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Abstract

Arctic sea ice is an important component of the global climate system, reflecting a significant
amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean
circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic
sea ice have shown a significant decline in recent decades with implications for global climate as
well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects
make predictive mathematical modeling of sea ice a task of tremendous practical import.

Satellite data obtained over the last few decades have provided a wealth of information on
sea ice motion and deformation. The data clearly show that ice deformation is focused along
narrow linear features and this type of deformation is not well-represented in existing models.
To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos
National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the
Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the
impact of material parameters on sea ice response functions. Two material strength parameters
that exhibited the most significant impact on responses were further analyzed to evaluate their
influence on quantitative comparisons between model output and data. The sensitivity analysis
along with ten year model runs indicate that while the anisotropic rheology provides some
benefit in velocity predictions, additional improvements are required to make this material
model a viable alternative for global sea ice simulations.
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Nomenclature

m - ice mass per unit area

v - ice velocity

τ a - atmospheric drag

τw - ocean drag

ω - Earth’s rotation

φ - latitude

σ - Cauchy stress tensor

N - depth integrated stress tensor

ε - strain tensor

E Young’s modulus

µ bulk modulus

ν Poisson ratio

τt tangential traction

τnf tensile strength

τtf shear strength

sm shear multiplication factor

f ′
c compressive strength

u - ice displacement

[[u]] displacement jump

η shear viscosity

ζ bulk viscosity

Dd divergence

Dv vorticity

Ds shear
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1 Introduction

Arctic sea ice is an important component of the global climate system, reflecting a significant
amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circu-
lation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice
have shown a significant decline in recent decades [3, 23]. This decline has implications for global
climate, where new evidence suggests that reduction in Arctic sea ice can influence atmospheric
circulation over the mid-latitudes [7], and for regional geopolitics, where disappearing sea ice has
renewed interest in exploration and mineral extraction in the Arctic. For these reasons predictive
sea ice modeling is a high priority.

Numerical modeling of sea ice is a complex multi-physics problem. Sea ice is mechanically
driven by surface winds and ocean currents, which can open cracks or form pressure ridges under
convergence. Additionally, sea ice grows and melts seasonally in response to incoming solar radi-
ation, thermal radiation from the atmosphere, and heat flux from the ocean. A complete sea ice
model must incorporate variations in ice thickness including ridges and cracks, the annual cycle of
growth and melt due to radiative forcing, and mechanical deformation due to surface winds, ocean
currents, and Coriolis forces.

Existing sea ice components of global climate models vary in their predictions for Arctic sea ice
evolution, but most have significantly underestimated the rate of decline in minimum sea ice extent
over the last thirty years [34]. Additionally, comparisons with satellite data show that models do
not accurately represent sea ice drift or deformation [28]. There are multiple contributing factors
for these discrepancies, which can include errors in atmospheric and ocean forcing [17], however,
it has become clear that one limitation of existing sea ice models is in the rheology that describes
the internal forcing component of the equations of motion.

The standard isotropic rheology used in sea ice simulations is the viscous-plastic model devel-
oped by Hibler [12]. At the time the rheology was developed, resolutions in sea ice calculations were
limited to scales of O(100 km). At these scales it is reasonable to assume that cracks in the ice,
known as leads, are distributed randomly over a region so that their effect can be approximated
by an isotropic weakening. However, at current high-resolutions of O(10 km), a single lead can
dominate a region producing deformation that is highly anisotropic [4]. Satellite data clearly show
that deformation in the ice is focused along narrow linear features that are likely associated with
leads or systems of leads. Comparisons between model predictions of deformation and satellite data
show significant discrepancies [22]. Additionally, analysis of the spatial scaling of the deformation
supports the view that isotropic rheologies are not accurately capturing the deformation [33, 10].

To improve the representation of sea ice dynamics a number of anisotropic constitutive models
have been developed for sea ice [5, 38, 9]. Our work will utilize the elastic-decohesive rheology
developed by Schreyer [31]. This rheology explicitly models the formation and evolution of cracks
in the ice and is inherently anisotropic. This constitutive model was previously incorporated into
a material-point method sea ice model where promising results were seen for regional simulations
[36, 35]. This rheology has now been added to CICE, the Los Alamos sea ice model [16], which is a
global sea ice model that is a component of the Community Earth System Model (CESM). Section 2
describes the governing equations for sea ice dynamics and compares the elastic-decohesive rheology
(EDC) to the default elastic-viscous-plastic (EVP) rheology used in CICE. Section 3 details the
implementation of EDC in CICE.
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The elastic-decohesive rheology contains a number material parameters that are constrained
by data, but have exact values that are uncertain. After implementation of the model in CICE, a
sensitivity analysis has been performed to determine the most important rheology parameters for
a set of response functions that included global ice quantities like total Arctic ice volume as well as
parameters that assess the performance of the model in comparison with satellite deformation data.
Details of this analysis are provided in Section 4. The two most important rheologic parameters
were then used in an additional study to improve the match of model output to ice motion and
deformation measures described in Section 5. Finally, results of ten year CICE simulations with
the EDC rheology and the EVP rheology, which were done to assess model performance for longer
time frames, are given in Section 6.
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2 Sea Ice Dynamics

