced Plastic					
Cathodically Protected Steel (STIP-3)					
Cathodically Protected Steel (Impressed Current)					
Epoxy Coated Steel					
Composite (Steel with Fiberglass)				Ш	
Asphalt Coated or Bare Steel			Ü		
Double Walled					
Lined Interior				Ū	
Polyethylene Tank Jacket					
Excavation Liner					
Unknown					

Page 3

Other, Please Specify							
Has tank been repaired? (circle one)	Select	Select	Select	Select	Select		
C. Piping Material (Mark all that apply)	<u> </u>	1	,				
Plastic/Flexible							
Fiberglass Reinforced Plastic							
Galvanized Steel							
Bare Steel	×						
Cathodically Protected (Impressed Current)							
Cathodically Protected (Galvanic)				. 🗆			
Corrosion Protection (Soll Isolation)		. 🛚		. 🛚			
Double Walled							
Excavation Liner			. 🗀				
Other, Please Specify							
D. Piping Type (Mark all that Apply)				•			
Pressure							
U.S. Suction: check valve at tank							
Safe Suction: check valve at dispenser	X.						
Gravity Feed					. Ц		
Has piping been repaired or replaced? (circle one)	Select	Select	Select	Select	Select		
Date of the repair or replacement		*.					
E. Under-Dispenser Spill Containment (rec	uired for new instal	lations)					
Is there under-dispenser spill containment		lations)					
		lations)			,		
Is there under-dispenser spill containment for each new dispenser island? F. Substance Currently or Last Stored	No						
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline	No						
Is there under-dispenser spill containment for each new dispenser island? F. Substance Currently or Last Stored	No						
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline	No B20	Select	Select	Select	Select		
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline Diesel	No B20 Select	Select	Select Select		Select		
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel	No B20	Select	Select	Select	Select		
Is there under-dispenser spili containment for each new dispenser island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one)	No B20 Select	Select	Select Select	Select Select	Select		
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one) Kerosene	No B20 Select	Select	Select Select	Select Select	Select Select		
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one) Kerosene Heating Oil	No B20 Select	Select Select	Select Select	Select Select	Select Select		
Is there under-dispenser spill containment for each new dispenser island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one) Kerosene Heating Oil Used Oil	No B20 Select	Select Select	Select Select	Select Select	Select		
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one) Kerosene Heating Oil Used Oil Other Petroleum Product (please specify)	No B20 Select	Select Select	Select Select	Select Select	Select		
Is there under-dispenser spili containment for each new dispenser island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one) Kerosene Heating Oil Used Oil Other Petroleum Product (please specify) If not a petroleum product:	No B20 Select	Select Select	Select Select	Select Select	Select Select		
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one) Kerosene Heating Oil Used Oil Other Petroleum Product (please specify) If not a petroleum product: Hazardous Substance (circle one)	No B20 Select	Select Select	Select Select	Select Select	Select Select		
Is there under-dispenser spill containment for each new dispenser Island? F. Substance Currently or Last Stored Gasoline Diesel Biodiesel Ethanol (circle one) Kerosene Heating Oil Used Oil Other Petroleum Product (please specify) If not a petroleum product: Hazardous Substance (circle one) CERCLA name and/or, CAS Number	No B20 Select	Select Select	Select Select	Select Select	Select Select		

Page 4

XI. TA	NKS O	JT OF U	SE OR (CHANGE	IN SE	RVICE			H. 474		
TANK IDENTIFICATION NUMBER		k No. L00013	Tai	nk No.	T	ank No.		Tank No.	T	ank No.	
Closing of Tank	(A)										
Tank was removed from ground										. 0	
Tanks was closed in ground										Ü	
Estimated date last used (mo./day/year)											
Date tank closed (mo./day/year)										***************************************	
Tank Filled with inert material (indicate material)											
Change in Service (no longer holds a regulated substance)							Ì				
Site Assessment Completed and submitted to DEQ (circle one)	Se	lect	s	elect		Select		Select		Select	
Evidence of a leak detected (circle one)	Se	lect	s	elect		Select		Select		Select	
Release reported to DEQ	Se	lect	s	elect		Select		Select		Select	
Date release reported to DEQ											
	XII CEI	RTIFICAT	IION OF	COMP	IANCE			Maria de la composición del composición de la composición de la composición del composición de la composición del composición de la composición del composic	agin di 1. D		
(Complete for installati	on of all	new tank	s or for u	ıpgradin	g existin	g tanks a			and the same of th		
TANK IDENTIFICATION NUMBER	lan	k No.	lan	k No.	lai	ık No.	Tar	ık No.	Ta	nk No.	
A. Installation (Mark all that apply)											
Installer certified by tank and piping manufacturers											
Installer certified or licensed by a State			E								
Installation is inspected by a registered engineer											
Installation inspected by DEQ	. [
Manufacturer's installation checklists have been completed]									
B. Release Detection (Mark one)	Tank	Piping	Tank	Piping	Tank	Piping	Tank	Piping	Tank	Piping	
Automatic Tank Gauging			□.								
Interstitial Monitoring Double Walled Tank/Piping											
Inventory Control/Manual Tank Gauging with Tank Tightness Testing											
SIR											
Manual Tank Gauging (1,000 ga) or less)											
Vapor Monitoring											
Groundwater Monitoring											
Mechanical Line Leak Detectors											
Electronic Line Leak Detectors											

Page 5

Annual Line Tightness Testing											
3-year Line Tightness Testing											
Other Method Allowed by Implementing agency:											
C. Spill and Overfill Protection											
Overfill device installed	Select		Select		Select		Select		Select		
Spill bucket installed	Select		Select		Select		Select		Select		
Note: The installer must complete this section on								since Dec	ember 22	, 1988.	
OATH: I certify the information concerning	installati	on is true	to the b	est of m	y belief a	and know	vledge.				
Installation Company											
Address:											
Installer Name											
Phone											
Signature	Signature										
Date											

Appendix B Sampling and Analysis Plan Correspondence (CCN 228161)

<Steven.Heaton@deq.idaho. gov>

08/09/2012 12:54 PM

To <kerry.nisson@inl.gov>, <Stacy.Short@deq.idaho.gov>

bcc

Subject Re: CCN: 228161 PLN-4244-Sampling and Analysis Plan for Post Removal Soil Sampling at MFC Biodiesel Underground Storage Tank

History:

P This message has been replied to.

Thanks Kerry.

I have reviewed your attached Sampling and Analysis Plan for pending UST work at MFC. Please let this email serve as the Department's endorsement to execute the plan at your convenience.

Steve

Sent from my Verizon Wireless Device Kerry L Nisson wrote:

I inadvertently listed the CCN 288161 in the subject line, which is incorrect. The correct CCN is 228161.

Kerry L. Nisson Nuclear Operations Environmental Support - UST TPOC Office (208) 533-7102 Cell (208) 569-4721 email: kerry.nisson@inl.gov Mail Stop 6134

L/US

Nisson/NISSK
To Steve Heaton, Stacy Short, BEACC@inel.gov, ENVIRONMENTAL
L/CC01/INEE
CORRESPONDENCE/FNIVAEE/COMMISSION

cc Timothy L Carlson/TCL/CC01/INEEL/US, James F Graham/JQG/CC01/INEEL/US, "Jason R Sturm"

08/08/2012 01:36 PM

<STURMJR@ID.DOE.GOV>, Bradley K Griffith/GRIFBK/CC01/INEEL/US, Mark R Cole/COLEMR/CC01/INEEL/US@INEL, Scott L Lyman/LYMASL/CC01/INEEL/US, Lucien E Frederick J/FREDLE/CC01/INEEL/US, Timothy A Miller/MILLTA/CC01/INEEL/US@INEL, Scott D McBride/MCBRSD/CC01/INEEL/US@INEL, Carlo D Melbihess/MELBCD/CC01/INEEL/US@INEL, Alan E Carvo/CARVAE/CC01/INEEL/US, Tim A Solle/TSOLLE/CC01/INEEL/US, Lynne M

Coe-Leavitt/COELEALM/CC01/INEEL/US

S CCN: 288161 PLN-4244-Sampling and Analysis Plan for Post Removal Soli Sampling at MFC Biodiesel ub Underground Storage Tank

Steve/Stacy

Attached is a copy of PLN-4244-Sampling and Analysis Plan for Post Removal Soil Sampling at MFC Biodiesel Underground Storage Tank. This is the sampling plan that will be used during the removal of the Materials and Fuels Complex biodiesel tank.

Please review and respond back with any comments you may have. If you do not have any comments, please let me know.

If you have any questions, please contact me for resolution. My phone numbers are listed below.

Thanks

Kerry L. Nisson Nuclear Operations Environmental Support - UST TPOC Office (208) 533-7102 Cell (208) 569-4721 email: kerry.nisson@inl.gov Mail Stop 6134

Plan

Sampling and Analysis Plan for Post-Removal Soil Sampling at MFC Biodiesel Underground Storage Tank

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance.

SAMPLING AND ANALYSIS PLAN FOR POST-REMOVAL SOIL SAMPLING AT MFC BIODIESEL UNDERGROUND STORAGE TANK

Identifier: PLN-4244

Revision: 0

Effective Date: DRAFT

Page: iii of iv

MFC Biodiesel Tank Removal Plan eCR Number: 605284

CONTENTS

G0117	TITIS 1771	~	
			iii
ACRO	ONYM	íS	iv
1.	INTR	ODUC1	FION1
2.	PROJ		ESCRIPTION1
	2.1		ound
		2.2.1 2.2.2	Data Quality Objectives (DQOs)
	2.3		e Collection and Documentation
	2.4	•	ng Design and Procedures4 Handling5
3.	DAT. 3.1 3.2	A QUAI Data C	LITY REQUIREMENTS AND ASSESSMENTS 5 ompleteness and Representativeness 5 v Control Requirements 5
4.			TATION5
	4.1	-	e Custody
	4.2	Data K	eporting5
5.	WAS	TÉ DIS	POSAL5
6.	TRA	INING	5
Appe	ndix A		6
			FIGURES
Figur	e 1. Pl	an map	of MFC parking lot and UST area6
			TABLES
Table	1. Re	sidential	use screening levels (IDAPA 58.01.24)1
Table	2. Soi	il sample	e locations, bottle requirements, analysis, and preservation4

SAMPLING AND ANALYSIS PLAN FOR POST-REMOVAL SOIL SAMPLING AT MFC BIODIESEL UNDERGROUND STORAGE TANK Identifier: PLN-4244

Revision: 0

Effective Date: DRAFT

Page: iv of iv

ACRONYMS

AA Alternative Actions
BEA Battelle Energy Alliance

CFR Code of Federal Regulations

COC chain of custody

DQO data quality objectives

GDE Guide

IDAPA Idaho Administrative Procedures Act

IH industrial hygienist
INL Idaho National Laboratory

LI Laboratory Instructions

MCP management control procedure
MFC Materials and Fuels Complex
MQO Measurement Quality Objective
MS/MSD matrix spike/matrix spike duplicate

QA quality assurance QC quality control

RCRA Resource Conservation Recovery Act

RCT radiological control technician

SAP Sampling and Analysis Plan

TCLP Toxicity Characteristic Leaching Procedure

UTS underground storage tank

UTS Universal Treatment Standards (from RCRA land disposal regulations)

WGS Waste Generator Services

SAMPLING AND ANALYSIS PLAN FOR	Identifier:	PLN-4244	
POST-REMOVAL SOIL SAMPLING AT	Revision:	0	
MFC BIODIESEL UNDERGROUND	Effective Date:	DRAFT	Page: 1 of 6
STORAGE TANK			

1. INTRODUCTION

This plan was prepared in response to a request from Kerry Nisson for confirmatory soil sampling and analysis after permanent removal of MFC biodiesel underground storage tank (UTS) 99ANL00013. After the tank and any visibly-contaminated soil is removed, soil sampling will be performed to confirm that the soil meets the Table 2 Residential Use Screening Levels in IDAPA 58.01.24, Application of Risk Based Corrective Action at Petroleum Release Sites.

Tank 99ANL00013 is a 4000-gal underground storage tank containing biodiesel (the location is shown in Figure 1 in Appendix A). The tank probably held leaded gas in the 1980s and is known to have held unleaded gasoline in the 1980s and 1990s. The tank was converted from gasoline to diesel in 1992 and to biodiesel in November 2009. The tank is used by site personnel to fill government vehicles.

Samples will be collected using hand tools such as augers, scoops, and spoons.

The residential use screening levels for the soil after removal of Tank #99ANL00013 are listed in Table 1.

Table 1. Residential use screening levels (IDAPA 58.01.24).

Compound	Screening Level (mg/kg)
Benzene	0.025
Toluene	6.6
Ethylbenzene	0.25
Total Xylenes	27
Naphthalene	0.12
Methyl tert-butyl ether (MTBE)	80.0
Ethylene Dibromide (EDB)	0.0001
1,2-Dichloroethane	0.013
Acenaphthene	200
Anthracene	3200
Benz(a)anthracene	0.09
Benzo(a)pyrene	0.02
Benzo(b)fluoranthene	0.2
Benzo(k)fluoranthene	1,9
Chrysene	9.5
Fluoranthene	1400
Fluorene	240
Pyrene	1000

2. PROJECT DESCRIPTION

2.1 Background

This sampling effort must be able to show the remaining soil is in compliance with 40 CFR Sec. 280.72 "Assessing the Site at Closure or Change-In-Service," and Table 1&2 of IDAPA 58.01.24.800.02, "Residential Use Screening Levels." Namely, sampling and analysis must measure for the presence of a release where contamination is most likely to be present at the UST site.

SAMPLING AND ANALYSIS PLAN FOR	Identifier:	PLN-4244	
POST-REMOVAL SOIL SAMPLING AT	Revision:	0	
MFC BIODIESEL UNDERGROUND	Effective Date:	DRAFT	Page: 2 of 6
STORAGE TANK			

2.2 Data Usage

The analytical results from the samples will be used to verify the remaining soils are within screening levels for residential use as defined in IDAPA 58.01.24.800.02.

2.2.1 Data Quality Objectives (DQOs)

The objective of this sampling activity is to obtain representative samples of soil from locations where contamination is most likely to be present at the UST site after its removal. The data quality objectives (DQO) process specifies objectives for collecting the data. Each of the following subsections corresponds to a step in the DQO process, and the output for each step is provided as appropriate.

2.2.1.1 Decision Statement

The objective of this soil characterization activity is to answer the following principal study question: Are the concentrations of the constituents of concern in the soil within the screening levels in Table 2 of IDAPA 58.01.24.800.02?

The alternative actions to be taken based on resolution of the principal study question are:

- If the concentrations do not exceed the residential use screening levels, a petition for site closure will be submitted.
- If concentrations exceed residential use screening levels then other options will be needed for corrective action.

Combining the principal study question and alternative actions results in the following decision statement: Determine whether the soil in question meets the screening levels for residential use and petition for site closure; or it needs corrective action. If free product is observed in the excavation, it will be removed prior to confirmation sampling.

2.2.1.2 Decision Inputs

The decision inputs come from the laboratory results from the collected samples.

2.2.1.3 Study Boundaries

The study boundary for this Sampling and Analysis Plan (SAP) is the soil in the excavation after removal of the UST.

2.2.1.4 Decision Rule

If concentrations in the soil do not exceed residential use screening levels in IDAPA 58.01.24.800.02 Table 2, then a petition for site closure will be submitted. If outside the ranges in IDAPA 58.01.24.800.02 Table 2, then corrective action will be required.

2.2.2 Measurement Quality Objectives

Measurement Quality Objectives (MQOs) are specifications for precision, accuracy, and completeness that measurements must meet to produce acceptable data.

The laboratory evaluates the accuracy of the analyses with an internal laboratory QA/QC program utilizing matrix spikes. The accuracy goals established by the laboratory will be considered acceptable for this project. The completeness goal for this project is 100% which means all samples will be collected and all analysis will be acceptable and contain no rejected data.

The required sample bottles, preservation, and holding times are listed in Table 2, "Soil sample locations, bottle requirements, analysis, and preservation."

SAMPLING AND ANALYSIS PLAN FOR	Identifier:	PLN-4244	
POST-REMOVAL SOIL SAMPLING AT	Revision:	0	
MFC BIODIESEL UNDERGROUND	Effective Date:	DRAFT	Page: 3 of 6
STORAGE TANK			_

2.3 Sample Collection and Documentation

Collection of the samples will be conducted using the work control process. Specifically, L1-328, "Idaho National Laboratory Miscellaneous Media Umbrella Sampling," will be used to identify the hazards and mitigations, training, and PPE. In the case of finding something unexpected while sampling (e.g., free product), personnel will institute "a stop work." LI-328 identifies key personnel who assess the hazards (e.g., IH). Collection of the samples, decontamination, shipment, labeling, and chain of custody, will follow MCP, LI, and/or guides (GDEs) as identified below.

- LWP-9101, "INL Procedure Usage"
- GDE-9103, "Conduct of Operations Guidance for Communications"
- MCP-8523, "Managing Hazardous and Nonhazardous Samples"
- LI-359, "Cleaning of Environmental Monitoring Services Sampling Equipment"
- LI-355, "Working in Environmental Monitoring Services Sample Preparation Areas (SPA)"
- LI-328, "Idaho National Laboratory Miscellaneous Media Umbrella Sampling."

Samples will be numbered using the prefix "BEA" followed by a unique six digit number. The sample numbers, labels and Chain of Custody (COC) forms will be generated in the SAP Application program by Environmental Site Services personnel. Field activities for this sampling event will be documented in the non-routine logbook INL-NR-007.

SAMPLING AND ANALYSIS PLAN FOR
POST-REMOVAL SOIL SAMPLING AT
MFC BIODIESEL UNDERGROUNDIdentifier:
Revision:
BEffective Date:PLN-4244
0MFC BIODIESEL UNDERGROUND
STORAGE TANKEffective Date:
DAFTDRAFTPage: 4 of 6

2.4 Sampling Design and Procedures

Table 2. Soil sample locations, bottle requirements, analysis, and preservation.

Number		Analytes	Method	Bottle Volume/type	Preservative
Two Per	Per	Per IDAPA	1. SW-846	100 mL amber glass	4 C
58.	58.	58.01.24.800.02	8021B	100 mL/amber glass	4 C
	<u>-: </u>	I. BTEX, EDB, EDC,	2. SW-846	100 mL/amber glass	4 C
Σ .	Σ.	MTBE	8310		
2.	7	2. PAH			
Four Sa	Sa	Same	Same	Same	Same
			-		
-					
One	έŠ	Same	Same	Same	Same
One Sa	Sa	Same	Same	Same	Same
(line only has					
one elbow)					

NOTE: The number of samples/intervals was determined based on guidance from the requestor who suggested using Soil Sampling from Indiana gov Website (http://www.in.gov/idem/5080.htm). These grab samples should always be collected from the area most likely to be contaminated.

Tunio Mucional Emporatory			
SAMPLING AND ANALYSIS PLAN FOR	Identifier:	PLN-4244	
POST-REMOVAL SOIL SAMPLING AT	Revision:	0	
MFC BIODIESEL UNDERGROUND	Effective Date:	DRAFT	Page: 5 of 6
STORAGE TANK			

2.5 Waste Handling

All sampling derived waste will be handled according to instructions from Kerry Nisson.

3. DATA QUALITY REQUIREMENTS AND ASSESSMENTS

3.1 Data Completeness and Representativeness

All samples collected during this activity will be prepared and analyzed according to guidelines set forth in the laboratory contract. It is imperative that the designated laboratory performs the analysis using these techniques to ensure data quality, precision, accuracy, and completeness. All sample collecting, handling, and analytical protocols have been chosen so the results will be as representative as possible of the media and conditions being measured.

3.2 Quality Control Requirements

QC has been discussed in Section 2.

4. DOCUMENTATION

4.1 Sample Custody

Full chain of custody will be maintained at all times, as specified in MCP-8523, "Managing Hazardous and Nonhazardous Samples."

4.2 Data Reporting

All analytical results, COC, and QC measurements for each sample will be required from the laboratory with a turnaround time as contracted with the offsite laboratory. All data will be submitted to BEA with notification made to the Analytical Laboratory Contracting Lead: Peggy Scherbinske, BEA, via E-mail.

5. WASTE DISPOSAL

Any waste generated during sampling will be disposed of at the direction of Waste Generator Services (WGS). It is anticipated that discarded sampling equipment (decon towels, PPE) will be treated as industrial waste based upon previous similar sampling results.

6. TRAINING

Personal protective equipment (PPE) is called out in the project specific work order.

Minimum PPE to perform work activities involving handling of wastes includes; sturdy leather shoes above the ankle, safety glasses, and nitrile gloves. Any PPE different than or in addition to the minimum listed can be documented in the sample log notes.

SAMPLING AND ANALYSIS PLAN FOR POST-REMOVAL SOIL SAMPLING AT MFC BIODIESEL UNDERGROUND STORAGE TANK

Identifier: PLN-4244 Revision:

Effective Date: DRAFT

Page: 6 of 6

Appendix A

Figure 1. Plan map of MFC parking lot and UST area.

Appendix C Notification of Underground Storage Tank Removal Correspondence (CCN 228291)

Idaho National Laboratory Mail - CCN: 228291 Notification for underground storage tank removal at the... Page 1 of 1

Nisson, Kerry L <kerry.nisson@inl.gov>

CCN: 228291 Notification for underground storage tank removal at the INL MFC

1 message

Nisson, Kerry L <kerry.nisson@inl.gov> Mon, Aug 27, 2012 at 9:58 AM To: ENVIRONMENTAL CORRESPONDENCE ServiceID <envaff@inl.gov>, Timothy L Carlson <timothy.carlson@inl.gov>, James F Graham <James.Graham@inl.gov>, Timothy A Miller <Timothy.Miller@inl.gov>, Scott L Lyman <Scott.Lyman@inl.gov>, Lucien E Frederick Jr <Lucien.Frederick@inl.gov>
Cc: Bradley K Griffith <Bradley.Griffithd@inl.gov>, Jason Sturm <STURMJR@id.doe.gov>, Jo A Stenzel <jo.stenzel@inl.gov>, Alan E Carvo <Alan.Carvo@inl.gov>, Lynne M Coe-Leavitt <Lynne.Coe-Leavitt@inl.gov>, Tim A Solle <Tim.Solle@inl.gov>, Tom Haney <tom.haney@inl.gov>, Carlo D Melbihess <carlo.melbihess@inl.gov>, Reva A Nickelson <reva.nickelson@inl.gov>

On August 27, 2012 at 09:13, a conference call was placed to Steve Heaton (DEQ), by Jason Sturm (DOE-ID) and myself. The purpose of the call was to notify DEQ that the UST tank removal at MFC would begin this week, and to identify if DEQ wanted to perform any inspection. This call is a follow-up to the required 30-day notification of intent to close an underground storage tank (ref. CCN 227777) that was sent to DEQ on July 9, 2012.

Steve stated that DEQ did not plan to visit the INL during the UST removal and to keep him informed as the project progressed. I stated that DEQ would be notified if there were any evidence of tank leakage during the removal.

Jason also questioned if DEQ wanted to inspect the completed line replacements. Steve stated that DEQ wasn't planning to inspect and would just want to review the paperwork for the replaced lines.

Kerry L. Nisson
Nuclear Operations Environmental Support - UST TPOC
Office (208) 533-7102
Cell (208) 569-4721
email: kerry.nisson@inl.gov
Mail Stop 6134

Appendix D Sample Analytical Report #1

September 19, 2012

Ms. Peggy Scherbinske Battelle Energy Alliance 2525 N. Fremont Ave. Idaho Falls, ID 83415-6194

Re:

ALS Workorder:

12-09-154

Project Name: Project Number: MFC Biodiesel Tank Removal, TOS-A1175

BEA030488

Dear Ms. Scherbinske:

Twelve soil samples were received from Battelle Energy Alliance on September 12, 2012. The samples were scheduled for the following analysis:

GC/MS Volatiles

Pages 1-36

GC/MS Semivolatiles

Pages 1-33

The results for this analysis are contained in the enclosed report.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

ALS Environmental Jeff Kujawa

Project Manager

JRK/jmh

Enclosure (s): Report

ADDRESS 225 Commerce Drive, Fort Collins, Colorado, USA 80524 | PHONE +1 970 490 1511 | FAX +1 970 490 1522

ALS GROUP USA, CORP. Part of the ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

BIGHT SOLUTIONS PROFIT PARTIES

ALS is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

Accretifiation Body	Dicense on Certification Number
Washington	C1280
Utah	CO00078
Arizona	AZ0742
Alaska	UST-086
Alaska	CO00078
Florida	E87914
Missouri	175
North Dakota	R-057
New Jersey	CO003
Nevada	CO000782008A
California	06251CA
Kansas	E-10381
Maryland	285
Pennsylvania	68-03116
Texas	T104704241-09-1
Colorado	CO00078
Connecticut	PH-0232
Idaho	CO00078
Tennessee	2976
Kentucky	90137
L-A-B (DoD ELAP/ISO 17025)	L2257

GC/MS Semivolatiles SIMPAH Case Narrative

Battelle Energy Alliance

MFC Biodiesel Tank Removal, TOS-A1175 -- BEA030488

Work Order Number: 1209154

- This report consists of 6 soil samples. The samples were received cool and intact by ALS on 09/12/12.
- These samples were prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the soil samples were extracted using soxhlet procedures according to SW-846 Method 3540C utilizing the current revision of SOP 625.
- 3. The extracts were analyzed using GC/MS with a DB-5MS capillary column according to the current revision of SOP 506 based on SW-846 Method 8270D. The samples were analyzed using selective ion monitoring (SIM), in order to achieve lower reporting limits. All positive results were quantitated against the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and a limited number of major ions from the mass spectrum of the sample versus the daily calibration standard.
- All initial calibration criteria were met. If average response factors were used in the initial calibration, %RSD was ≤20%. If linear or higher order regression calibrations were used in the initial calibration, the coefficient of determination (r²) ≥0.99.
- All initial calibration standards are verified by comparing a second source standard initial
 calibration verification (ICV) against the calibration curve. All target compounds in the second
 source verification had a %D ≤30%.
- 6. All method blank criteria were met.
- All laboratory control sample and laboratory control sample duplicate recoveries and RPDs were within the acceptance criteria.

1 of 33

8. Sample 1209154-8 was designated as the quality control sample for this analysis. Similarity of matrix and therefore relevance of the QC results should not be automatically inferred for any sample other than the native sample selected for QC.

All matrix spike and matrix spike duplicate recoveries and RPDs were within acceptance criteria with the following exceptions:

Spiked Compound	QC Sample	Direction
Pyrene	MS/MSD	RPD
Benzo(b)fluoranthene	MS/MSD	RPD

The recoveries of these compounds in the laboratory control sample and laboratory control sample duplicate were within control limits, which suggest the outliers in the matrix spikes may have been due to matrix effects, so no further action was taken.

- 9. The samples were extracted and analyzed within the established holding times.
- 10. All surrogate recoveries were within acceptance criteria.
- 11. All internal standard recoveries were within acceptance criteria.
- 12. Sample 1209154-6 was analyzed at dilution to bring target analytes in to calibration range. The reporting limits have been adjusted accordingly.
- 13. Manual integrations are performed when needed to provide consistent and defensible data following the guidelines in the current revision of SOP 939.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Emily Lydns Organics Primary Data Reviewer

9-19-12 Date

ALS
Data Qualifier Flags
Chromatography and Mass Spectrometry

criteria used.

the control criteria.

U or ND:

+:

This flag indicates an estimated value. This flag is used as follows: (1) J: when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; (2) when the mass spectral and retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the reporting limit (RL) but greater than the method detection limit (MDL); (3) when the retention time data indicate the presence of a compound that meets the GC identification criteria, and the result is less than the RL but greater than the MDL; and (4) the reported value is estimated. B: This flag is used when the analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user. This flag shall be used for a tentatively identified compound (TIC) as well as for a positively identified target compound. E: This flag identifies compounds whose concentration exceeds the upper level of the calibration range. A: This flag indicates that a tentatively identified compound is a suspected aldol-condensation product. X: This flag indicates that the analyte was diluted below an accurate quantitation level. This flag indicates that a spike recovery is equal to or outside the control

This flag indicates that the compound was analyzed for but not detected.

This flag indicates that the relative percent difference (RPD) equals or exceeds

3 of 33

Chain of Custody

4 of 33

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1209154

Client Name: Battelle Energy Alliance

Client Project Name: MFC Biodiesel Tank Removal ,TOS-A1175

Client Project Number: BEA030488 Client PO Number: SOW-8500

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
BEA030488_MFC	1209154-1		SOIL	10-Sep-12	14:36
BEA030489_MFC	1209154-2		SOIL	10-Sep-12	14:36
BEA030490_MFC	1209154-3		SOIL	10-Sep-12	14:22
BEA030491_MFC	1209154-4		SOIL	10-Sep-12	14:22
BEA030492_MFC	1209154-5		SOIL	10-Sep-12	13:41
BEA030493_MFC	1209154-6		SOIL	10-Sep-12	13:41
BEA030494_MFC	1209154-7		SOIL	10-Sep-12	13:55
BEA030495_MFC	1209154-8		SOIL	10-Sep-12	13:55
BEA030496_MFC	1209154-9		SOIL	10-Sep-12	14:44
BEA030497_MFC	1209154-10		SOIL	10-Sep-12	14:44
BEA030498_MFC	1209154-11		SOIL	10-Sep-12	14:28
BEA030499_MFC	1209154-12		SOIL	10-Sep-12	14:28

ALS Environmental -- FC LIMS Version: 6.611

5 of 33

Date Printed: Wednesday, September 19, 2012

Page 1 of 1

Chain of Custody Number: 5300 9533 5010

1209154

Laboratory: ALS Laboratory Group

Facility:

Contact: Jeff Kujawa

970-490-1511

Phone:

Address:

225 Commerce Drive Fort Collins CO 80524

Sample Number	Sample Details			
BEA030488_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTB 9/10/2012 2:36:00 PM TOS-A1175 SOIL	E\IVOA-A-018\ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030489_MFC Z	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 2:36:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030490_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 2:22:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030491_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBI 9/10/2012 2:22:00 PM TOS-A1175 SOIL	E \ IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030492_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBI 9/10/2012 1:41:00 PM TOS-A1175 SOIL	E\IVOA-A-018\ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030493_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 1:41:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space

SAL Idaho No	ational Laboratory	Chain of Custod	ly Number: 5300	9533 5010
BEA030494_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 1:55:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030495_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBE \ 9/10/2012 1:55:00 PM TOS-A1175 SOIL	IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030496_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBE \ 9/10/2012 2:44:00 PM TOS-A1175 SOIL	IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030497_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 2:44:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030498_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH \ ISVO-A-014 \ 9/10/2012 2:28:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030499_MFC	Analysis: Sample Date:	TOS-A1175	VOA-A-018 \ Container Qty - Type: Filtered? Preservative:	I - 4 oz amber glass N cool, no headspace

Monday, September 10, 2012

Relinquished By:	Date: 9/11/12	Time:	Received By:	Date: /	Time:
omments:					

Monday, September 10, 2012

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

(ALS) OFA	c-4	
Client: BEA Workorder No: 1209/	> '	
Project Manager: Date	te: 9-12-16	>_
Does this project require any special handling in addition to standard ALS procedures?	YES	(NO
2. Are custody seals on shipping containers intact? NON	E (YES)	NO
3. Are Custody seals on sample containers intact? NON	YES	NO
4 Is there a COC (Chain-of-Custody) present or other representative documents?	YES	NO
5. Are the COC and bottle labels complete and legible?	YES	NO
6 Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)	YES	NO
7. Were airbills / shipping documents present and/or removable?	FF (YES	NO
s. Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	YES	NO
9 Are all aqueous non-preserved samples pH 4-9?	YES	NO
10. Is there sufficient sample for the requested analyses?	YES	NO
11. Were all samples placed in the proper containers for the requested analyses?	(VII)	NO
12 Are all samples within holding times for the requested analyses?	(YES	NO
13. Were all sample containers received intact? (not broken or leaking, etc.)	CYES	NO
14 Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea > green pea	YES	NO
15. Do any water samples contain sediment? Amount of sediment:	YES	NO
16. Were the samples shipped on ice?	(YES)	NO
17. Were cooler temperatures measured at 0.1-6.0°C9 TRAD	VES	NO
Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: (#2) #4 ONLY Cooler #:	(ILS)	NO
Temperature (°C): 7.0		
No. of custody seals on cooler:		
DOT Survey(
Information		
Background μR/hr reading:		
Were external μR/hr readings ≤ two times background and within DOT acceptance criterin? YES / NO / NA (19 no. see Form 008 Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXCEPT #1		
Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXCEPT #1	AND #16.	
If applicable, was the client contacted? YES / NO (NA) Contact: Date 7	lime:	
Project Manager Signature / Date:		
*IR Gun #2*Oakton, SN 29922500201-0066 Form 201r24.xls (86*04/2012) *IR Gun #4: Oakton, SN 2372220101-0002	9 of	3\$

Analytical Results

Method SW8270SIMPAHD Method Blank

Prep Batch: EX120917-8

Basis: N/A

QCBatchID: EX120917-8-1

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Lab ID: EX120917-8MB

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A

Run ID: SV120918-4 Date Extracted: 17-Sep-12 Cleanup: NONE Date Analyzed: 18-Sep-12 Prep Method: SW3540 Rev C File Name: S00437

Sample Aliquot: 30 g Final Volume: 1 ml Result Units: UG/KG Clean DF:

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	- 1	3.3	3.3	U	
208-96-8	ACENAPHTHYLENE	21	3.3	3.3	U	
83-32-9	ACENAPHTHENE	- 1	3.3	3.3	U	
86-73-7	FLUORENE	- 1	3.3	3.3	U	
85-01-8	PHENANTHRENE	2.1	3.3	3.3	U	
120-12-7	ANTHRACENE	21	3.3	3.3	U	
206-44-0	FLUORANTHENE	21	3.3	3.3	U	
129-00-0	PYRENE	- 1	3.3	3.3	U	
56-55-3	BENZO(A)ANTHRACENE	- 1	3.3	3.3	U	
218-01-9	CHRYSENE	21	3.3	3.3	U	
205-99-2	BENZO(B)FLUORANTHENE	- 1	3.3	3.3	U	
207-08-9	BENZO(K)FLUORANTHENE	01	3.3	3.3	U	200
50-32-8	BENZO(A)PYRENE	1	3.3	3.3	U	
193-39-5	INDENO(1,2,3-CD)PYRENE	E1	3.3	3.3	U	
53-70-3	DIBENZO(A,H)ANTHRACENE	1	3.3	3.3	U	
191-24-2	BENZO(G,HJ)PERYLENE		3.3	3.3	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	55.1		66.7	83	41 - 106
4165-60-0	NITROBENZENE-D5	56.2		66.7	84	28 - 113
1718-51-0	TERPHENYL-D14	63.5		66.7	95	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611

Page 1 of 1

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030489_MFC Lab ID: 1209154-2

Sample Matrix: SOIL % Moisture: 11.6 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12

QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Date Analyzed: 18-Sep-12 Basis: Dry Weight Prep Method: SW3540 Rev C File Name: S00441

Prep Batch: EX120917-8

Analyst: Joe Kosteinik Sample Aliquot: 30.52 G Final Volume: Result Units: UG/KG Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	2	3.7	J	
208-96-8	ACENAPHTHYLENE	1	2.3	3.7	J	
83-32-9	ACENAPHTHENE	1	3.7	3.7	U	
86-73-7	FLUORENE	1	3.7	3.7	U	
85-01-8	PHENANTHRENE	1	1.6	3.7	J	
120-12-7	ANTHRACENE	1	1.7	3.7	J	
206-44-0	FLUORANTHENE	1	1.4	3.7	J	
129-00-0	PYRENE	1	2.2	3.7	J	
56-55-3	BENZO(A)ANTHRACENE	1	1.3	3.7	J	
218-01-9	CHRYSENE	1	3.7	3.7	U	
205-99-2	BENZO(B)FLUORANTHENE	1	2.7	3.7	J	
207-08-9	BENZO(K)FLUORANTHENE	1	3.7	3.7	U	
50-32-8	BENZO(A)PYRENE	1	2.3	3.7	J	
193-39-5	INDENO(1,2,3-CD)PYRENE	1	2.5	3.7	J	
53-70-3	DIBENZO(A,H)ANTHRACENE	1	3.7	3.7	U	
191-24-2	BENZO(G,H,I)PERYLENE	1	4.4	3.7		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	54.6		74.2	74	41 - 106
4165-60-0	NIT ROBENZENE-D5	61.9		74.2	84	28 - 113
1718-51-0	TERPHENYL-D14	69.8		74.2	94	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611