Sea ice dynamics are governed by a linear momentum equation for the two-dimensional spatially
and temporally varying ice velocity v. Due to the large extent to thickness ratio of sea ice a shallow
ice formulation is used, which can be obtained by integrating the full three-dimensional sea ice
momentum equation over thickness [11]. The resulting equation, which balances sea ice forces per
unit area, is of the form

m
∂v
∂t

= ∇ ·N + ta + tw − fc −mg∇H (1)

where m is the mass per unit area of ice and snow. External forces acting on the ice include the
atmospheric drag (ta), the ocean drag (tw), the Coriolis force (fc), and the sea surface tilt force
(mg∇H), which depends on the gradient of the sea surface height (H) and the acceleration due to
gravity (g). The Coriolis force

fc = 2ρh̄ω sinφ(k̂× v) (2)

is a function the Earth’s rotation (ω) and the latitude (φ) where k̂ is the unit vector in the vertical
direction. The ocean drag is typically given by a quadratic law

τw = cwρw‖v − vw‖(v − vw) (3)

where ρw is the ocean density, vw is the two-dimensional ocean velocity, and cw is the ocean drag
coefficient. In many sea ice models a quadratic drag law is also used for the atmospheric drag
term, however, the LANL CICE code contains an atmospheric boundary layer routine where the
atmospheric drag is calculated based on turbulent scales for the velocity [16]. The drag force due
to atmospheric winds is the dominant external forcing on the ice.

The internal force (∇ ·N) depends on the depth-integrated stress tensor N, which is obtained
from the rheology that relates stress to strain or strain rate. Most sea ice models use variations
on the viscous-plastic rheology developed by Hibler [12]. For this analysis we are using an elastic-
decohesive rheology developed by Schreyer and others [31] and an elastic-viscous-plastic rheology,
which is a modification of the viscous-plastic rheology and is the default rheology in CICE [13].
Details of both rheologies are provided in Subsections 2.1 and 2.2.

Sea ice dynamics are coupled to the thermodynamics through an ice thickness distribution,
which accounts for the sub-grid scale variations in thickness in the model [37]. Changes in ice
thickness due to thermodynamic growth or melt are obtained from an energy-conserving thermo-
dynamic model that involves the solution of a one-dimensional temperature equation for the ice [2].
These thickness changes affect the dynamics through the mass per unit area (m) in the momentum
equation, which is computed from the ice thickness distribution, and through a dependence of the
rheology on ice thickness. Changes to thickness due to mechanical ridging are determined from a
ridging equation that depends on ice divergence and shear derived from the ice motion [30]. For
more details on the full set of sea ice governing equations see [27, 16].

2.1 Elastic-Viscous-Plastic Rheology

The elastic-viscous plastic (EVP) rheology is a modification to the viscous-plastic rheology,
where ice behavior is based on a rigid plastic model [12, 13]. The plastic behavior is defined by
a yield curve in depth integrated stress space and associated flow rules for the strain rate. The
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original viscous-plastic model uses an elliptical yield curve in principal depth integrated stress space
of the form

F (N1, N2) =
(

N1 + N2 + P

P

)2

+
(

N2 −N1

P
e

)2

− 1 (4)

where N1 and N2 are the principal components of the depth integrated stress, e is the eccentricity
of the elliptical yield curve and P is a measure of ice strength. A plot of the viscous-plastic yield
curve is shown in Figure 1. The ice is constrained in stress space to lie on the curve where F = 0,
which defines the plastic regime. In Hibler’s original formulation, the ice strength P is taken to be

P = P ∗he−C(1−A) (5)

where h is the thickness, A is the compactness or fractional area covered by ice, and C and P ∗ are
constants. The CICE code uses a more complex form of the strength that depends on the ridging
algorithm and is documented in [26]. The two-dimensional strain rate tensor, ε̇ is defined as the
symmetric part of the velocity gradient, which is equal to 1/2(∇v + ∇vT ). The viscous-plastic
constitutive law can be derived from the yield curve assuming the following normal flow rule for
strain rate in principal coordinates

ε̇1 = ω
∂F

∂N1
ε̇2 = ω

∂F

∂N2
(6)

where ω is the plastic evolution parameter. For this rheology ω may be solved for directly and a
closed form expression for the rheology is obtained as

N = 2ηε̇ + (ζ − η)tr(ε̇)I +
P I
2

(7)

where ζ is the bulk viscosity, η is the shear viscosity, and I is the two-dimensional identity tensor.
Both ζ and η are functions of the strain rate, ε̇, and can be written as

ζ =
P

2∆
, η =

P

2∆e2
(8)

for
∆ =

(
(ε̇2

11 + ε̇2
22)(1 + e−2) + 4ε̇2

12e
−2 + 2ε̇11ε̇22(1 + e−2)

)1/2
. (9)

In this formulation the viscosity coefficients, ζ and η, can become arbitrarily large as the strain
rate goes to zero. To remove this possibility, limiting values are set for the strain rates. When the
limiting values are approached the ice behaves as a linearly viscous fluid undergoing slow creep. In
the original formulation at small strain rates when the ice is approximately rigid, the stress lies on
an elliptical surface concentric with the original yield surface in principal stress space, producing
a nonzero stress state for a zero strain rate. A pressure replacement modification was introduced
later to restrict the stress to zero for a zero strain rate [8].

An alternative method of regularizing the constitutive equation is due to Hunke and Dukowicz
[13], who included an elastic component to control the behavior in the limit of infinite viscosity.
The viscous plastic rheology can alternatively be written for strain rate as a function of depth
integrated stress as

ε̇ =
1
2η

N +
η − ζ

4ηζ

(
trN +

P

4ζ

)
I. (10)
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N
1

N
2

(−P,−P)

Figure 1: Elliptic yield curve used in the elastic-viscous plastic rheology. The ice strength P
determines the size of the yield curve and depends on ice concentration and thickness.