Page 1 of 7

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030490_MFC
Lab ID: 1209154-3

Sample Matrix: SOIL % Moisture: 15.9 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 18-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Basis: Dry Weight

File Name: S00440

Analyst: Joe Kostelnik Sample Aliquot: 30.63 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.9	3.9	U	
208-96-8	ACENAPHTHYLENE	- 1	3.9	3.9	U	
83-32-9	ACENAPHTHENE	1	3.9	3.9	U	5
86-73-7	FLUORENE	1	3.9	3.9	U	
85-01-8	PHENANTHRENE	1	3.9	3.9	U	5
120-12-7	ANTHRACENE	1	3.9	3.9	U	
206-44-0	FLUORANTHENE	1	3.9	3.9	U	9
129-00-0	PYRENE	1	3.9	3.9	U	5
56-55-3	BENZO(A)ANTHRACENE	- 1	3.9	3.9	U	5
218-01-9	CHRYSENE	1	3.9	3.9	U	4
205-99-2	BENZO(B)FLUORANTHENE	1	3.9	3.9	U	y/
207-08-9	BENZO(K)FLUORANTHENE	. 1	3.9	3.9	U	0
50-32-8	BENZO(A)PYRENE	1	3.9	3.9	U	
193-39-5	INDENO(1,2,3-CD)PYRENE	1	3.9	3.9	U	9
53-70-3	DIBENZO(A,H)ANTHRACENE	1	3.9	3.9	U	9
191-24-2	BENZO(G,H,I)PERYLENE	. 1	3.9	3.9	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	60.6		77.7	78	41 - 106
4165-60-0	NIT ROBENZENE-D5	70.1		77.7	90	28 - 113
1718-51-0	TERPHENYL-D14	67.6		77.7	87	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 2 of 7

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030493_MFC
Lab ID: 1209154-6

Sample Matrix: SOIL % Moisture: 8.4 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 18-Sep-12

Prep Method: SW3540 Rev C

Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Basis: Dry Weight File Name: S00446 Analyst: Joe Kosteinik Sample Aliquot: 30.12 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.6	3.6	U	
208-96-8	ACENAPHTHYLENE	1	3.6	3.6	U	
83-32-9	ACENAPHTHENE	1	3.6	3.6	U	
86-73-7	FLUORENE	1	1.3	3.6	J	
85-01-8	PHENANTHRENE	1	31	3.6		
120-12-7	ANTHRACENE	1	10	3.6		
206-44-0	FLUORANTHENE	1	280	3.6	Е	
129-00-0	PYRENE	1	170	3.6		
56-55-3	BENZO(A)ANTHRACENE	1	180	3.6	E	
218-01-9	CHRYSENE	1	190	3.6	E	
205-99-2	BENZO(B)FLUORANTHENE	1	330	3.6	E	
207-08-9	BENZO(K)FLUORANTHENE	1	130	3.6		
50-32-8	BENZO(A)PYRENE	1	240	3.6	E	
193-39-5	INDENO(1,2,3-CD)PYRENE	1	120	3.6		
53-70-3	DIBENZO(A,H)ANTHRACENE	1	35	3.6		
191-24-2	BENZO(G,H,I)PERYLENE	1	110	3.6		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	55		72.5	76	41 - 106
4165-60-0	NIT ROBENZENE-D5	69.4		72.5	96	28 - 113
1718-51-0	TERPHENYL-D14	47.3		72.5	65	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 3 of 7

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030494_MFC Lab ID: 1209154-7

Sample Matrix: SOIL % Moisture: 12.2 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 18-Sep-12

Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Basis: Dry Weight Prep Method: SW3540 Rev C File Name: S00444

Analyst: Joe Kosteinik Sample Aliquot: 30.88 G Final Volume: Result Units: UG/KG Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.7	3.7	U	
208-96-8	ACENAPHTHYLENE	- 1	3.7	3.7	U	
83-32-9	ACENAPHTHENE	- 1	3.7	3.7	U	
86-73-7	FLUORENE	- 1	3.7	3.7	U	
85-01-8	PHENANTHRENE	- 1	3.7	3.7	J	
120-12-7	ANTHRACENE	- 1	3.7	3.7	U	
206-44-0	FLUORANTHENE	- 1	21	3.7		
129-00-0	PYRENE	- 1	16	3.7		
56-55-3	BENZO(A)ANTHRACENE	. 1	15	3.7		
218-01-9	CHRYSENE	. 1	18	3.7		
205-99-2	BENZO(B)FLUORANTHENE	. 1	24	3.7	SX 89	7
207-08-9	BENZO(K)FLUORANTHENE	1	12	3.7		
50-32-8	BENZO(A)PYRENE	. 1	19	3.7	100	
193-39-5	INDENO(1,2,3-CD)PYRENE	. 1	14	3.7		
53-70-3	DIBENZO(A,H)ANTHRACENE	. 1	4.1	3.7		
191-24-2	BENZO(G,H,I)PERYLENE	. 1	14	3.7		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	55.9		73.8	76	41 - 106
4165-60-0	NIT ROBENZENE-D5	64		73.8	87	28 - 113
1718-51-0	TERPHENYL-D14	56.5		73.8	76	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611

Page 4 of 7

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030497_MFC Lab ID: 1209154-10 Sample Matrix: SOIL % Moisture: 11.4 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 18-Sep-12

Prep Method: SW3540 Rev C

Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Basis: Dry Weight

File Name: S00447

Analyst: Joe Kosteinik Sample Aliquot: 30.63 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.7	3.7	U	
208-96-8	ACENAPHTHYLENE	1	3.7	3.7	U	
83-32-9	ACENAPHTHENE	1	3.7	3.7	U	
86-73-7	FLUORENE	1	1.7	3.7	J	
85-01-8	PHENANTHRENE	1	10	3.7		
120-12-7	ANTHRACENE	1	3.1	3.7	J	
206-44-0	FLUORANTHENE	1	40	3.7		
129-00-0	PYRENE	1	30	3.7		
56-55-3	BENZO(A)ANTHRACENE	1	30	3.7		
218-01-9	CHRYSENE	1	35	3.7		
205-99-2	BENZO(B)FLUORANTHENE	1	56	3.7		
207-08-9	BENZO(K)FLUORANTHENE	1	22	3.7		
50-32-8	BENZO(A)PYRENE	1	40	3.7		
193-39-5	INDENO(1,2,3-CD)PYRENE	1	22	3.7		
53-70-3	DIBENZO(A,H)ANTHRACENE	1	6.4	3.7		
191-24-2	BENZO(G,H,I)PERYLENE	1	21	3.7		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	60.8		73.7	82	41 - 106
4165-60-0	NIT ROBENZENE-D5	77.1		73.7	105	28 - 113
1718-51-0	TERPHENYL-D14	55.1		73.7	75	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 5 of 7

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030498_MFC
Lab ID: 1209154-11

Sample Matrix: SOIL % Moisture: 10.3 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 18-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Basis: Dry Weight

File Name: S00445

Analyst: Joe Kosteinik Sample Aliquot: 30.42 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	- 1	3.7	3.7	U	
208-96-8	ACENAPHTHYLENE	- 1	3.7	3.7	U	
83-32-9	ACENAPHTHENE	- 1	3.7	3.7	U	
86-73-7	FLUORENE	1	3.7	3.7	U	5
85-01-8	PHENANTHRENE	1	17	3.7		
120-12-7	ANTHRACENE	1	6.1	3.7		5
206-44-0	FLUORANTHENE	1	140	3.7		5
129-00-0	PYRENE	1	85	3.7		5
56-55-3	BENZO(A)ANTHRACENE	- 1	94	3.7		
218-01-9	CHRYSENE	- 1	96	3.7		5
205-99-2	BENZO(B)FLUORANTHENE	1	150	3.7	(S) (S)	7
207-08-9	BENZO(K)FLUORANTHENE	1	57	3.7		0
50-32-8	BENZO(A)PYRENE	. 1	110	3.7	200	1
193-39-5	INDENO(1,2,3-CD)PYRENE	- 1	66	3.7		9
53-70-3	DIBENZO(A,H)ANTHRACENE	. 1	19	3.7		9
191-24-2	BENZO(G,H,I)PERYLENE	. 1	63	3.7		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	53.6		73.3	73	41 - 106
4165-60-0	NIT ROBENZENE-D5	61.2		73.3	83	28 - 113
1718-51-0	TERPHENYL-D14	46.3		73.3	63	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 6 of 7

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030493_MFC
Lab ID: 1209154-6RR1

Sample Matrix: SOIL % Moisture: 8.4 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 18-Sep-12 Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Basis: Dry Weight Analyst: Joe Kosteinik Sample Aliquot: 30.12 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

Prep Method: SW3540 Rev C File Name: S00448

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	3	11	11	U	
208-96-8	ACENAPHTHYLENE	3	11	11	U	
83-32-9	ACENAPHTHENE	3	11	11	U	
86-73-7	FLUORENE	3	11	11	U	
85-01-8	PHENANTHRENE	3	29	11		
120-12-7	ANTHRACENE	3	9.2	11	J	
206-44-0	FLUORANTHENE	3	220	11		
129-00-0	PYRENE	3	120	11		
56-55-3	BENZO(A)ANTHRACENE	3	130	11		
218-01-9	CHRYSENE	3	130	11		
205-99-2	BENZO(B)FLUORANTHENE	3	210	11		
207-08-9	BENZO(K)FLUORANTHENE	3	74	11		
50-32-8	BENZO(A)PYRENE	3	150	11		
193-39-5	INDENO(1,2,3-CD)PYRENE	3	94	11		
53-70-3	DIBENZO(A,H)ANTHRACENE	3	26	11		
191-24-2	BENZO(G,H,I)PERYLENE	3	89	11		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	52.1		72.5	72	41 - 106
4165-60-0	NIT ROBENZENE-D5	65.5		72.5	90	28 - 113
1718-51-0	TERPHENYL-D14	35		72.5	48	25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 7 of 7

Supporting QA/QC Data

Surrogate Summary for GC/MS Semi-volatiles

Method SW8270SIMPAHD

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

PrepBatchID: EX120917-8
QC Batch ID: EX120917-8-1
Date Extracted: 9/17/2012

Surrogate Compound	Control Lower	
2,4,6-Tribromophenol	-	
2-Fluorobiphenyl	41	106
2-Fluorophenol		
Nitrobenzene-d5	28	113
Phenol-d5		
Terphenyl-d14	25	147

Lab ID	Client Sample ID	Date Collected	Date Received	246TB % Recovery	2FBP % Recovery	2FP % Recovery	ND5 % Recovery	PD5 % Recovery	TD14 % Recovery
EX120917-8MB	XXXXXXX	NA	XXXXXXX	-37 (2)	83	100 T	84	307 305	95
EX120917-8LCS	XXXXXXXX	NA	XXXXXXXX		78		87		85
EX120917-8LCSD	XXXXXXXX	NA	XXXXXXXX		81		88		87
1209154-3	BEA030490_MFC	9/10/2012	9/12/2012		78		90		87
1209154-2	BEA030489_MFC	9/10/2012	9/12/2012		74		84		94
1209154-2MS	BEA030489_MFC	9/10/2012	9/12/2012		75		87		87
1209154-2MSD	BEA030489_MFC	9/10/2012	9/12/2012		70		85		74
1209154-7	BEA030494_MFC	9/10/2012	9/12/2012		76		87		76
1209154-11	BEA030498_MFC	9/10/2012	9/12/2012		73		83		63
1209154-6	BEA030493_MFC	9/10/2012	9/12/2012		76		96		65
1209154-10	BEA030497_MFC	9/10/2012	9/12/2012		82		105		75
1209154-6RR1	BEA030493_MFC	9/10/2012	9/12/2012	70 70.1	72	500	90	U. 94	48

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012 Shaded values exceed established control limits. ALS Environmental -- FC
LIMS Version: 6.611

Page 1 of 1

Method SW8270SIMPAHD

Laboratory Control Sample and Laboratory Control Sample Duplicate

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Lab ID: EX120917-8LCS

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A Date Extracted: 09/17/2012 Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE Basis: N/A Sample Aliquot: 30 g Final Volume: 1 ml Result Units: UG/KG Clean DF: 1

Date Analyzed: 09/18/2012 Basis: N/A Prep Method: SW3540C File Name: S00438

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
91-20-3	NAPHTHALENE	66.7	55.6	3.33		83	40 - 107%
208-96-8	ACENAPHTHYLENE	66.7	54.6	3.33		82	44 - 107%
83-32-9	ACENAPHTHENE	66.7	54.4	3.33		82	46 - 108%
86-73-7	FLUORENE	66.7	54.5	3.33		82	49 - 108%
85-01-8	PHENANTHRENE	66.7	54.2	3.33		81	50 - 110%
120-12-7	ANTHRACENE	66.7	54.1	3.33		81	53 - 107%
206-44-0	FLUORANTHENE	66.7	53.1	3.33		80	54 - 114%
129-00-0	PYRENE	66.7	51.9	3.33		78	46 - 123%
56-55-3	BENZO(A)ANTHRACENE	66.7	52.7	3.33		79	52 - 111%
218-01-9	CHRYSENE	66.7	54.5	3.33		82	53 - 112%
205-99-2	BENZO(B)FLUORANTHENE	66.7	55.5	3.33		83	45 - 114%
207-08-9	BENZO(K)FLUORANTHENE	66.7	60.7	3.33		91	45 - 123%
50-32-8	BENZO(A)PYRENE	66.7	56.8	3.33		85	50 - 111%
193-39-5	INDENO(1,2,3-CD)PYRENE	66.7	59	3.33		89	38 - 121%
53-70-3	DIBENZO(A,H)ANTHRACENE	66.7	59.2	3.33		89	41 - 125%
191-24-2	BENZO(G,H,I)PERYLENE	66.7	57.7	3.33		87	38 - 126%

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC

Page 1 of 2

Method SW8270SIMPAHD

Laboratory Control Sample and Laboratory Control Sample Duplicate

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Lab ID: EX120917-8LCSD

 Sample Matrix: SOIL
 Pr

 % Moisture: N/A
 Q0

 Date Collected: N/A
 A

 Date Extracted: 08/17/2012
 B

 Date Analyzed: 09/18/2012
 B

Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE

Final Volume: 1 ml Result Units: UG/KG Clean DF: 1

30 g

Sample Aliquot:

 Date Analyzed: 09/18/2012
 Basis: N/A

 Prep Method: SW3540C
 File Name: S00439

CASNO	Target Analyte	Spike Added	LCSD Result	Reporting Limit	Result Qualifier	LCSD % Rec.	RPD Limit	RPD
91-20-3	NAPHTHALENE	66.7	55.1	3.33	7	83	30	1
208-96-8	ACENAPHTHYLENE	66.7	54.4	3.33		82	30	0
83-32-9	ACENAPHTHENE	66.7	55	3.33		83	30	1
86-73-7	FLUORENE	66.7	55.5	3.33		83	30	2
85-01-8	PHENANTHRENE	66.7	54	3.33		81	30	0
120-12-7	ANTHRACENE	66.7	54.9	3.33		82	30	1
206-44-0	FLUORANTHENE	66.7	53.6	3.33		80	30	1
129-00-0	PYRENE	66.7	52.5	3.33		79	30	1
56-55-3	BENZO(A)ANTHRACENE	66.7	52.8	3.33		79	30	0
218-01-9	CHRYSENE	66.7	55.2	3.33	y	83	30	1
205-99-2	BENZO(B)FLUORANTHENE	66.7	58.4	3.33		88	30	5
207-08-9	BENZO(K)FLUORANTHENE	66.7	59.5	3.33		89	30	2
50-32-8	BENZO(A)PYRENE	66.7	57.2	3.33		86	30	1
193-39-5	INDENO(1,2,3-CD)PYRENE	66.7	58.7	3.33		88	30	0
53-70-3	DIBENZO(A,H)ANTHRACENE	66.7	59.2	3.33		89	30	0
191-24-2	BENZO(G,H,I)PERYLENE	66.7	56.9	3.33		85	30	1

Surrogate Recovery LCS/LCSD

CASNO	Target Analyte	Spike Added	LCS % Rec.	LCS Flag	LCSD % Rec.	LCSD Flag	Control Limits
321-60-8	2-FLUOROBIPHENYL	66.7	78	100	81	\$140 - 194	41 - 108
4165-60-0	NITROBENZENE-D5	66.7	87		88		28 - 113
1718-51-0	TERPHENYL-D14	66.7	85		87		25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC
LIMS Version: 6.611

Page 2 of 2

Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030489_MFC LabID: 1209154-2MS Sample Matrix: SOIL % Moisture: 11.6 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 18-Sep-12 Prep Batch: EX120917-8 QCBatchID: EX120917-8-1 Run ID: SV120918-4 Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 30.48 g Final Volume: 1 ml Result Units: UG/KG File Name: S00442

Prep Method: SW3540 Rev C

CASNO	Target Analyte	Sample Result	Samp Qual	MS Result	MS Qual	Reporting Limit	Spike Added	MS % Rec.	Control Limits
91-20-3	NAPHTHALENE	2	J	58.6		3.71	74.3	76	40 - 107%
208-96-8	ACENAPHTHYLENE	2.3	J	64.3		3.71	74.3	83	44 - 107%
83-32-9	ACENAPHTHENE	3.7	U	55.9		3.71	74.3	75	46 - 108%
86-73-7	FLUORENE	3.7	U	66.6		3.71	74.3	90	49 - 108%
85-01-8	PHENANTHRENE	1.6	J	65.5		3.71	74.3	86	50 - 110%
120-12-7	ANTHRACENE	1.7	J	63.2		3.71	74.3	83	53 - 107%
206-44-0	FLUORANTHENE	1.4	J	75.7		3.71	74.3	100	54 - 114%
129-00-0	PYRENE	2.2	J	75.3		3.71	74.3	99	46 - 123%
56-55-3	BENZO(A)ANTHRACENE	1.3	J	73.4		3.71	74.3	97	52 - 111%
218-01-9	CHRYSENE	3.7	U	75.2		3.71	74.3	101	53 - 112%
205-99-2	BENZO(B)FLUORANTHENE	2.7	J	83.4		3.71	74.3	109	45 - 114%
207-08-9	BENZO(K)FLUORANTHENE	3.7	U	72.6		3.71	74.3	98	45 - 123%
50-32-8	BENZO(A)PYRENE	2.3	J	80.6		3.71	74.3	106	50 - 111%
193-39-5	INDENO(1,2,3-CD)PYRENE	2.5	J	79.9		3.71	74.3	104	38 - 121%
53-70-3	DIBENZO(A,H)ANTHRACENE	3.7	U	76.4		3.71	74.3	103	41 - 125%
191-24-2	BENZO(G,H,I)PERYLENE	4.4		74.3		3.71	74.3	94	38 - 126%

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LM8 Version: 6.611 Page 1 of 2

Method SW8270SIMPAHD Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030489_MFC LabID: 1209154-2MSD Sample Matrix: SOIL % Moisture: 11.6 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12

Date Collected: 10-Sep-12
Date Extracted: 17-Sep-12
Date Analyzed: 18-Sep-12
Prep Method: SW3540 Rev C

Prep Batch: EX120917-8 QCBatchID: EX120917-8-1

Run ID: SV120918-4 Cleanup: NONE Basis: Dry Weight Sample Aliquot: 30.11 g Final Volume: 1 ml Result Units: UG/KG File Name: S00443

CASNO	Target Analyte	MSD Result	MSD Qual	Spike Added	MSD % Rec.	Reporting Limit	RPD Limit	RPD
91-20-3	NAPHTHALENE	56.7		75.2	73	3.76	30	3
208-96-8	ACENAPHTHYLENE	57.6		75.2	74	3.76	30	11
83-32-9	ACENAPHTHENE	51.6		75.2	69	3.76	30	8
86-73-7	FLUORENE	60.9		75.2	81	3.76	30	9
85-01-8	PHENANTHRENE	60.7		75.2	79	3.76	30	8
120-12-7	ANTHRACENE	61.2		75.2	79	3.76	30	3
206-44-0	FLUORANTHENE	62.4		75.2	81	3.76	30	19
129-00-0	PYRENE	55.1	+	75.2	70	3.76	30	31
56-55-3	BENZO(A)ANTHRACENE	60.1		75.2	78	3.76	30	20
218-01-9	CHRYSENE	60.3		75.2	80	3.76	30	22
205-99-2	BENZO(B)FLUORANTHENE	61	+	75.2	78	3.76	30	31
207-08-9	BENZO(K)FLUORANTHENE	61.7		75.2	82	3.76	30	16
50-32-8	BENZO(A)PYRENE	64.5		75.2	83	3.76	30	22
193-39-5	INDENO(1,2,3-CD)PYRENE	66.3		75.2	85	3.76	30	19
53-70-3	DIBENZO(A,H)ANTHRACENE	70		75.2	93	3.76	30	9
191-24-2	BENZO(G,H,I)PERYLENE	57.7		75.2	71	3.76	30	25

Surrogate Recovery MS/MSD

CASNO	Target Analyte	Spike Added	MS % Rec.	MS Flag	MSD % Rec.	MSD Flag	Control Limits
321-60-8	2-FLUOROBIPHENYL	74.3	75		70		41 - 106
4165-60-0	NITROBENZENE-D5	74.3	87		85		28 - 113
1718-51-0	TERPHENYL-D14	74.3	87		74		25 - 147

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LMS Version: 6.611 Page 2 of 2

Prep Batch ID: EX120917-8

Start Date: 09/17/12 Start Time: 15:20 Prep Analyst: Teresa Buettgenbac

End Date: 09/18/12 End Time: 7:45 Concentration Method: CKIS Extract Method: SW3540C

Initial Volume Units: 9
Final Volume Units: ml

Batch Created By: tib

Date Created: 09/17/12 Time Created: 14:59 Validated By: pjs Date Validated: 09/18/12 Time Validated: 15:02

Comments:

QC Batch ID: EX120917-8-1

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Number
EX120917-8	MB	XXXXXXX	SOIL	XXXXXXX	30	1	NONE	1	1209154
EX120917-8	LCS	XXXXXX	SOIL	XXXXXXX	30	1	NONE	1	1209154
EX120917-8	LCSD	XXXXXX	SOIL	XXXXXXX	30	1	NONE	1	1209154
1209154-2	MS	BEAD30489_MFC	SOIL	9/10/2012	30.48	1	NONE	1	1209154
1209154-2	MSD	BEAD30489_MFC	SOIL	9/10/2012	30.11	1	NONE	1	1209154
1209154-10	SMP	BEAD30497_MFC	SOIL	9/10/2012	30.63	1	NONE	1	1209154
1209154-11	SMP	BEAD30498_MFC	SOIL	9/10/2012	30.42	1	NONE	1	1209154
1209154-2	SMP	BEAD30489_MFC	SOIL	9/10/2012	30.52	1	NONE	1	1209154
1209154-3	SMP	BEAD30490_MFC	SOIL	9/10/2012	30.63	1	NONE	1	1209154
1209154-6	SMP	BEAD30493_MFC	SOIL	9/10/2012	30.12	1	NONE	1	1209154
1209154-7	SMP	BEAD30494_MFC	SOIL	9/10/2012	30.86	1	NONE	1	1209154

In generating this benchsheet, prep analyst states that all aspects of sample preparation as set forth in the appropriate SOP's (including Kuderna-Danish temperatures, proper flow settings on the N-evap, and final volumes) were properly adhered to (unless otherwise noted herein).

QC Types

CAR	Carrier reference sample
ß	Laboratory Control Sample
MB	Method Blank
MSD	Laboratory Matrix Spike Duplicate
RVS	Reporting Level Verification Standar
SYS	Sample Yield Spike

DUP	Laboratory Duplicate
LCSD	Laboratory Control Sample Duplicat
MS	Laboratory Matrix Spike
REP	Sample replicate
SMP	Fleid Sample

Page 1 of 1

ALS Environmental -- FC

Date Printed: Wednesday, September 19, 2012

5**B**

Semi-Volatile Organic GC/MS Tuning And Mass Calibration--Decafluorotriphenylphosphine (DFTPP)

Lab Name: ALS Environmental – FC DFTPP Injection Date: Work Order Number: 1209154 DFTPP Injection Time:

Client Name: Battelle Energy Alliance Instrument ID: HPSV4
ClientProject ID: BEA030488MFC Biodiesel Tank Removal ,TOS-A1175
Reported on: Wednesday, September 19, 2012

FileID: S00428

9/18/2012

11:43

m/e	Ion Abundance Criteria SW8270SIMPAHD	% Relative Abundance
51	30.0 - 60.0 percent of mass 198	45.1
68	Less than 2.0 percent of mass 69	0
69	Mass 69 relative abundance of mass 198	46.9
70	Less than 2.0 percent of mass 69	0.5
127	40.0 - 60.0 percent of mass 198	51.5
197	Less than 1.0 percent of mass 198	0
198	Base peak, 100 percent of relative abundance	100
199	5.0 - 9.0 percent of mass 198	6.7
275	10.0 - 30.0 percent of mass 198	25.8
365	Greater than 1.00 percent of mass 198	2.8
441	Present, but less than mass 443 (percent of 443)	82.4
442	Greater than 40.0 percent of mass 198	82.6
443	17.0 - 23.0 percent of mass 442	19.3

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID
XXXXXXXX	ICALSVSTD0500CSTD	S00429	9/18/2012	11:54	SV120918-4
XXXXXXXX	ICALSVSTD0050CSTD	S00430	9/18/2012	12:13	SV120918-4
XXXXXXXX	ICALSVSTD0100CSTD	S00431	9/18/2012	12:32	SV120918-4
XXXXXXXX	ICALSVSTD0200CSTD	S00432	9/18/2012	12:52	SV120918-4
XXXXXXXX	ICALSVSTD1000CSTD	\$00433	9/18/2012	13:11	SV120918-4
XXXXXXXX	ICALSVSTD2000CSTD	S00434	9/18/2012	13:30	SV120918-4
XXXXXXXX	ICALSVSTD5000CSTD	S00435	9/18/2012	13:49	SV120918-4
XXXXXXXX	ICVSVSTD2000ICV	S00436	9/18/2012	14:08	SV120918-4
XXXXXXX	EX120917-8MB	S00437	9/18/2012	14:38	EX120917-8-1
XXXXXXXX	EX120917-8LCS	S00438	9/18/2012	14:57	EX120917-8-1
XXXXXXXX	EX120917-8LCSD	S00439	9/18/2012	15:17	EX120917-8-1
BEA030490_MFC	1209154-3	S00440	9/18/2012	15:41	EX120917-8-1
BEA030489_MFC	1209154-2	S00441	9/18/2012	16:01	EX120917-8-1

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC

Page 1 of 2

5**B**

Semi-Volatile Organic GC/MS Tuning And Mass Calibration--Decafluorotriphenylphosphine (DFTPP)

 Lab Name:
 ALS Environmental -- FC
 DFTPP Injection Date:
 9/18/2012

 Work Order Number:
 1209154
 DFTPP Injection Time:
 11:43

 Client Name:
 Battelle Energy Alliance
 Instrument ID:
 HPSV4

ClientProject ID: BEA030488MFC Biodiesel Tank Removal ,TOS-A1175

Reported on: Wednesday, September 19, 2012

FileID: S00428

m/e	Ion Abundance Criteria SW8270SIMPAHD	% Relative Abundance
51	30.0 - 60.0 percent of mass 198	45.1
68	Less than 2.0 percent of mass 69	0
69	Mass 69 relative abundance of mass 198	46.9
70	Less than 2.0 percent of mass 69	0.5
127	40.0 - 60.0 percent of mass 198	51.5
197	Less than 1.0 percent of mass 198	0
198	Base peak, 100 percent of relative abundance	100
199	5.0 - 9.0 percent of mass 198	6.7
275	10.0 - 30.0 percent of mass 198	25.8
365	Greater than 1.00 percent of mass 198	2.8
441	Present, but less than mass 443 (percent of 443)	82.4
442	Greater than 40.0 percent of mass 198	82.6
443	17.0 - 23.0 percent of mass 442	19.3

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID
BEA030489_MFC	1209154-2MS	S00442	9/18/2012	16:20	EX120917-8-1
BEA030489_MFC	1209154-2MSD	S00443	9/18/2012	16:39	EX120917-8-1
BEAD30494_MFC	1209154-7	S00444	9/18/2012	16:58	EX120917-8-1
BEA030498_MFC	1209154-11	S00445	9/18/2012	17:17	EX120917-8-1
BEA030493_MFC	1209154-6	S00446	9/18/2012	17:38	EX120917-8-1
BEA030497_MFC	1209154-10	S00447	9/18/2012	17:56	EX120917-8-1
BEAD30493_MFC	1209154-6RR1	S00448	9/18/2012	18:15	EX120917-8-1

Data Package ID: SV1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC
LIMS Version: 6.611

Page 2 of 2

	800435.D 5000	880434.0 2900	800433.D 5999	813429.D 613	800432,D 200	990431,D 100	800430,D 60	Average	14850	Cave type	Corr (12)	quadierra linear larm constitum
Naphibalene-dii												
Nitrobenzone-cl5	0.329	0.329	0,318	0.309	0.219	0.287	0.317	0.315	4.517	Avg Its	16.	
Naphthalene	1,042	1.449	1.041	1,009	1,029	1,057	1,072.	1.038	2.152	Avy RP	RE.	
2-Methyl raphthaleno	9,630	0.643	0,654	0,633	0,042	0,632	0,853	0.642	1.346	Avg RP	66	
5-Min Byll supublishing	0,536	0.619	0.630	0.614	0.636	0.807	0.838	8.625	1.917	Avg RF	100	
Acondyl/thane-d10												
2-Pla wehiph eay!	1,456	1.404	1,490	1,395	1.415	1,496	E.444	1.433	2.225	Avg For	hei.	
Acceptablytone	1,811	1.737	1.757	1,700	1.736	1,793	1,760	1,757	1.379	Ave RP	ne.	
Ascentifitere	1,056	1.029	1.054	1.043	1.029	1,080	5,518	1.050	3,095	Avg RF	100	
Fluorene	1.194	1.345	1.478	1.151	1.177	1.170	1.200	1.188	4.398	Avg RF	PIRE.	
Phonanthrens-d10												
Hacadilarobangene	0.172	0.165	0.173	0.177	0.176	0.194	0.552	0,583	10.571	Avg R*	E/A	
Phenodwere	1,040	0.965	1.022	0.993	1.037	1.104	1.150	1,049	5,931	Avg RF	ne	
Authroome	1,038	0,960	1,602	0.990	1.005	1.055	1.089	1,022	4.002	Avg RF	ries	
Fluoranthone	1,095	0,993	1.072	1.090	1.935	1.175	1.280	1,108	6.962	Avg RF	nei	
Chryserso-dil2												
Persons	1,316	1,395	1,334	1.357	1,990	1,649	1,584	1.455	9,300	Avg RF	FIRE	
p-Teichend-d14	0,900	0,960	0.966	0.496	1,044	1.085	1,044	0.976	8,224	Avg MP	PE	
Berzeinlanffrracene	1.029	1,005	1.004	1.020	1,005	1.570	1.289	1.067	9.790	Avg RF	na	
Ctuye uno	0.953	0.937	0.961	0.936	0.970	1.637	1,067	0.882	6,104	Ava RF	Dia.	
Psylene-d12												
Benzob/faeranthona	1,327	1,216	1.279	1.232	1,299	1.347	1,004	1,309	9,360	Avg MP	110	
Benzoldfunanthere	1,162	1,154	1.122	1.162	1,110	1.250	1,210	1,163	4.460	Avg MF	179.	
Bestololayrena	1.042	1,009	1.015	1.013	1.027	1.029	1,152	1,847	4.894	Avg RF	99	
indono(1,2,3-c,diggroups	0.963	0.917	0.875	0.511	0.913	0.912	0.937	0.610	2,062	Avg RF	8.0	
Disensola Hanthricone	0.222	0,734	0.677	0.716	0.718	0.726	0.742	0.717	2.919	Aug Ith	86	
Benzolg bylg sylene	0.273	0,779	0,777	0.539	0.823	0.636	0,882	9,812	4,827	Aug RI ^a	M.E.	
	2.01.0	-3110					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	E11				

VERADE« 4.007

949-1V

29 of 33

#(MC#(23/0)/96

MESDCHERGUST RPT/FORMA-1260-1812SH4.CRT

Page 1 of 1

Criminal changist Adad w/ College 2008 04 (3 L.D.

FORM 7 Continuing Calibration Verification Report

HPSV4 FORM7 IOV METHOD: 09181253W4.M RUN DATE: 8/18/2012 14:08

							% Day or	Area %	R.T. Dev	Curve Fit
		Compound	ANGRE	CORF	Exat Cond	Found Cons	% Orth	Difference	<u>Omino</u>	Type
- 19	ISTO	Naphthalene-d8	1,000	1,000					0:00	Ave RF
3)		Naphthalene	1.039	0.968			-7.9	460	0.00	Ave RF
4)		2-Methylinaphilissiene	0.642	0.591			-8.0	453	0.00	Ave RF
5)		1-Methylinophthalene	0.625	0,645			-12.7	431	0.00	Ave RF
6)	ISTO	Acenaphthene-410		1,000					0.00	Ave RF
6)		Acenaphthylene	1.757	1.572			-10.5	451	0.00	Ave RF
9)		Acenephihene	1.080	0.960			-10.3	445	0.00	Ave RP
10)		Fluorene	1.188	1,070			-9.9	465	0.00	Ave RF
11)	ISTD	Phononthrone-d10		1.000					-0.01	Ave RF
12)		Hexaphiorobenzene	0.183	0.159			-13.1	428	0.00	Ave RF
13)		Phonombrone	1.040	0.918			-12.4	441	0.00	Ave RF
14)		Anthracena	1.022	0.931			-6.9	453	-0.01	Ave RF
15)		Fluoranthone	1,106	0.914			-17.4	396	0.00	Ave RF
16)	ISTD	Chrysens-d12		1.000					0.00	Ave RF
17)		Pyrene	1.458	1.254			-13.5	288	-0.01	Ave RF
19)		Benzo(a)anthracens	1.087	0.914			-15,0	387	0,00	Ave RF
20)		Chrysene	0,982	0.829			-15.5	382	0.00	Ave RF
21)	ISTO	Perylene-d12		1.000					0,00	Ave RF
22)		Benzo(b)Buoranthono	1,309	1,130			-13.7	381	0.00	Ave RF
23)		Benzo(k)fluorantivene	1,168	1.038			-11.2	371	0.00	Ave RP
24)		Benzo(alpyrene	1.047	0,929			-11.3	381	0.00	Ave RF
25)		indeno(1,2,3-e,d)pyrene	0.910	0.878			-3.5	400	0.00	Ave RF
26)		Dibenzo(a,hjanihracene	0.717	0.707			-1.4	415	0.00	Ave RF
27)		Benzo(g.h.)perylene	0.812	0.761			-6,3	386	-0.01	Ave RF

Average of absolute value : 10.7

هر ۹-۱8-۱۷

30 of 33

Fige 1 of 1 C.1 madehem/ouetrpit/FORMT/ICV-SIMPAH.CRT

8**B**

Semi-Volatile Internal Standard Area Summary

Lab Name: ALS Environmental – FC Date Analyzed: 9/18/2012
Work Order Number: 1209154 Time Analyzed: 11:54

Client Name: Battelle Energy Alliance

ClientProject ID: BEA030488 MFC Biodiesel Tank Removal ,TOS-A1175 Reported on: Wednesday, September 19, 2012

Instrument ID: HPSV4 Lab File ID: S00429

1	IS1		IS2		IS3		IS4		IS5		IS6	
	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
12 Hour STD			663711	5.46	320471	7	455222	8.29	366097	10.61	238070	12.26
Upper Limit			1327422	5.96	640942	7.5	910444	8.79	732194	11.1	476140	12.8
Lower Limit			331856	4.96	160236	6.5	227611	7.79	183049	10.1	119035	11.8
Lab Sample ID												
EX120917-8MB			761285	5.46	360553	7.00	502621	8.29	374888	10.61	215323	12.25
EX120917-8LCS			844780	5.46	409464	7.00	580766	8.29	451967	10.61	267731	12.26
EX120917-8LCSD			875228	5.46	415221	7.00	602796	8.29	467762	10.61	270761	12.26
1209154-3			868120	5.46	421043	7.01	573427	8.30	408426	10.62	256486	12.28
1209154-2			945851	5.46	452767	7.01	561273	8.30	352897	10.61	215943	12.26
1209154-2MS		S	961130	5.47	505164	7.01	662984	8.30	502318	10.61	320076	12.26
1209154-2MSD			976219	5.46	504037	7.01	696484	8.30	595857	10.61	417970	12.26
1209154-7			930252	5.46	436394	7.00	624193	8.29	504627	10.61	367635	12.26
1209154-11			1017470	5.46	471365	7.00	620072	8.30	638213	10.61	449258	12.26
1209154-6			941908	5.46	440761	7.00	577514	8.29	597092	10.61	363068	12.26
1209154-10			929303	5.46	434067	7.00	550419	8.29	491494	10.61	323058	12.26
1209154-6RR1		-	959889	5.46	455237	7.00	591849	8.30	698989	10.61	452921	12.26

Shaded values exceed established area count limits.