The elastic-viscous-plastic rheology can be obtained by including a simple linear elastic relationship
Ṅ = Eε̇ where E is a scalar elastic parameter. Combining this with the viscous-plastic constitutive
model results in

ε̇ =
1
2η

N +
η − ζ

4ηζ

(
trN +

P

4ζ

)
I +

1
E

Ṅ. (11)

In the limit as η, ζ → ∞ the simple elastic equation is recovered and in the steady state limit the
viscous-plastic relationship is recovered [13].

The EVP rheology is numerically efficient as it permits explicit solution of the dynamics. It is
isotropic because the ice strength depends on ice concentration and thickness, but does not have
a directional component. Leads in the ice can be inferred from areas of low ice concentration or
small thickness, but are not explicitly modeled.

2.2 Elastic-Decohesive Rheology

In contrast to EVP the elastic-decohesive (EDC) rheology explicitly accounts for cracks or
leads in the ice by modeling them as displacement discontinuities, while intact ice is assumed
to behave elastically [31]. Assume we have a discontinuity on a surface Γ with a well-defined
normal, n. We regard the surface Γ as the level set of a C1 function g, i.e. Γ = {x : g(x) = 0}.
Define Ω− = {x : g(x) < 0} and Ω+ = {x : g(x) > 0}. The domain is then decomposed into
Ω = Ω− ∪Γ∪Ω+. Once a discontinuity forms the total displacement field u(x, t) can be separated
into a continuous component ū(x, t) and a jump discontinuity [[u]] in the form

u = u + [[u]]HΓ, HΓ =

{
0, if x ∈ Ω−

1 if x ∈ Ω+ ∪ Γ
. (12)

The jump in displacement has components [[u]] = (un, ut) in the local n − t basis, where t is the
tangent to the failure surface.

The EDC rheology is formulated using a failure surface in stress space, which bounds the elastic
regime and defines the region where leads initiate. The failure surface Fn depends on components
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of the Cauchy stress tensor σ along Γ. The traction on the failure surface has normal component
τn = n · σ · n and tangential component τt = t · σ · n. The remaining component of stress within
the plane of the ice in this basis is the tangential stress, σtt = t ·σ · t. The EDC rheology combines
brittle and shear failure with the transition zone between the two depending on the stress state of
the material. The criterion for brittle failure is Bn = 0 where Bn is defined as

Bn =
τn

τnf
− fn

[
1− 〈−σtt〉2

f ′2
c

]
, where 〈x〉 ≡

{
x x ≥ 0
0 x < 0

. (13)

For the case where fn = 1 and σtt ≥ 0, brittle failure occurs when the normal traction is equal to
the tensile strength τnf . When σtt is compressive, brittle failure can occur for lower values of τn

and the critical point depends on the material compressive strength f ′
c. The brittle failure function

is combined with a shear failure criterion in the full failure function

Fn(σ) =
(

τt

smτtf

)2

+ eκBn − 1. (14)

The criterion for failure is then Fn = 0. If the normal component of traction has a large negative
value (τn →∞) and σtt ≥ 0 implying that Bn →∞, then Fn = 0 when τ2

t = (smτtf )2. Therefore,
smτtf is the failure stress in shear when the normal component of traction is large and compressive.
In the case of pure shear failure where τn = 0, σtt = 0, fn = 1, and Bn = −1, we choose κ such
that e−κ = 1− (τ2

tf/(smτtf )2) so that pure shear failure occurs when τt = τtf .

The softening function fn is equal to one when failure initiates and then reduces linearly as the
crack opens and the normal displacement jump (un) increases with the form fn = 〈1−un/u0〉. The
crack is considered fully open when un equals the material parameter u0 and the traction on the
surface has reduced to zero. The crack orientation at initiation defined by the normal n is found by
maximizing Fn over all possible crack orientations, which results in a failure function F = maxnFn.

For this model a value of F less than zero indicates that the ice is in the elastic regime. Once
failure occurs F is constrained to zero so that the stress state is maintained on the failure surface.
A plot of F = 0 in principal stress space is shown in Figure 2. The arrows indicate the direction of
failure with respect to principal stress. In the region where brittle stress dominates the normal to
the failure surface is always in the direction of maximum principal stress. In the transition region
and the shear region there are always two possible failure directions at angles ±α with respect to
the direction of maximum principal stress. The direction of rotation defined by the local vorticity
determines which angle is chosen.

Once decohesion initiates the displacement discontinuity evolves according to a normal flow rule

[[u̇n]] = ω
∂F

∂τn
, [[u̇s]] = ω

∂F

∂τt
. (15)

In this case there is no closed form of the rheology so iterative methods are used to find the
decohesive strain that satisfies F (σ) = 0. In order to compute the stress we need the strain tensor
defined as the symmetric part of the displacement gradient

ε = ∇su = ε̄ + ([[u]]⊗ n)sδΓ (16)

where ε̄ is the regular or, in this case, the elastic portion of the strain, and δΓ is the delta function
distribution on Γ. The superscript s denotes the symmetric part of the operator. The constitutive,
stress-strain relation is then

σ = E : (ε− ([[u]]⊗ n)sδΓ), (17)
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σ
1

σ
2

Figure 2: Failure curve in stress space used in the elastic-decohesive rheology. Arrows indicate
the normal direction to the displacement discontinuity with respect to maximum principal stress.

where E is the standard fourth-order elasticity tensor. For isotropic elasticity, E can be represented
by two independent material parameters, for example the shear modulus µ and the second Lame
constant λ as

Eijkl = λδijδkl + 2µ(δikδjl + δilδjk) (18)

where δij is the Kronecker delta.