LIMS Version: 6.611

Upper Limit = + 100 percent of internal standard area. Lower Limit = -50 percent of internal standard area. $31\ of\ 33$

Supporting Raw Data

Last Modified: The Sep 18 18:09:48 2012 Page:

Run Log	
strument	dnox9 /
rolatile Ir	Laboratory
Semil	ALS
GCMS	

-	Vestomber 18 , 2012 X
	Date:
s rev:16	Analysis Date:
1812.	Operator:JK HPSV4 sn #: CV11451177 IS Amount and ID HOMM SCHOB2~1 Logbook Number: 4117

	CHILL]																	Sective	- 1	31:81 34Hoos	1
Comment	ST00730-(- ZIE 0 917 -	5-1050015	57 12 CP107-6	ST120507-7	3T125507-8	57120907-9	ST120507-10	STILOSOJ-II													OK
RAS	Ð	-			-	-			+				-	-	-			-		-	1	,
D11.	-	-	-										-	-	-					>	X	_
Method Sample Name	DETER DETER	091812SIM4 ICALSVSTD0500	091812SIM4 ICALSVSTD0050	091812SIM4 ICALSVSTD0100	091812SIM4 ICALSVSTD0200	091812SIM4 ICALSVSTD1000	091812SIM4 ICALSVSTD2000	091812SIM4 ICALSVSTD5000	091812SIM4 ICVSVSTD2000	091812SIM4 EX120917-8MB	091812SIM4 EX120917-8LCS	091812SIM4 EX120917-8LCSD	7	091812SIM4 1209154-2	091812SIM4 1209154-2MS	091812SIM4 1209154-2MSD	091812SIM4 1209154-7	091812SIM4 1209154-11	1209154	091812SIM4 1209154-10		091812SIM4 INSTRUMENT BLAN
al DataFile	1 800428	2 \$00429	3 \$00430	4 S00431	5 500432	6 800433	7 S00434	8 S00435	9 S00436	10 S00437	Н	12 800439	13 S00440	14 S00441	15 S00442	16 500443	17 S00444	18 S00445	19 S00446	20 S00447	21 S00448	22 S00449
Line Type Via	T DETER	CHES	ampl	Sampl	02	Sampl	Sampl	Sampl	Sampl	0 Sampl	1 Sampl	2 Samp	3 Sampl	4	5 Sampl	S	7 Sampl	8 Sampl	9 Samp	0	Samp]	
	•																					

33 of 33

GC/MS Volatiles Case Narrative

Battelle Energy Alliance

MFC Biodiesel Tank Removal, TOS-A1175 -- BEA030488

Work Order Number: 1209154

- This report consists of 6 soil samples. The samples were received cool and intact by ALS on 09/12/12.
- These samples were prepared according to SW-846, 3rd Edition procedures. Specifically, the soil samples were prepared using a heated purge based on Method 5035A.
- 3. The samples were analyzed using GC/MS with an RTX-624, RTX-VMS, or equivalent capillary column according to the current revision of SOP 525 based on SW-846 Method 8260. All positive results were quantitated against the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and mass spectrum of the sample versus the daily calibration standard.
- 4. All initial calibration criteria were met.
- All initial calibrations are verified by comparing a second source standard calibration verification (ICV) against the calibration curve. All criteria for initial calibration verification were met.
- 6. All criteria were met in daily (continuing) calibration verifications (CCV).
- 7. Methylene chloride, acetone and 2-butanone are common laboratory contaminants. In order to minimize the levels of these compounds detected in the gc/ms analysis, ALS has designated its volatile laboratory as a restricted access area. In addition, the laboratory has been equipped with a dedicated, air intake and exhaust system that operates under positive pressure in order to minimize cross contamination of these compounds. Due to fluctuations in ambient laboratory conditions, reported sample values for common laboratory contaminants may be due to lab contamination even if the compound in question is not detected in the associated method blank.

All method blank criteria were met.

- All laboratory control sample and laboratory control sample duplicate recoveries and RPDs were within the acceptance criteria.
- Sample 1209154-1 was designated as the quality control sample for this analysis. Similarity of
 matrix and therefore relevance of the QC results should not be automatically inferred for any
 sample other than the native sample selected for QC.

All matrix spike and matrix spike duplicate recoveries and RPDs were within acceptance criteria with the following exceptions:

Spiked Compound	QC Sample	Direction
Ethylbenzene	MS	Low
M+P-Xylene	MS	Low
O-Xylene	MS	Low

The recoveries of these compounds in the laboratory control sample and laboratory control sample duplicate were within control limits, which suggest the outliers in the matrix spikes may have been due to matrix effects. No further action was taken.

- 10. The samples were analyzed within the established holding time.
- 11. All surrogate recoveries were within acceptance criteria.
- 12. All internal standard recoveries were within acceptance criteria.
- Manual integrations are performed when needed to provide consistent and defensible data following the guidelines in the current revision of SOP 939.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Emily Lyard Emily Lyars Organics Primary Data Reviewer

Date

type warus

Data

ALS Data Qualifier Flags Chromatography and Mass Spectrometry

U or ND: This flag indicates that the compound was analyzed for but not detected.

This flag indicates an estimated value. This flag is used as follows: (1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; (2) when the mass spectral and retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the reporting limit (RL) but greater than the method detection limit (MDL); (3) when the retention time data indicate the presence of a compound that meets the GC identification criteria, and the result is less than the RL but greater than the MDL; and (4) the reported value is

estimated.

J:

B: This flag is used when the analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user. This flag shall be used for a tentatively identified compound (TIC) as well as for a positively identified target compound.

E: This flag identifies compounds whose concentration exceeds the upper level of the calibration range.

A: This flag indicates that a tentatively identified compound is a suspected aldol-condensation product.

X: This flag indicates that the analyte was diluted below an accurate quantitation level.

This flag indicates that a spike recovery is equal to or outside the control criteria used.

This flag indicates that the relative percent difference (RPD) equals or exceeds +: the control criteria.

Chain of Custody

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1209154

Client Name: Battelle Energy Alliance

Client Project Name: MFC Biodiesel Tank Removal ,TOS-A1175

Client Project Number: BEA030488 Client PO Number: SOW-8500

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
BEA030488_MFC	1209154-1		SOIL	10-Sep-12	14:36
BEA030489_MFC	1209154-2		SOIL	10-Sep-12	14:36
BEA030490_MFC	1209154-3		SOIL	10-Sep-12	14:22
BEA030491_MFC	1209154-4		SOIL	10-Sep-12	14:22
BEA030492_MFC	1209154-5		SOIL	10-Sep-12	13:41
BEA030493_MFC	1209154-6		SOIL	10-Sep-12	13:41
BEA030494_MFC	1209154-7		SOIL	10-Sep-12	13:55
BEA030495_MFC	1209154-8		SOIL	10-Sep-12	13:55
BEA030496_MFC	1209154-9		SOIL	10-Sep-12	14:44
BEA030497_MFC	1209154-10		SOIL	10-Sep-12	14:44
BEA030498_MFC	1209154-11		SOIL	10-Sep-12	14:28
BEA030499_MFC	1209154-12		SOIL	10-Sep-12	14:28

Page 1 of 1 ALS Environmental -- FC

Date Printed: Wednesday, September 19, 2012

Chain of Custody Number: 5300 9533 5010

1209154

Laboratory: ALS Laboratory Group

Facility: Contact:

Jeff Kujawa

Phone: 970-490-1511 Address:

225 Commerce Drive Fort Collins CO 80524

Sample Number	Sample Details			
BEA030488_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTB 9/10/2012 2:36:00 PM TOS-A1175 SOIL	E\IVOA-A-018\ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030489_MFC Z	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 2:36:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030490_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 2:22:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030491_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTB 9/10/2012 2:22:00 PM TOS-A1175 SOIL	E \ IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030492_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBI 9/10/2012 1:41:00 PM TOS-A1175 SOIL	E\IVOA-A-018\ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030493_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 1:41:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space

Idoho N	ational Laboratory	Chain of Custod	ly Number: 5300	9533 5010
BEA030494_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 1:55:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	l - 4 oz amber glass N cool, no head space
BEA030495_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBE \ 9/10/2012 1:55:00 PM TOS-A1175 SOIL	IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030496_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBE \ 9/10/2012 2:44:00 PM TOS-A1175 SOIL	IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
BEA030497_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/10/2012 2:44:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030498_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH \ ISVO-A-014 \ 9/10/2012 2:28:00 PM TOS-A1175 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
BEA030499_MFC	Analysis: Sample Date:	TOS-A1175	VOA-A-018 \ Container Qty - Type: Filtered? Preservative:	I - 4 oz amber glass N cool, no headspace

Monday, September 10, 2012

Relinquished By:	Date: 9/11/12	Time: 1444	Received By:	Date: Time
omments:				

Monday, September 10, 2012

Pageof 36

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client: BEA Workorder No: 1209/5	-1	
Project Manager: JK Initials: (Drew Date:	9-12-1	>
Does this project require any special handling in addition to standard ALS procedures?	YES	NO
2 Are custody seals on shipping containers intact?	(YES)	NO
3. Are Custody seals on sample containers intact?	YES	NO
Is there a COC (Chain-of-Custody) present or other representative documents?	YES	NO
5. Are the COC and bottle labels complete and legible?	(YES)	NO
6 Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)	Ý	NO
Were airbills / shipping documents present and/or removable?	CYES	NO
Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	YES	NO
9. Are all aqueous non-preserved samples pH 4-9?	YES	NO
10. Is there sufficient sample for the requested analyses?	YES	NO
Were all samples placed in the proper containers for the requested analyses?	TI	NO
Are all samples within holding times for the requested analyses?	(YES	NO
Were all sample containers received intact? (not broken or leaking, etc.)	CYES	NO
Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea > green pea	YES	NO
Do any water samples contain sediment? Amount		
Amount of sediment:dusting moderateheavy	YES	NO
16. Were the samples shipped on ice?	YES	NO
Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: (#2) #4 ONLY	(YES)	NO
Cooler#:		
Temperature (°C): 7.0		
No. of custody seals on cooler: Z		
DOT Survey Acceptance External μR/hr reading: (>		
Background μR/hr reading:		
Were external µR/hr readings ≤ two times background and within DOT acceptance criteria? YES / NO / NA (19no, see Form 008.)		
Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXCEPT #1 A	MD #16	
ALL OF THE VECTOR OF THE PARTY	ND #10.	
f applicable, was the client contacted? YES / NO (NA Contact: Date/Tin		
Project Manager Signature / Date: Date/Tin	ie:	
*IR Gun #2*Oakton, SN 29922500201-0066 *IR Gun #4: Oakton, SN 2372220101-0002	9 of	36

Analytical Results

Method SW8260C Method Blank

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Lab ID: VL120917-2MB

 Sample Matrix: SOIL
 Prep Batch: VL120917-2

 % Moisture: N/A
 QCBatchID: VL120917-2-2

 Date Collected: N/A
 Run ID: VL120917-2A

 Date Extracted: 17-Sep-12
 Cleanup: NONE

Date Analyzed: 17-Sep-12 Basis: N/A Prep Method: SW5035 Rev A File Name: B79255

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
1634-04-4	METHYL TERTIARY BUTYL ETHER	- 1	5	5	U	200
107-08-2	1,2-DICHLOROETHANE	- 1	5	5	U	
71-43-2	BENZENE	- 1	5	5	U	
108-88-3	TOLUENE	- 1	5	5	U	(A)
106-93-4	1,2-DIBROMOETHANE	- 1	5	5	U	
100-41-4	ETHYLBENZENE	- 1	5	5	U	
136777-61-2	M+P-XYLENE	- 1	5	5	U	
95-47-6	O-XYLENE	1	5	5	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	50.2		50	100	52 - 151
1868-53-7	DIBROMOFLUOROMETHANE	49.9		50	100	61 - 134
2037-26-5	TOLUENE-D8	49.4		50	99	57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 1 of 1

Sample Aliquot:

Final Volume:

Result Units: UG/KG

Clean DF:

5g

5 ml

Method SW8260 Revision C Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030488_MFC
Lab ID: 1209154-1

Sample Matrix: SOIL % Moisture: 12.3 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 17-Sep-12

Prep Method: SW5035 Rev A

Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Claraup: NONE Basis: Dry Weight File Name: 879256

Analyst: Tyler Knaebel Sample Aliquot: 5 G Final Volume: 5 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
1634-04-4	METHYL TERTIARY BUTYL ETHER	1	5.7	5.7	U	
107-06-2	1,2-DICHLOROETHANE	1	5.7	5.7	U	
71-43-2	BENZENE	1	5.7	5.7	U	
108-88-3	TOLUENE	1	5.7	5.7	U	
106-93-4	1,2-DIBROMOETHANE	1	5.7	5.7	U	
100-41-4	ETHYLBENZENE	1	5.7	5.7	U	
136777-61-2	M+P-XYLENE	1	5.7	5.7	U	
95-47-6	O-XYLENE	1	5.7	5.7	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	55.9		57	98	52 - 151
1888-53-7	DIBROMOFLUOROMETHANE	55.6		57	97	61 - 134
2037-26-5	TOLUENE-D8	57		57	100	57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 1 of 6

Method SW8260 Revision C Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030491_MFC
Lab ID: 1209154-4

Sample Matrix: SOIL % Moisture: 15.6 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 17-Sep-12

Prep Method: SW5035 Rev A

Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE Basis: Dry Weight File Name: B79257 Analyst: Tyler Knaebel Sample Aliquot: 5 G Final Volume: 5 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
1634-04-4	METHYL TERTIARY BUTYL ETHER	1	5.9	5.9	U	
107-06-2	1,2-DICHLOROETHANE	1	5.9	5.9	U	
71-43-2	BENZENE	1	5.9	5.9	U	9
108-88-3	TOLUENE	1	5.9	5.9	U	
106-93-4	1,2-DIBROMOETHANE	1	5.9	5.9	U	
100-41-4	ETHYLBENZENE	1	5.9	5.9	U	9
136777-61-2	M+P-XYLENE	1	5.9	5.9	U	4
95-47-6	O-XYLENE	1	5.9	5.9	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	57.5		59.2	97	52 - 151
1888-53-7	DIBROMOFLUOROMETHANE	57.2		59.2	97	61 - 134
2037-26-5	TOLUENE-D8	58.8		59.2	99	57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 2 of 6

Method SW8260 Revision C Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030492_MFC
Lab ID: 1209154-5

Sample Matrix: SOIL % Moisture: 8.7 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 17-Sep-12 Prep Method: SW5035 Rev A Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE Basis: Dry Weight

File Name: B79258

Analyst: Tyler Knaebel Sample Aliquot: 5 G Final Volume: 5 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
1634-04-4	METHYL TERTIARY BUTYL ETHER	1	5.5	5.5	U	
107-06-2	1,2-DICHLOROETHANE	1	5.5	5.5	U	9
71-43-2	BENZENE	1	5.5	5.5	U	·
108-88-3	TOLUENE	1	5.5	5.5	U	
106-93-4	1,2-DIBROMOETHANE	1	5.5	5.5	U	9
100-41-4	ETHYLBENZENE	1	5.5	5.5	U	9
136777-61-2	M+P-XYLENE	1	5.5	5.5	U	· ·
95-47-6	O-XYLENE	1	5.5	5.5	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	53.5		54.8	98	52 - 151
1888-53-7	DIBROMOFLUOROMETHANE	53.6		54.8	98	61 - 134
2037-26-5	TOLUENE-D8	54.8		54.8	100	57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC

LIMS Version: 6.611

Page 3 of 6

Method SW8260 Revision C Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030495_MFC
Lab ID: 1209154-8

Sample Matrix: SOIL % Moisture: 12.1 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 17-Sep-12 Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE Basis: Dry Weight

Analyst: Tyler Knaebel Sample Aliquot: 5 G Final Volume: 5 ML Result Units: UG/KG Clean DF: 1

Date Analyzed: 17-Sep-12 Basis: Dry Weig Prep Method: SW5035 Rev A File Name: B79259

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
1634-04-4	METHYL TERTIARY BUTYL ETHER	1	5.7	5.7	U	9
107-06-2	1,2-DICHLOROETHANE	1	5.7	5.7	U	
71-43-2	BENZENE	1	5.7	5.7	U	
108-88-3	TOLUENE	. 1	5.7	5.7	U	ç .
106-93-4	1,2-DIBROMOETHANE	1	5.7	5.7	U	
100-41-4	ETHYLBENZENE	1	5.7	5.7	U	
136777-61-2	M+P-XYLENE	1	5.7	5.7	U	
95-47-6	O-XYLENE	. 1	5.7	5.7	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	55.5		56.9	98	52 - 151
1888-53-7	DIBROMOFLUOROMETHANE	55.1		56.9	97	61 - 134
2037-26-5	TOLUENE-D8	54.9		56.9	97	57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 4 of 6

GC/IVIO VOIALIICS

Method SW8260 Revision C Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030496_MFC
Lab ID: 1209154-9

Sample Matrix: SOIL % Moisture: 11.7 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 17-Sep-12

Prep Method: SW5035 Rev A

Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE Basis: Dry Weight

File Name: B79260

Analyst: Tyler Knaebel
Sample Aliquot: 5 G
Final Volume: 5 ML
Result Units: UG/KG
Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
1634-04-4	METHYL TERTIARY BUTYL ETHER	1	5.7	5.7	U	
107-06-2	1,2-DICHLOROETHANE	1	5.7	5.7	U	
71-43-2	BENZENE	1	5.7	5.7	U	
108-88-3	TOLUENE	1	5.7	5.7	U	
106-93-4	1,2-DIBROMOETHANE	1	5.7	5.7	U	
100-41-4	ETHYLBENZENE	1	5.7	5.7	U	
136777-61-2	M+P-XYLENE	1	5.7	5.7	U	
95-47-6	O-XYLENE	1	5.7	5.7	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	54.3		56.6	96	52 - 151
1868-53-7	DIBROMOFLUOROMETHANE	54.1		56.6	96	61 - 134
2037-26-5	TOLUENE-D8	55.6		56.6	98	57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 5 of 6

Method SW8260 Revision C Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Field ID: BEA030499_MFC
Lab ID: 1209154-12

Sample Matrix: SOIL % Moisture: 9.9 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12 Date Analyzed: 17-Sep-12 Prep Method: SW5035 Rev A Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE Basis: Dry Weight

File Name: B79261

Analyst: Tyler Knaebel Sample Aliquot: 5 G Final Volume: 5 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
1634-04-4	METHYL TERTIARY BUTYL ETHER	1	5.5	5.5	C	
107-08-2	1,2-DICHLOROETHANE	1	5.5	5.5	Ω	
71-43-2	BENZENE	1	5.5	5.5	U	
108-88-3	TOLUENE	1	5.5	5.5	C	
106-93-4	1,2-DIBROMOETHANE	1	5.5	5.5	U	
100-41-4	ETHYLBENZENE	1	5.5	5.5	U	
136777-61-2	M+P-XYLENE	1	5.5	5.5	U	
95-47-6	O-XYLENE	1	5.5	5.5	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	53.8		55.5	97	52 - 151
1868-53-7	DIBROMOFLUOROMETHANE	53.6		55.5	97	61 - 134
2037-26-5	TOLUENE-D8	54.7		55.5	99	57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611 Page 6 of 6

Supporting QA/QC Data

Surrogate Summary for GC/MS Volatiles

Method SW8260C

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

PrepBatchID: VL120917-2
QC Batch ID: VL120917-2-2
Date Extracted: 9/17/2012

Surrogate Compound	Control Lower	
Dibromofluoromethane	61	134
Toluene-d8	57	135
4-Bromofluorobenzene	52	151
1,2-dichloroethane-d4		

Lab ID	Client Sample ID	Date Collected	Date Received	DBFM % Recovery	BZMED8 % Recovery	BR4FBZ % Recovery	12DCED4 % Recovery
VL120917-2LCS	XXXXXXX	NA	XXXXXXXX	102	97	100	m 07
VL120917-2LCSD	XXXXXXX	NA	XXXXXXXX	100	98	101	100 EX
VL120917-2MB	XXXXXXX	NA	XXXXXXXX	100	99	100	
1209154-9	BEAD30496_MFC	9/10/2012	9/12/2012	96	98	96	
1209154-8	BEAD30495_MFC	9/10/2012	9/12/2012	97	97	98	
1209154-5	BEAD30492_MFC	9/10/2012	9/12/2012	98	100	98	
1209154-4	BEAD30491_MFC	9/10/2012	9/12/2012	97	99	97	
1209154-12	BEAD30499_MFC	9/10/2012	9/12/2012	97	99	97	
1209154-1MS	BEAD30488_MFC	9/10/2012	9/12/2012	97	99	99	
1209154-1MSD	BEAD30488_MFC	9/10/2012	9/12/2012	99	99	98	
1209154-1	BEAD30488_MFC	9/10/2012	9/12/2012	97	100	98	

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012 Shaded values exceed established control limits.

ALS Environmental -- FC LIMS Version: 6.611 Page 1 of 1

Method SW8260C

Laboratory Control Sample and Laboratory Control Sample Duplicate

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Lab ID: VL120917-2LCS

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A Date Extracted: 09/17/2012

QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE Date Analyzed: 09/17/2012 Basis: N/A Prep Method: SW5035A File Name: B79253

Sample Aliquot: 5 g Final Volume: 5 ml Result Units: UG/KG Clean DF:

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
1634-04-4	METHYL TERTIARY BUTYL ETHER	80	81.2	5		102	50 - 125%
107-06-2	1,2-DICHLOROETHANE	40	37.3	5		93	72 - 137%
71-43-2	BENZENE	40	38.5	5		96	73 - 126%
108-88-3	TOLUENE	40	38	5		95	71 - 127%
106-93-4	1,2-DIBROMOETHANE	40	42.3	5		106	70 - 124%
100-41-4	ETHYLBENZENE	40	37.5	5		94	74 - 127%
136777-61-	M+P-XYLENE	80	76.1	5		95	79 - 126%
95-47-6	O-XYLENE	40	38.4	5		96	77 - 125%

Lab ID: VL120917-2LCSD

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A

Date Extracted: 09/17/2012 Date Analyzed: 09/17/2012 Prep Method: SW5035A

Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE

Prep Batch: VL120917-2

Basis: N/A File Name: B79254 Sample Aliquot: 5 g Final Volume: 5 ml Result Units: UG/KG Clean DF:

CASNO	Target Analyte	Spike Added	LCSD Result	Reporting Limit	Result Qualifier	LCSD % Rec.	RPD Limit	RPD
1634-04-4	METHYL TERTIARY BUTYL ETHER	80	77.1	5		96	30	5
107-08-2	1,2-DICHLOROETHANE	40	36.2	5		91	30	3
71-43-2	BENZENE	40	36.3	5		91	30	6
108-88-3	TOLUENE	40	35.1	5	,	88	30	8
106-93-4	1,2-DIBROMOETHANE	40	40.1	5	0	100	30	5
100-41-4	ETHYLBENZENE	40	35.3	5		88	30	6
136777-61-	M+P-XYLENE	80	70.1	5		88	30	8
95-47-6	O-XYLENE	40	35.2	5		88	30	9

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611

Page 1 of 2

Method SW8260C

Laboratory Control Sample and Laboratory Control Sample Duplicate

Lab Name: ALS Environmental - FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Surrogate Recovery LCS/LCSD

CASNO	Target Analyte	Spike Added	LCS % Rec.	LCS Flag	LCSD % Rec.	LCSD Flag	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	50	100		101		52 - 151
1888-53-7	DIBROMOFLUOROMETHANE	50	102		100	3	61 - 134
2037-26-5	TOLUENE-D8	50	97		98		57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC

Page 2 of 2

Method SW8260C Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal , TOS-A1175 BEA030488

Field ID: BEA030488_MFC ...
LabID: 1209154-1MS

Sample Matrix: SOIL % Moisture: 12.3 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12

QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE Basis: Dry Weight

Prep Batch: VL120917-2

Sample Aliquot: 5 g Final Volume: 5 ml Result Units: UG/KG File Name: B79262

Date Analyzed: 17-Sep-12 Prep Method: SW5035 Rev A

CASNO	Target Analyte	Sample Result	Samp Qual	MS Result	MS Qual	Reporting Limit	Spike Added	MS % Rec.	Control Limits
1634-04-4	METHYL TERTIARY BUTYL ETHER	5.7	U	75.7		5.7	91.2	83	50 - 125%
107-06-2	1,2-DICHLOROETHANE	5.7	U	36.3		5.7	45.6	80	72 - 137%
71-43-2	BENZENE	5.7	U	38.3		5.7	45.6	84	73 - 126%
108-88-3	TOLUENE	5.7	U	37		5.7	45.6	81	71 - 127%
106-93-4	1,2-DIBROMOETHANE	5.7	U	38.9		5.7	45.6	85	70 - 124%
100-41-4	ETHYLBENZENE	5.7	U	33.4		5.7	45.6	73	74 - 127%
136777-61-	M+P-XYLENE	5.7	U	66.1		5.7	91.2	72	79 - 126%
95-47-6	O-XYLENE	5.7	U	33.6		5.7	45.6	74	77 - 125%

 Sample Matrix: SOIL % Moisture: 12.3 Date Collected: 10-Sep-12 Date Extracted: 17-Sep-12

Date Extracted: 17-Sep-12 Date Analyzed: 17-Sep-12 Prep Method: SW5035 Rev A Prep Batch: VL120917-2 QCBatchID: VL120917-2-2 Run ID: VL120917-2A Cleanup: NONE

Basis: Dry Weight

Sample Aliquot: 5 g Final Volume: 5 ml Result Units: UG/KG File Name: B79263

CASNO	Target Analyte	MSD Result	MSD Qual	Spike Added	MSD % Rec.	Reporting Limit	RPD Limit	RPD
1634-04-4	METHYL TERTIARY BUTYL ETHER	89.2		91.2	98	5.7	30	16
107-06-2	1,2-DICHLOROETHANE	41.7	0 3	45.6	91	5.7	30	14
71-43-2	BENZENE	43.2	9	45.6	95	5.7	30	12
108-88-3	TOLUENE	43.4	9	45.6	95	5.7	30	16
106-93-4	1,2-DIBROMOETHANE	45.6		45.6	100	5.7	30	16
100-41-4	ETHYLBENZENE	40.2	9	45.6	88	5.7	30	19
136777-61-	M+P-XYLENE	80.3		91.2	88	5.7	30	19
95-47-6	O-XYLENE	40.9		45.6	90	5.7	30	19

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LMS Version: 6.611 Page 1 of 2

Method SW8260C Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1209154

Client Name: Battelle Energy Alliance
ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 BEA030488

Surrogate Recovery MS/MSD

CASNO	Target Analyte	Spike Added	MS % Rec.	MS Flag	MSD % Rec.	MSD Flag	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	57	99		98	200	52 - 151
1868-53-7	DIBROMOFLUOROMETHANE	57	97		99		61 - 134
2037-26-5	TOLUENE-D8	57	99		99		57 - 135

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC LIMS Version: 6.611

Page 2 of 2

Prep Batch ID: VL120917-2

Start Date: 09/17/12 Start Time: 11:37 End Date: 09/17/12 End Time: 20:50 Concentration Method: NONE Extract Method: SW5035A Initial Volume Units: g Batch Created By: twk
Date Created: 09/17/12
Time Created: 13:21
Validated By: twk
Date Validated: 09/18/12

Time Validated: 9:12

Prep Analyst: Tyler Knaebel Comments:

heated solls/sollds

Final Volume Units: ml

QC Batch ID: VL120917-2-2

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Number
VL120917-2	MB	XXXXX	SOIL	XXXXXXX	5	5	NONE	1	1209154
VL120917-2	LCS	XXXXXX	SOIL	XXXXXXX	5	5	NONE	1	1209154
VL120917-2	LCSD	XXXXXX	SOIL	XXXXXXX	5	5	NONE	1	1209154
1209154-1	MS	BEA030488_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154
1209154-1	MSD	BEA030488_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154
1209154-1	SMP	BEA030488_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154
1209154-12	SMP	BEA030499_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154
1209154-4	SMP	BEA030491_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154
1209154-5	SMP	BEA030492_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154
1209154-8	SMP	BEA030495_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154
1209154-9	SMP	BEA030496_MFC	SOIL	9/10/2012	5	5	NONE	1	1209154

QC Types

		_		22.
CAR	Carrier reference sample		DUP	Laboratory Duplicate
LCS	Laboratory Control Sample		LCSD	Laboratory Control Sample Duplicat
MB	Method Blank		MS	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate		REP	Sample replicate
RVS	Reporting Level Verification Standar		SMP	Fleid Sample
SYS	Sample Yield Spike			

Page 1 of 1

ALS Environmental -- FC
LIMS Version: 6.611

Date Printed: Wednesday, September 19, 2012

J

Volatile Organic GC/MS Tuning And Mass Calibration--Bromofluorobenzene (BFB)

 Lab Name:
 ALS Environmental -- FC
 BFB Injection Date:
 7/16/2012

 Work Order Number:
 1209154
 BFB Injection Time:
 11:31

 Client Name:
 Battelle Energy Alliance
 Instrument ID:
 HPV2

 ClientProject ID:
 BEA030488MFC Biodiesel Tank Removal ,TOS-A1175
 BEA030480MFC Biodiesel Tank Removal ,TOS-A1175

Reported on: Wednesday, September 19, 2012

Level: Low Column: CAP FileID: B77995

m/e	Ion Abundance Criteria \$W8260C	% Relative Abundance
50	15.0 - 40.0 percent of mass 95	22.5
75	30.0 - 60.0 percent of mass 95	51.5
95	Base peak, 100 percent of relative abundance	100
96	5.0 - 9.0 percent of mass 95	6.9
173	Less than 2.0 percent of mass 174	0
174	Greater than 50.0 percent of mass 95	75.9
175	5.0 - 9.0 percent of mass 174	7.1
176	Greater than 95.0 percent < 101.0 percent of mass 174	96.9
177	5.0 - 9.0 percent of mass 176	6.5

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID
XXXXXXXX	VOC_2ppb_ICALCSTD	B77998	7/16/2012	12:30	VL120716-2A
XXXXXXXX	VOC_4ppb_ICALCSTD	B77999	7/16/2012	12:52	VL120716-2A
XXXXXXXX	VOC_10ppb_ICALCSTD	B78000	7/16/2012	13:14	VL120716-2A
XXXXXXXX	VOC_20ppb_ICALCSTD	B78001	7/16/2012	13:35	VL120716-2A
XXXXXXXX	VOC_40ppb_ICALCSTD	B78002	7/16/2012	13:57	VL120716-2A
XXXXXXXX	VOC_60ppb_ICALCSTD	B78003	7/16/2012	14:19	VL120716-2A
XXXXXXXX	VOC_80ppb_ICALCSTD	B78004	7/16/2012	14:41	VL120716-2A
XXXXXXXX	VOC_120ppb_ICALCSTD	B78005	7/16/2012	15:03	VL120716-2A
XXXXXXXX	VOC_160ppb_ICALCSTD	B78006	7/16/2012	15:25	VL120716-2A
XXXXXXXX	VL120716-2ICVICV	B78008	7/16/2012	16:08	VL120716-2A
XXXXXXXX	VL120716-2LCS	B78009	7/16/2012	16:31	VL120716-2-1
XXXXXXXX	VL120716-2LCSD	B78011	7/16/2012	17:27	VL120716-2-1
XXXXXXXX	VL120716-2MB	B78012	7/16/2012	17:49	VL120716-2-1
XXXXXXXX	1207118-1	B78013	7/16/2012	18:10	VL120716-2-1
XXXXXXXX	1207118-1DUP	B78014	7/16/2012	18:32	VL120716-2-1
XXXXXXXX	1207118-1MS	B78015	7/16/2012	18:53	VL120716-2-1
XXXXXXXX	1207118-2	B78016	7/16/2012	19:15	VL120716-2-1

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012 ALS Environmental -- FC

Page 1 of 2

LIMS Version: 6.611

5A

Volatile Organic GC/MS Tuning And Mass Calibration--Bromofluorobenzene (BFB)

Lab Name: ALS Environmental -- FC BFB Injection Date: 9/17/2012 Work Order Number: 1209154 BFB Injection Time: 11:37 Client Name: Battelle Energy Alliance ClientProject ID: BEA030488MFC Biodiesel Tank Removal ,TOS-A1175 HPV2 Instrument ID:

> Level: Low Column: CAP FileID: B79249

m/e	Ion Abundance Criteria SW8260C	% Relative Abundance
50	15.0 - 40.0 percent of mass 95	21.6
75	30.0 - 60.0 percent of mass 95	49.3
95	Base peak, 100 percent of relative abundance	100
96	5.0 - 9.0 percent of mass 95	6.7
173	Less than 2.0 percent of mass 174	0_
174	Greater than 50.0 percent of mass 95	78.2
175	5.0 - 9.0 percent of mass 174	6.8
176	Greater than 95.0 percent < 101.0 percent of mass 174	99
177	5.0 - 9.0 percent of mass 176	6.2

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID
XXXXXXXX	VL120917-2RVS	B79251	9/17/2012	12:15	VL120917-2-3
XXXXXXXX	CCV1CCV	B79252	9/17/2012	12:39	VL120917-2A
XXXXXXXX	VL120917-2LCS	B79253	9/17/2012	13:03	VL120917-2-1
XXXXXXXX	VL120917-2LCS	B79253	9/17/2012	13:03	VL120917-2-2
XXXXXXXX	VL120917-2LCSD	B79254	9/17/2012	13:27	VL120917-2-1
XXXXXXXX	VL120917-2LCSD	B79254	9/17/2012	13:27	VL120917-2-2
XXXXXXXX	VL120917-2MB	B79255	9/17/2012	13:51	VL120917-2-1
XXXXXXXX	VL120917-2MB	B79255	9/17/2012	13:51	VL120917-2-2
BEA030488_MFC	1209154-1	B79256	9/17/2012	14:15	VL120917-2-2
BEA030491_MFC	1209154-4	B79257	9/17/2012	14:39	VL120917-2-2
BEA030492_MFC	1209154-5	B79258	9/17/2012	15:01	VL120917-2-2
BEA030495_MFC	1209154-8	B79259	9/17/2012	15:22	VL120917-2-2
BEA030496_MFC	1209154-9	B79260	9/17/2012	15:44	VL120917-2-2
BEA030499_MFC	1209154-12	B79261	9/17/2012	16:08	VL120917-2-2
BEA030488_MFC	1209154-1MS	B79262	9/17/2012	16:29	VL120917-2-2
BEA030488_MFC	1209154-1MSD	B79263	9/17/2012	16:51	VL120917-2-2
XXXXXXXX	1209093-2	B79264	9/17/2012	17:13	VL120917-2-1

Data Package ID: VL1209154-1

Date Printed: Wednesday, September 19, 2012

ALS Environmental -- FC

Page 1 of 2

Reported on: Wednesday, September 19, 2012

LIMS Version: 6.611

Instrument ID: HPV2
Calibration Date: 7/16/2012

ALS LIMITORINGINAL -- FU

Initial Calibration Report

Analyte FileName: Cal LVL ID:	877900.D IS 2	77999.D B 4					070004.0\5 0 12			AvgRF %R	SD	Curve Type	Corr	_	r Order Equa UterrTerm O	
fluorobenzene											ISTD	AvgRF				
dichforodifluoromethane	0.7555	0.7297	0.7762	0.7809	9.8552	0.0243	0.8061	0.0658	0.0250	0.7998	.62	AugRF				
chloromethane	0.5883	0.5764	0.5445	0.5314	9,5334	0.4230	0.5316	0.5547	0,5393	0.5581	.20	AvgRF				
vinyt chloride	0,4942	0,4982	0.4725	0.4751	0,4829	0,4855	0,4605	0,9084	0,5005	0.4885	.46	AvgRF				
bromomethane	0,5478	0.45(9	0,4201	0,4152	0,4105	0,4029	0,4001	0.4223	0.4180	0.4388 10	.90	AvgRF				
chloroethane	0.3295	0,3364	0.2930	0,2550	0.2899	0.2845	0.2900	0,9056	0.3012	0.2982	.77	AvgRF				
trichioroffuorometriane	0,8370	0,8297	0.0694	9,8551	0.8957	0.6329	0.8990	0.4772	0.6524		.94	AvgRF				
diethyl ether	0.2712	0.2513	6.2897	0,3091	0.2499	0.2767	0.2056	0.2941	0.2917		.12	AvgRF				
othanol		0.00	0.0	093 0.0	0.0		831 0.0				1.72	AvgRF				
egrolein	0,6522	0.0535	0.0532	0.0480	0.0522	0.0521	0.0507	0.0962	0.0517		.25	AvgRF				
1,1,2-trichloro-1,2,2-trifluoroethane	0.4058	5.4202	0.4595	0.4879	0.4150	0.4490	0.4034	-0.4347	0.4536		.40	AvgRF				
1,1-dichloroethene	0.4744	0,4278	0.4314	0.4004	0.3643	0.2675	0,3037	0.4078	0.2050		1.62					
	0.0294	0.0286	6.0243	0.0226	0,0307	0.0213	9,0305	0.0228	0.0218			AvgRF				
apelone	0.7302	0.8133	6.0000	0.7855		0.7906		0.8170	0.6008		.21	AvgRF				
lociomethane					0,7223		9,7411				.75	AvgRF				
carbon disulfide	1.2878	1,3356	1,3308	1.3279	1,2158	1,3218	1,2316	1,3891	1,3541		1.01	AvgRF				
allyl chloride	0.1869	0.2942	0.2049	0.2234	0,1993	0.2168	0,2021	0.2214	0.2118		5,77	AvgRF				
aceton trile	0.6243	0.0901	0.0295	0.0262	0.0286	0.0253	0,0272	0.0306	0,0296	0.0278	7.72	AvgRF				
mothylene chloride	0	5999 0	0.5037	0.4685	0.4201	0.4618	1,4292	0.4646 (0.4613	0.4743 1	1.76	AvgRF				
methyl acetate	0.3044	0.2925	0.2098	0.2806	0.2324	0.2424	0,2310	0.2593	0,2479	0.2645 1).57	AvgRF				
tert-butanol	0.0436	-0.0424	0.0429	0.0801	0.0098	0.0092	0,0356	0.0429	0,0384		r.59	AvgRF				
methyl tertiary butyl ether	1.1379	1,1354	1.1529	1.0779	1,0048	1,0579	1,0495	1,1864	1.1425		5.16	AvgRF				
trans-1,2-cluhiproethena	0.4053	0,4537	0.4498	0.4551	0.4040	0,4407	0.4242	0.4492	0.4516		1.21	AvgRF				
acrylonitrin	0.1049	0.1033	0,1045	0.0958	0.0660	6,1004	0,1882	0.1097	0,1038		1.00	AvgRF				
	1,2464	1.3507	1.2854	1,2917	1.1349	1.2450	1,1794	1,9139	1.2832		1.44	AvgRF				
isopropyl other						114111	1111111		0.0722							
vinyl acetate	0.7660	0.7426	5,7424	0.7909	0.7100	0.7426	0.7309	0.0056	0.7750		1.67	AvgRF				
1,1-dichioroethane											3.71	AngRF				
chloroprene	0.8527	0.6761	9,9972	0.6731	0.8098	0.8529	0.6316	0,0899	0.6772		1.84	AngRF				
2-butanone	4.1627	0.1463	0,1524	0,1998	0.1320	0.1350	0.1263	0.1465	0,1314		1.23	AngRF				
ethyl tert-butyl other	1,2399	1.3032	1,2796	1,2649	1,1570	1.2600	1,2061	1,3595	1,3249	1.2681	1.83	AvgRF				
2,2-dishloropropane	4,8426	0.7726	0.7438	0.7177	0.6647	0.7000	0.6682	0.7183	0.7020	0.7239	7.95	AvgRF				
ols-1,2-dichloroethene	4.4892	0.4802	0.4867	0,4796	0.4363	0.4700	0.4667	0.4999	0.4911	0.4753	3.65	AvgRF				
propianitrilo	0.0390	0.0348	0.6973	0.0343	0.0344	0.0353	0.0329	0.0084	0.0348	0.0354	1.67	AvgRF				
methocrylonitrile	1.2390	0.2100	0,1950	9,1813	0.1723	0.1850	0.1715	9.2007	0.1659	0.1934 1	0.83	AvgRF				
bromochipromethene	0.2232	0.2120	0,2261	0.2192	0.2098	0.2226	0.2172	0.2305	0.2338		1.09	AvgRF				
chioroform	0.0900	0.8576	0.8366	0,8745	0.7981	0.8642	0,8191	0.8878	0.8769		4.00	AvgRF				
cyclohexene	0.0075	0.6108	0.6076	0,6133	0.5454	0.6804	0.5038	0.5000	0.5768		7.24	AvgRF				
dibromofluoromofhane	0.3338	0.8272	0.3366	0,9810	0.3261	0.327T	0,3354	0.3288	0.3266		1.28 SUR	AvgRF				
1,1,1-irichioroethane	0.7441	0,7958	0.7626	0,7452	0.6001	0.7316	6,7095	0.7848	0.7499		3.14					
	0.8241	0,6963	0.6607	0,6607	0.6180	0.6609	0.6277	0.6770	0.6606		4.24	AvgRF				
carbon ţetrach oride	0.6241	0.6012	0.6043	0.6277	0.6548	0.5987	0.9977	0.8070	0.0000			AvgRF		_		
1,1-dichloropropene											4.07	AvgRF				
isobutyl alcohol	0.0130	0.0135	0.0131	0.0119	0.0128	0.0124	6.0119	0.0139	0.0126		5.18	AvgRF				
1,2-dichloroothane-d4	0.3538	8086.0	0.8672	0.3460	0.3543	0.3903	0.3477	0.8676	0.3409		2.27 SUR	AvgRF				
tort-amyl methyl ether	1,3663	1,1300	1,0566	1.0029	0.9802	1.0427	0.9410	1.1824	1.0938		5.40	AvgRF				
benzane	1.5506	1.5233	1,4699	1.4822	1.3314	1.4275	1.3826	1.5001	1.4909		4.26	AvgRF				
1,2-dichloroothane	0.8401	0.8795	0.6566	0.6416	0.6086	0.6424	0.8247	0.5849	0.6690		3.72	AvgRF				
trichioroethens	0.4148	0.4385	0.4500	0.4664	0.4214	0.4572	0.4307	0.4614	0.4594	0.4444	4.19	AvgRF				
methyl cyclohosane	0.5530	0.4917	0.5287	0.5311	0.4328	0.4789	0.3768	0.5609	0,4939	0.4684 1	4.53	AvgRF				
n-butanol	0.0061	0.0053	0.0086	0.0076	0.0064	0,0044	0.0078	9.0093	0,0064	0.0084	6.60	AvgRF				
1,2-dichloropropane	0.8799	0,2588	0.3587	0.3816	0,3266	0.3858	0.3529	9,3770	0.9799		4.28	AvgRF				
mothyl mothecrylate	0.2378	0,1868	0.1974	0.1968	0.1879	0.2041	0.1950	9,2209	0.2032		8.26	AvgRF				
1,4-dioxane	0.0031	0.0038	0,0128	0.0030	0.0029	0,0030	0.0029	9,0004	0,6092		6.36	AvgRF				
d browomethane	0.8114	0.2772	0,2126	0.2718	0.2637	0,2716	0.2610	0,2913	0.2764		6.07	AvgRF		100	•	
	0.6003	0.6676	0.8210	0.0157	0.6668	0.8361	0.8142	0,6786	0.6546		4.48					
bromodichioromethane		0.00000					0.0142	0,2190	0.2106			AvgRF				
2-chloroethyl vinyl ether		0.0000	6.6444						0.4109	0.2037	4.15					
	0.2135	0.2008	0,1981	0.1984	0.1631	0.2087			0.7844	0.007.0						
cis-1,3-dichloropropone	9.2135 9.6794	0.7000	0.6823	0.0745	0.0448	0.6661	0.0942	0,7257	0.7114		3.57	AvgRF				
4-methyl-2-pentanone	0.2135								0.7114		3.57 6.51	AvgRF AvgRF				
	9.2135 9.6794 9.3250	3.7000 3.2906	0.8823 0.2976	0.0745 0.2709	0.8448 0.2797	0.9681	0.3650	0,7257 0,9072	0.2910	0,2891	3,57 6,5 1 ISTD	AvgRF AvgRF AvgRF				
4-methyl-2-pentanone	9.2135 9.6794	0.7000	0.6823	0.0745	0.0448	0.6661	0.0942	0,7257		0,2891	3.57 6.51	AvgRF AvgRF				
4-methyl-2-pentanone chlorobenzene-d5	9.2135 9.6794 9.3250	3.7000 3.2906	0.8823 0.2976	0.0745 0.2709	0.8448 0.2797	0.9681	0.3650	0,7257 0,9072	0.2910	0.2691	3,57 6,5 1 # S TD	AvgRF AvgRF AvgRF AvgRF				
4-mstryl-2-pentanone chlorobenzene-d5 toluene-d5 toluene	9.2195 9.6794 9.3250 9.9146	0.7000 0.2906 0.9103	0.8823 0.2975 0.8954	0.9745 0.2709 0.9171	9,8449 9,2797 9,9005	0.9681 0.2852 0.9152	0.9942 0.9699 0.9210	0,7257 0,3072 0,5047	0.2910	0,2691 0,9110 2,2385	3,57 6,51 ISTD 0,86 SUR	AvgRF AvgRF AvgRF AvgRF AvgRF				
4-metryl-2-pentanone chlorobenzene-d5 toluene-d3 toluene ettyl methacrylate	9.2195 9.6794 9.3390 9.9149 2.3299	0.7000 0.2906 0.9103 2.2774	0.8823 0.2975 0.8964 2.2520	0.9745 0.2709 0.9171 2.2782	0.0443 0.2767 0.9004 2.0406 0.5795	0.8681 0.2842 0.8132 2.2561	0.9942 0.2690 0.9210 2.1928	0,7257 0,9972 0,6947 2,3806	0.2910 0.9165 2.2700	0,2891 0,9110 2,2385 0,8896	3.57 6.51 ISTD 0.86 SUR 3.99 5.35	AvgRF AvgRF AvgRF AvgRF AvgRF AvgRF				
4-methyl-2-pentanone chlorobenzene-d5 toluene-d5 toluene ethyl methacrylate trans-1,3-dichloropropene	9.2135 9.6794 9.3250 9.9149 2.3299 8.6167	0.7000 0.2908 0.9103 2.2774 0.8819	0.0823 0.2976 0.8964 2.2820 0.5821	0.9745 0.2709 0.9171 2.2742 0.5521	0.0443 0.2767 0.9004 2.0406 0.5795	0.8681 0.2832 0.8132 2.2551 0.5896	0.9942 0.9690 0.9210 2.1938 0.5692	0,7257 0,9072 0,9047 2,3006 0,6453	0.2010 0.9165 2.2703 0.9119	0,2891 0,9110 2,2385 0,5896 0,906	3.57 6.51 ISTD 0.86 SUR 3.99 5.35 3.49	AvgRF AvgRF AvgRF AvgRF AvgRF AvgRF				
4 methyl-2-pentanone chicobenzene-d5 toluene-d3 toluene-d3 toluene ethyl methacoptale trane-1,3-dichloropropene 1,1,2-trichloropropene	0.2135 0.6794 0.3250 0.9140 2.3290 0.6167 0.8545 0,4185	0.7000 0.2908 0.9103 2.2774 0.8819 1.0017 0,4061	0.6823 0.2976 0.8964 2.2520 0.5821 0.0036 0.3970	0.0745 0.2709 0.9171 2.2702 0.5421 0.9210 0.3426	9,9449 9,2797 9,9005 2,0498 9,5795 9,9185	0.6681 0.2642 0.8132 2.2551 0.5696 0.8696	0.8942 0.2699 0.9210 2.1028 0.9327 0.9237	0,7257 0,9072 0,6947 2,3906 0,6453 1,6617 0,4140	0.2010 0.9165 2.2703 0.9119 0.9793 0.3985	0,2891 0,9110 2,2965 0,9896 0,9608 0,3859	3.57 6.51 ISTD 0.86 SUR 3.99 5.35 3.49 4.44	AvgRF AvgRF AvgRF AvgRF AvgRF AvgRF AvgRF AvgRF AvgRF				
4-methyl-2-pentanone chicobenzene-d5 toluene-d5 toluene ethyl methacyldre trane-1,3-chichopropene 1,1,2-drichopotene totrachicroethane	9.2135 9.6794 9.3250 9.9149 2.3299 8.6167 0.8545 0,4385 0,4255	0.7000 0.2900 0.9100 2.2774 0.8619 1.0017 0.4061 0.5065	0.9823 0.2976 0.9994 2.2820 0.5821 0.0036 0.3972 0.4962	0.0745 0.2709 0.9171 2.2742 0.5421 0.9210 0.3436 0.4684	9,9449 9,2797 9,9005 2,0498 9,5795 9,985 9,9871 9,4379	0.6681 0.2822 0.8132 2.2551 0.5696 0.8036 0.4037	0.8642 0.3690 0.9210 2.1938 0.5692 0.9237 0.9741 0.4470	0,7267 0,9072 0,9072 0,9047 2,3006 0,4453 1,6017 0,4140 0,4463	0.2610 0.9165 2.2705 0.9119 0.9798 0.3605 0.4035	0,2891 0,9110 2,2565 0,5866 0,9608 0,3859 0,4668	3.57 6.51 ISTD 0.86 SUR 3.99 5.35 3.49 4.44 6.33	AvgRF				
4-mattyl-2-pentanone chlorobenzene-d5 toluene-d5 toluene-d5 toluene ed5 toluene ed5 toluene ed5 toluene thyl methacylarie trans-1,3-dichloroprocene 1,1,2-dichloroprocene tutaraniscoetrane tutaraniscoetrane 2-bausanone 2-bausanone	9.2135 9.6794 9.3250 9.9149 2.3299 8.0107 0.8545 0.4385 0.4255	0.7000 0.2906 0.9100 2.2774 0.8819 1.0017 0.4061 0.5065	0.6623 0.2676 0.6664 2.2620 0.5621 0.0636 0.2672 0.4662 0.3135	0.9745 0.2709 0.9171 2.2792 0.5421 0.9210 0.3436 0,4664 0,2826	0.0448 0.2787 0.9005 2.0498 0.5795 0.9165 0.9271 0.4379 0.2978	0.6681 0.2852 0.8132 2.2551 0.5696 0.8656 0.4657 0.4793 0.2897	0.9942 0.2090 0.9210 2.1938 0.9832 0.9237 0.9741 0.4476	0,7257 0,3372 0,5347 2,3508 0,6453 1,6617 0,4463 0,3486	0.2910 0.9165 2.2705 0.9119 0.9790 0.3905 0.4055	0,2891 0,9110 2,2395 0,5895 0,9606 0,3859 0,4665 0,2993	3.57 6.51 ISTD 0.86 SUR 3.99 5.35 3.49 4.44 6.33	AvgRF				
4-methyl-2-pentanone chicobenzene-d5 toluene-d5 toluene ethyl methacyldre trane-1,3-chichopropene 1,1,2-drichopotene totrachicroethane	9.2135 9.6794 9.3250 9.9149 2.3299 8.6167 0.8545 0,4385 0,4255	0.7000 0.2900 0.9100 2.2774 0.8619 1.0017 0.4061 0.5065	0.9823 0.2976 0.9994 2.2820 0.5821 0.0036 0.3972 0.4962	0.0745 0.2709 0.9171 2.2742 0.5421 0.9210 0.3436 0.4684	9,9449 9,2797 9,9005 2,0498 9,5795 9,985 9,9871 9,4379	0.6681 0.2822 0.8132 2.2551 0.5696 0.8036 0.4037	0.8642 0.3690 0.9210 2.1938 0.5692 0.9237 0.9741 0.4470	0,7267 0,9072 0,9072 0,9047 2,3006 0,4453 1,6017 0,4140 0,4463	0.2610 0.9165 2.2705 0.9119 0.9798 0.3605 0.4035	0,2891 0,9110 2,2565 0,5866 0,9608 0,3859 0,4668	3.57 6.51 ISTD 0.86 SUR 3.99 5.35 3.49 4.44 6.33	AvgRF				

Operator: twk-sop525r15 Notes: 5mL heated purge

Ten 7/17/12

Date Printed: Tuesday, July 17, 2012

ALS Environmental -- FC

Page 1 of 2

LIMS Varsion: 6,803 28 of 36

Calibration ID: 071612S Instrument ID: HPV2 Calibration Date: 7/16/2012

ALS Environmental -- FC

Initial Calibration Report

	FileName:	B77038.D E	177509 Pr	78000.D	этэээ го г	78802 P. S	78002 (**)	78 504 712	onspes na	states b			Curve		Highe	r Order E	quation
Analyte	Cal LVL ID:	2	4	10	20		10 1				AvgRF	%RSD	Type	Corr	Qued Term	Linear Torre	Const Tour
1,2-dibromoethane		0.5221	0.5256	0.4858	0.5136	0.4840	0.5(18	0.4819	0.5363	0.5207	0,9096	3.90	AvgRF				
1-chilorohessane		0.5187	0.8116	0.8476	0.8810	0.7184	0.7670	0.6413	0.6247	0.7423	0.7581	10.84	AvgRF				
chlorobenzene		1.4852	1.4987	1,4901	1.4702	1.3823	1.4815	1,9900	1.4754	1.4898	1,4638	2.90	AvgRF				
ethylbenzena		2.5063	2,6857	2,5529	2.6319	2,3584	2,6008	2,3532	2.4514	2,5415	2.6302	4.67	AvgRF				
1,1,1,2-tetrachioroethane	·	0.5667	0.5082	0.5795	0.5825	0.5365	0,5858	8,5427	0,5870	0,8845	0,6740	3,57	AvgRF				
ns+p-xylene		0.5080	0.9030	0.9027	0.5803	0.8468	0,9220	0,5451	0.6675	0,0244	0,8950	4.09	AvgRF				
o-xylene		0.6064	0.9055	0.0220	0.9013	0.5362	0,9063	0,5552	0,5667	0,9012	0,8855	3,75	AvgRF				
styrene		1,5773	1,6510	1,5521	1,5781	1,4812	1,5119	1,4925	1,5740	1,6174	1,5594	3,01	AvgRF				
bromatorm		0,3584	0,3724	0,3771	0,3801	0,3923	0,4054	0,0554	0,4330	0.4123	0,3944	5,01	AvgRF				
isopropythenzene		2,3674	2,7692	2,3438	2,3625	2,1372	2,5454	1,9997	1,9080	2,2559	2.2419	7.58	AvgRF				
4-bromofluorobenzena		0.4077	0.4071	9,4953	0.4125	0.4928	0.4053	0.4105	0.4148	0.4192	0.4099	1.21 SUR	AvgRF				
1,4-dichlorobenzene-d4												ISTO	AvgRF				
1,1,2,2-totrachioroethane	>	1.0004	1.0736	1,0440	1,0099	1.0632	1,0517	0.9519	1,0060	1.0326	1.0448	3.61	AvgRF				
n-propylbanzane		5.T421	6.1947	5,7665	6.0485	5.2447	5,8502	4,7311	4.5551	5.4522	5.6205	10.22	AvgRF				
trans-1,4-dichloro-2-bute	ing.	0.4062	0.3069	0.0174	0.5206	0.3268	0.3453	0.3122	0.2387	0.3126	0.3317	9.45	AvgRF				
1,2,3-trichloropropane		0.8507	0.3292	0.3508	0.3518	0.3520	0,3630	0.2197	0.2685	0.3370	0.3481	4.60	AvgRF				
bromabenzene		1.2677	1.2615	1.1667	1.2454	1.1795	1,2542	1,1539	1.2103	1.2345	1.2219	3.77	AvgRF				
1,3,5-trimethy/benzene		3.9761	4.0230	3,8550	4.0705	3,6791	3.9750	5.1773	3,1260	3.6552	3.7340	9,58	AvgRF				
2-chilorotokyene		1,0416	1.0360	1,0001	1.1212	1,0164	1,0748	0,6457	0,9355	1,0262	1,0819	5,98	AvgRF				
4-chtorotokene		1,0595	1.1862	1,0720	1,0555	1,0472	1.1239	0,9606	0,9705	1,6499	1,0808	6.76	AvgRF				-
tert-butylisenzene		4,6921	0.7617	0,7884	0,7834	0,5805	0,7955	0.5681	0.5344	0.9964	0.6879	13.21	AvgRF				
1,2,4-trimetity/benzene		1,9530	5.9T99	3,8771	3,9902	3.5417	3.6185	3,1297	3,0557	3.5927	3.6533	9.70	AvgRF				
sec-buty/benzene		4,9335	4.0704	5,0173	5,1138	4,2004	4.7152	3,6342	3,3991	4.3513	4.4932	13.91	AvgRF				
p-isopropyltoluene		2,8044	4.0225	4,0111	4.1101	3.4985	3,4742	2.9352	2.7982	5.5035	3,6112	13,60	AvgRF				
1,3-dichlorobenzene		1.2007	2.2203	2,1490	2.2835	2.1348	2.2612	1,8028	1.9121	2.1114	2,1339	6.60	AvgRF				
1,4-dichlorobenzane		2,1296	2.2495	2,1326	2,1958	2,1149	2.2287	1,9011	1,9357	2,0654	2,1094	5.70	AvgRF				
n-butybenzene		3,9(2)	4,0725	4,0104	4,0743	3,3362	3,6185	2,6672	2,5985	5,4386	3,5679	15,43	AvgRF				
1,2-cichlorobenzane		2,0232	1,9938	1,9991	2,0481	1,9497	2,0684	1.7652	1,0135	1.9740	1,9639	5.19	AvgRF		•		
hexachloroethane		0.5026	0.0077	0.6302	9,0154	0.5502	0.6179	0.4624	0.6447	0.5510	0.5571	12.30	AvgRF				
1,2-dibromo-3-chioropro	pane	0.1906	0.2151	0.2014	0,1945	0.2100	0.2166	0,1940	0.2221	0.2110	0.2061	6.81	AvgRF				
1,2,4-trich/orobenzene		1.2580	1,3136	1.3294	1,3157	1,2151	1.3129	1.0049	0.9435	1.1817	1.2129	11.97	AvgRF				
hexachiorobutadiene		0.4701	0.5355	0.6275	0.5915	0.4472	0.5076	0.0060	0.9902	0.5408	0.4966	17.45	AvgRF				
naphthalene		2.4387	2,5507	2.5000	2,4471	2,5050	2.5541	2.1724	2,3585	2.5129	2,4906	5.50	AvgRF				
1,2,3-trichlorobenzene		1,0922	1,1907	1.2076	1,1470	1,0040	1.1622	0.0911	0.8567	1.0476	1.0756	11.68	AvgRF				
2-ethylhexanol																	

Average RSD = 6.40

Concentration Multipliers

- 2X cyclohexane 2X - m,p-xylene
- 2X methyl-t-butyl-ether
- 4X 2-butanone
- 4X 2-hexanone
- 4X 4-methyl-2-pentanone
- 4X acetone
- 10X acetonitrile
- 10X acrolein 10X - acrylonitrile
- 10X propionitrile
- 20X isobutyl alcohol
- 20X 1,4-dioxane
- 20X ethanol
- 50X n-butanol
- 50X tert-butanol

Operator: twk-sop525r15 Notes: 5mL heated purge

Date Printed: Tuesday, July 17, 2012

mc 7/17/12

ALS Environmental -- FC

Page 2 of 2

LIMS Version: 6,603

ALS Environmental -- FC

Initial Calibration Verification

Lab Sample ID: VL120716-2ICV Calibration ID: 071612S
Analysis Date: 7/16/2012 Instrument ID: HPV2
File Name: B78008 Calibration Date: 7/16/2012

	Analyte	AvgRF	CCRF	Expected Conc.	Found Conc.	%Dev. or % Drift	%Diff (Area)	RT Dev.	Curve Type
f) ISTD	fluorobenzene						0.5	0.003	AvgRF
2)	dichlorodifluoromethane	0.7998	0.6773			-15.3		-0.004	AvgRF
3)	chloromethane	0.5581	0.4648			-16.7		0.003	AvgRF
4)	vinyl chloride	0.4885	0.4241			-13.2		0.000	AvgRF
5)	bromomethane	0,4368	0.3567			-18.3		0.003	AvgRF
5)	chloroethane	0,2982	0,2479			-16.9		0,000	AvgRF
7)	trichlorofluoromethane	0.8499	0.8960			-18,1		0.004	AvgRF
8)	diethyl ether	0.2733	0.2542			-7.0		-0.003	AvgRF
9)	ethanol	0.0033	0.0030			-9.0		0.000	AvgRF
10)	acrolein	0.0522	0.0450			-13.7		0.004	AvgRF
11)	1,1,2-trichloro-1,2,2-trifluoroethane	0.4354	0,3934			-9.7		0.000	AvgRF
12)	1,1-dichloroethene	0.4059	0,3513			-13,4		0,000	AvgRF
13)	acetone	0.0230	0,0210			-8.7		-0,001	AvgRF
14)	iodomethane	0,7775	0,7159			-7,9		-0,004	AvgRF
15)	carbon disulfide	1,3092	1,1792			-9,0		0,004	AvgRF
16)	allyl chloride	0.2074	0,2019			-2.7		0,000	AygRF
17)	acetonitrile	0.0278	0.0256			-7.9		0,001	AvgRF
18)	methylene chloride	0.4743	0.4208			-11.3		-0,004	AvgRF
19)	methyl acetate	0.2645	0.2277			-13.9		0,000	AvgRF
20)	terl-butanol	0.0401	0.0392			-2.2 -9.4		-0.003	AvgRF
21)	methyl tertiary butyl ether	1.1078 0.4437	1.0042 0,3971			-10.5		-0.001	AvgRF AvgRF
22)	trans-1,2-dichloroethene	0,1024	0,0898			-10.0		0.000	AvgRF
23)	acrylonitrile					-7.0		-0.004	AvgRF
25)	isopropyl ether	1,2412 0,0662	0.0593			-10.3		-0.003	AvgRF
26)	vinyl acetate	0.7597	0,7038			-7.4		-0.003	AvgRF
28)	1,1-dichloroethane chloroprene	0.8589	0.5848			-11.3		-0.005	AvgRF
29)	2-butanone	0.1411	0.1255			-11.1		0.004	AvgRF
30)	ethyl tert-butyl ether	1.2661	1.1844			-6.5		-0.002	AvgRF
31)	2.2-dichloropropane	0.7239	0.6221			-14.1		0.004	AvgRF
32)	cis-1,2-dichloroethene	0,4753	0.4352			-8.4		0.004	AvgRF
33)	prodonitrile	0,0354	0,0331			-6.3		0.003	AvgRF
34)	methacrylonitrile	0,1934	0.1702			-12.0		0.000	AvgRF
35)	bromochloromethane	0,2225	0.2050			-7.8		-0.001	AvgRF
36)	chloroform	0.8541	0.7711			-9.7		-0.003	AvgRF
37)	cyclohexane	0.5742	0.5161			-10.1		0.003	AvgRF
39)	1,1,1-trichloroethane	0.7359	0.8647			-11.0		0.004	AvgRF
40)	carbon tetrachloride	0.6591	0.5747			-12.8		0.001	AvgRF
41)	1,1-dichioropropone	0.5992	0.5316			-11.3		0.001	AvgRF
42)	isobutyl alcohol	0.0128	0.0130			1.4		0.000	AvgRF
441	tert-armyl methyl ether	1,0808	0.9837			-7.3		-0.004	AvgRF
45)	benzene	1,4576	1,3249			-9.1		-0.002	AvgRF
46)	1,2-dichloroethane	0,6466	0,5839			-9.7		-0,003	AvgRF
47)	trichloroethene	0.4444	0,3976			-10.6		-0,003	AvgRF
48)	methyl cyclohexane	0,4884	0.4204			-10,2		0,004	AvgRF
49)	n-butanol	0,0084	0.0088			5,2		-0,001	AvgRF
50)	1,2-dichleropropene	0,3818	0.3260			-9,9		0,003	AvgRF
51)	methyl methacrylate	0,2036	0.1788			-12.2		0,003	AvgRF
52)	1,4-dicxane	0.0031	0.0031			-0,5		0,003	AvgRF
53)	dbromemethane	0.2774	0.2516			-9,3		0.002	AvgRF
54)	bromodichloromethane	0.6326	0.5719			-9,6		0.000	AvgRF
55)	2-chloroethyl vinyl ether	0.2037	0.1858			-8,8		-0,004	AvgRF
56)	ds-1.3-dichloropropene	0,6856	0.6146			-10,4		0.004	AvgRE
57)	4-methyl-2-pentanone	0,2891	0.2777			-4.0	8.0	0.002	AvgRE
5B) ISTO	chlorobenzene-d5	2000	4.0000			40.7	0,9	0,001	AvgRF
60)	toluene	2.2385	1.9990			-10.7		-0.001	AvgRF
61)	elhyl methacrylate	0.5895	0.5541			-6.0		-0.004	AvgRF
62)	trans-1,3-dichloropropene	0.9808	0.8641			-10.1		-0.004	AvgRF
63)	1,1,2-trichloroethane	0.3959	0.3639					0.004	AvgRF
84)	tetrachioroethene	0.4888	0.4212			-10.1		0.002	AvgRF
65)	2-hexanone	0.2993	0.2920			-2.5		0.001	AvgRF
68)	1,3-dichloropropane	0.7975	0.7313			-8.3		0.001	AvgRF
87)	dibromochloromethane	0.6637	0.6149			-7.4		-0.001	AvgRF

Operator: twk-sop525r15

Tu 7/17/12

Date Printed: Tuesday, July 17, 2012

ALS Environmental -- FC LIMS Version: 6,603

Page 10 of 2 36

ALS Environmental -- FC

Initial Calibration Verification

 Lab Sample ID: VL120716-2ICV
 Calibration ID: 071612S

 Analysis Date: 7/16/2012
 Instrument ID: HPV2

 File Name: B78008
 Calibration Date: 7/16/2012

				Expected	Found	%Dev. or		RT	Curve
	Analyte	AvgRF	CCRF	Cons.	Conc.	% Drift	%Diff (Area)	Dev.	Type
58)	1,2-dibromoethane	0,5095	0,4705			-7.6		-0.003	AvgRF
9)	1-chlorohexane	0.7581	0,6896			-9.0		0.002	AvgRF
(0)	chlorobenzene	1.4636	1.3327			-8.9		0,001	AvgRF
1)	ethylbenzene	2.5302	2.2948			-9.3		0,000	AvgRE
2)	1,1,1,2-tetrachioroethane	0.5740	0.5203			-9.4		0.000	AvgRF
3)	m+p-xylone	0.8950	0.8142			-9.0		-0.002	AvgRF
4)	o-xylene	0.8855	0.8112			-8.4		0.004	AvgRF
5)	styrene	1.5594	1.4457			-7.3		0.003	AvgRF
5)	bromoform	0,3944	0.3857			-2.2		0.001	AvgRF
7)	Isopropylbenzene	2,2419	2,0873			-6.9		-0.001	AvgRF
N ISTD	1.4-dichlorobenzene-d4						0.7	0.003	AvgRF
0)	1,1,2,2-tetrachioroethane	1.0446	1,0192			-2,4		-0.004	AvgRF
)	n-propy/benzene	5.5205	5,1970			-5,9		0.004	AvgRF
2)	trans-1,4-dichloro-2-butene	0.3317	0.3093			-6,8		-0.005	AvgRF
3)	1,2,3-trichloropropane	0.3481	0.3391			-2.6		0.005	AvgRF
4)	bromobanzene	1.2219	1.1615			-4.9		-0,005	AvgRF
5)	1,3,5-trimethylbenzene	3,7340	3,5821			-4.1		0,002	AvgRE
30	2-chlorololuene	1.0319	0.9890			-4.2		0,003	AvgRF
7)	4-chicrotoluene	1.0608	1.0027			-6.5		0,002	AvgRF
3)	tert-butylbenzene	0.6879	0.6486			-5.7		-0.002	AvgRF
9).	1,2,4-trimethylbenzene	3.6533	3.4160			-6.5		-0.002	AwaRF
2)	sec-buty/benzene	4.4932	4.3462			-3.3		-0.084	AvgRE
1)	p-isopropyltoluene	3.6112	3.5289			-2.3		0.004	AvgRF
2)	1,3-dichlorobenzene	2.1339	2.0201			-5.3		0.004	AvgRF
3)	1.4-dichlorobenzene	2,1094	2.0150			-4.5		0.003	AvgRF
9	n-buty/beinzene	3,5679	3,4760			-2.6		-0.001	AvgRF
5)	1,2-dichlorobenzene	1,9639	1.8793			-4.3		-0.001	AvgRF
5)	hexachloroethane	0.5571	0,5513			-1.1		-0.005	AvgRF
7)	1,2-dibromo-3-chloropropane	0.2081	0.2057			-0.2		0.000	AvgRF
3)	1.2,4-trichlorobenzene	1.2129	1.1959			-1.4		0.000	AvgRF
9)	hexachlorobutadiene	0.4966	0.5670			14.2		-0,002	AvgRF
0	naphthalene	2,4606	2.5201			2.4		-0.004	AvgRF
0	1,2,3-trichlorobenzene	1.0755	1,0516			-2.2		0.004	AvgRF
0	2-ethy/hexanol							-0.001	

Operator: twk-sop525r15

Te 7/17/12

ALS Environmental -- FC

Continuing Calibration Verification

Lab Sample ID: VL120917-2CCV	Calibration ID: 380712S> a716135			
Analysis Date: 9/17/2012	Instrument ID: HPV2,	*	see sequence log	bedy
File Name: B79252	Calibration Date: 8/7/2012 1/16/12		,	

	Analyte	AvgRF	CCRF	Expected Conc.	Found Cons.	%Dev. or % Drift	%Diff (Area)	RT Dev.	Curve Type
1) ISTD	fluorobenzene						9,4	0.003	AvgRF
4)	vinyl chloride	0.4885	0.3925			-19.6		0,000	AvgRF
21)	methyl tertiary butyl ether	1,1078	1,2250			10.6		-0.001	AvgRF
22)	trans-1,2-dichloroethene	0,4437	0,4535			2,2		-0,001	AvgRF
32)	cis-1,2-dichloroethene	0.4753	0.5227			10,0		0.004	AvgRF
45)	benzene	1.4576	1.5449			6.0		-0.002	AvgRF
48)	1,2-dichloroethane	0.6466	0.8803			5.2		-0.003	AvgRF
47)	trichloroethene	0.4444	0.4765			7.7		-0.003	AvgRF
58) ISTD	chlorobenzene-d5						7.2	0.001	AvgRF
60)	toluene	2.2385	2.3476			4.8		-0.001	AvgRF
34)	tetrachloroethene	0.4688	0.4944			5.5		0.002	AvgRF
(88	1,2-dibromoethane	0.5095	0.5650			10.9		-0,003	AvpRF
71)	elfylbenzene	2.5302	2,6726			5.6		0.000	AvgRF
73)	m+p-xylene	0,8950	0.9475			5.9		-0.002	AvgRF
74)	o-xylene	0,8855	0,9652			9,0		0,004	AvgRF
(e) ISTD	1,4-dichlorobenzene-d4						7,5	0.003	AvgRF

Nickname Filters

8260_IVOAA018 8260Full_NFS_GW

Operator: twk-sop525r15

malelo

8A

Volatile Internal Standard Area Summary

Lab Name: ALS Environmental – FC Date Analyzed: 9/17/2012
Work Order Number: 1209154 Time Analyzed: 12:39

Client Name: Battelle Energy Alliance

ClientProject ID: BEA030488 MFC Biodiesel Tank Removal ,TOS-A1175 Reported on: Wednesday, September 19, 2012

Instrument ID: HPV2 Lab File ID: B79252

	IS1		IS2	!	IS3		IS4	ı	IS5	i	IS6	
	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
12 Hour STD	646962	9.06	454345	11.77	232218	13.6						
Upper Limit	1293924	9.56	908690	12.3	464436	14.1						
Lower Limit	323481	8.56	227173	11.3	116109	13.1						
Lab Sample ID												
VL120917-2LCS	665838	9.06	472787	11.77	242095	13.60						
VL120917-2LCSD	661423	9.06	463822	11.77	237998	13.60						
VL120917-2MB	616263	9.06	426494	11.77	210906	13.60						
1209154-1	589843	9.06	395995	11.77	190409	13.60						
1209154-4	692481	9.06	464909	11.78	219907	13.60						
1209154-5	663954	9.06	454573	11.77	212671	13.60						
1209154-8	642933	9.06	436817	11.77	209174	13.60						\Box
1209154-9	634793	9.06	440603	11.77	208358	13.60						
1209154-12	628638	9.06	434655	11.77	207431	13.60						
1209154-1MS	653626	9.06	445099	11.77	209013	13.60						
1209154-1MSD	670133	9.06	459853	11.77	219569	13.60						

Shaded values exceed established area count limits.