To integrate the EDC model stress back into the sea ice momentum equation, the Cauchy
stress must be converted into a depth-integrated stress. To do this the depth-integrated stress is
approximated as N =

∫ hmax

0 σdh ≈ hσ.
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3 Numerical Implementation in CICE

The incorporation of the EDC model into CICE was accomplished by substituting the discrete
depth-integrated stress from ECD for the EVP discrete depth-integrated stress while maintaining
existing methods for computing the discrete internal stress and momentum balance. Details of the
numerical procedures used for the momentum balance solve in CICE can be found in [14]. The
degrees-of-freedom in the CICE model are staggered so that velocities are located at cell corners and
thermodynamic variables such as ice thickness distribution are located at cell centers [16]. Global
ice simulations are typically performed on a displaced pole grid and therefore general curvilinear
coordinates are used for the equations of motion.

In order to evalutate the EDC rheology we require values of the strain rate tensor defined
as ε̇ = 1/2(∇v + (∇v)T ). In two-dimensional general curvilinear coordinates the three distinct
components of the strain rate tensor may be written as

ε̇11 =
1
h1

∂u

∂ξ1
+

v

h1h2

∂h1

∂ξ2

ε̇22 =
1
h2

∂v

∂ξ2
+

u

h1h2

∂h2

∂ξ1

ε̇12 = ε̇21 =
1
2

(
h1

h2

∂

∂ξ2

(
u

h1

)
+

h2

h1

∂

∂ξ2

(
v

h2

)) (19)

for nondimensional coordinates (ξ1, ξ2) and scale factors (h1, h2). In CICE the following bilinear
form of the velocity v = (u, v) is assumed for each cell where superscripts ne, nw, se, sw denote cell
corners [14]

v(ξ1, ξ2) = vneξ1ξ2 + vnw(1− ξ1)ξ2 + vsw(1− ξ1)(1− ξ2) + vseξ1(1− ξ2). (20)

Using this bilinear form for the velocity, strain rates are evaluated at each of the four cell corners.
Multiplying the strain rates by the time step (∆t) gives a value of strain increment for use in
the EDC rheology. It is assumed in CICE that the scale factors (h1, h2) can be approximated
as the mid cell lengths (h̄1, h̄2). Additionally, the scale factor derivatives (∂h1/∂ξ2, ∂h2/∂ξ1) can
be approximated by differences in grid edge lengths (∆2h1,∆1h2). Therefore, as an example, the
components of the strain increment for the southwest corner of a cell are given by

∆εsw
11 = ε̇sw

11 ∆t =
1

h̄1h̄2

(
h̄2(use − usw) + ∆2h1v

sw
)
∆t

∆εsw
22 = ε̇sw

22 ∆t =
1

h̄1h̄2

(
h̄1(vnw − vsw) + ∆1h2u

sw
)
∆t

∆εsw
12 = ε̇sw

12 ∆t =
1
2

1
h̄1h̄2

(
h̄1(use − usw)−∆2h1u

sw + h̄2(vse − vsw)−∆1h2v
sw

)
∆t.

(21)

For each cell corner the stress is computed from the strain increments using the following
algorithm. First, a trial stress (σtr) is computed from the strain increment and the value of stress
at the previous time step (σk) as

σtr = σk + E : ∆ε. (22)

If there is no active crack (i.e. [[ u ]] = 0) then a failure direction is chosen by maximizing the
failure function over all possible crack directions. Once a failure direction is chosen, the failure
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function is evaluated for values of the trial stress. If F (σtr) < 0 then the step is elastic and the
new stress is set to the trial stress (σk+1 = σtr). If F (σtr) ≥ 0 then decohesion is occuring the
decohesive strain εd required to return F (σ) to zero must be found.

In order to solve this problem numerically, the singularity in the decohesive strain must first be
regularized. We use a smeared-crack approach where the delta function in Eq. (16) is regularized
over a computational element and replaced with an expression of the form

ε = ε + εd = ε +
1
L

([[u]]⊗ n)s. (23)

The quantity L is a length scale related to the cell size that comes into the equation from the
regularization of δΓ. This length scale is chosen to insure that the correct energy is dissipated
during fracture [31]. Another dimensional parameter that influences the EDC rheology is the
length scale u0 which determines the width at which the crack is fully open and the traction on
the surface has reduced to zero. The grid cell size varies over the displaced pole grid used in CICE,
however the value of u0 in other implementations has been set to be a constant for the entire grid.
In our implementation we have chosen to set the ratio of u0 to L to a constant so that both length
scales vary depending on the grid cell size in a consistent manner.

Using the regularized decohesive strain, we employ Newton’s method to solve for F (σ) = 0
given that ∆σ = E : (∆ε−∆εd). In the CICE implementation multiple cracks per cell with varying
orientation are allowed. If additional cracks are active in the cell the procedure is repeated for the
additional crack directions.