LIMS Version: 6.611

Upper Limit = \pm 100 percent of internal standard area. Lower Limit = \pm 50 percent of internal standard area.

Supporting Raw Data

GCMS Volatile Instrument Run Log - HPV2 ALS Laboratory Group - Fort Collins, CO

cemments n. @ C	Comment		57730713-1 Miechion 6.09:54	The state of the s	57130712-3 201 to Sml.		2006	14/2 5-11-51 FOETTS	Janes -		ď	Hempds 7Mb2 (cR2)	4	CT120712-1-2 Journal 1207	Dank Constructor out	all tocasts amou			ST120713-1-2		deserb & 19:58	"lost will enter" no data acquised											P
3	HS2	#	\parallel	+	+	+		+	+	-	\parallel	-		+	+	\vdash	-	+	+	+	Н	-	+	+	+	-		-	+	-			Þ
3188A03493	p#<2?	₽.	+	-	+-	-	-	-	+	-	H		+	-	+	<u> </u>	Н	+	+	-		-	-	-	+	-	-	+	+	+		\parallel	•
	RA?	2	+		+		-	-	-	+	H	-	+	+	+			+	+	+	Ð	155	+	+	+	-	-	+	-	+	-		Þ
Serial Number OF/16/12 Zer Standard desorb time	Samp. Amt.	2.00%	اما	S.oml	5.0m2				-				-0	S.Os sand		9	5,0 %	٥		-			-										Þ
2\07161 nrge - Date: 	Dil.	1	+	-	+	+	-	H	+	1				+	+	-			+	-			+	+	+			-		+	-	_	Ð
C:\HPCHEM\1\SEQUENCE\071612.S 8260 - SmL heated purge - Ser. HPChem\1\DATA\071612\ Analysis Date: C (1.0ul): Analysis Date: C (1.0ul): Analysis Date: C	Sample Name	Blank	BIEDK BFB-TUNE1	Blank	Blank Voc 2ppb ICAL	voc_4ppb_ICAL	qddo	VOC_40ppb_ICAL	VOC 60ppb ICAL	VOC 120pp ICAL		Blank	VL120716-2ICV	VL120716-21CS	VL120716-2LCSD	VL120716-2MB	1207118-1	1207118-1DUP	1207118-1MS	1207118-2				1207118-7			1207118-2			120/118-5	1207118-7	1207118-8	1207118-9
Name: HPV2: 1: C:\H twk-so: ID's	Method	0522128	212	512	0716123	10 0	네네	녆	5	하는	넔	녆	rd vo	ed s	선 등 명 명	덩	IS	61	딩	0716128	15	G	6	Į.	15	1 1	61	딩	0716128	d i	1 1	161	7161
Sequence Name: Comment: HPV2: Data Path: G:\ Operator:tWk-s Istd\Surr ID's Logbook Number	a ta H	10	87799 87799	B7799	B7799	5 B77999	87800	B7800	B7800	200000000000000000000000000000000000000	B7800	B7800	B7800	37800	#7801	37801	B7801	B7801	37801	B7801	B7801	B7801	B7802	B7802	5/802	B7802	B7802	37802	B7802	8/802	B7803	37803	B7803
	Vial	! "	100	1-1	-r 11)	ישי	- 100		¥ ;	10		1.4	H	7	- 1	18	T	20	23	21.0	1 21	22	26	CV C	N C	3.60			of			W.	36

Page: 1704

Last Modified: Mon Jul 16 17:14:04 2012

GCMS Volatile Instrument Run Log - HPV2 ALS Laboratory Group - Fort Collins, CO

Sequence Name: C:\HFCHEM\1\SEQUENCE\091712.S *Individual activition prompts (Matter) to Chick the Comment: HFV2: 8260 - Sml heated purge - Serial Number 3188203493 but without prompts adulted to Visite Data Path: C:\HFChem\1\Data\091712\ Operator:twk-sop525715 Analysis Date: O9/17/12 TO Operator:twk-sop525715 Analysis Date: O9/17/12 TO Standard ID's: ST120828-2457120828-4 (CALSID) ISTGNOON Number: 3094 purge time: 8 min. desorb time & temp:: 1 min. 0 190 C	Vial Datafile Method Sample Name Dil. Samp. Amt. RA? pH<2? HS? Comment
	Vial

		57720528-6 Wisstian A 11:37	H	STISOSPE-S Sucto Tracks Sugar	2 periode STD's to Stone		4	DCM & 2.77 ph - all others -mo!	-	Land Street, S					24 CAL STOS TO STONE			24 CAL STD'S to Sml	*					rat neededfused			4 4550CM - 10:50	SCREENING MEDIT EXTRACTS										47		
42 02	+++++++++++++++++++++++++++++++++++++++	† † †			+	+	+	+	+		+	+	+	1	+	 							1	†	1 +	+	-		+ +	+++++++++++++++++++++++++++++++++++++++	† +	1 + +	+	+	1	+++++++++++++++++++++++++++++++++++++++			Page: 1748	
5.0ml		-	2.0.7	5,00,5000	100.3	S.O. cand		4	2002	b							-									-	4	TOWL ENTERED												
Blank	Blank	BIRDA BER-TUNE-1	Blank	VL120917-2RVS	VL120917-2CCV	VL120917-2LCS	VL120917-2LCSD	VL120917-2MB	1209154-1	1209154-4	1209154-5	1209154-8	1209154-9	1209154-12	1209154-1MS	1209154-1MSD	1209093-2	1209093-2MS	1209093-2MSD	1209093-3	1209198-2	1209198-3	120919854	1209293-3	1209198-2	1209198-3	4		Ņ.	m ·	4		١٩	-7	φ	1209089-9 100X	Ģ.	1209089-11 100X 47	2100 36:41:31 51	07:14:01
1 6/4	0807128	7.72	(2)	0807128	712	0712	-	걸	0712	걸	걸	걸	61	612	512	0716128	612	0716128	71612	612	512	512	512	512	512	512	512	0716128	512	년 :	512	512	0716128	512	512	512	512	512	Ū	מ
B792	B792	3 B79248	4 B792	B792	B792	B792	B792	B792	0 B792	1 B792	2 B792	3 B792	4 B792	5 B792	6 B792	7 B792	8 B792	9 B792	D B792	1 8792	B792	3 B792	4 B792	5 B792	6 B792	7 B792	8 B792	9 B792	0 B792	1 B792	32 B792	33 3792	4 B792	35 B792	36 B792	7 3792	8 3792	9 B792	The state of the s	rast Modified: Mon

Last Modified: Mon Sep 17 16:41:26 2012

Appendix E DEQ Notification of Sample Results for MFC UST Closure (CCN 228521)

Idaho National Laboratory Mail - DEQ notification of sample results for ... https://mail.google.com/mail/b/277/u/0/?ui=2&ik=21e29e2ee5&view=p...

CCN 228521

ServiceID, ENVIRONMENTAL CORRESPONDENCE <envaff@inl.gov>

DEQ notification of sample results for the MFC UST closure

1 message

Griffith, Bradley K <bradley.griffith@inl.gov>

Thu, Sep 20, 2012 at 4:29 PM

To: ENVIRONMENTAL CORRESPONDENCE ServiceID <envaff@inl.gov>, James F Graham <james.graham@inl.gov>, Timothy L Carlson <timothy.carlson@inl.gov>, Timothy A Miller <timothy.miller@inl.gov>

On Thursday, Sept. 20th at approximately 9:00 AM I called Steve Heaton (Idaho DEQ) regarding sample results that were received at approximately 3:30 PM on Sept. 19th for the MFC Biodiesel UST closure. Jason Sturm (DOE) was also on the call. I left a message on Mr. Heaton's voicemail stating some of the sample results were above the residential use screening levels and asked for him to return my call. At approximately 10:00 AM Mr. Heaton returned my call and I gave him details about the sample results, went over options such as removing more soil and sampling again, or completing a site specific risk evaluation. Mr. Heaton thought removing additional soil and sampling may bring us to the desired screening levels. I also told Mr. Heaton that the phone call should be considered the required 24-hour notification. Mr. Heaton agreed and said he would log it when he returned to his office Monday, Sept. 24th.

9/24/2012 5:40 AM

Appendix F Sample Analytical Report #2

September 25, 2012

Ms. Peggy Scherbinske Battelle Energy Alliance 2525 N. Fremont Ave. Idaho Falls, ID 83415-6194

Re:

ALS Workorder:

12-09-339

Project Name:

MFC Biodiesel Tank Removal, TOS-A1175 Rev2

Project Number:

BEA031231

Dear Ms. Scherbinske:

Eighteen soil samples were received from Battelle Energy Alliance on September 21, 2012. The samples were scheduled for the following analyses:

GC/MS Volatiles

pages 1-40

GC/MS Semivolatiles

pages 1-47

The results for these analyses are contained in the enclosed report.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Jeff Kujawa Project Manager

JRK/erl

Enclosure (s): Report

ADDRESS 225 Commerce Drive, Fort Collins, Colorado, USA 80524 (PHONE +1 970 490 1511) FAX +1 970 490 1522 ALS GROUP USA, CORP. Part of the ALS Laboratory Group A Campbell Brothers Limited Company

a mottormiental 🌬

www.alsglobal.com

NIGHT SOLUTIONS THEFT PARTNER

ALS is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

Accreditation Body	dicense or Gentication Number
Washington	C1280
Utah	CO00078
Arizona	AZ0742
Alaska	UST-086
Alaska	CO00078
Florida	E87914
Missouri	175
North Dakota	R-057
New Jersey	CO003
Nevada	CO000782008A
California	06251CA
Kansas	E-10381
Maryland	285
Pennsylvania	68-03116
Texas	T104704241-09-1
Colorado	CO00078
Connecticut	PH-0232
Idaho	CO00078
Tennessee	2976
Kentucky	90137
L-A-B (DoD ELAP/ISO 17025)	L2257

GC/MS Semivolatiles SIMPAH Case Narrative

Battelle Energy Alliance

MFC Biodiesel Tank Removal, TOS-A1175 Rev 2 -- BEA031231

Work Order Number: 1209339

- This report consists of 9 soil samples. The samples were received cool and intact by ALS on 09/21/12.
- These samples were prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the soil samples were extracted using soxhlet procedures according to SW-846 Method 3540C utilizing the current revision of SOP 625.
- 3. The extracts were analyzed using GC/MS with a DB-5MS capillary column according to the current revision of SOP 506 based on SW-846 Method 8270D. The samples were analyzed using selective ion monitoring (SIM), in order to achieve lower reporting limits. All positive results were quantitated against the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and a limited number of major ions from the mass spectrum of the sample versus the daily calibration standard.
- All initial calibration criteria were met. If average response factors were used in the initial calibration, %RSD was ≤20%. If linear or higher order regression calibrations were used in the initial calibration, the coefficient of determination (r²) ≥0.99.
- All initial calibration standards are verified by comparing a second source standard initial
 calibration verification (ICV) against the calibration curve. All target compounds in the second
 source verification had a %D ≤30%.
- 6. All method blank criteria were met.
- All laboratory control sample and laboratory control sample duplicate recoveries and RPDs were within the acceptance criteria.

8. Sample 1209339-2 was designated as the quality control sample for this analysis. Similarity of matrix and therefore relevance of the QC results should not be automatically inferred for any sample other than the native sample selected for QC.

All matrix spike and matrix spike duplicate recoveries and RPDs were within acceptance criteria with the following exceptions:

Spiked Compound	QC Sample	Direction
Several Compounds	MS/MSD	Low

The recoveries of these compounds in the laboratory control sample and laboratory control sample duplicate were within control limits, which suggest the outliers in the matrix spikes may have been due to matrix effects, so no further action was taken.

- 9. The samples were extracted and analyzed within the established holding times.
- 10. All surrogate recoveries were within acceptance criteria.
- 11. All internal standard recoveries were within acceptance criteria with the following exceptions:

Internal Standard	Sample	Direction
Perylene-D ₁₂	1209339-2, -2MS, -2MSD,	Low
	-6, -9, -12, -14 & -18	

Re-analysis of the samples duplicated the original result. This suggests that the outliers were due to matrix effects. No further action was taken.

- 12. Sample 1209339-16 was analyzed at dilution to bring target analytes in to calibration range. The reporting limits have been adjusted accordingly.
- 13. Manual integrations are performed when needed to provide consistent and defensible data following the guidelines in the current revision of SOP 939.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Emily Lyons V Organics Primary Data Reviewer

Organics Final Data Reviewer

ALS Data Qualifier Flags Chromatography and Mass Spectrometry

U or ND: This flag indicates that the compound was analyzed for but not detected. J: This flag indicates an estimated value. This flag is used as follows: (1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; (2) when the mass spectral and retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the reporting limit (RL) but greater than the method detection limit (MDL); (3) when the retention time data indicate the presence of a compound that meets the GC identification criteria, and the result is less than the RL but greater than the MDL; and (4) the reported value is estimated. B: This flag is used when the analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user. This flag shall be used for a tentatively identified compound (TIC) as well as for a positively identified target compound. E: This flag identifies compounds whose concentration exceeds the upper level of the calibration range. This flag indicates that a tentatively identified compound is a suspected A: aldol-condensation product. X: This flag indicates that the analyte was diluted below an accurate quantitation level. This flag indicates that a spike recovery is equal to or outside the control criteria used. This flag indicates that the relative percent difference (RPD) equals or exceeds +: the control criteria.

Chain of Custody

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1209339

Client Name: Battelle Energy Alliance

Client Project Name: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2

Client Project Number: BEA031231 Client PO Number: SOW-8500

Page 1 of 1

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
BEA031231_MFC	1209339-1	7.0	SOIL	20-Sep-12	14:45
BEA031232_MFC	1209339-2		SOIL	20-Sep-12	14:45
BEA031233_MFC	1209339-3		SOIL	20-Sep-12	14:50
BEA031234_MFC	1209339-4		SOIL	20-Sep-12	14:50
BEA031235_MFC	1209339-5		SOIL	20-Sep-12	14:55
BEA031236_MFC	1209339-6		SOIL	20-Sep-12	14:55
BEA031237_MFC	1209339-7		SOIL	20-Sep-12	15:00
BEA031238_MFC	1209339-8		SOIL	20-Sep-12	15:00
BEA031239_MFC	1209339-9		SOIL	20-Sep-12	15:05
BEA031240_MFC	1209339-10		SOIL	20-Sep-12	15:05
BEA031247_MFC	1209339-11		SOIL	20-Sep-12	15:10
BEA031248_MFC	1209339-12		SOIL	20-Sep-12	15:10
BEA031249_MFC	1209339-13		SOIL	20-Sep-12	14:20
BEA031250_MFC	1209339-14		SOIL	20-Sep-12	14:20
BEA031251_MFC	1209339-15		SOIL	20-Sep-12	14:25
BEA031252_MFC	1209339-16		SOIL	20-Sep-12	14:25
BEA031253_MFC	1209339-17		SOIL	20-Sep-12	14:30
BEA031254_MFC	1209339-18		SOIL	20-Sep-12	14:30

ALS Environmental -- FC

5 of 47

Date Printed: Tuesday, September 25, 2012

Chain of Custody Number: 5300 9533 5466

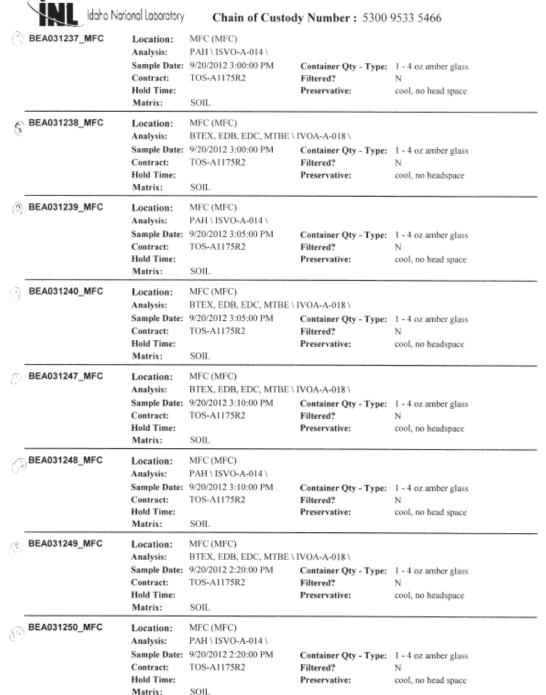
Address:

225 Commerce Drive Fort Collins CO 80524

Laboratory: ALS Laboratory Group

Facility:

Phone:


Contact:

Jeff Kujawa 970-490-1511

4.000

INL Contact: Peggy Scherbinske Phone: 533-7144

	Sample Number	Sample Details			
	BEA031231_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBE \ 9/20/2012 2:45:00 PM TOS-A1175R2 SOIL	IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
)	BEA031232_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/20/2012 2:45:00 PM TOS-A1175R2 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
3)	BEA031233_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH\ISVO-A-014\ 9/20/2012 2:50:00 PM TOS-A1175R2 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space
X	BEA031234_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBE \ 9/20/2012 2:50:00 PM TOS-A1175R2 SOIL	IVOA-A-018 \ Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no headspace
5)	BEA031235_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) BTEX, EDB, EDC, MTBE \ 9/20/2012 2:55:00 PM TOS-A1175R2 SOIL		1 - 4 oz amber glass N cool, no headspace
9	BEA031236_MFC	Location: Analysis: Sample Date: Contract: Hold Time: Matrix:	MFC (MFC) PAH \ ISVO-A-014 \ 9/20/2012 2:55:00 PM TOS-A1175R2 SOIL	Container Qty - Type: Filtered? Preservative:	1 - 4 oz amber glass N cool, no head space

Thursday, September 20, 2012

1219334

Idaho National Laboratory

Chain of Custody Number: 5300 9533 5466

BEA031251_MFC

Location: Analysis:

MFC (MFC)

BTEX, EDB, EDC, MTBE \ IVOA-A-018 \

Sample Date: 9/20/2012 2:25:00 PM

TOS-A1175R2

Filtered?

Container Qty - Type: 1 - 4 oz amber glass N

Contract: Hold Time:

Preservative:

cool, no headspace

BEA031252_MFC

Matrix: Location: Analysis:

Contract:

Hold Time:

MFC (MFC) PAH\ISVO-A-014\

SOIL

Sample Date: 9/20/2012 2:25:00 PM TOS-A1175R2

Container Qty - Type: 1 - 4 oz amber glass

Filtered? Preservative:

N cool, no head space

BEA031253_MFC

Location: Analysis:

Matrix:

MFC (MFC)

SOIL

BTEX, EDB, EDC, MTBE \ IVOA-A-018 \

Contract:

Sample Date: 9/20/2012 2:30:00 PM TOS-A1175R2

Container Qty - Type: 1 - 4 oz amber glass

Filtered? Preservative:

cool, no headspace

BEA031254_MFC

Matrix: Location:

Hold Time:

MFC (MFC)

SOIL

SOIL

Analysis:

Sample Date: 9/20/2012 2:30:00 PM

Contract: Hold Time: Matrix:

PAH\ISVO-A-014\ TOS-A1175R2

Preservative:

Received By:

Container Qty - Type: 1 - 4 oz amber glass

cool, no head space

Date:

Relinquished By: Date: 9/20/2012 1550

C Trimble

9-21-12

Time:

Comments:

Tos. A 1175 Rev 2

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client: BEA Workorder No: 12693	39	_
Project Manager: TK Initials: CD T	Date: <u> </u>	12
Does this project require any special handling in addition to standard ALS procedures?	YES	(NO)
2. Are custody seals on shipping containers intact?	ONE (YES)	NO
3. Are Custody seals on sample containers intact?	ONE YES	NO
4 Is there a COC (Chain-of-Custody) present or other representative documents?	(YES)	NO
5. Are the COC and bottle labels complete and legible?	YES	NO
6 Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)	YES	NO
7. Were airbills / shipping documents present and/or removable?	OP OFF YES	NO
8 Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	VA) YES	NO
Are all aqueous non-preserved samples pH 4-9?	VA) YES	NO
10. Is there sufficient sample for the requested analyses?	(YES)	NO
11. Were all samples placed in the proper containers for the requested analyses?	(YES)	NO
12. Are all samples within holding times for the requested analyses?	(YES)	NO
13. Were all sample containers received intact? (not broken or leaking, etc.)	(YES)	NO
14 Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea> green pea	VA YES	NO
15. Do any water samples contain sediment? Amount	- vro	270
Amount of sediment: dusting moderateheavy	VA) YES	NO
16. Were the samples shipped on ice?	(YES)	NO
	NLY YES	NO
Cooler #: Temperature (°C): 2.2 No. of custody seals on cooler: 2 External µR/hr reading: 13 Background µR/hr reading: 1 Were external µR/hr readings ≤ two times background and within DOT acceptance criteria? FES) NO / NA (If no, see Form	n 908.)	
Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXCEP	T#1 AND #16.	
If applicable, was the client contacted? YES / NO / NO / Contact: D	ate Time:	f 47)
	Page I	of L

Analytical Results

Method SW8270SIMPAHD Method Blank

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Lab ID: EX120921-6MB

 Sample Matrix: SOIL
 Prep Batch: EX120921-6

 % Moisture: N/A
 QCBatchID: EX120921-6-1

 Date Collected: N/A
 Run ID: SV120922-1

 Date Extracted: 21-Sep-12
 Cleanup: NONE

Date Analyzed: 22-Sep-12 Basis: N/A Prep Method: SW3540 Rev C File Name: N6033

CASNO	Target Analyte	DF	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	- 1	3.3	3.3	U	7.60
208-96-8	ACENAPHTHYLENE	7.1	3.3	3.3	U	
83-32-9	ACENAPHTHENE	- 1	3.3	3.3	U	
86-73-7	FLUORENE	- 1	3.3	3.3	U	
85-01-8	PHENANTHRENE	- 1	3.3	3.3	U	
120-12-7	ANTHRACENE	- 1	3.3	3.3	U	
206-44-0	FLUORANTHENE	21	3.3	3.3	U	
129-00-0	PYRENE	- 1	3.3	3.3	U	
56-55-3	BENZO(A)ANTHRACENE	- 1	3.3	3.3	U	
218-01-9	CHRYSENE	2.1	3.3	3.3	U	
205-99-2	BENZO(B)FLUORANTHENE	- 1	3.3	3.3	U	
207-08-9	BENZO(K)FLUORANTHENE	1	3.3	3.3	U	
50-32-8	BENZO(A)PYRENE	1	3.3	3.3	U	
193-39-5	INDENO(1,2,3-CD)PYRENE	1	3.3	3.3	U	
53-70-3	DIBENZO(A,H)ANTHRACENE	1	3.3	3.3	U	
191-24-2	BENZO(G,HJ)PERYLENE		3.3	3.3	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	48.4		66.7	73	41 - 106
4165-60-0	NITROBENZENE-D5	53		66.7	80	28 - 113
1718-51-0	TERPHENYL-D14	45		66.7	68	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 ALS Environmental -- FC
LIMS Version: 6.613

Page 1 of 1

Sample Aliquot:

Final Volume:

Result Units: UG/KG

Clean DF:

30 g

1 ml

GC/IVIO OCITII-VUIALITES

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031232_MFC Lab ID: 1209339-2

Sample Matrix: SOIL % Moisture: 9.2 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12

Date Analyzed: 22-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120921-6 QCBatchID: EX120921-6-1 Run ID: SV120922-1

Cleanup: NONE Basis: Dry Weight File Name: N6049

Analyst: Joe Kosteinik Sample Aliquot: 30.31 G Final Volume: Result Units: UG/KG

Clean DF:

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.6	3.6	U	
208-96-8	ACENAPHTHYLENE	1	3.6	3.6	U	
83-32-9	ACENAPHTHENE	1	3.6	3.6	U	
86-73-7	FLUORENE	1	3.6	3.6	U	
85-01-8	PHENANTHRENE	1	9.6	3.6		
120-12-7	ANTHRACENE	1	3.2	3.6	J	
206-44-0	FLUORANTHENE	1	66	3.6		
129-00-0	PYRENE	1	61	3.6		
56-55-3	BENZO(A)ANTHRACENE	1	44	3.6		
218-01-9	CHRYSENE	1	42	3.6		
205-99-2	BENZO(B)FLUORANTHENE	1	99	3.6		
207-08-9	BENZO(K)FLUORANTHENE	1	40	3.6		
50-32-8	BENZO(A)PYRENE	1	60	3.6		
193-39-5	INDENO(1,2,3-CD)PYRENE	1	25	3.6		
53-70-3	DIBENZO(A,H)ANTHRACENE	1	9.3	3.6		
191-24-2	BENZO(G,H,I)PERYLENE	1	30	3.6		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	55.1		72.6	76	41 - 106
4165-60-0	NIT ROBENZENE-D5	60.3		72.6	83	28 - 113
1718-51-0	TERPHENYL-D14	68.7		72.6	95	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613

Page 1 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031233_MFC Lab ID: 1209339-3 Sample Matrix: SOIL % Moisture: 8.8 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 22-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120921-6 QCBatchID: EX120921-6-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight

File Name: N6052

Analyst: Joe Kostelnik Sample Aliquot: 30.9 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.5	3.5	U	
208-96-8	ACENAPHTHYLENE	1	3.5	3.5	U	
83-32-9	ACENAPHTHENE	1	3.5	3.5	U	
86-73-7	FLUORENE	1	3.5	3.5	U	
85-01-8	PHENANTHRENE	1	7.5	3.5		
120-12-7	ANTHRACENE	1	2.5	3.5	J	
206-44-0	FLUORANTHENE	1	55	3.5		
129-00-0	PYRENE	1	35	3.5		
56-55-3	BENZO(A)ANTHRACENE	1	25	3.5		
218-01-9	CHRYSENE	1	26	3.5		
205-99-2	BENZO(B)FLUORANTHENE	1	53	3.5		
207-08-9	BENZO(K)FLUORANTHENE	1	24	3.5		
50-32-8	BENZO(A)PYRENE	1	32	3.5		
193-39-5	INDENO(1,2,3-CD)PYRENE	1	13	3.5		
53-70-3	DIBENZO(A,H)ANTHRACENE	1	4.5	3.5		
191-24-2	BENZO(G,H,I)PERYLENE	1	14	3.5		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	48.8		71	69	41 - 106
4165-60-0	NIT ROBENZENE-D5	53.8		71	76	28 - 113
1718-51-0	TERPHENYL-D14	34.6		71	49	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 2 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental -- FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031236_MFC
Lab ID: 1209339-6

Sample Matrix: SOIL % Moisture: 11.7 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 23-Sep-12

Prep Method: SW3540 Rev C

Prep Batch: EX120921-6 QCBatchID: EX120921-6-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight

File Name: N6053

Analyst: Joe Kosteinik Sample Aliquot: 30.14 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.8	3.8	U	
208-96-8	ACENAPHTHYLENE	1	2.1	3.8	J	
83-32-9	ACENAPHTHENE	1	3.8	3.8	U	
86-73-7	FLUORENE	1	3.8	3.8	U	
85-01-8	PHENANTHRENE	1	11	3.8		
120-12-7	ANTHRACENE	1	4.4	3.8		
206-44-0	FLUORANTHENE	1	74	3.8		
129-00-0	PYRENE	1	71	3.8		
56-55-3	BENZO(A)ANTHRACENE	1	44	3.8		
218-01-9	CHRYSENE	1	40	3.8		
205-99-2	BENZO(B)FLUORANTHENE	1	95	3.8		
207-08-9	BENZO(K)FLUORANTHENE	1	37	3.8		
50-32-8	BENZO(A)PYRENE	1	58	3.8		
193-39-5	INDENO(1,2,3-CD)PYRENE	1	29	3.8		
53-70-3	DIBENZO(A,H)ANTHRACENE	1	11	3.8		
191-24-2	BENZO(G,H,I)PERYLENE	1	34	3.8		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	52.6		75.1	70	41 - 106
4165-60-0	NIT ROBENZENE-D5	59.6		75.1	79	28 - 113
1718-51-0	TERPHENYL-D14	80.5		75.1	107	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 3 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031237_MFC
Lab ID: 1209339-7

Sample Matrix: SOIL % Moisture: 12.2 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 22-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120921-6 QCBatchID: EX120921-8-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight

File Name: N6048

Analyst: Joe Kosteinik Sample Aliquot: 30.16 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	- 1	3.8	3.8	U	
208-96-8	ACENAPHTHYLENE	- 1	3.8	3.8	U	
83-32-9	ACENAPHTHENE	- 1	3.8	3.8	U	
86-73-7	FLUORENE	- 1	3.8	3.8	U	
85-01-8	PHENANTHRENE	1	4.5	3.8		
120-12-7	ANTHRACENE	1	1.5	3.8	J	
206-44-0	FLUORANTHENE	1.1	32	3.8		
129-00-0	PYRENE	- 1	25	3.8		
56-55-3	BENZO(A)ANTHRACENE		20	3.8		
218-01-9	CHRYSENE	. 1	19	3.8		
205-99-2	BENZO(B)FLUORANTHENE		49	3.8	er 100	
207-08-9	BENZO(K)FLUORANTHENE	.1	17	3.8		
50-32-8	BENZO(A)PYRENE	.1	27	3.8	er 197	
193-39-5	INDENO(1,2,3-CD)PYRENE	.1	9.4	3.8		·
53-70-3	DIBENZO(A,H)ANTHRACENE	81	3.3	3.8	J	
191-24-2	BENZO(G,H,I)PERYLENE	.1	10	3.8		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	56.8		75.5	75	41 - 106
4165-60-0	NIT ROBENZENE-D5	62.7		75.5	83	28 - 113
1718-51-0	TERPHENYL-D14	63.5		75.5	84	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 ALS Environmental -- FC
LIMS Version: 6.613

Page 4 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031239_MFC Lab ID: 1209339-9 Sample Matrix: SOIL % Moisture: 11.9 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 23-Sep-12

Prep Method: SW3540 Rev C

Prep Batch: EX120921-8 QCBatchID: EX120921-8-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight File Name: N8054 Analyst: Joe Kosteinik Sample Aliquot: 30.2 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	- 1	3.8	3.8	U	
208-96-8	ACENAPHTHYLENE	- 1	3.8	3.8	U	
83-32-9	ACENAPHTHENE	1	3.8	3.8	U	
86-73-7	FLUORENE	1	3.8	3.8	U	
85-01-8	PHENANTHRENE	- 1	5.5	3.8		
120-12-7	ANTHRACENE	1	1.8	3.8	J	
206-44-0	FLUORANTHENE	1	45	3.8		
129-00-0	PYRENE	1	56	3.8		
56-55-3	BENZO(A)ANTHRACENE	. 1	35	3.8		
218-01-9	CHRYSENE	- 1	36	3.8		
205-99-2	BENZO(B)FLUORANTHENE		72	3.8	TE 82	
207-08-9	BENZO(K)FLUORANTHENE	1	31	3.8		
50-32-8	BENZO(A)PYRENE	. 1	41	3.8	75 89	A
193-39-5	INDENO(1,2,3-CD)PYRENE	. 1	19	3.8		
53-70-3	DIBENZO(A,H)ANTHRACENE	. 1	6.4	3.8		
191-24-2	BENZO(G,H,I)PERYLENE	. 1	23	3.8		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	49.1		75.2	65	41 - 106
4165-60-0	NIT ROBENZENE-D5	49.9		75.2	66	28 - 113
1718-51-0	TERPHENYL-D14	80.6		75.2	107	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 ALS Environm

ALS Environmental -- FC LIMS Version: 6.613 Page 5 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031248_MFC
Lab ID: 1209339-12

Sample Matrix: SOIL % Moisture: 10.1 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 23-Sep-12

Prep Method: SW3540 Rev C

Prep Batch: EX120921-8 QCBatchID: EX120921-8-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight

File Name: N6055

Analyst: Joe Kostelnik Sample Aliquot: 30.2 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.7	3.7	U	
208-96-8	ACENAPHTHYLENE	- 1	3.7	3.7	U	
83-32-9	ACENAPHTHENE	- 1	3.7	3.7	U	
86-73-7	FLUORENE	- 1	3.7	3.7	U	
85-01-8	PHENANTHRENE	1	16	3.7		
120-12-7	ANTHRACENE	- 1	5	3.7		
206-44-0	FLUORANTHENE	- 1	97	3.7		
129-00-0	PYRENE	1	110	3.7		
56-55-3	BENZO(A)ANTHRACENE	- 1	66	3.7		
218-01-9	CHRYSENE	- 1	72	3.7		,
205-99-2	BENZO(B)FLUORANTHENE	. 1	140	3.7	T 187	v
207-08-9	BENZO(K)FLUORANTHENE	. 1	48	3.7		
50-32-8	BENZO(A)PYRENE	. 1	84	3.7	73. ISA	0
193-39-5	INDENO(1,2,3-CD)PYRENE	- 1	45	3.7		
53-70-3	DIBENZO(A,H)ANTHRACENE	1	15	3.7		
191-24-2	BENZO(G,H,I)PERYLENE	. 1	52	3.7		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	52.8		73.7	72	41 - 106
4165-60-0	NIT ROBENZENE-D5	56.2		73.7	76	28 - 113
1718-51-0	TERPHENYL-D14	84.6		73.7	115	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 6 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031250_MFC Lab ID: 1209339-14 Sample Matrix: SOIL % Moisture: 3.1 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 24-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120921-6 QCBatchID: EX120921-8-1 Run ID: SV120924-1 Cleanup: NONE Basis: Dry Weight

File Name: N6072

Analyst: Joe Kostelnik Sample Aliquot: 30.17 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.4	3.4	U	
208-96-8	ACENAPHTHYLENE	1	3.4	3.4	U	
83-32-9	ACENAPHTHENE	- 1	1.1	3.4	J	
86-73-7	FLUORENE	1	3.4	3.4	U	
85-01-8	PHENANTHRENE	1	4.6	3.4		
120-12-7	ANTHRACENE	1	1.6	3.4	J	
206-44-0	FLUORANTHENE	1	15	3.4		
129-00-0	PYRENE	1	13	3.4		
56-55-3	BENZO(A)ANTHRACENE	1	9.1	3.4		
218-01-9	CHRYSENE	1	7.4	3.4		4
205-99-2	BENZO(B)FLUORANTHENE	1	19	3.4		
207-08-9	BENZO(K)FLUORANTHENE	1	7.3	3.4	C	
50-32-8	BENZO(A)PYRENE	1	11	3.4		
193-39-5	INDENO(1,2,3-CD)PYRENE	1	4.7	3.4	30 TV	
53-70-3	DIBENZO(A,H)ANTHRACENE	1	1.5	3.4	J	,
191-24-2	BENZO(G,H,I)PERYLENE	1	5.8	3.4		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	51.5		68.4	75	41 - 106
4165-60-0	NIT ROBENZENE-D5	55.9		68.4	82	28 - 113
1718-51-0	TERPHENYL-D14	60.6		68.4	89	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 7 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031252_MFC Lab ID: 1209339-16 Sample Matrix: SOIL % Moisture: 3.0 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 22-Sep-12

Prep Method: SW3540 Rev C

Prep Batch: EX120921-8 QCBatchID: EX120921-8-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight

File Name: N6037

Analyst: Joe Kosteinik Sample Aliquot: 30.18 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	7	24	24	U	
208-96-8	ACENAPHTHYLENE	7	24	24	U	
83-32-9	ACENAPHTHENE	7	24	24	U	
86-73-7	FLUORENE	7	24	24	U	
85-01-8	PHENANTHRENE	7	29	24		
120-12-7	ANTHRACENE	7	9.2	24	J	
206-44-0	FLUORANTHENE	7	160	24		
129-00-0	PYRENE	7	110	24		5
56-55-3	BENZO(A)ANTHRACENE	7	90	24		5
218-01-9	CHRYSENE	7	88	24		S
205-99-2	BENZO(B)FLUORANTHENE	7	150	24	TS 187	10
207-08-9	BENZO(K)FLUORANTHENE	7	62	24		0
50-32-8	BENZO(A)PYRENE	7	110	24	TX 189	y .
193-39-5	INDENO(1,2,3-CD)PYRENE	7	70	24		9
53-70-3	DIBENZO(A,H)ANTHRACENE	7	23	24	J	9
191-24-2	BENZO(G,H,I)PERYLENE	7	77	24		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	56.3		68.3	82	41 - 106
4165-60-0	NIT ROBENZENE-D5	56.8		68.3	83	28 - 113
1718-51-0	TERPHENYL-D14	52.4		68.3	77	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 8 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031254_MFC Lab ID: 1209339-18 Sample Matrix: SOIL % Moisture: 5.8 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 24-Sep-12

Prep Method: SW3540 Rev C

Prep Batch: EX120921-6 QCBatchID: EX120921-8-1 Run ID: SV120924-1 Cleanup: NONE Basis: Dry Weight File Name: N6073

Analyst: Joe Kostelnik Sample Aliquot: 30.16 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	- 1	3.5	3.5	U	
208-96-8	ACENAPHTHYLENE	- 1	3.5	3.5	U	
83-32-9	ACENAPHTHENE	- 1	3.5	3.5	U	
86-73-7	FLUORENE	1	3.5	3.5	U	
85-01-8	PHENANTHRENE	- 1	4.3	3.5		
120-12-7	ANTHRACENE	- 1	1.6	3.5	J	
206-44-0	FLUORANTHENE	- 1	38	3.5		
129-00-0	PYRENE	1	37	3.5		
56-55-3	BENZO(A)ANTHRACENE	- 1	31	3.5		
218-01-9	CHRYSENE	1	27	3.5		
205-99-2	BENZO(B)FLUORANTHENE	1	60	3.5	28 89	
207-08-9	BENZO(K)FLUORANTHENE	1	33	3.5		
50-32-8	BENZO(A)PYRENE	. 1	43	3.5	77 37	
193-39-5	INDENO(1,2,3-CD)PYRENE	- 1	20	3.5		
53-70-3	DIBENZO(A,H)ANTHRACENE	- 1	6.4	3.5		
191-24-2	BENZO(G,H,I)PERYLENE	. 1	24	3.5		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	51.3		70.4	73	41 - 106
4165-60-0	NIT ROBENZENE-D5	55.5		70.4	79	28 - 113
1718-51-0	TERPHENYL-D14	65		70.4	92	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 9 of 10

Method SW8270SIMPAH Revision D Sample Results

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Field ID: BEA031252_MFC
Lab ID: 1209339-16RR1

Sample Matrix: SOIL % Moisture: 3.0 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 22-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120921-6 QCBatchID: EX120921-6-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight File Name: N6047 Analyst: Joe Kosteinik Sample Aliquot: 30.18 G Final Volume: 1 ML Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Dilution Factor	Result	Reporting Limit	Result Qualifier	EPA Qualifier
91-20-3	NAPHTHALENE	1	3.4	3.4	U	
208-96-8	ACENAPHTHYLENE	1	3.4	3.4	U	
83-32-9	ACENAPHTHENE	1	3.4	3.4	U	
86-73-7	FLUORENE	1	3.4	3.4	U	
85-01-8	PHENANTHRENE	1	28	3.4		
120-12-7	ANTHRACENE	1	8.6	3.4		
206-44-0	FLUORANTHENE	1	130	3.4		
129-00-0	PYRENE	1	100	3.4		
56-55-3	BENZO(A)ANTHRACENE	1	84	3.4		
218-01-9	CHRYSENE	1	92	3.4		
205-99-2	BENZO(B)FLUORANTHENE	1	180	3.4	E	
207-08-9	BENZO(K)FLUORANTHENE	1	57	3.4		
50-32-8	BENZO(A)PYRENE	1	110	3.4		
193-39-5	INDENO(1,2,3-CD)PYRENE	1	37	3.4		
53-70-3	DIBENZO(A,H)ANTHRACENE	1	13	3.4		
191-24-2	BENZO(G,H,I)PERYLENE	1	38	3.4		

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Flag	Spike Amount	Percent Recovery	Control Limits
321-60-8	2-FLUOROBIPHENYL	48.9		68.3	72	41 - 106
4165-60-0	NIT ROBENZENE-D5	52.9		68.3	77	28 - 113
1718-51-0	TERPHENYL-D14	54.6		68.3	80	25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 10 of 10

Supporting QA/QC Data

Surrogate Summary for GC/MS Semi-volatiles

Method SW8270SIMPAHD

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

PrepBatchID: EX120921-6
QC Batch ID: EX120921-6-1
Date Extracted: 9/21/2012

Surrogate Compound	Control Lower	
2,4,6-Tribromophenol		
2-Fluorobiphenyl	41	106
2-Fluorophenol		
Nitrobenzene-d5	28	113
Phenol-d5		
Terphenyl-d14	25	147

Lab ID	Client Sample ID	Date Collected	Date Received	246TB % Recovery	2FBP % Recovery	2FP % Recovery	ND5 % Recovery	PD5 % Recovery	TD14 % Recovery
1209339-6	BEA031236_MFC	9/20/2012	9/21/2012	-1.0	70	SOUTH POST	79	100 Test-	107
1209339-9	BEA031239_MFC	9/20/2012	9/21/2012		65		66		107
1209339-12	BEA031248_MFC	9/20/2012	9/21/2012		72		76		115
EX120921-6MB	XXXXXXXX	NA	XXXXXXXX		73		80		68
EX120921-6LCS	XXXXXXX	NA	XXXXXXX		78	9	85		75
EX120921-6LCSD	XXXXXXX	NA	XXXXXXXX		72	g	80		74
1209339-16	BEA031252_MFC	9/20/2012	9/21/2012		82	g 2	83		77
1209339-16RR1	BEA031252_MFC	9/20/2012	9/21/2012		72		77		80
1209339-7	BEA031237_MFC	9/20/2012	9/21/2012		75	9	83		84
1209339-2	BEA031232_MFC	9/20/2012	9/21/2012		76	. ,	83		95
1209339-2MS	BEA031232_MFC	9/20/2012	9/21/2012		66	g	71		80
1209339-2MSD	BEA031232_MFC	9/20/2012	9/21/2012		71	e y	76		94
1209339-3	BEA031233_MFC	9/20/2012	9/21/2012	600 160	69	<u> 199</u>	76	101 105	49

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 Shaded values exceed established control limits. ALS Environmental -- FC LIMS Version: 6.613 Page 1 of 1

Surrogate Summary for GC/MS Semi-volatiles

Method SW8270SIMPAHD

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

PrepBatchID: EX120921-6

QC Batch ID: EX120921-6-1

Date Extracted: 9/21/2012

Surrogate Compound	Control Lower	
2,4,6-Tribromophenol		11
2-Fluorobiphenyl	41	106
2-Fluorophenol		
Nitrobenzene-d5	28	113
Phenol-d5		
Terphenyl-d14	25	147

Lab ID	Client Sample ID	Date Collected	Date Received	246TB % Recovery	2FBP % Recovery	2FP % Recovery	ND5 % Recovery	PD5 % Recovery	TD14 % Recovery
1209339-14	BEA031250_MFC	9/20/2012	9/21/2012		75	and the	82	100 Yes	89
1209339-18	BEA031254_MFC	9/20/2012	9/21/2012	75 (0.	73	<u> </u>	79	<u> </u>	92

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 Shaded values exceed established control limits.

ALS Environmental -- FC LIMS Version: 6.613 Page 1 of 1

Method SW8270SIMPAHD

Laboratory Control Sample and Laboratory Control Sample Duplicate

Lab Name: ALS Environmental - FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Lab ID: EX120921-6LCS

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A Date Extracted: 09/21/2012 Date Analyzed: 09/22/2012

Prep Method: SW3540C

Prep Batch: EX120921-6 QCBatchID: EX120921-6-1 Run ID: SV120922-1 Cleanup: NONE Basis: N/A

File Name: N6034

Sample Aliquot: 30 g Final Volume: 1 ml Result Units: UG/KG Clean DF: 1

CASNO	Target Analyte	Spike Added	LCS Result	Reporting Limit	Result Qualifier	LCS % Rec.	Control Limits
91-20-3	NAPHTHALENE	66.7	55.5	3.33		83	40 - 107%
208-96-8	ACENAPHTHYLENE	66.7	55.8	3.33		84	44 - 107%
83-32-9	ACENAPHTHENE	66.7	56	3.33		84	46 - 108%
86-73-7	FLUORENE	66.7	55.9	3.33		84	49 - 108%
85-01-8	PHENANTHRENE	66.7	55.4	3.33		83	50 - 110%
120-12-7	ANTHRACENE	66.7	57	3.33		86	53 - 107%
206-44-0	FLUORANTHENE	66.7	57.8	3.33		87	54 - 114%
129-00-0	PYRENE	66.7	44.3	3.33		66	46 - 123%
56-55-3	BENZO(A)ANTHRACENE	66.7	55	3.33		82	52 - 111%
218-01-9	CHRYSENE	66.7	55.3	3.33		83	53 - 112%
205-99-2	BENZO(B)FLUORANTHENE	66.7	60.2	3.33		90	45 - 114%
207-08-9	BENZO(K)FLUORANTHENE	66.7	53.4	3.33		80	45 - 123%
50-32-8	BENZO(A)PYRENE	66.7	59.7	3.33		90	50 - 111%
193-39-5	INDENO(1,2,3-CD)PYRENE	66.7	64.4	3.33		97	38 - 121%
53-70-3	DIBENZO(A,H)ANTHRACENE	66.7	71.4	3.33		107	41 - 125%
191-24-2	BENZO(G,H,I)PERYLENE	66.7	64.4	3.33		97	38 - 126%

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC

Page 1 of 2

Method SW8270SIMPAHD

Laboratory Control Sample and Laboratory Control Sample Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA031231

Lab ID: EX120921-6LCSD

Sample Matrix: SOIL % Moisture: N/A Date Collected: N/A Date Extracted: 09/21/2012 Date Analyzed: 09/22/2012

Prep Batch: EX120921-6 QCBatchID: EX120921-6-1 Run ID: SV120922-1 Cleanup: NONE Basis: N/A Sample Aliquot: 30 g Final Volume: 1 ml Result Units: UG/KG Clean DF: 1

Prep Method: SW3540C File Name: N8038

CASNO	Target Analyte	Spike Added	LCSD Result	Reporting Limit	Result Qualifier	LCSD % Rec.	RPD Limit	RPD
91-20-3	NAPHTHALENE	66.7	51.9	3.33		78	30	7
208-96-8	ACENAPHTHYLENE	66.7	50.7	3.33		76	30	10
83-32-9	ACENAPHTHENE	66.7	51.1	3.33		77	30	9
86-73-7	FLUORENE	66.7	50.4	3.33		76	30	10
85-01-8	PHENANTHRENE	66.7	50.4	3.33		76	30	9
120-12-7	ANTHRACENE	66.7	52.8	3.33		79	30	8
206-44-0	FLUORANTHENE	66.7	52.6	3.33		79	30	9
129-00-0	PYRENE	66.7	43.7	3.33		66	30	1
56-55-3	BENZO(A)ANTHRACENE	66.7	51	3.33		77	30	7
218-01-9	CHRYSENE	66.7	53	3.33		79	30	4
205-99-2	BENZO(B)FLUORANTHENE	66.7	59.2	3.33		89	30	2
207-08-9	BENZO(K)FLUORANTHENE	66.7	51.1	3.33		77	30	4
50-32-8	BENZO(A)PYRENE	66.7	55.5	3.33		83	30	7
193-39-5	INDENO(1,2,3-CD)PYRENE	66.7	57	3.33		85	30	12
53-70-3	DIBENZO(A,H)ANTHRACENE	66.7	62.5	3.33		94	30	13
191-24-2	BENZO(G,H,I)PERYLENE	66.7	56.7	3.33		85	30	13

Surrogate Recovery LCS/LCSD

CASNO	Target Analyte	Spike Added	LCS % Rec.	LCS Flag	LCSD % Rec.	LCSD Flag	Control Limits
321-60-8	2-FLUOROBIPHENYL	66.7	78		72		41 - 108
4165-60-0	NITROBENZENE-D5	66.7	85		80		28 - 113
1718-51-0	TERPHENYL-D14	66.7	75		74		25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 2 of 2

Method SW8270SIMPAHD Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance

ClientProject ID: MFC Biodiesel Tank Removal , TOS-A1175 Rev2 BEA03123

Field ID: BEA031232_MFC LabID: 1209339-2MS Sample Matrix: SOIL % Moisture: 9.2 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12 Date Analyzed: 22-Sep-12 Prep Method: SW3540 Rev C

QCBatchID: EX120921-8-1 Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight

Prep Batch: EX120921-6

Sample Aliquot: 30.67 g Final Volume: 1 ml Result Units: UG/KG File Name: N8050

CASNO	Target Analyte	Sample Result	Samp Qual	MS Result	MS Qual	Reporting Limit	Spike Added	MS % Rec.	Control Limits
91-20-3	NAPHTHALENE	3.6	U	48.8		3.59	71.8	68	40 - 107%
208-96-8	ACENAPHTHYLENE	3.6	U	49.1		3.59	71.8	68	44 - 107%
83-32-9	ACENAPHTHENE	3.6	U	51.4		3.59	71.8	72	46 - 108%
86-73-7	FLUORENE	3.6	U	52.1		3.59	71.8	73	49 - 108%
85-01-8	PHENANTHRENE	9.6		53		3.59	71.8	60	50 - 110%
120-12-7	ANTHRACENE	3.2	J	52.4		3.59	71.8	69	53 - 107%
206-44-0	FLUORANTHENE	66		78.5	*	3.59	71.8	17	54 - 114%
129-00-0	PYRENE	61		73.4	*	3.59	71.8	18	46 - 123%
56-55-3	BENZO(A)ANTHRACENE	44		69	*	3.59	71.8	34	52 - 111%
218-01-9	CHRYSENE	42		73		3.59	71.8	43	53 - 112%
205-99-2	BENZO(B)FLUORANTHENE	99		114	*	3.59	71.8	21	45 - 114%
207-08-9	BENZO(K)FLUORANTHENE	40		81.5		3.59	71.8	58	45 - 123%
50-32-8	BENZO(A)PYRENE	60		81.3	*	3.59	71.8	30	50 - 111%
193-39-5	INDENO(1,2,3-CD)PYRENE	25		51.6	*	3.59	71.8	37	38 - 121%
53-70-3	DIBENZO(A,H)ANTHRACENE	9.3		50.8		3.59	71.8	58	41 - 125%
191-24-2	BENZO(G,H,I)PERYLENE	30		50.2	*	3.59	71.8	28	38 - 126%

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LMS Version: 6.613 Page 1 of 2

Method SW8270SIMPAHD Matrix Spike And Matrix Spike Duplicate

Lab Name: ALS Environmental -- FC

Work Order Number: 1209339

Client Name: Battelle Energy Alliance ClientProject ID: MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 BEA03123

Field ID: BEA031232_MFC LabID: 1209339-2MSD

Sample Matrix: SOIL % Moisture: 9.2 Date Collected: 20-Sep-12 Date Extracted: 21-Sep-12

Date Analyzed: 22-Sep-12 Prep Method: SW3540 Rev C Prep Batch: EX120921-6 QCBatchID: EX120921-6-1

Run ID: SV120922-1 Cleanup: NONE Basis: Dry Weight

Sample Aliquot: 30.14 g Final Volume: 1 ml Result Units: UG/KG

File Name: N6051

CASNO	Target Analyte	MSD Result	MSD Qual	Spike Added	MSD % Rec.	Reporting Limit	RPD Limit	RPD
91-20-3	NAPHTHALENE	53.3		73	73	3.65	30	9
208-96-8	ACENAPHTHYLENE	55.7	0	73	76	3.65	30	13
83-32-9	ACENAPHTHENE	58.1	-	73	79	3.65	30	12
86-73-7	FLUORENE	57.5	9	73	79	3.65	30	10
85-01-8	PHENANTHRENE	60.1		73	69	3.65	30	13
120-12-7	ANTHRACENE	59.2		73	77	3.65	30	12
206-44-0	FLUORANTHENE	89.9		73	32	3.65	30	14
129-00-0	PYRENE	89		73	39	3.65	30	19
56-55-3	BENZO(A)ANTHRACENE	79.8	*	73	49	3.65	30	14
218-01-9	CHRYSENE	78.7		73	50	3.65	30	7
205-99-2	BENZO(B)FLUORANTHENE	126	*	73	38	3.65	30	11
207-08-9	BENZO(K)FLUORANTHENE	104	9	73	88	3.65	30	24
50-32-8	BENZO(A)PYRENE	92.7		73	45	3.65	30	13
193-39-5	INDENO(1,2,3-CD)PYRENE	56.4		73	43	3.65	30	9
53-70-3	DIBENZO(A,H)ANTHRACENE	55.7		73	64	3.65	30	9
191-24-2	BENZO(G,H,I)PERYLENE	53.3	*	73	31	3.65	30	6

Surrogate Recovery MS/MSD

CASNO	Target Analyte	Spike Added	MS % Rec.	MS Flag	MSD % Rec.	MSD Flag	Control Limits
321-60-8	2-FLUOROBIPHENYL	71.8	66		71		41 - 106
4165-60-0	NITROBENZENE-D5	71.8	71		76		28 - 113
1718-51-0	TERPHENYL-D14	71.8	80	7	94		25 - 147

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613

Page 2 of 2

Prep Batch ID: EX120921-6

Start Date: 09/21/12 Start Time: 15:40 Prep Analyst: Ethan A. Arend End Date: 09/22/12 End Time: 9:35 Concentration Method: CKIS Extract Method: SW3540C Initial Volume Units: g

Final Volume Units: MI

Batch Created By: eaa Date Created: 09/21/12 Time Created: 15:45 Validated By: pjs

Date Validated: 09/22/12 Time Validated: 17:13

Comments:

QC Batch ID: EX120921-6-1

Lab ID	QC Type	Field ID	Matrix	Date Collected	Initial Wt/Vol	Final Wt/Vol	Cleanup Method	Cleanup DF	Order Number
EX120921-6	MB	XXXXXX	SOIL	XXXXXXX	30	1	NONE	1	1209339
EX120921-6	LCS	XXXXXX	SOIL	XXXXXXX	30	1	NONE	1	1209338
EX120921-6	LCSD	XXXXXX	SOIL	XXXXXXX	30	1	NONE	1	1209338
1209339-2	MS	BEA031232_MFC	SOIL	9/20/2012	30.67	1	NONE	1	1209338
1209339-2	MSD	BEA031232_MFC	SOIL	9/20/2012	30.14	1	NONE	1	1209338
1209339-12	SMP	BEA031248_MFC	SOIL	9/20/2012	30.2	1	NONE	1	1209338
1209339-14	SMP	BEA031250_MFC	SOIL	9/20/2012	30.17	1	NONE	1	1209338
1209339-16	SMP	BEA031252_MFC	SOIL	9/20/2012	30.18	1	NONE	1	1209338
1209339-18	SMP	BEA031254_MFC	SOIL	9/20/2012	30.16	1	NONE	1	1209338
1209339-2	SMP	BEA031232_MFC	SOIL	9/20/2012	30.31	1	NONE	1	1209338
1209339-3	SMP	BEA031233_MFC	SOIL	9/20/2012	30.9	1	NONE	1	1209338
1209339-6	SMP	BEA031236_MFC	SOIL	9/20/2012	30.14	1	NONE	1	1209338
1209339-7	SMP	BEA031237_MFC	SOIL	9/20/2012	30.16	1	NONE	1	1209338
1209339-9	SMP	BEAD31239_MFC	SOIL	9/20/2012	30.2	1	NONE	1	1209338

In generating this benchsheet, prep analyst states that all aspects of sample preparation as set forth in the appropriate SOP's (including Kuderna-Danish temperatures, proper flow settings on the N-evap, and final volumes) were properly adhered to (unless otherwise noted herein).

QC Types

CAR	Carrier reference sample	DUP	Laboratory Duplicate
LCS	Laboratory Control Sample	LCSD	Laboratory Control Sample Duplicat
MB	Method Blank	MS	Laboratory Matrix Spike
MSD	Laboratory Matrix Spike Duplicate	REP	Sample replicate
RVS	Reporting Level Verification Standar	SMP	Fleid Sample
SYS	Sample Yield Spike	38	

Page 1 of 1

ALS Environmental -- FC
LIMS Version: 6.613

Date Printed: Tuesday, September 25, 2012

Semi-Volatile Organic GC/MS Tuning And Mass Calibration--Decafluorotriphenylphosphine (DFTPP)

 Lab Name:
 ALS Environmental – FC
 DFTPP Injection Date:
 9/20/2012

 Work Order Number:
 1209339
 DFTPP Injection Time:
 9:27

 Client Name:
 Battelle Energy Alliance
 Instrument ID:
 HPSV1

ClientProject ID: BEA031231MFC Biodiesel Tank Removal ,TOS-A1175 Rev2

Reported on: Tuesday, September 25, 2012

FileID: N6000

m/e	Ion Abundance Criteria SW8270SIMPAHD	% Relative Abundance
51	30.0 - 60.0 percent of mass 198	51.7
68	Less than 2.0 percent of mass 69	0
69	Mass 69 relative abundance of mass 198	52.9
70	Less than 2.0 percent of mass 69	0
127	40.0 - 60.0 percent of mass 198	58.8
197	Less than 1.0 percent of mass 198	0
198	Base peak, 100 percent of relative abundance	100
199	5.0 - 9.0 percent of mass 198	6.9
275	10.0 - 30.0 percent of mass 198	28.6
365	Greater than 1.00 percent of mass 198	3.4
441	Present, but less than mass 443 (percent of 443)	73.1
442	Greater than 40.0 percent of mass 198	79.8
443	17.0 - 23.0 percent of mass 442	19.3

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID	
XXXXXXXX	ICALSVSTD0500CSTD	N6001	9/20/2012	10:02	SV120920-1	
XXXXXXXX	ICALSVSTD0050CSTD	N6002	9/20/2012	10:23	SV120920-1	
XXXXXXXX	ICALSVSTD0100CSTD	N6003	9/20/2012	10:44	SV120920-1	
XXXXXXXX	ICALSVSTD0200CSTD	N6004	9/20/2012	11:04	SV120920-1	
XXXXXXXX	ICALSVSTD1000CSTD	N6005	9/20/2012	11:25	SV120920-1	
XXXXXXXX	ICALSVSTD2000CSTD	N6006	9/20/2012	11:45	SV120920-1	
XXXXXXXX	ICALSVSTD5000CSTD	N6007	9/20/2012	12:06	SV120920-1	
XXXXXXX	ICVSVSTD2000ICV	N6009	9/20/2012	13:11	SV120920-1	
XXXXXXXX	1209035-14	N6011	9/20/2012	14:14	EX120915-2-1	
XXXXXXXX	1209035-17	N6013	9/20/2012	14:55	EX120915-2-1	
XXXXXXXX	1209035-17MS	N6014	9/20/2012	15:18	EX120915-2-1	
XXXXXXXX	1209035-17MSD	N6015	9/20/2012	15:43	EX120915-2-1	
XXXXXXX	1209035-1	N6016	9/20/2012	16:08	EX120915-2-1	

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012

ALS Environmental -- FC LIMS Version: 6.613 Page 1 of 2

Semi-Volatile Organic GC/MS Tuning And Mass Calibration--Decafluorotriphenylphosphine (DFTPP)

 Lab Name:
 ALS Environmental -- FC
 DFTPP Injection Date:
 9/20/2012

 Work Order Number:
 1209339
 DFTPP Injection Time:
 9/27

 Client Name:
 Battelle Energy Alliance
 Instrument ID:
 HPSV1

ClientProject ID: BEA031231MFC Biodiesel Tank Removal ,TOS-A1175 Rev2

Reported on: Tuesday, September 25, 2012

FileID: N6000

m/e	Ion Abundance Criteria SW8270SIMPAHD	% Relative Abundance		
51	30.0 - 60.0 percent of mass 198	51.7		
68	Less than 2.0 percent of mass 69	0		
69	Mass 69 relative abundance of mass 198	52.9		
70	Less than 2.0 percent of mass 69	0		
127	40.0 - 60.0 percent of mass 198	58.8		
197	Less than 1.0 percent of mass 198	0		
198	Base peak, 100 percent of relative abundance	100		
199	5.0 - 9.0 percent of mass 198	6.9		
275	10.0 - 30.0 percent of mass 198	28.6		
365	Greater than 1.00 percent of mass 198	3.4		
441	Present, but less than mass 443 (percent of 443)	73.1		
442	Greater than 40.0 percent of mass 198	79.8		
443	17.0 - 23.0 percent of mass 442	19.3		

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID
XXXXXXX	1209035-12	N6017	9/20/2012	16:32	EX120915-2-1
XXXXXXX	1209035-6	N6018	9/20/2012	16:55	EX120915-2-1
XXXXXXX	1209035-14RR1	N6019	9/20/2012	17:17	EX120915-2-1
XXXXXXX	1209035-16	N6020	9/20/2012	17:47	EX120915-2-1
XXXXXXX	1209035-8	N6021	9/20/2012	18:07	EX120915-2-1
XXXXXXXX	1209035-4	N6022	9/20/2012	18:28	EX120915-2-1
XXXXXXXX	1209035-3	N6023	9/20/2012	18:48	EX120915-2-1
XXXXXXX	1209035-9	N6024	9/20/2012	19:09	EX120915-2-1
XXXXXXX	1209035-11	N6025	9/20/2012	19:30	EX120915-2-1
XXXXXXXX	1209035-15	N6026	9/20/2012	19:51	EX120915-2-1
XXXXXXXX	1209035-2	N6027	9/20/2012	20:11	EX120915-2-1
XXXXXXX	1209035-10	N6028	9/20/2012	20:32	EX120915-2-1
XXXXXXXX	1209035-13	N6029	9/20/2012	20:53	EX120915-2-1

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 ALS Environmental -- FC
LIMS Version: 6.613

Page 2 of 2

Semi-Volatile Organic GC/MS Tuning And Mass Calibration--Decafluorotriphenylphosphine (DFTPP)

 Lab Name:
 ALS Environmental – FC
 DFTPP Injection Date:
 9/22/2012

 Work Order Number:
 1209339
 DFTPP Injection Time:
 16:55

 Client Name:
 Battelle Energy Alliance
 Instrument ID:
 HPSV1

ClientProject ID: BEA031231MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 Reported on: Tuesday, September 25, 2012

FileID: N6031

m/e	Ion Abundance Criteria SW8270SIMPAHD	% Relative Abundance
51	30.0 - 60.0 percent of mass 198	50.1
68	Less than 2.0 percent of mass 69	0
69	Mass 69 relative abundance of mass 198	50.2
70	Less than 2.0 percent of mass 69	0
127	40.0 - 60.0 percent of mass 198	51.8
197	Less than 1.0 percent of mass 198	0
198	Base peak, 100 percent of relative abundance	100
199	5.0 - 9.0 percent of mass 198	6.6
275	10.0 - 30.0 percent of mass 198	26.4
365	Greater than 1.00 percent of mass 198	3.2
441	Present, but less than mass 443 (percent of 443)	33.6
442	Greater than 40.0 percent of mass 198	66.5
443	17.0 - 23.0 percent of mass 442	19.3

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID	
XXXXXXX	CCV1CCV	N6032	9/22/2012	17:09	SV120922-1	
XXXXXXX	EX120921-6MB	N6033	9/22/2012	17:30	EX120921-6-1	
XXXXXXXX	EX120921-6LCS	N6034	9/22/2012	17:50	EX120921-6-1	
XXXXXXX	EX120921-6LCSD	N6036	9/22/2012	18:31	EX120921-6-1	
BEA031252_MFC	1209339-16	N6037	9/22/2012	18:51	EX120921-6-1	
BEAD31252_MFC	1209339-16RR1	N6047	9/22/2012	22:15	EX120921-6-1	
BEA031237_MFC	1209339-7	N6048	9/22/2012	22:35	EX120921-6-1	
BEA031232_MFC	1209339-2	N6049	9/22/2012	22:58	EX120921-6-1	
BEA031232_MFC	1209339-2MS	N6050	9/22/2012	23:16	EX120921-6-1	
BEA031232_MFC	1209339-2MSD	N6051	9/22/2012	23:36	EX120921-6-1	
BEAD31233_MFC	1209339-3	N6052	9/22/2012	23:57	EX120921-6-1	
BEA031236_MFC	1209339-6	N6053	9/23/2012	0:17	EX120921-6-1	
BEA031239_MFC	1209339-9	N6054	9/23/2012	0:38	EX120921-6-1	

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 ALS Environmental -- FC

LIMS Version: 6.613

Page 1 of 2

Semi-Volatile Organic GC/MS Tuning And Mass Calibration--Decafluorotriphenylphosphine (DFTPP)

Lab Name: ALS Environmental – FC Work Order Number: 1209339 DFTPP Injection Date: 9/22/2012 DFTPP Injection Time: 16:55 Client Name: Battelle Energy Alliance Instrument ID:

ClientProject ID: BEA031231MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 Reported on: Tuesday, September 25, 2012

FileID: N6031

m/e	Ion Abundance Criteria SW8270SIMPAHD	% Relative Abundance
51	30.0 - 60.0 percent of mass 198	50.1
68	Less than 2.0 percent of mass 69	0
69	Mass 69 relative abundance of mass 198	50.2
70	Less than 2.0 percent of mass 69	0
127	40.0 - 60.0 percent of mass 198	51.8
197	Less than 1.0 percent of mass 198	0
198	Base peak, 100 percent of relative abundance	100
199	5.0 - 9.0 percent of mass 198	6.6
275	10.0 - 30.0 percent of mass 198	26.4
365	Greater than 1.00 percent of mass 198	3.2
441	Present, but less than mass 443 (percent of 443)	33.6
442	Greater than 40.0 percent of mass 198	66.5
443	17.0 - 23.0 percent of mass 442	19.3

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed		QC BatchID
BEAD31248_MFC	1209339-12	N6055	9/23/2012	0:58	EX120921-6-1

Data Package ID: SV1209339-1

ALS Environmental -- FC Date Printed: Tuesday, September 25, 2012

LIMS Version: 6.613

Page 2 of 2

Semi-Volatile Organic GC/MS Tuning And Mass Calibration--Decafluorotriphenylphosphine (DFTPP)

 Lab Name:
 ALS Environmental – FC
 DFTPP Injection Date:
 9/24/2012

 Work Order Number:
 1209339
 DFTPP Injection Time:
 11:06

 Client Name:
 Battelle Energy Alliance
 Instrument ID:
 HPSV1

ClientProject ID: BEA031231MFC Biodiesel Tank Removal ,TOS-A1175 Rev2

Reported on: Tuesday, September 25, 2012

FileID: N6059

m/e	Ion Abundance Criteria SW8270SIMPAHD	% Relative Abundance
51	30.0 - 60.0 percent of mass 198	53.9
68	Less than 2.0 percent of mass 69	0
69	Mass 69 relative abundance of mass 198	52.8
70	Less than 2.0 percent of mass 69	0
127	40.0 - 60.0 percent of mass 198	54.4
197	Less than 1.0 percent of mass 198	0
198	Base peak, 100 percent of relative abundance	100
199	5.0 - 9.0 percent of mass 198	6.7
275	10.0 - 30.0 percent of mass 198	26.3
365	Greater than 1.00 percent of mass 198	2.7
441	Present, but less than mass 443 (percent of 443)	43
442	Greater than 40.0 percent of mass 198	64
443	17.0 - 23.0 percent of mass 442	19.6

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS/MSD, BLANKS, AND STANDARDS:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	QC BatchID	
XXXXXXX	ICALSVSTD0500CSTD	N6060	9/24/2012	11:19	SV120924-1	
XXXXXXX	ICALSVSTD0050CSTD	N6061	9/24/2012	12:15	SV120924-1	
XXXXXXX	ICALSVSTD0100CSTD	N6062	9/24/2012	12:35	SV120924-1	
XXXXXXX	ICALSVSTD0200CSTD	N6063	9/24/2012	12:55	SV120924-1	
XXXXXXXX	ICALSVSTD1000CSTD	N6064	9/24/2012	13:16	SV120924-1	
XXXXXXXX	ICALSVSTD2000CSTD	N6065	9/24/2012	13:36	SV120924-1	
XXXXXXXX	ICALSVSTD5000CSTD	N6066	9/24/2012	13:56	SV120924-1	
XXXXXXXX	ICVSVSTD2000ICV	N6067	9/24/2012	14:17	SV120924-1	
XXXXXXXX	EX120920-4MB	N6069	9/24/2012	14:57	EX120920-4-1	
XXXXXXXX	EX120920-4LCS	N6070	9/24/2012	15:18	EX120920-4-1	
XXXXXXXX	EX120920-4LCSD	N6071	9/24/2012	15:38	EX120920-4-1	
BEA031250_MFC	1209339-14	N6072	9/24/2012	15:58	EX120921-6-1	
BEA031254_MFC	1209339-18	N6073	9/24/2012	16:21	EX120921-6-1	

Data Package ID: SV1209339-1

Date Printed: Tuesday, September 25, 2012 ALS Environmental -- FC
LIMS Version: 6.613

Page 1 of 2

0920125H FORM 8 QC/MS Ins

	N6007.D 5000	N6006.D 2000	N9005.D 1000	N6001,0 500	N6004.D 200	M8003.D 100	N/1002.D	Average	%RSD		Curve type	Corr (r2)	quest term	Higher Orde Equation Broom term	const term
Nophthalene-dB															
Nitrobenzene-dii	2.997	3.046	2.853	3.290	3.250	3.453	3,485	3,196	7.52		Ave.RF	m/a			
Naphthalene	0.891	1.031	1.114	1.098	1.542	1.163	1.150	1.099	5.97		Ave RF	m/m			
2-Methylmaphthalone	0.744	0.783	0.851	1.189	0.886	0.908	0.845	0.898	15.41		Ave RF	m/m			
1-Mothylnaphthalone	0.712	0.751	0.829	1.130	0.874	0.834	0.919	0.878	15,72		Ave RF	m/a			
Acenaphthese-d19															
2-Fluorobiphonyl	1.157	1.550	1.947	1,714	1.978	1.580	1.890	1.733	16.91		Ave RF	m/a			
Acenaphthylone .	1,836	1.995	2.098	2,173	2.200	2.335	2.301	2.125	8.20		Ave. RF	IMa			
Agenaphthene	1.134	1.167	1,258	1.241	1.265	1.284	1.300	1.234	4.94	CCC	Ave RF	nén			
Fluorene	1,426	1.322	1.419	1,432	1.425	1.541	1.580	1,449	5.92		Alon RF	nán			
Phenanthrene-d10															
Hexaphlorobenzene	0.952	0.864	0.897	1,239	0.007	1.010	1.224	1.007	16.02		Ave RF	née			
Phenenthrene	0.887	1.057	1.150	1.190	1.230	1.207	1,300	1,163	13.31		Ave RP	nin			
Arrithmacene	0.861	1.043	1.131	1.121	1.152	1.209	1.353	1.131	12,82		Ave RF	rvin			
Fluoranthone	0.997	1,209	1.300	1,280	1.325	1.372	1.474	1.277	11.71	CCC	Ave RF	n/a			
Chrysene-d12								-1							
Pyrono	1,449	1,511	1.734	1.662	2,400	2.034	2.067	1.054	17.65		Ave RF	rs/in			
p-Terphenyl-d14	0.881	0.944	0.989	0.947	1.432	1,086	1.113	1.047	18.03		Ave RF	n/a			
Bonzo(a)antitraceno	1.118	1,144	1,198	1.217	1.230	1.420	1.543	1.267	12.31		Ave RF	něs			
Chrysene	1.062	1,138	1.170	1,128	1.216	1.282	1.264	1,182	5.71		Ave RF	nés			
Pecylene-d12							1120				- Committee	1000			
Benzo(b)fluoranthene	1.555	1.413	1.437	1.478	1.503	1.647	1.607	1.529	5.75		Ave RF	nča			
Benzo(ki)ffuoranthene	1.208	1.355	1.234	1.330	1.374	1,470	1/017	1.371	10.32	coc	Ave RF	n/a			
Benzo[a]pyrene	1.197	1.264	1.145	1.228	1.210	1.267	1,421	1.250	7.07		Ave RF	m/a			
Indenta 1,2,3-c, d pyrene	3.628	3.138	3.917	4.030	3.728	3.980	4.116	3.788	8.77		Ave RF	10/0			
Dibenzo[a,h]anthracere	2.609	2,292	2.871	2,638	2.742	2,887	2.867	2.742	7.68		Ave RF	n/a			
Benzo(g,h,ilperylene	3.130	2.711	3.322	3.476	5.412	3.509	3.594	3,306	9.15		Ave htr	nós			
				,,,,			4.004				rise in	red			

Everage = 10.77

Ju 5-20-11

Data File : Acq On: Sample: Mise:		D:HPCHEMINDATA(03301;2186003,0 3/30/2012 13:11 ICVSVSTD2000 57120307-11					Vint Operator: Inst: Multiplier:	9 Jk SOP 505 Rev, 12 HPSV1 1		
Method Tille: Lauf Upd:		oszotzski GC-MS Semivolaties SOP no. 508 Thu Bep 20 12:58:29 2042								
1) 3) 4) 5)	ISTD	Compound Hophitalene-48 Maphitalene 2-Methyloghilatene	AugRF 1,000 1,099 0,898	CCRF 1,000 1,054 0,784	Expt Cone	Found Cono	% Dev or % Dell -3.2 -12.7	Arms 16 <u>Difference</u> 52 175 169	R.T. Dov (min) 0.00 0.00	Curve FH Type Ave RF Ave RF
6) 6) 8)	ISYD	1-Me flythraphthetene Accessphithetene d10 Accessphithetene Accessphithete	0,878 1,000 2,125 1,234	0,721 1,009 1,973 1,191			-17.8 -7.2 -3.5	159 101 191 192	0.00 0.00 0.00 0.00	Ave RF Ave RF Ave RF Ave RF
10) 11) 12) 13)	ISTD	Fluorore Phenophrene-dig Hesofvicobesene Phenophrene	1,649 1,000 1,007	1,638 1,000 0,967			13.0	234 507 231	-0.16 0.00 0.00	Ave RF Ave RF Ave RF
14) 15) 10)	CCC	Anthrosene Fluoranthene Chrysene 412	1,163 1,131 1,277 1,000	1,070 1,082 1,198 1,000			-7,9 -4,4 -8,1	200 205 998 114	0.00 0.00 0.00 0.01	Ave RF Ave RF Ave RF
15) 18) 20) 21)	ISTD	Pyrene Benzojajardiracene Chrysene Penviene-d12	1,854 1,297 1,182 1,000	1,019 1,118 1,052 1,000			-1,9 -11.0 -8.4	239 212 211 84	0.01 0.01 0.01 0.01	Ave RIF Ave RIF Ave RIF Ave RIF
22) 23) 24) 25)	ccc	Berico(b) focus ritume Berzo(s) Masserthene Berzo(s) pyrane Inda no(1,2,3-c, s) pyrane	1,529 1,371 1,259 3,766	1,537 1,249 1,221 2,968			0,5 -9,6 -2,3 4,8	150 160 170 170	0.01 0.01 0.01 0.01	Ave RF Ave RF Ave RF Ave RF
20) 27)		Diberso(s)/janiferscene Benoc(g)h/jperykme	2,742 3,508	2,010			7.5 6.0	173 179	0.02	Ave RF Ave RF

Average of aboditate value = 7,5

€-20-1 37 of 47

PORM 7 Continuing Calibration Varification Report

Methods Co-Alfa Serrisebulline SCP as, 930 Core Co		Data File : Ang Orc Sample: Misc	D:HPCHEM/PDATA/092212/M0032/D 9/22/2012 17/9# ICALS/VSTD0600 ST12/0977-1 000 PPB						Vist Operator: Inst: Multiplier;	jk 50P 509 Red OCMS Ins 1	v. 12
Compared Applies Compare		Title:	GC-MS Semivolation ISOP no. 505								
No.								% Day or	Area %	R.T. Day	Curve FX
10 10 10 10 10 10 10 10						East Cond	Found Conc	% D(3)	Difference	(min)	
									109	0.00	Ave RF
1	2)							5,6	65		
1	30								54	0.00	Ave RF
19	9)							-4.1	45	0.00	Ave Rt
1								-4.9	65	0.00	Ave RF
17 2-ft scrolaphane									124	0.00	
								-0.9	66	0.60	
19	17)							1.2	ės.	0.00	
100 Flasterine								3.7	G3		
117 1810 Prince arthress—1410 1,000								0.7	64	0.00	
120									132	0.00	
150 Phot carbonic 1.63 1.167 0.4 87 0.00 Am 8F	120							-8.4	68		
140	130				1.167						
10				1.131	1.159						
150 1517D	15)		Fluoranthone	1.277	1.307						
173 Pyrona 1,854 1,853 1,41,1 09 0,00 Ans AF			Chrystene-d12	1.000	1.000			***			
160 P-Trepheryl-rif4 1.047 0.886 -15.4 0.8 0.00 Free RF 150 Senziality Instruction 1.267 1.262 1.2 7.8 0.00 Are RF 150 Chypana 1.162 1.210 2.4 7.8 0.00 Are RF 150 Chypana 1.162 1.210 2.4 7.8 0.00 Are RF 151 STID Peopless-cit2 1.000 1.000 1.100 1.100 1.100 150 Senziality Instruction 1.569 1.569 1.569 1.000 Are RF 20) Dennight Concathers 1.271 1.267 -0.2 0.3 0.00 Are RF 24) Struction 1.272 1.300 4.6 84 0.00 Are RF 25) Internet (7.2-2-city) 1.000 1.000 1.000 Are RF 26) Otherschild Contaction 2.742 3.150 1.000 1.1 3.0 0.00 Are RF 26) Otherschild Contaction 2.742 3.150 1.000 1.000 1.000 27 28 28 28 28 28 28 28			Pyrene	1.854	1.683			-14.1			
19			p-Terphenyl-ci14	1.047	0.886						
20	190		Bowzojajorthracene	1.267	1.252						
21)			Chrysonia	1.182							
220	21)	HSTD	Perviene-d12					2.4			
23)	225		Semzolt/Nuoranthene	1,529	1.609			46			
24) Bernoiglipyanne 1,250 1,000 6,0 94 0,00 Ann SF 25) Indiane(1,22-b-diggrams) 3,76 4,019 8,1 34 0,00 Ann SF 40 Disensiphi/bir/functoris 2,742 3,150 19,1 61 0,00 Ann SF			Bergodkii uscanthene	1.371							
25) Instanci (12,3-c. d)pyrams 3,766 4,019 8.1 53 0,00 Ann RF 36) Obernoja (jorninascera 2,742 3,103 13.1 81 0,00 Ann RF											
20) Otherwisk (Indianases 2.742 3.100 ID.1 81 0.00 Ann RF											
170 Part 1 Part											
0.0 TH 0.00 AVERT											
	- 1		- m -n -a -a -a					0.0	.78	4000	ALMS IN L

version of alterelytic veloce = 43

4.8

94 9-24-10

9924129H - FORM 6 GC/MS Ins

	N8088.D	N8085.D	N9084.D	O.0909A	M8063.D	N8082.D	M3061.D	,						Higher Order Equation	,
	8000	2000	1000	500	200	100	50	Average	%RBD		Curve type	Corr (*2)	qued berm	linear term	constitem
Naphthalana-dă															
Nitrobergeme-d5	2,930	3,068	3.158	3,264	3,248	3,195	3,283	3.165	3.96		Ave RF	n/a			
Naphthalone	0.986	1.042	1.101	1.098	1.143	1.165	1.194	1.104	8,68		Ave RF	n/m			
2-Methylnaphthalene	0.729	0.790	0.829	0.652	0.659	0.875	0.884	0.831	6.62		Ave RF	nte			
1-Methylnaphthalene	0,707	0,755	0.808	0,826	0.875	0,895	0.684	0.821	0.57		Ave RF	nta			
Acenaphthene-d19															
2-Fluorobiphanyl	1.451	1,542	1,682	1.746	1,836	1,917	1,955	1.735	10.66		Ave RF	n/a			
Acomaphitrylene	1.843	1.940	2.060	2.094	2.098	2.102	2,114	2,033	5,04		Ave RF	mile			
Acenapithene	1.127	1.193	1.256	1.281	1.292	1.313	1.384	1.265	6.64	220	Ave RF	refu			
Fluorene	1.263	1,362	1,458	1.510	1,514	1,503	1.572	1.463	7.75		Ave RE	n/e			
Phononthrone-d10															
Hexachiorobenzene	0.773	0.804	0.862	0.633	0.882	0.968	1.200	0.905	16.00		Assa RF	rw's			
Phenanthrone	1.004	1,080	1,123	1.189	1,237	1.292	1.347	1,176	10.56		Ave RF	nfa			
Anthracene	1,000	1,058	1.138	1.139	1.128	1.149	1.215	1,118	6,20		Axe RF	m/a			
Fluoranthene	1.109	1.203	1,389	1.380	1.357	1.402	1.503	1.326	9.86	CCC	Ave RF	m/w			
Chrysene-d12															
Pyrene	1.328	1.397	1.497	1.543	1.824	1.740	1.841	1.567	11,63		Ave RE	m/a			
p-Turphenyl-d14	0.763	0.796	0.842	0.862	688.0	0.832	1.016	0.870	9.81		Ave RF	miles			
Benzo[a]onthracene	1.120	1.166	1.224	1.259	1.303	1.383	1.537	1.282	10.85		Ave RF	m/e			
Chrysene	1.710	1.149	1.226	1.242	1.235	1.348	1.383	1,248	8.05		Ave RF	in/a			
Perylens-d12															
Benzajb ji uoranthene	1,386	1.342	1.445	1.529	1.599	1.709	1,790	1.537	10.74		Ave RF	n/a			
Benzejkjfluoranthene	1.139	1.317	1,386	1,423	1.382	1.307	1.384	1.335	7.19	ccc	Ave RF	nia			
Benzo[a]pyrene	1,175	1.216	1,248	1.276	1.220	1.257	1,209	1,237	2.73		Ave RF	n/a			
Indeno(1,2,3-c,d)pyrene	4.141	4.238	4,239	4.319	4.364	4.403	4,438	4.305	2.64		Ave RF	n/a			
Dibenzo(a,h)enthracene	3,298	3.351	3,300	3.330	3.278	3.345	3.437	3.334	1.67		Ava RF	n/a			
Banzo[g.li/i]perylene	3.614	3.770	3,610	3.924	4.003	4.415	4,191	3,922	5.22		Ave RF	n/a			

Average = 7.68

911 4-15-1L

FORM 7 Continuing Calibration Verification Report

Doin File; Asq Orc Sarrete: Misc; Method: Title: List; Upd;		D/WPCHEMINDATA0882412N6067.D 9242012 14:17 KCV5NSTD5080 81129607-11					Vial: Operator; Inst: Multiplion:	9 jk SOP 506 Rev. 12 HP5V1 1		
		0024125H GC-868 Sernivolation SOP no. 608 Mon Sep 24 14:13:33 2012								
							% Day or	Area %	R.T. One	Curve Fit
10	ISTD	Compound Nooirflaiene-dB	Avg8E 1,000	1.000	Expl Conc	Fourtd Conc	% Det	Olfforence 104	(min)	Type
3)		Naprihakoa	1.104	1.063			-3.7	200	0.00	Ava RE
õ		2-Methytrapitholese	0.831	0.781			-6.0	195	0.00	Ave RF
ര്		1-Methylashthelese	0.821	0.721			-12.2	165	0.00	Ave Rt
6) 6)	ISTD	Acenachihene-d10	1.000	1.000			- 18-8	102	0.00	Ave RF
a)		Acenschitzéens	2.033	1.044			-4.8	190	0.00	Ave littl
8)		Acetachthese	1.265	1.212			-4.2	199	0.00	Ave RF
10)		Fluorene	1.463	1.355			-7.4	189	0.00	Ave RF
113		Phenarthrene-d10	1.000	1.000				102	0.00	Ave RF
12)		H counch/dorrothe na erno	0.905	0.513			-10.2	193	9.00	Ave RF
13)		Phenanthrone	1,176	1.864			-8.6	194	0.00	Ave RF
140		Anthracono	1.118	1.077			-3.7	194	+D.01	Aug RF
15)	200	Fluoranthene	1.320	1.226			-7.B	187	0.00	Ave RF
16)	ISTD	Chrysene-d12	1.000	1.000				100	0.10	Ave BF
10)		Pyrene	1.567	1.825			3.7	210	0.00	Ave BY
19)		Benzo(alanthracene	1.282	1-172			-8.6	192	0.01	Ave RF
20)		Chrysene	1.248	1.105			-11,6	160	0.00	Aut RF
21)	ISTD	Perylene-d12	1.000	1.000				90	0.01	Ave RF
22)		Bonzo(b)ffuoranthene	1.537	1.518			-1.8	208	0,01	Ave RF
23)		Bango(k)flacranthens	1.335	1.191			-10.8	170	0.01	Ave RF
24)		Benzo(a)pyrene	1.237	1.239			0.2	196	0.01	Age RF
25)		Indeno(1,2,3-c,c)pyrene	4.305	4.191			-2,6	195	0.00	Avra RF
26)		Diberzoja,hjantkracene	3.334	3.278			-1.7	196	0,00	Ave RF
27)		Banas(p,b,lgsarylens	3.022	3.727			-5.0	193	0.00	Ave RF

Average of stanjule value = <u>6.0</u>

8B

Semi-Volatile Internal Standard Area Summary

Lab Name: ALS Environmental -- FC 9/22/2012 Date Analyzed: Work Order Number: 1209339 Time Analyzed: 17:09

Client Name: Battelle Energy Alliance

ClientProject ID: BEA031231 MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 Reported on: Tuesday, September 25, 2012

Instrument ID: HPSV1 Lab File ID: N6032

	IS1		IS2		IS3		IS4		IS5		IS6	;
	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
12 Hour STD			539814	5.21	307609	6.76	464694	8.05	400788	10.32	265971	11.82
Upper Limit			1079628	5.71	615218	7.26	929388	8.55	801576	10.8	531942	12.3
Lower Limit			269907	4.71	153805	6.26	232347	7.55	200394	9.82	132986	11.3
Lab Sample ID												
EX120921-6MB			549803	5.21	307685	6.76	462862	8.05	421388	10.32	288009	11.82
EX120921-8LCS			549130	5.21	302209	6.76	458629	8.05	409110	10.33	290537	11.82
EX120921-6LCSD			549911	5.21	304578	6.76	452298	8.05	374166	10.32	236776	11.82
1209339-16			593000	5.22	337640	6.76	505816	8.05	439357	10.33	269450	11.83
1209339-16RR1			637726	5.21	361242	6.76	581709	8.05	461738	10.33	146993	11.83
1209339-7		3 3	643600	5.22	363274	6.76	580977	8.05	461903	10.33	139074	11.82
1209339-2		1	648236	5.22	357005	6.76	561668	8.06	385511	10.32	98396	11.82
1209339-2MS			673607	5.21	369599	6.76	600144	8.06	437852	10.33	116248	11.83
1209339-2MSD			651400	5.21	359550	6.76	576306	8.06	387399	10.33	92054	11.82
1209339-3			674464	5.22	384325	6.76	780882	8.05	743159	10.33	146883	11.83
1209339-6		,	684549	5.22	390915	6.76	627354	8.06	396109	10.33	86953	11.82
1209339-9		-	666295	5.21	369238	6.76	571735	8.05	280215	10.32	53032	11.83
1209339-12			687590	5.21	379427	6.76	597292	8.05	324612	10.33	77915	11.83

Shaded values exceed established area count limits.

LIMS Version: 6.613

Upper Limit = + 100 percent of internal standard area. Lower Limit = -50 percent of internal standard area.
41 of 47

8**B**

Semi-Volatile Internal Standard Area Summary

Lab Name: ALS Environmental -- FC Date Analyzed: 9/24/2012
Work Order Number: 1209339 Time Analyzed: 11:19

Client Name: Battelle Energy Alliance

ClientProject ID: BEA031231 MFC Biodiesel Tank Removal ,TOS-A1175 Rev2 Reported on: Tuesday, September 25, 2012

Instrument ID: HPSV1 Lab File ID: N8080

1	IS1	y .	IS2		IS3		IS4		IS5		IS6	
	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
12 Hour STD		8	583316	5.21	324355	6.76	527843	8.04	479720	10.31	395230	11.81
Upper Limit			1166632	5.71	648710	7.26	1055686	8.54	959440	10.8	790460	12.3
Lower Limit			291658	4.71	162178	6.26	263922	7.54	239860	9.81	197615	11.3
Lab Sample ID												
1209339-14			599519	5.21	330216	6.75	524803	8.05	477942	10.31	184894	11.81
1209339-18			627911	5.21	346804	6.76	561395	8.05	469536	10.31	158348	11.80

Shaded values exceed established area count limits.

LIMS Version: 6.613

Upper Limit = + 100 percent of internal standard area. Lower Limit = - 50 percent of internal standard area. $42 \,\, \text{of} \,\, 47$

Supporting Raw Data

43 of 47

GCMS Semivolatile Instrument Run Log ALS Laboratory Group

	September 20, 2012 914
Sequence Name: D:\HPCHEM\1\SEQUENCE\092012S.S Comment: HPSV-1 5973 MSDMS Serial Number US80210987 Data Path: D:\HPCHEM\1\DATA\092012\	Operator:jk SOP 506 Rev. 12 IS Amount and ID 409/AL STRAIGH- STRAI

Comment

RA?

Dil.

Sample Name

DataFile Method

Vial

Line Type

4:27	}							motused)			Non	Nicola	Z			NS#5	NSSE	7258N	NG011 NSSS	MASES	NSW	N5987	10594	NS332	M5543	WSYS
STR0750-1	- CI BOUTS	STUDSOT. 6	STU0907-6	5-TO-PALLYS	ST120507-8	2-13001-9	57 WOHO7-10	571305 p-1 (m	St Words -II	, de		1554	TSB4	ISS & confirm	#2.24 J	452	1554		中央 434 C				1354		75%	1367
2	+		1	-			-			>	25	3,4		-			_									>
DFTPP 50 ppm dftpp+PC _	092012SH ICALSVSTD0500	Н	092012SH ICALSVSTD0100	092012SH ICALSVSTD0200	092012SH ICALSVSTD1000	092012SH ICALSVSTD2000	092012SH ICALSVSTD5000	092012SH ICALSVSTD0500	092012SH ICVSVSTD2000	INSTRUMENT B	1209035-14	091812SH 1209035-6 3X	Н	0918128H 1209035-17MS	091812SH 1209035-17MSD	-	091812SH 1209035-12	091812SH 1209035-6	091812SH 1209035-14	091812SH 1209035-16	0918125H 1209035-8	091812SH 1209035-4	091812SH 1209035-3	091812SH 1209035-9	091812SH 1209035-11	091812SH 1209035-15
3 N6000	2 N6001	3 N6002	4 N6003	5 N6004	6 N6005	7 N6006	8 N6007	2 N6008	9 N6009	10 N6010	11 N6011	12 N6012	13 N6013	14 N6014	15 N6015	16 N6016	17 N6017	18 N6018	19 N6019	20 N6020	21 N6021	22 N6022	23 N6023	24 N6024	25 N6025	26 N6026
	02	Sampl	Sampl	v,	Sampl	Sampl	0,	Sampl	0 Sampl	1 Sampl	2 Sampl	3 Sampl	4 Sampl	5 Sampl	6 Sampl	7 Sampl	8 Sampl	9 Sampl	02	H	Sas	03	4 Sampl	N)	26 Sample	7 Sampl

44 of 47

Page:620

Last Modified: Thu Sep 20 17:53:54 2012

GCMS Semivolatile Instrument Run Log Paragon Analytics, Inc.

Analysis Date: Scale ber 20, 2012)4 Sequence Name: D:\HPCHEM\1\SEQUENCE\092012S.S
Comment: HPSV-1 5973 MSDMS Serial Number US80210987
Data Path: D:\HPCHEM\1\DATA\092012\
Operator:jk SOP 506 Rev. 12
IS Amount and ID You'' STRANGE!
Logbook Number: 2985

	Comment	45.54	754	1554	ž	
	P4	ā	_	-	>	
	Dil.		_		>	
	le N	091812SH 1209035-2	1209035-10	1209035-13	INSTRUMENT BLANK	
		 091812SH	091812SH	091812SH 1	091812SH	
thumber: 2303	Vial DataFile Method	 N6027		N6029	N6030	
NUMBER	Vial	 27	28	29	30	
Podpode	Line Type	 28 Sample	29 Sample	30 Sample	31 Sample	

G/

45 of 47

Last Modified: Thu Sep 20 17:53:54 2012 Page:621

Semivolatile Instrument Run Log ALS Laboratory Group GCMS

-	Analysis Date: Scotember 22, 101-70.
EQUENCE\092212S.S Serial Number US80210987 092212\	
Sequence Name: D:\HPCHEM\1\SEQUENCE\092212S.S Comment: HPSV-1 5973 MSDMS Serial Number US80210987 Data Path: D:\HPCHEM\1\DATA\092212\	Operator:jk SOP 506 Rev. 12 IS Amount and ID 40 Mal So Logbook Number: 2985

	71	1					Neor	Neste	NeoBi	NGSO	News	Neces	116056	ILCAN.	NACE		N GDS7	Ness	NEON			Neas	OKON.	NO91	NON2	N 4043, MU72	N Co 15 11023 1:	
Comment	5730720~1	ET 13.09.17 - [Bot use b														TARK Y	155 4 4 CALEIRA	TES# >	4 34	155 V	135¢	13.5¢	15.54	元七万 八八年	4826
RA?	8	+	+	-				-	-	-	+		-	-	+	+		_	-	+	-	_	-	-	>	Ž	+	>
Dil.	-	-	-	-	-	>	X	4	-	-	+	-	-	-	_	_	+	-	-	-	-	_		-	+			-
DataFile Method Sample Name	1		092012SH EX120921-6MB	092012SH EX120921-6LCS	092012SH EX120921-6LCSD		092012SH 1209339-16 7X	12	1209339-3	1209339-6	1209339-9 7	092012SH 1209339-12 7X	1209339-14	₹**	1209339-18	Ä	092012SH 1209339-16	12093	9	1209339-	12093	092012SH 1209339-3	092012SH 1209339-6	П	092012SH 1209339-12	092012SH 1209339-14	092012SH 1209339-18	0920128H Instrument Blode
DataFil	N6031	N6032	N6033	N6034	N6035	N6036	N6037	N6038	N6039	N6040	N6041	N6042	N6043	N6044	N6045	N6046	N6047	N6048	N6049	N6050	N6051	N6052	N6053	N6054	N6055	変をのかる	N6057	NEOFS
Vial	1	2	33	4	C)	Ŋ	9	7	œ	9	10	11	12	13	14	15	16	17	18	13	20	21	22	23	24	25	26	æ
Line Type	1 11		U2	-	5 Sample	- 0,			٠,	0,	٠,	٠,			-	٠,		٠,	υž		U,		٠,	ഗ്വ	V2		27 Sample	S
																										4	16	of 4

Page: 622

Last Modified: Sat Sep 22 18:45:55 2012

47

Semivolatile Instrument Run Log ALS Laboratory Group GCMS

Sequence Name: D:\HPCHEM\1\SEQUENCE\092412S.S Comment: HPSV-1 5973 MSDMS Serial Number US80210987 Data Path: D:\HPCHEM\1\DATA\092412\ Operator:jk SO IS Amount and I

Logbook Number

Vial

Line Type

		Most Neost Neost Neost
र्भ राज्य रे	Comment	5746730-1 57146907-5 57146907-5 57146907-5 57146907-1 5714697-1 581467 58467 58467 58467 58467 58467 58467 58467 58467 58467 58467 58467
rember 2	RA?	2
ate:	Dil.	
Analysis Date: Schember 24, 2012 74	Sample Name	50 ppm dftpp+PC ICALSVSTD0500 ICALSVSTD0500 ICALSVSTD0100 ICALSVSTD01000 ICALSVSTD0200 ICALSVSTD2000 ICALSVSTD2000 ICALSVSTD2000 GPC BLANK EX120920-4MB EX120920-4MB EX120920-4LCS EX120920-4LCS EX120939-18 ICO9339-18 ICO9339-18 ICO9339-18 ICO9040-1 INSTRUMENT BLANK ICO9040-1MS INSTRUMENT BLANK ICO9040-1MS INSTRUMENT BLANK
12 37120502-(DFTPP 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH 092412SH
OP 506 Rev. 12 ID 4096- 511-502-1 r: 2985	DataFile Method	1 N6059 2 N6060 3 N6061 4 N6061 5 N6063 5 N6064 7 N6065 8 N6067 9 N6068 1 N6070 3 N6071 7 N6072 6 N6073 6 N6074 6 N6074 7 N6073 8 N6074 8 N6076 8 N6077

Page:623 Last Modified: Mon Sep 24 19:19:29 2012

47 of 47

Sample Sa 1 DFTPP 2 Sample 4 Sample 5 Sample 6 Sample 7 Sample 9 Sampl 11 Sampl 12 Sampl 12 Sampl 14 Sampl 15 Sampl 16 Sampl 17 Sampl 17 Sampl 18 Sampl 19 Sampl 17 Sampl 18 Sampl 17 Sampl 18 Sampl 18 Sampl 18 Sampl 17 Sampl 18 Sa

Appendix G Notification of Underground Storage Tank Soil Samples #2 (CCN 228585)

Idano National Laboratory Mail - CCN 228585: DISCUSSION WITH DEQ REGARDING MFC BIODI... Page 1 of 1

Melbihess <carlo.melbihess@inl.gov>

Nisson, Kerry L <kerry.nisson@inl.gov>

CCN 228585: DISCUSSION WITH DEQ REGARDING MFC BIODIESEL TANK SAMPLES AND COMPLETION OF CORRECTIVE ACTIONS FOR OUTSTANDING NOTICE OF VIOLATIONS

1 message

Nisson, Kerry L <kerry.nisson@inl.gov> Thu, Sep 27, 2012 at 7:56 AM To: BEA CORRESPONDENCE CONTROL ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID <envaff@inl.gov>, Timothy L Carlson <Timothy.Carlson@inl.gov>, James F Graham <James.Graham@inl.gov>, Timothy A

On September 26, 2012 at 15:10, a call was placed to Steve Heaton (DEQ) by Jason Sturm, Bradley Griffith, and I. The purpose of the call was to discuss analysis received for the second set of samples taken from the removal of the Materials and Fuels Complex (MFC) biodiesel tank and the completion of corrective actions for outstanding Notice of Violations (NOV's) associated with INL underground storage tanks.

Steve was informed that the second set of samples identified levels of Benzo(a)pyrene in nine of the ten samples higher than the screening level in IDAPA 58.01.24.800, table 2 - Residential Use Screening Levels.

Steve stated that we should use the commercial screening levels or perform a risk evaluation. Brad and I were unaware that there are commercial screening levels. Steve could not readily locate the commercial screening levels and stated that he would try to find them and would contact us.

Regarding the INL NOV's, Steve stated that he was aware that the INL had completed the corrective actions by the commitment date and would issue a letter of completion once the closure report was completed for the MFC biodiesel tank. Steve is aware that the corrective action (cathodic protection) is complete for the MFC biodiesel tank and the closure report will not be completed and sent to DEQ by the corrective action commitment date.

Kerry L. Nisson Nuclear Operations Environmental Support - UST TPOC Office (208) 533-7102 Cell (208) 569-4721 email: kerry.nisson@inl.gov Mail Stop 6134

Appendix H Discussion and Verbal Approval Regarding the Use of EPA Region 9 Industrial Screening Levels (CCN 228607)

Idaho National Laboratory Mail - CCN 228607: DISCUSSION WITH DEQ REGARDING THE USE O ... Page 1 of 1

Nisson, Kerry L <kerry.nisson@inl.gov>

CCN 228607: DISCUSSION WITH DEQ REGARDING THE USE OF EPA REGION 9 INDUSTRIAL SCREENING LEVEL GUIDANCE.

1 message

Nisson, Kerry L <kerry.nisson@inl.gov> Thu, Sep 27, 2012 at 1:53 PM To: BEA CORRESPONDENCE CONTROL ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

ServiceID <

On September 26, 2012 at 11:00, a call was placed to Steve Heaton (DEQ) by Jason Sturm, Gary McManus, and I. The purpose of the call was to discuss the use of industrial screening levels found in the Environmental Protection Agency (EPA) guidelines for Region 9.

Background: After talking with Steve Heaton, DEQ yesterday, there was a search for guidance for commercial screening levels in the Idaho Risk Evaluation Manual for Petroleum Releases as suggested by Steve. No guidance could be found in the manual. An internet search revealed EPA guidelines for industrial screening levels for Region 9, but could not find any guidance for Region 10. Gary McManus utilized a download spreadsheet provided in the EPA website and processed the sampling analysis Region 9 using ingestion levels (most conservative). The samples levels were lower that the industrial screening levels.

The call was placed to Steve Heaton (DEQ) to explain the actions taken above. Steve wanted to know if we had found any guidance for commercial screening levels in the Idaho Risk Evaluation Manual for Petroleum Releases. I told him that we were unable to identify any guidance in the manual. Steve responded that he was acceptable to using the EPA Region 9 guidance and gave verbal authorization to continue. Steve requested that the EPA Region 9 information be included in the tank closure plan. I communicated to Steve that I was prepared to e-mail him the sampling analysis and the spreadsheet that we utilized to review. Steve replied that he would, so the information was sent. Steve responded that he had received the e-mail. I requested that he contact us if he encountered any issues and that we would be proceeding with the construction project.

Kerry L. Nisson Nuclear Operations Environmental Support - UST TPOC Office (208) 533-7102 Cell (208) 569-4721 email: kerry.nisson@inl.gov Mail Stop 6134

https://mail.google.com/mail/u/0/?ui=2&ik=f559dada2e&view=pt&q=228607&qs=true&search=query&t... 10/4/2012 + 10/4

Appendix I Spreadsheet Comparison of EPA Region 9 Industrial Screening Levels vs. IDAPA Residential Screening Levels

_	A		ć	Ď	6	F	6	H	1	1	E.
,	MFC Biod	liesel Tank Soil Sample Analysis #1									
Ė	Sample										
2	ID	Field ID: BEA030489_MFC	Lab	ID: 12091	154-2						
Г	8				IDAPA	Region 9					
					58.01.24	Industrial		Exceed	Exceed		
					Screening	Screening		Residential	Industrial	Reporting	
	CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Oualifier
	91-20-3	NAPHTHALENE	1	2	1.20E+02	1-0-0	VI	no		3.7	J
	208-96-8	ACENAPHTHYLENE	1	2.3	ND		V 10000	no		3.7	J
ī	83-32-9	ACENAPHTHENE	1	3.7	2.00E+05		GWP	no		3.7	U
7	86-73-7	FLUORENE	1	3.7	2.40E+05		GWP	no		3.7	U
	85-01-8	PHENANTHRENE	1	1.6	ND		ý	no		3.7	J
,	120-12-7	ANTHRACENE	1	1.7	3.20E+06		GWP	no		3.7	J
20	206-44-0	FLUORANTHENE	1	1.4	1.40E+06		GWP	no		3.7	J
11	129-00-0	PYRENE	1	2.2	1.00E+06		GWP	no		3.7	J
12	56-55-3	BENZO(A)ANTHRACENE	1	1.3	9.00E+01		GWP	no		3.7	J
12	218-01-9	CHRYSENE	1	3.7	9.50E+03		GWP	no		3.7	U
34	205-99-2	BENZO(B)FLUORANTHENE	1	2.7	2.00E+02		DC	no		3.7	J
25	207-08-9	BENZO(K)FLUORANTHENE	1	3.7	1.90E+03		DC	no		3.7	U
16	50-32-8	BENZO(A)PYRENE	1	2.3	2.00E+01	3.90E+02	DC	no	no	3.7	J
17	193-39-5	INDENO(1,2,3-CD)PYRENE	1	2.5	ND	***************************************		no		3.7	J
18	53-70-3	DIBENZO(A,H)ANTHRACENE	1	3.7	ND		(-	no		3.7	U
29	191-24-2	BENZO(G.H.I)PERYLENE	1	4.4	ND			no		3.7	
Г	Sample		1000	200000	0.000						
20	ID	Field ID: BEA030490_MFC	Lab	ID: 12091	154-3						
Г					IDAPA	Region 9					
					58.01.24	Industrial		Exceed	Exceed		
					Commission	Screening		Residential	Industrial	Reporting	
	CAS				Screening	Streeming				Reporting	
21	Number			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
		Target Analyte	DF	Result (ug/kg)	_	_	Critical Pathway	Screening Limit	Screening Limit		Result Qualifier
22	91-20-3	Target Analyte NAPHTHALENE	DF 1		Limit	Level		_	_	Limit	
22			+	(ug/kg)	Limit (ug/kg)	Level	Pathway	Limit	_	Limit (ug/kg)	Qualifier
22 28 34	91-20-3	NAPHTHALENE	1	(ug/kg) 3.9	Limit (ug/kg) 1.20E+02	Level	Pathway	Limit no	_	Limit (ug/kg) 3.9	Qualifier U
22 28 34 25	91-20-3 208-96-8	NAPHTHALENE ACENAPHTHYLENE	1 1 1	(ug/kg) 3.9 3.9	Limit (ug/kg) 1.20E+02 ND	Level	Pathway VI	Limit no no	_	Limit (ug/kg) 3.9 3.9 3.9 3.9	Qualifier U U U U
22 28 34 25	91-20-3 208-96-8 83-32-9	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE	1 1 1	(ug/kg) 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05	Level	Pathway VI GWP	Limit no no	_	Limit (ug/kg) 3.9 3.9 3.9	Qualifier U U U
22 28 34 25 26 27	91-20-3 208-96-8 83-32-9 86-73-7	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE	1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05	Level	Pathway VI GWP GWP	Limit no no no no	_	Limit (ug/kg) 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U
22 28 26 25 26 27	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE	1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06	Level	Pathway VI GWP GWP GWP	Limit no no no no no no	_	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U
22 28 36 25 26 27 28	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE	1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06	Level	Pathway VI GWP GWP	Limit no no no no no no no no	_	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U U U U
22 28 26 25 26 27 28 28	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE	1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06	Level	Pathway VI GWP GWP GWP	Limit no	_	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U U U U U
22 28 36 25 26 27 28 29 20	,91-20-3 ,208-96-8 ,83-32-9 ,86-73-7 ,85-01-8 ,120-12-7 ,206-44-0 ,129-00-0 ,56-55-3 ,218-01-9	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE	1 1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05	Level (ug/kg)	Pathway VI GWP GWP GWP GWP	Limit no	_	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U U U U U U U U U U
22 28 34 25 25 27 28 29 80 81 82	,91-20-3 ,208-96-8 ,83-32-9 ,86-73-7 ,85-01-8 ,120-12-7 ,206-44-0 ,129-00-0 ,56-55-3 ,218-01-9 ,205-99-2	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE	1 1 1 1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03 2.00E+02	Level	GWP GWP GWP GWP GWP GWP GWP GWP GWP	Limit no	_	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U U U U U U U U U U
22 28 26 25 26 27 28 29 20 21 22 22 22 22 23	,91-20-3 ,208-96-8 ,83-32-9 ,86-73-7 ,85-01-8 ,120-12-7 ,206-44-0 ,129-00-0 ,56-55-3 ,218-01-9	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE	1 1 1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03	Level (ug/kg)	GWP GWP GWP GWP GWP GWP GWP	Limit no	Limit	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U U U U U U U U U U
22 28 36 25 26 29 80 81 82 82	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(A)PYRENE	1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03 2.00E+02 1.90E+03 2.00E+01	Level (ug/kg)	GWP GWP GWP GWP GWP GWP GWP GWP GWP	Limit no	Limit	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U U U U U U U U U U
22 28 26 25 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8 193-39-5	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+05 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03 2.00E+02 1.90E+03 2.00E+01 ND	Level (ug/kg)	GWP	Limit no	Limit	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Qualifier U U U U U U U U U U U U U U U U U U U
22 28 26 27 28 20 20 24 22 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(A)PYRENE	1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03 2.00E+02 1.90E+03 2.00E+01	Level (ug/kg)	GWP	Limit no	Limit	Limit (ug/kg) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Oualifier U U U U U U U U U U U U U U U U U U U