The CICE model uses explicit time stepping for the dynamics. Due to the potentially high
viscosities in the EVP model the dynamics are typically subcycled with 120 subcycles for every
1 thermodynamic step. Subcycling is also used in the EDC implementation, however, the EDC
model is stable for a larger time step so 60 subcycles have been used. At the end of the dynamic
subcycling step values of the displacement jump orientations and directions are averaged over a
cell. The averaged values are then advected using an incremental remap transport algorithm for
tracer quantities, which is documented in [25]. At the next dynamics step the cell averaged jump
and direction are used for the four corners of the cell.
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4 Sensitivity Analysis

After the EDC model was implemented and tested in CICE, a sensitivity analysis was done
to determine the impact of rheologic and dynamic parameters of the model on overall ice drift
and deformation. For this analysis a two month run of CICE was performed for the months of
January and February 1997 on a one degree global displaced pole grid (gx1). Atmospheric data
from the Common Ocean-ice Reference Experiments (CORE) version 2 [24], which have been
mapped to the gx1 grid, are used to drive the simulations. The data include spatially varying
six-hourly atmospheric winds, specific humidity, and air temperature. Monthly spatially varying
cloud fractions are taken from the Ocean Model Intercomparison Project (OMIP) data [29]. The
downward longwave flux from the atmosphere is then derived from the air temperature and cloud
fraction using the approach in [15]. Linear interpolation in time is used to derive the forcing for a
given time step.

Spatially and seasonally varying ocean currents, sea surface salinity and sea surface temperature
are taken from 20 year monthly means of POP ocean model output [32]. The sea ice velocity and
thickness distribution are initialized with a standard CICE intialization file. Initial cracks for the
EDC model are inferred from the strain rates derived from the initial ice velocity.

Parameters of interest for the sensitivity analysis were chosen from the set of material parameters
used in the elastic-decohesive constitutive model and are shown the Table 8 with the sampling ranges
used. All of the parameters were treated as having uniform distributions over the sampling range.
The first two parameters, Young’s modulus (E) and Poisson ratio (ν), define the isotropic elastic
response of the material. These parameters are related to µ and λ in Eq. 18 as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2 + 2ν
. (24)

The next three parameters, tensile (τnf ), shear (τtf), and compressive (f ′
c) strength determine

the failure response of the material. The final two parameters are multiplicative factors that
modify other responses. The shear multiplication factor modifies the shear failure condition under
large compression and the opening parameter multiplication factor implicitly controls the material
parameter that determines when a crack is fully open u0.

Table 1: Model Parameters for Sensitivity Analysis.

Parameter Range Description
E 7.5 ×105 - 1.5 ×106 Young’s Modulus
ν 0.33 - 0.36 Poisson Ratio

τnf 2.5 ×103 - 2.5 ×104 Tensile Strength
τtf 2.5 ×103 - 2.5 ×104 Shear Strength
f ′

c 1.0 ×105 - 1.5 ×105 Compressive Strength
sm 2-8 Shear multiplication factor

u0fac 3-6 Opening parameter multiplication factor

The response functions for the sensitivity analysis, listed in Table 2, were chosen either because
they are bulk properties that are used to assess the state of the Arctic ice pack or because they are
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useful in evaluating the model performance in terms of ice motion and deformation. The first three
scalar fields are total Arctic ice extent, total Arctic ice volume, and root mean square ice speed,
which are diagnostic output from the CICE model. The following four scalar fields are derived from
model spatially varying velocity and deformation fields in comparison with satellite data.

The velocity error (verror) is a measure of the deviation of the model average velocity for
February 1997 from satellite derived average velocity for February 1997. The satellite data are
two day optimally interpolated ice motion fields derived from passive microwave instruments and
buoy motions [18] and can be downloaded from http://rkwok.jpl.nasa.gov/icemotion/index.html.
The model velocities are projected to a polar stereographic grid then interpolated to the 100
km resolution grid used by the passive microwave velocity data. The l2 error in projected and
interpolated model velocity v = (u, v) versus satellite velocity v̄ = (ū, v̄) is then computed as

verror =

(∑
i

(
(ui − ūi)2 + (vi − v̄i)2

))1/2(∑
i

(
ū2

i + v̄2
i

))1/2
. (25)

The final three response functions are the result of a comparison between model deformation
measures and deformation measures derived from satellite data. The model divergence, vorticity,
and shear are computed internally in CICE from the strain rate tensor as

Dd = ε̇11 + ε̇22

Dv = ε̇21 − ε̇12

Ds =
√

(ε̇11 − ε̇22)
2 + (ε̇12 − ε̇21)

2.

(26)

Deformation data for comparison are synthetic Aperture Radar (SAR) maps of the Arctic from
RADARSAT, which are processed by the RADARSAT Geophysical Processor System (RGPS)
developed at the Jet Propulsion Laboratory (JPL) [19, 21]. Area and feature-based tracking are
used to generate ice displacements over time for an initially regular set of points. The resulting
motion is used to compute deformation measures such as divergence, shear, and vorticity. The
data are available for download at http://rkwok.jpl.nasa.gov/radarsat/index.html. To compute
deformation correlations, the model data are first projected onto a polar stereographic grid then
interpolated to the RGPS grid. Data are not available for all points at all times so comparison are
only done at points where RGPS data are not missing. To assess the similarity between the model
and RGPS deformations correlation coefficients are computed using the Matlab function corrcoef.
The correlation computations are done for the net deformation for a three day period in February
1997.