\Box	Α.		ć	b	6	F	6		1	1	E.
П	Sample		1000	<u> </u>	100000						
ich	ID	Field ID: BEA030493_MFC	Lab	ID: 12091		7					
П					IDAPA 58.01.24	Region 9 Industrial		Exceed	Exceed		
Ш					Screening	Screening		Residential	Industrial	Reporting	
Ш	CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Oualifier
**	91-20-3	NAPHTHALENE	1	3.6	1.20E+02	(ug/ng/	VI	no	Limit	3.6	U
	208-96-8	ACENAPHTHYLENE	1	3.6	ND		100	no		3.6	U
42	83-32-9	ACENAPHTHENE	1	3.6	2.00E+05		GWP	no	1	3.6	U
48	86-73-7	FLUORENE	1	1.3	2.40E+05		GWP	no		3.6	J
44	85-01-8	PHENANTHRENE	1	31	ND		3	no		3.6	
45	120-12-7	ANTHRACENE	1	10	3.20E+06		GWP	no		3.6	
46	206-44-0	FLUORANTHENE	1	280	1.40E+06		GWP	no	1	3.6	E
-		PYRENE	1	170	1.00E+05		GWP	no	-	3.6	
\rightarrow	56-55-3	BENZO(A)ANTHRACENE	1	180	9.00E+01	3.90E+03	GWP	YES	NO	3.6	E
49	218-01-9	CHRYSENE	1	190	9.50E+03		GWP	no	175	3.6	E
50	205-99-2	BENZO(B)FLUORANTHENE	1	330	2.00E+02	3.90E+03	DC	YES	NO.	3.6	E
51	207-08-9	BENZO(K)FLUORANTHENE	1	130	1.90E+03		DC	no		3.6	
52	50-32-8	BENZO(A)PYRENE	1	240	2.00E+01	3.90E+02	DC	YES	NO	3.6	E
_	193-39-5 53-70-3	INDENO(1,2,3-CD)PYRENE	1	120 35	ND ND		2	no		3.6	. 50
-	191-24-2	DIBENZO(A,H)ANTHRACENE BENZO(G,H,I)PERYLENE	1	110	ND		2	no no		3.6	
55	Sample	BENZO(G,H.I)FERTLENE	1	110	עא		1	по		3.0	
56	ID	Field ID: BEA030494_MFC	Lab	ID: 12091	154-7						
П		N			IDAPA	Region 9					
Ш					58.01.24	Industrial		Exceed	Exceed	33535	
Н					Screening	Screening		Residential	Industrial	Reporting	0007000000
Ш	CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
57	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
Sit	91-20-3	NAPHTHALENE	1	3.7	1.20E+02		VI	no		3.7	U
59	208-96-8	ACENAPHTHYLENE	1	3.7	ND		CITT	no	-	3.7	U
_	83-32-9 86-73-7	ACENAPHTHENE FLUORENE	1	3.7	2.00E+05 2.40E+05		GWP	no		3.7	U
_	85-01-8	PHENANTHRENE	1	3.7	2.40E+05 ND		GWF	no no	-	3.7	J
	120-12-7	ANTHRACENE	1	3.7	3.20E+06		GWP	no		3.7	U
-	206-44-0	FLUORANTHENE	1	21	1.40E+06		GWP	no		3.7	
\rightarrow	129-00-0	PYRENE	1	16	1.40E+00		GWP	no		3.7	8
\rightarrow	56-55-3	BENZO(A)ANTHRACENE	1	15	9.00E+01		GWP	no		3.7	
\rightarrow	218-01-9	CHRYSENE	1	18	9.50E+03		GWP	no		3.7	- 12
68	205-99-2	BENZO(B)FLUORANTHENE	1	24	2.00E+02		DC	no	Ĭ.	3.7	1 1
69	207-08-9	BENZO(K)FLUORANTHENE	1	12	1.90E+03		DC	no		3.7	
20	50-32-8	BENZO(A)PYRENE	1	19	2.00E+01	3.90E+02	DC	no	no	3.7	1
71	193-39-5	INDENO(1,2,3-CD)PYRENE	1	14	ND		7.	no		3.7	
72	53-70-3	DIBENZO(A,H)ANTHRACENE	1	4.1	ND		105	no		3.7	
1 72	191-24-2	BENZO(G,H,I)PERYLENE	1	14	ND		-	no	No.	3.7	8

Н			ć	6			6		10.00	1	
Ħ	Sample										
24	ID	Field ID: BEA030497_MFC	Lab	ID: 12091	54-10						
П				×	IDAPA	Region 9	×.	X 200	1988 1988 N		× ×
					58.01.24	Industrial		Exceed	Exceed		
					Screening	Screening		Residential	Industrial	Reporting	
П	CAS	NAME	10000	Result	Limit	Level	Critical	Screening	Screening	Limit	Result
75	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
-	91-20-3	NAPHTHALENE	1	3.7	1.20E+02		VI	no		3.7	U
_	208-96-8	ACENAPHTHYLENE	1	3.7	ND			no		3.7	U
_	83-32-9	ACENAPHTHENE	1	3.7	2.00E+05		GWP	no		3.7	U
_	86-73-7	FLUORENE	1	1.7	2.40E+05		GWP	no		3.7	J
_	85-01-8	PHENANTHRENE	1	10	ND		A.	no		3.7	1
_	120-12-7	ANTHRACENE	1	3.1	3.20E+06		GWP	no		3.7	J
-	206-44-0	FLUORANTHENE	1	40	1.40E+06		GWP	no		3.7	9
-	129-00-0	PYRENE	1	30	1.00E+05		GWP	no	10	3.7	
-	56-55-3	BENZO(A)ANTHRACENE	1	30	9.00E+01		GWP	no		3.7	
-	218-01-9	CHRYSENE	1	35	9.50E+03		GWP	no		3.7	2
	205-99-2	BENZO(B)FLUORANTHENE	1	56	2.00E+02		DC	no		3.7	
	207-08-9	BENZO(K)FLUORANTHENE	1	22	1.90E+03		DC	no		3.7	9
-	50-32-8	BENZO(A)PYRENE	1	40	2.00E+01	3.90E+02	DC	YES	NO	3.7	
_	193-39-5	INDENO(1,2,3-CD)PYRENE	1	22	ND		7	no		3.7	
-	53-70-3	DIBENZO(A,H)ANTHRACENE	1	6.4	ND		0	no		3.7	- 9
91	Sample	BENZO(G,H,I)PERYLENE	1	21	ND			no		3.7	-
	ID	Field ID: BEA030498_MFC	T ab	ID: 12091	54.11						
92	ID	Tield ID: BEA030495_MTC	Lab.	ID. 12091	IDAPA	Region 9					
Н					58.01.24	Industrial		Exceed	Exceed		
Н					Screening	Screening		Residential	Industrial	Reporting	
Н	CAS										
				Result	_	_	Critical	Screening			Result
-	Number	Target Analyte	DF	Result	Limit	Level	Critical Pathway	Screening Limit	Screening	Limit	Result Onalifier
	Number 91-20-3	Target Analyte NAPHTHALENE	DF 1	(ug/kg)	Limit (ug/kg)	_	Critical Pathway VI	Limit		Limit (ug/kg)	Qualifier
_	91-20-3	NAPHTHALENE	DF 1		Limit	Level	Pathway	_	Screening	Limit (ug/kg) 3.7	
95	91-20-3 208-96-8	NAPHTHALENE ACENAPHTHYLENE	1	(ug/kg) 3.7 3.7	Limit (ug/kg) 1.20E+02 ND	Level	Pathway VI	Limit	Screening	Limit (ug/kg) 3.7 3.7	Qualifier U
95 96	91-20-3	NAPHTHALENE	1	(ug/kg) 3.7	Limit (ug/kg) 1.20E+02	Level	Pathway	Limit no no	Screening	Limit (ug/kg) 3.7	Qualifier U U
96 97	91-20-3 208-96-8 83-32-9	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE	1 1 1	(ug/kg) 3.7 3.7 3.7	Limit (ug/kg) 1.20E+02 ND 2.00E+05	Level	Pathway VI GWP	Limit no no no	Screening	Limit (ug/kg) 3.7 3.7 3.7	Qualifier U U U
95 95 97	91-20-3 208-96-8 83-32-9 86-73-7	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE	1 1 1 1	3.7 3.7 3.7 3.7 3.7	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05	Level	Pathway VI GWP	Limit no no no no	Screening	Limit (ug/kg) 3.7 3.7 3.7 3.7	Qualifier U U U
95 96 97 98	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE	1 1 1 1	3.7 3.7 3.7 3.7 3.7 17	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND	Level	Pathway VI GWP GWP	Limit no no no no no no	Screening	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
95 96 97 98 98	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE	1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 3.7 17 6.1	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06	Level	Pathwav VI GWP GWP	Limit no no no no no no no no	Screening	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
95 95 97 98 98 100	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE	1 1 1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 3.7 17 6.1 140	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06	Level	Pathway VI GWP GWP GWP	Limit no	Screening	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
95 97 98 99 100 100	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE	1 1 1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 3.7 17 6.1 140 85	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05	Level (ug/kg)	Pathway VI GWP GWP GWP GWP	Limit no	Screening Limit	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
95 95 97 98 99 500 500	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE	1 1 1 1 1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 3.7 17 6.1 140 85	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01	Level (ug/kg)	Pathway VI GWP GWP GWP GWP GWP	Limit no vec no no no vec yes	Screening Limit	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
96 97 98 99 100 100 100 100 100 100 100 100 100	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE	1 1 1 1 1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 17 6.1 140 85 94	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03	Level (ug/kg)	GWP GWP GWP GWP GWP GWP GWP	Limit no	Screening Limit	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
96 97 98 99 100 100 100 100 100 100 100 100 100	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE BENZO(B)FLUORANTHENE	1 1 1 1 1 1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 3.7 17 6.1 140 85 94 96 150	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03 2.00E+02	Level (ug/kg)	GWP GWP GWP GWP GWP GWP GWP GWP	Limit no	Screening Limit	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
96 9 9 100 100 100 100 100 100 100 100 100	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE	1 1 1 1 1 1 1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 17 6.1 140 85 94 96 150	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03 2.00E+02	Level (ug/kg) 3.90E+03	GWP GWP GWP GWP GWP GWP GWP GWP	Limit no	Screening Limit	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U
96 9 9 100 100 100 100 100 100 100 100 100	91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8	NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(A)PYRENE	1 1 1 1 1 1 1 1 1 1 1 1 1	(ug/kg) 3.7 3.7 3.7 3.7 17 6.1 140 85 94 96 150 57	Limit (ug/kg) 1.20E+02 ND 2.00E+05 2.40E+05 ND 3.20E+06 1.40E+06 1.00E+05 9.00E+01 9.50E+03 2.00E+02 1.90E+03	Level (ug/kg) 3.90E+03	GWP GWP GWP GWP GWP GWP GWP GWP	Limit no	Screening Limit	Limit (ug/kg) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Qualifier U U U

			€	b	6	F	6	*	10.00	1	E
	Sample ID	Field ID: BEA030493 MFC	Lah	ID- 12001	154-6RR1						
	10	Tield ID. BEA000490_HITC	Lab.	D. 1205.	IDAPA	Region 9					
П					58.01.24	Industrial		Exceed	Exceed		
П										D	
П	616				Screening	Screening	6-111-1	Residential	Industrial	Reporting	D
П	CAS	0.0000000000000000000000000000000000000	19/3/19/08	Result	Limit	Level	Critical	Screening	Screening	Limit	Result
111	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
113	91-20-3	NAPHTHALENE	3	11	1.20E+02		VI	no		11	U
118	208-96-8	ACENAPHTHYLENE	3	11	ND		15'	no	190	11	U
114	83-32-9	ACENAPHTHENE	3	11	2.00E+05		GWP	no		11	U
115	86-73-7	FLUORENE	3	11	2.40E+05		GWP	no		11	U
116	85-01-8	PHENANTHRENE	3	29	ND		3	no		11	3
113	120-12-7	ANTHRACENE	3	9.2	3.20E+06		GWP	no		11	<u>J</u>
111	206-44-0	FLUORANTHENE	3	220	1.40E+06		GWP	no		11	00000
110	129-00-0	PYRENE	3	120	1.00E+05		GWP	no	-	11	
130	56-55-3	BENZO(A)ANTHRACENE	3	130	9.00E+01	3.90E+03	GWP	YES	NO	11	
121	218-01-9	CHRYSENE	3	130	9.50E+03	8	GWP	no	ě	11	
122	205-99-2	BENZO(B)FLUORANTHENE	3	210	2.00E+02	3.90E+03	DC	YES	NO	11	
129	207-08-9	BENZO(K)FLUORANTHENE	3	74	1.90E+03		DC	no	15/0-20	11	y y
134	50-32-8	BENZO(A)PYRENE	3	150	2.00E+01	3.90E+02	DC	YES	NO	<u>11</u>	,01
125	193-39-5	INDENO(1,2,3-CD)PYRENE	3	94	ND			no		11	· ·
126	53-70-3	DIBENZO(A,H)ANTHRACENE	3	26	ND		Ž.	no		11	
122	191-24-2	BENZO(G,H,I)PERYLENE	3	89	ND			no		11	

		ć	D	6	F	6	*			
MFC Bio	diesel Tank Soil Sample Analysis #2									
Sample										
ı» ID	Field ID: BEA031232 MFC	Lab	ID: 12093	339-2MS						
				IDAPA	Region 9					
				58.01.24	Industrial					
				Screening	Screening		Exceed	Exceed	Reporting	
CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
se Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
sa 91-20-3	NAPHTHALENE	1	3.6	1.20E+02		VI	no		3.60E+00	U
1208-96-8	ACENAPHTHYLENE	1	3.6	ND		10 party			3.60E+00	U
sa 83-32-9	ACENAPHTHENE	1	3.6	2.00E+05		GWP	no	92	3.60E+00	U
S6-73-7	FLUORENE	1	3.6	2.40E+05		GWP	no		3.60E+00	U
18 S5-01-S	PHENANTHRENE	1	9.6	ND		2	<u>%</u>		3.60E+00)
sa 120-12-7	ANTHRACENE	1	3.2	3.20E+06		GWP	no		3.60E+00	J
so 206-44-0	FLUORANTHENE	1	66	1.40E+06		GWP	no	N.	3.60E+00	3
за 129-00-0	PYRENE	1	61	1.00E+05		GWP	no	ы	3.60E+00	,
sa 56-55-3	BENZO(A)ANTHRACENE	1	44	9.00E+01		GWP	no		3.60E+00	
sec 218-01-9	CHRYSENE	1	42	9.50E+03		GWP	no	8	3.60E+00	
ы 205-99-2	BENZO(B)FLUORANTHENE	1	99	2.00E+02		DC	no		3.60E+00	
ы 207-08-9	BENZO(K)FLUORANTHENE	1	40	1.90E+03		DC	no		3.60E+00	
su 50-32-8	BENZO(A)PYRENE	1	60	2.00E+01	3.90E+02	DC	YES	NO	3.60E+00	
193-39-5	INDENO(1,2,3-CD)PYRENE	1	25	ND					3.60E+00	
ses 53-70-3	DIBENZO(A,H)ANTHRACENE	1	9.3	ND		S.	5	l l	3.60E+00	
ы 191-24-2	BENZO(G,H,I)PERYLENE	1	30	ND					3.60E+00	
Sample										
so ID	Field ID: BEA031233_MFC	Lab	ID: 12093							
				IDAPA	Region 9		-	_		
				58.01.24	Industrial		Exceed	Exceed		
616				Screening	Screening		Residential	Industrial	Reporting	
CAS Number	T	DF	Result	Limit	Level	Critical Pathway	Screening Limit	Screening Limit	Limit	Result Qualifier
91-20-3	Target Analyte NAPHTHALENE	1	(ug/kg)	(ug/kg)	(ug/kg)	VI		Limit	(ug/kg)	_
200		1	3.5	1.20E+02		VI	no		3.50E+00	t
208-96-8 55 83-32-9	ACENAPHTHYLENE ACENAPHTHENE	1	3.5	2.00E+05		GWP	no		3.50E+00 3.50E+00	Ţ
86-73-7	FLUORENE	1	3.5	2.40E+05		GWP	no	- 1	3.50E+00 3.50E+00	U
85-01-8	PHENANTHRENE	1	7.5	2.40E+05 ND		GWF	по	7	3.50E+00 3.50E+00	-
120-12-7	ANTHRACENE	1	2.5	3.20E+06		GWP	no		3.50E+00	
206-44-0	FLUORANTHENE	1	55	1.40E+06		GWP	no		3.50E+00	-
129-00-0	PYRENE	1	35	1.40E+00		GWP	no		3.50E+00	
ss 56-55-3	BENZO(A)ANTHRACENE	1	25	9.00E+01		GWP	no		3.50E+00	
218-01-9	CHRYSENE	1	26	9.50E+01		GWP	no no		3.50E+00 3.50E+00	
205-99-2	BENZO(B)FLUORANTHENE	1	53	2.00E+02		DC	no	- 8	3.50E+00	
207-08-9	BENZO(K)FLUORANTHENE	1	24	1.90E+03		DC	no		3.50E+00	
50-32-8	BENZO(A)PYRENE	1	32	2.00E+01	3.90E+02	DC	YES	NO	3.50E+00	
193-39-5	INDENO(1,2,3-CD)PYRENE	1	13	ND	5.50E 102	DC	ILS	340	3.50E+00	
53-70-3	DIBENZO(A.H)ANTHRACENE	1	4.5	ND		3	7		3.50E+00	
191-24-2	BENZO(G,H,I)PERYLENE	1	14	ND		8.	8	- 1	3.50E+00	
IN 191-14-1	DE.ADO(O,II,I)I ERITERIE	1	24	.10					0.00E 100	

			ć	b	6	F	6	*		1	
П	Sample		-		Section 2						
165	ID	Field ID: BEA031236_MFC	Lab	ID: 12093							
П					IDAPA 58.01.24	Region 9 Industrial		Exceed	Exceed		
					Screening	Screening		Residential	Industrial	Reporting	
	CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Oualifier
_	1-20-3	NAPHTHALENE	1	3.8	1.20E+02	(ug/kg/	VI	no	Limit	3.80E+00	U
-	08-96-8	ACENAPHTHYLENE	1	2.1	ND		100	-		3.80E+00	J
ssa 8	3-32-9	ACENAPHTHENE	1	3.8	2.00E+05		GWP	no		3.80E+00	U
₁₇₀ 8	6-73-7	FLUORENE	1	3.8	2.40E+05		GWP	no		3.80E+00	τ
171 8	5-01-8	PHENANTHRENE	1	11	ND		3	3		3.80E+00	
	20-12-7	ANTHRACENE	1	4.4	3.20E+06		GWP	no		3.80E+00	
	06-44-0	FLUORANTHENE	1	74	1.40E+06		GWP	no		3.80E+00	
_	29-00-0	PYRENE	1	71	1.00E+05		GWP	no		3.80E+00	
811	6-55-3	BENZO(A)ANTHRACENE	1	44	9.00E+01		GWP	no		3.80E+00	<u> </u>
_	18-01-9 05-99-2	CHRYSENE BENZO(B)FLUORANTHENE	1	40 95	9.50E+03 2.00E+02		GWP	no		3.80E+00 3.80E+00	
	07-08-9	BENZO(K)FLUORANTHENE	1	37	1.90E+02		DC	no no		3.80E+00	
*18 -	0-32-8	BENZO(A)PYRENE	1	58	2.00E+01	3.90E+02	DC	YES	NO	3.80E+00	
_	93-39-5	INDENO(1,2,3-CD)PYRENE	1	29	ND	3.90E+02	DC	ILS	.10	3.80E+00	
	3-70-3	DIBENZO(A,H)ANTHRACENE	1	11	ND		Š.	8	- 8	3.80E+00	
	91-24-2	BENZO(G.H.I)PERYLENE	1	34	ND					3.80E+00	
	Sample							- T			
180	ID	Field ID: BEA031237_MFC	Lab	ID: 12093	339-7						
					IDAPA	Region 9					
					58.01.24	Industrial		Exceed	Exceed	201 10	
					Screening	Screening		Residential	Industrial	Reporting	
	CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
	Number 1-20-3	Target Analyte NAPHTHALENE	DF 1	(ug/kg) 3.8	(ug/kg) 1.20E+02	(ug/kg)	Pathway VI	Limit	Limit	(ug/kg) 3.80E+00	Qualifier U
-	08-96-8	ACENAPHTHYLENE	1	3.8	1.20E+02			по		3.80E+00	ī
-	3-32-9	ACENAPHTHENE	1	3.8	2.00E+05		GWP	no		3.80E+00	τ
	6-73-7	FLUORENE	1	3.8	2.40E+05		GWP	no		3.80E+00	ī
S	5-01-8	PHENANTHRENE	1	4.5	ND				-	3.80E+00	
:::0	20-12-7	ANTHRACENE	1	1.5	3.20E+06		GWP	no		3.80E+00	J
191 2	06-44-0	FLUORANTHENE	1	32	1.40E+06		GWP	no		3.80E+00	
-	29-00-0	PYRENE	1	25	1.00E+05		GWP	no		3.80E+00	
	6-55-3	BENZO(A)ANTHRACENE	1	20	9.00E+01		GWP	no		3.80E+00	
_	18-01-9	CHRYSENE	1	19	9.50E+03		GWP	no		3.80E+00	
_	05-99-2	BENZO(B)FLUORANTHENE	1	49	2.00E+02		DC	no		3.80E+00	
_	07-08-9	BENZO(K)FLUORANTHENE	1	17	1.90E+03		DC	no		3.80E+00	
	0-32-8	BENZO(A)PYRENE	1	27	2.00E+01	3.90E+02	DC	YES	NO.	3.80E+00	<u> </u>
-	93-39-5 3-70-3	INDENO(1,2,3-CD)PYRENE	1	9.4	ND ND		100 100		- X	3.80E+00	
_	91-24-2	DIBENZO(A,H)ANTHRACENE	1	10	ND ND		×	× .	0.00	3.80E+00 3.80E+00	J
ion I	91-24-2	BENZO(G,H,I)PERYLENE	1	10	ND		0	0 0		3.80E+00	

Α.		E	Ď	í	F	6	*	- 1	1	K.
Sample	Fi-14 ID. DF 4031330 MFG		TD. 1200	220.0						
zes ID	Field ID: BEA031239_MFC	Lab.	ID: 12093	IDAPA	Region 9					
				58.01.24	Industrial		Exceed	Exceed		
				Screening	Screening		Residential	Industrial	Reporting	
CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Oualifier
m 91-20-3	NAPHTHALENE	1	3.8	1.20E+02	(45,45)	VI	no	2	3.80E+00	U
208-96-8		1	3.8	ND		. 1000			3.80E+00	U
m 83-32-9	ACENAPHTHENE	1	3.8	2.00E+05		GWP	no	1	3.80E+00	U
xx 86-73-7	FLUORENE	1	3.8	2.40E+05		GWP	no		3.80E+00	U
200 85-01-8	PHENANTHRENE	1	5.5	ND		3	3 3		3.80E+00	1
20e 120-12-7	ANTHRACENE	1	1.8	3.20E+06		GWP	no		3.80E+00	J
206-44-0	FLUORANTHENE	1	45	1.40E+06		GWP	no	8	3.80E+00	9
211 129-00-0		1	56	1.00E+05		GWP	no		3.80E+00	,0
212 56-55-3	BENZO(A)ANTHRACENE	1	35	9.00E+01		GWP	no		3.80E+00	
218-01-9		1	36	9.50E+03		GWP	no		3.80E+00	N.
ы 205-99-2	1.7	1	72	2.00E+02		DC	no		3.80E+00	
214 207-08-9		1	31	1.90E+03		DC	no		3.80E+00	9
ns 50-32-8	BENZO(A)PYRENE	1	41	2.00E+01	3.90E+02	DC	YES	NO	3.80E+00	
211 193-39-5		1	19	ND					3.80E+00	
ы 53-70-3	DIBENZO(A,H)ANTHRACENE	1	6.4	ND		2	2		3.80E+00	
ля 191-24-2		1	23	ND					3.80E+00	10
Sample ID	Field ID: BEA031248_MFC	Lab	ID: 1209	339-12						
				IDAPA	Region 9					
				58.01.24	Industrial		Exceed	Exceed	201000	
				Screening	Screening		Residential	Industrial	Reporting	0.00 0.00 0.00 0.00 0.00
CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
238 Number		DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
221 91-20-3	NAPHTHALENE	1	3.7	1.20E+02	19 1// 5/00/10	VI	no		3.70E+00	U
208-96-8		1	3.7	ND			no		3.70E+00	U
m 83-32-9	ACENAPHTHENE	1	3.7	2.00E+05		GWP	no		3.70E+00	U
234 86-73-7	FLUORENE	1	3.7	2.40E+05		GWP	no		3.70E+00	U
225 85-01-8	PHENANTHRENE	1	16	ND			no		3.70E+00	
226 120-12-7	ANTHRACENE	1	5	3.20E+06		GWP	no		3.70E+00	7/2
206-44-0		1	97 110	1.40E+06		GWP	no		3.70E+00	1 20
220 129-00-0 220 56-55-3		1	66	1.00E+05 9.00E+01		GWP	no		3.70E+00 3.70E+00	2
228 -01-9	BENZO(A)ANTHRACENE CHRYSENE	1	72	9.00E+01 9.50E+03		GWP	no		3.70E+00 3.70E+00	- 0
205-99-2	BENZO(B)FLUORANTHENE	1	140	2.00E+02		DC	no no		3.70E+00 3.70E+00	20
-	1.7	1	48	1.90E+03		DC	no		3.70E+00	
207-08-0	BENZO(K) EL HORANTHENE					DC	110		3.70E+00	
207-08-9		_			3.00E+02	DC:	VEC	NO	3.70E+00	186
₂₀₀ 50-32-8	BENZO(A)PYRENE	1	84	2.00E+01	3.90E+02	DC	YES no	NO	3.70E+00 3.70E+00	9
200	BENZO(A)PYRENE	_			3.90E+02	DC	YES no no	NO	3.70E+00 3.70E+00 3.70E+00	

	٨		ć	Ď	•	F	6	*	1.	1	K.
	Sample			William State of the							
280	ID	Field ID: BEA031250_MFC	Lab	ID: 12093	39-14						
		N	100	- 10	IDAPA	Region 9	14		72001 0.500		× 10
					58.01.24	Industrial		Exceed	Exceed	122010000000000000000000000000000000000	
Ш					Screening	Screening		Residential	Industrial	Reporting	
Ш	CAS	112 100 200	25/15/25	Result	Limit	Level	Critical	Screening	Screening	Limit	Result
-	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
	1-20-3	NAPHTHALENE	1	3.4	1.20E+02		VI	no	1	3.40E+00	U
4770	08-96-8 3-32-9	ACENAPHTHYLENE	1	3.4	ND		CTTT	no		3.40E+00	U
	6-73-7	ACENAPHTHENE FLUORENE	1	3.4	2.00E+05 2.40E+05		GWP	no no		3.40E+00 3.40E+00	J U
	5-01-8	PHENANTHRENE	1	4.6	2.40E+05 ND		GWF			3.40E+00 3.40E+00	U
-	20-12-7	ANTHRACENE	1	1.6	3.20E+06		GWP	no no		3.40E+00 3.40E+00	
499	06-44-0	FLUORANTHENE	1	1.0	1.40E+06		GWP	no no		3.40E+00 3.40E+00	J
-	29-00-0	PYRENE	1	13	1.40E+00		GWP	no		3.40E+00	- 2
	6-55-3	BENZO(A)ANTHRACENE	1	9.1	9.00E+01		GWP	no	- /	3.40E+00	(1)
47.	18-01-9	CHRYSENE	1	7.4	9.50E+01		GWP	no		3.40E+00	33
-	05-99-2	BENZO(B)FLUORANTHENE	1	19	2.00E+02		DC	no		3.40E+00	
-	07-08-9	BENZO(K)FLUORANTHENE	1	7.3	1.90E+03		DC	no		3.40E+00	8
	0-32-8	BENZO(A)PYRENE	1	11	2.00E+01	3.90E+02	DC	no	no	3.40E+00	
-	93-39-5	INDENO(1,2,3-CD)PYRENE	1	4.7	ND	0.302.02	20	no	10	3.40E+00	
-	3-70-3	DIBENZO(A.H)ANTHRACENE	1	1.5	ND		6	no	8	3.40E+00	J
	91-24-2	BENZO(G.H.I)PERYLENE	1	5.8	ND			no		3.40E+00	
	Sample						V)				
26.6	ID	Field ID: BEA031252_MFC	Lab	ID: 12093	39-16	0.00					
П		10000			IDAPA	Region 9					-
Ш					58.01.24	Industrial		Exceed	Exceed	300000 800	
$ \ $					Screening	Screening		Residential	Industrial	Reporting	
Ш	CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
-	Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
-	1-20-3	NAPHTHALENE	7	24	1.20E+02	5.01-20/225/200	VI	no		2.40E+01	U
-	08-96-8	ACENAPHTHYLENE	7	24	ND			no		2.40E+01	U
_	3-32-9	ACENAPHTHENE	7	24	2.00E+05		GWP	no		2.40E+01	U
	6-73-7	FLUORENE	7	24	2.40E+05		GWP	no		2.40E+01	U
-	5-01-8	PHENANTHRENE	7	29	ND			no		2.40E+01	
-	20-12-7	ANTHRACENE	7	9.2	3.20E+06		GWP	no		2.40E+01	J
	06-44-0	FLUORANTHENE	7	160	1.40E+06		GWP	no		2.40E+01	
_	29-00-0	PYRENE	7	110	1.00E+05		GWP	no	8	2.40E+01	1
-	6-55-3	BENZO(A)ANTHRACENE	7	90	9.00E+01		GWP	no		2.40E+01	
	18-01-9	CHRYSENE	7	88	9.50E+03		GWP	no		2.40E+01	
-	05-99-2	BENZO(B)FLUORANTHENE	7	150	2.00E+02		DC	no		2.40E+01	
	07-08-9	BENZO(K)FLUORANTHENE	-	62	1.90E+03	3.005.00	DC	no	***	2.40E+01	
_	0-32-8	BENZO(A)PYRENE	7	110	2.00E+01	3.90E+02	DC	YES	NO.	2.40E+01	- 5
211	93-39-5	INDENO(1,2,3-CD)PYRENE	_	70	ND		10	no	-	2.40E+01	
-	3-70-3	DIBENZO(A,H)ANTHRACENE	7	23	ND		2	no		2.40E+01	J
279	91-24-2	BENZO(G,H,I)PERYLENE	7	77	ND		30	no	0	2.40E+01	(2)

Α.		E	Ď	í	F	6	*	- 1	1	Ł
Sample	Field ID: BEA031254 MFC	Lah	ID: 12093	30-18						
10	Tield ID. BEA031204_MTC	Lab	1209.	IDAPA 58.01.24	Region 9 Industrial		Exceed	Exceed		
CAS			D14	Screening	Screening	6-241	Residential	Industrial	Reporting	D 16
CAS Number	Target Analyte	DF	Result (ug/kg)	Limit (ug/kg)	Level (ug/kg)	Critical Pathway	Screening Limit	Screening Limit	Limit (ug/kg)	Result Oualifier
91-20-3	NAPHTHALENE	1	3.5	1.20E+02	(ug/kg)	VI	no	Limit	3.50E+00	U
208-96-8	ACENAPHTHYLENE	1	3.5	ND		***	no		3.50E+00	U
m 83-32-9	ACENAPHTHENE	1	3.5	2.00E+05		GWP	no	8	3.50E+00	U
2m 86-73-7	FLUORENE	1	3.5	2.40E+05		GWP	no		3.50E+00	U
2m 85-01-8	PHENANTHRENE	1	4.3	ND		3	no		3.50E+00	3
m 120-12-7	ANTHRACENE	1	1.6	3.20E+06		GWP	no		3.50E+00	J
206-44-0	FLUORANTHENE	1	38	1.40E+06		GWP	no	N	3.50E+00	<u> </u>
ж 129-00-0	PYRENE	1	37	1.00E+05		GWP	no	100	3.50E+00	,01
m 56-55-3	BENZO(A)ANTHRACENE	1	31	9.00E+01		GWP	no		3.50E+00	
218-01-9	CHRYSENE	1	27	9.50E+03		GWP	no		3.50E+00	Ž.
205-99-2	BENZO(B)FLUORANTHENE	1	60	2.00E+02		DC	no		3.50E+00	
207-08-9	BENZO(K)FLUORANTHENE	1	33	1.90E+03		DC	no		3.50E+00	, y
30 50-32-8 30 193-39-5	BENZO(A)PYRENE	1	43 20	2.00E+01	3.90E+02	DC	YES	NO	3.50E+00	-
53-70-3	INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE	1	6.4	ND ND		8	no no		3.50E+00 3.50E+00	
≥ 191-24-2	BENZO(G.H.DPERYLENE	1	24	ND		100	no		3.50E+00	
Sample	BENZO(G,H,I)FERTLENE	1	24	ND	- 4	· ·	110		3.50E+00	S 100
m ID	Field ID: BEA031252_MFC	Lab	ID: 12093	39-16RR1						
			2.00	IDAPA	Region 9					
				58.01.24	Industrial		Exceed	Exceed	10000	
272.000.000.000				Screening	Screening		Residential	Industrial	Reporting	100 10 000 1000
CAS			Result	Limit	Level	Critical	Screening	Screening	Limit	Result
80 Number	Target Analyte	DF	(ug/kg)	(ug/kg)	(ug/kg)	Pathway	Limit	Limit	(ug/kg)	Qualifier
m 91-20-3	NAPHTHALENE	1	3.4	1.20E+02		VI	no		3.40E+00	U
208-96-8	ACENAPHTHYLENE	1	3.4	ND		CITT	no		3.40E+00	U
83-32-9 86-73-7	ACENAPHTHENE FLUORENE	1	3.4	2.00E+05 2.40E+05		GWP	no no		3.40E+00 3.40E+00	U
36 85-73-7 30 85-01-8	PHENANTHRENE	1	28	2.40E+05 ND		GWF	no	- 2	3.40E+00 3.40E+00	U
≈ 120-12-7	ANTHRACENE	1	8.6	3.20E+06		GWP	no		3.40E+00	
206-44-0	FLUORANTHENE	1	130	1.40E+06		GWP	no		3.40E+00	
m 129-00-0	PYRENE	1	100	1.00E+05		GWP	no		3.40E+00	
so 56-55-3	BENZO(A)ANTHRACENE	1	84	9.00E+01		GWP	no		3.40E+00	
218-01-9	CHRYSENE	1	92	9.50E+03		GWP	no		3.40E+00	
205-99-2	BENZO(B)FLUORANTHENE	1	180	2.00E+02		DC	no		3.40E+00	E
207-08-9	BENZO(K)FLUORANTHENE	1	57	1.90E+03		DC	no		3.40E+00	
ss 50-32-8	BENZO(A)PYRENE	1	110	2.00E+01	3.90E+02	DC	YES	NO	3.40E+00	1
as 193-39-5	INDENO(1,2,3-CD)PYRENE	1	37	ND			no		3.40E+00	
an 53-70-3	DIBENZO(A,H)ANTHRACENE	1	13	ND		100	no		3.40E+00	
an 191-24-2	BENZO(G,H,I)PERYLENE	1	38	ND		3	no	<u> </u>	3.40E+00	8

Appendix J

E-mail to DEQ with Soil Analytical Analysis #1 and #2 and Spreadsheet Comparison of EPA Region 9 Industrial Screening Levels vs. IDAPA Residential Screening Levels

Search Im	ages	Mail i	Documer	nts C	alendar	Sites	Graups	s Contac	cts Mob	io Mio	re -		 	
SIN Notes	Lincoln .												kerry.nisse	an@inl.gav
Mail									Move to b	sbox.		More :	6 of 82	
													Steve Heaton	
COMPO	86		MEC				mples a Rugiusemen	nd Scree	ening Le	eveis			Regional Manager, Waste	and R
Inbox Starred					n, Kerry 1. en.heaton		sson@fal.g	gov			Sep 27	(5 days ago)	Show details	
Important Sent Mail Drafts (1)				:	·									
				3 atta	chments	— Down	load all at	lachments	-1					
Loading				型 A	natysts# 347K Vis	1.pdf w Dow	nload							
Search peo	ple			현 A	nalysis# 636K Vic	2.pdf w Daw	nload							
				图》	Atth Indus DK View	trial leve Open a	els Final S is a Google	sample Res e spreadsbo	alt Summ set Downi	ary(1).xis: oad	×			
			•	Clic	k hare to E	loply or i	Forward							