The sampling-based sensitivity analysis was performed with the Design Analysis Kit for Op-
timization and Terascale Applications (DAKOTA) toolkit [1]. We implemented a Monte Carlo
analysis based on Latin Hypercube Sampling (LHS) as in [27]. For this analysis 50 LHS were
taken. A linear regression model was used evaluate the sensitivity of the response functions to the
parameters. Given responses yi for i = 1, ..., 50 input values and instantiations of the parameters
xij (j = 1, ...10) for each sample, the model can be algebraically formulated as

(y − ȳ)/ŝ =
∑

j

(aj ŝj/ŝ)(xj − x̄j)
ŝj

, (27)
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Table 2: Response Functions for Sensitivity Analysis.

Variable Description
Etot Total ice extent (km2)
Vtot Total ice volume (m3)
vrms RMS ice speed (m/s)
verror Velocity error

Dd,correl Divergence correlation
Dv,correl Vorticity correlation
Ds,correl Shear correlation

where

ȳ =
∑

i

yi

m
, ŝ =

(∑
i

(yi − ȳ)2

(m− 1)

)1/2
, x̄j =

∑
i

xij

m
, ŝj =

(∑
i

(xij − x̄j)2

(m− 1)

)1/2
. (28)

The coefficients aj ŝj/ŝ are standardized regression coefficients with scaled values in the range of -1
to 1. When the xj are independent, the absolute value of the standardized regression coefficients
can be used to provide a measure of variable importance with respect to observed uncertainty in
the response function.

Standardized regression coefficients from the sensitivity analysis are provided in Table 3. Of
the 50 LHS only 39 ran to completion and therefore the sensitivity results include only these 39
complete cases. Values greater than 0.3 are displayed in bold font and indicate a fairly significant
relationship between the parameter and the response function. These results suggest that the values
of the shear multiplication factor (sm), the Poisson ratio (ν), and the compressive strength (f ′

c)
do not have much impact on the selected responses. The Arctic sea ice extent and volume at the
end of the run are both strongly influenced by the tensile strength (τnf ), where a negative value
for the coefficient indicates that the extent and volume increase as the tensile strength decreases.
This relationship is intuitively reasonable for the ice extent, where a larger extent can be obtained
dynamically as the ice breaks up and spreads apart. The tensile strength can have an impact on
ice volume by increasing the number of cracks with exposed open water in the winter that freeze
and thereby increase the total volume of ice. It is likely that the opening factor u0,fac contributes
the ice volume in a similar manner by influencing how much open water is available to freeze and
ridge.

The root mean square ice speed is influenced by the tensile strength, shear strength, and Young’s
modulus, where lower values of the Young’s modulus and the strength terms contribute to greater
RMS speed in the Arctic. The error in the averaged February 1997 velocity shows a more compli-
cated dependence on parameters where the error decreases with increasing Young’s modulus and
increases with increasing shear strength. The divergence correlation is moderately influenced by
Young’s modulus and the tensile strength, while the vorticity correlation is strongly influenced by
the shear strength and the shear modulus is moderately influenced by Young’s modulus.

Although the standardized regression coefficients show that the Young’s modulus has a moderate
influence on RMS speed, velocity error, divergence correlation, and shear correlation, the largest
influences on the response functions appear to be from the shear and tensile strengths.
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Table 3: Standardized regression coefficients from the 2 month sensitivity analysis using 1997
forcing for 39 valid samples. Significant values (> 0.3) are indicated in bold font.

Velocity Divergence Vorticity Shear
Parameter Extent Volume RMS Speed Error Correlation Correlation Correlation

E 0.0678 0.0652 -0.331 -0.403 -0.394 -0.0994 -0.319
ν -0.0775 0.0706 -0.0393 0.00642 -0.136 -0.0132 -0.263

τnf -0.883 -0.931 -0.563 -0.102 0.192 -0.301 0.0267
τtf 0.194 0.00283 -0.601 0.411 -0.378 -0.833 0.204
f ′

c 0.104 -0.0598 0.00651 0.0591 -0.0958 -0.0388 0.0399
sm -0.0648 0.129 -0.140 0.0463 -0.00968 -0.137 -0.174

u0 Factor -0.104 -0.377 -0.197 -0.267 -0.0861 -0.115 -0.131

The mean and standard deviation of the response functions from the 39 final samples are given
in Table 4 along with results from a control run of the code using the EVP rheology with standard
parameter values. The mean value of extent for the EDC samples is lower than the extent value
for the EVP result. In contrast the EVP result for volume is lower than the EDC result for mean
volume. The EVP result has higher root mean squared (RMS) speed. The mean EDC velocity error
tends to be higher than the EVP velocity and the deformation correlations are generally stronger
for EVP than EDC for this set of parameter values.

Table 4: Mean and standard deviation of response functions from two month sensitivity analy-
sis using 1997 forcing. Results from the two month CICE run with EVP rheology is shown for
comparison.

Response EDC Sample Results EVP Result
Mean Standard Dev.

Extent 1.522 ×107 1.974 ×104 1.544 ×107

Volume 2.207 ×1013 1.536 ×1011 2.171× 1013

RMS Speed 0.09792 0.005970 0.1172
Velocity Error 0.8276 0.0123 0.7103

Divergence Correlation 0.1427 0.02530 0.2572
Shear Correlation 0.07824 0.0764 0.2648

Vorticity Correlation 0.1331 0.02129 0.1380

A visual comparison between one set of sample results and the deformation data is provided in
Figure 3 where plots of divergence, vorticity, and shear for February 17-19 1997 are shown for the
RGPS data, the EVP model results, and EDC model results for sample number 11. This sample
was chosen because it produced relatively high deformation correlations of 0.165, 0.210, and 0.177
for divergence, vorticity, and shear respectively. Parameter values for sample 11 are provided in
Table 5. Both the EDC and EVP model underpredict the divergence, but there are some features
in common between the data and model results for the vorticity and shear.

Velocity comparisons between model and data are shown in Figure 4. In this case results
from sample number 17 are shown. This sample produced the lowest velocity error of 0.781. As
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indicated by the RMS velocity values the EDC rheology produces lower average velocities than the
EVP rheology particularly through the Fram strait and along the East coast of Greenland. In the
cases of both EDC and EVP models, the ice motion is smaller than what is seen in the data along
the Alaskan coast.

Table 5: Parameter values for two samples with low velocity error and high deformation correla-
tions.

Parameter Sample 11 Sample 17
E 1.2603153e+06 1.3487883e+06
ν 3.3091461e-01 3.4621522e-01

τnf 1.1974861e+04 1.2545249e+04
τtf 5.0078342e+03 2.5106544e+03
f ′

c 1.0855310e+05 1.3153122e+05
sm 4.3558734e+00 4.1162674e+00

u0 Factor 3.7331775e+00 5.8942635e+00
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Figure 3: Plot of divergence, vorticity and shear for three days in February 1997 from RGPS and
CICE simulation runs. Results from the CICE simulations were projected onto a polar stereographic
grid and interpolated to the RGPS grid with resolution 12 km. Points where RGPS data are not
available are not shown.
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Figure 4: February 1997 averaged optimally interpolated buoy and SSM/I ice motion (red arrows)
compared with results displayed as blue arrows from EDC (left) and EVP (right) rheologies.
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5 Optimization

Based on the results of the sensitivity study, a new set of samples was obtained using the same
response functions for only two parameters τnf and τtf . In this analysis 2004 forcing was used
with the same initial conditions and a two month (January/February) run was completed. Of the
50 LHS runs, two failed to complete leaving 48 samples for the analysis. Standardized regression
coefficients in Table 6 show similar behavior to what was seen in the 1997 sensitivity study. The
ice extent and volume appear to be influenced primarily by τnf where lower values increase the
extent and volume. The RMS speed shows a moderate dependence on both material parameters
such that lower tensile and shear strength results in higher RMS speed. The vorticity correlation
is particularly strong for τtf where lower values produce a better vorticity correlation.

Table 6: Standardized regression coefficients from the two month sensitivity analysis with 2004
forcing. Significant values in bold font.

Velocity Divergence Vorticity Shear
Parameter Extent Volume RMS Speed Error Correlation Correlation Correlation

τnf -0.883 -0.9310 -0.563 -0.683 0.194 -0.301 0.0857
τtf 0.194 0.0028 -0.601 0.252 -0.376 -0.833 0.265

In Table 7 the mean and standard deviations for the 2004 analysis are shown along with results
for a two month CICE run for comparison. In this case the mean divergence, shear, and vorticity
correlation are poor especially compared with the relatively high values from the EVP model.
However the mean velocity error of the EDC model is noticably better than for the EVP model.
Plots of ice deformation from RGPS data, EVP model results, and EDC model results for sample 31
with τnf = 2.4145888× 104 and τtf = 4.2705908× 103 are shown in Figure 5. Although on average
the samples show poor correlation with the deformation measures, sample 31 has correlations of
0.3595 and 0.2281 for the vorticity and shear respectively. The overall deformation in the figures is
not unreasonable, although there appears to be too much shear deformation and an underprediction
of divergence. Ice motion comparisons between model results and data are shown in Figure 6. The
EDC model results are for sample 35 with τnf = 9.6725619× 103 and τtf = 3.7109641× 103, which
produced a velocity error of 0.4959. The EVP model velocities are generally higher than the data
for this particular case, while the EDC velocities are much closer.

Results in Table 6 indicate that the tensile strength has a strong influence on sea ice extent and
volume while the shear strength has a strong influence on the correlation to deformation measures.
This is supported by looking at the influence of the two parameters on an error measure that
combines ice motion and deformation. Since we would like to reduce the ice velocity error and
increase the divergence, vorticity, and shear correlation an appropriate measure is

J = verror + (1−Dd,correl)2 + (1−Dv,correl)2 + (1−Ds,correl)2. (29)

Evaluating the error measure for each valid sample producing a scatter plot for each parameter
displays a striking pattern. As shown in Figure 7 the error decreases significantly for decreasing
τtf , but does not show a clear dependence on τnf .
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Figure 5: Plot of divergence, vorticity and shear for three days in February 2004 from RGPS and
CICE simulation runs. Results from the CICE simulations were projected onto a polar stereographic
grid and interpolated to the RGPS grid with resolution 12 km.

Figure 6: February 2004 averaged optimally interpolated buoy and SSM/I ice motion (red arrows)
compared with results displayed as blue arrows from EDC (left) and EVP (right) rheologies.
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Table 7: Mean and standard deviation of response functions from 2 month sensitivity analysis with
2004 forcing. Results from 2004 two month CICE run with EVP rheology shown for comparison.

Response EDC Sample Results EVP Result
Mean Standard Dev.

Extent 1.523 ×107 2.101 ×104 1.539 ×107

Volume 2.161 ×1013 1.256 ×1011 2.309 ×1013

RMS Speed 0.0884 0.00491 0.1071
Velocity Error 0.6544 0.0845 0.8450

Divergence Correlation -0.00346 0.0427 0.0627
Shear Correlation -0.0718 0.1984 0.4187

Vorticity Correlation 0.0679 0.07268 0.3374

Figure 7: Scatter plots of samples results for ice deformation and motion error versus parameter.
The error decreases significantly for decreasing τtf , but does not show a clear dependence on τnf .

27



6 Ten Year Model Run

In order to evaluate long-term behavior of the EDC rheology, ten year CICE model runs were
performed for the years 1995 through 2004. As before monthy average ocean data was used along
with six-hourly atmospheric data for 1995-2004 from [24] to drive the simulations.

Variations in Arctic sea ice extent and volume over the ten year run are shown in Figures 8 and
9. The extent values are compared with monthly averaged sea ice extent from the National Snow
and Ice Data Center (NSIDC) [6]. For both the EDC and EVP rheology the matches with the ice
extent data are fairly good, although it appears that the EVP model results tend to have slightly
lower extents than EDC in the summer months. The Arctic volume values are compared with data
from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) [39]. Because the ice
thickness was not initialized to match 1995 thickness data it is not expected that the total Arctic
volume values will match exactly. Therefore, it is more important that a reasonable trend is seen.
Results for the EVP rheology do show a reasonable trend over the ten year period, but the EDC
results shown an increase in volume over the same time frame.

Figure 8: Daily ice extent from CICE simulations compared with monthly averaged National
Snow and Ice Data Center (NSIDC) ice extent. The minimum ice extent is lower in the CICE EVP
run than in the CICE ECD run and data.

Consistent with the ice volume trends shown in Figure 9, the ice thickness in the final year is
much higher for the EDC rheology than the EVP rheology. The average thickness for the months of
February and March are displayed in Figure 10 and compared with Ice, Cloud, and land Elevation
Satellite (ICESat) thickness data for the same period. The ICESat thickness data for February and
March 2004 are derived from lidar sea ice elevation profiles from a single ICESat campaign [20] and
can be downloaded from http://rkwok.jpl.nasa.gov/icesat/index.html. The thickness values for
the computation were averaged over the two months and then projected onto a polar stereographic
grid and interpolated to the ICESat data points for comparison. The volume of ice represented by
the ICESat data can be approximated by summing up the thickness at each point multiplied by
the area resolution of 25 × 25 km2 and is found to be 1.653 ×1013 m3. Using the same method
for the interpolated model data the EVP volume is 1.329 ×1013 m3, and the EDC volume is 2.035
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Figure 9: Daily ice volume from CICE simulations compared with PIOMAS ice volume estimates.
While the CICE EVP run has lower ice volume than the PIOMAS estimates for this ten year period,
the trends appear reasonable. However, the CICE EDC is clearly producing too much ice growth
possibly due to the EDC algorithm interactions with the ridging model.

×1013 m3. As is apparent in Figure 10 the EDC model overestimates the ice thickness and volume
and the EVP model tends to underestimate the thickness and volume.

(a) (b) (c)

Figure 10: Average February/March 2004 ice thickness from ICESAT data (a), CICE with EVP
(b), CICE with EDC (c).

Plots of averaged ice velocity over 1995-2004 for the months of December, January, and February
are shown in Figure 11. As seen before, the EDC rheology results have lower average velocity than
results for the EVP rheology, where the velocity through the Fram Strait and along the eastern
coast of Greenland is overestimated. The EDC model produces smaller velocities in the Arctic
interior that are smaller on average than the data, but produces more reasonable results along the
Greenland coast. Overall the average velocity errors shown in Table 8 for the EDC rheology are
slightly lower than the velocity errors for the EVP rheology. Both rheologies underestimate motion
and deformation along the Alaskan coast as was seen in the previous sensitivity analysis and in
[22].

Plots of divergence, vorticity and shear averaged over the month of February 2004 are given in
Figure 12. As seen before the divergence is underpredicted by both model rheologies. The vorticity
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Figure 11: 1995-2004 averaged optimally interpolated buoy and SSM/I ice motion (red arrows)
compared with results from ten year model run with EDC and EVP rheologies (blue arrows) for
the months of December, January, and February.
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Table 8: January, February, and March averaged velocity errors for the 1995-2004 runs with EVP
and EDC rheologies. The EDC model produces lower velocities on average than the EVP model
with a better match to the RMS velocity of the data, which is the reason for the somewhat lower
velocity errors for EDC versus EVP.

Month EVP EDC Data
RMS Vel (m/s) l2 Error RMS Vel (m/s) l2 Error RMS Vel (m/s)

December 0.0532 0.956 0.0350 0.936 0.0395
January 0.0620 1.366 0.0451 1.202 0.0367
February 0.0667 1.283 0.0460 1.052 0.0410

for both EVP and EDC exhibits some features that seem similar to the data, however, the negative
vorticity seems to be underpredicted especially along the Alaskan coast. Results for shear from the
EVP rheology are similar in that they underpredict deformation along the coast of Alaska, however
results from the EDC rheology clearly show an excess of shear particularly along the Canadian
coast.
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Figure 12: Divergence, vorticity and shear averaged for February 2004 from RGPS and CICE
simulation runs. Results from the CICE simulations were projected onto a polar stereographic grid
and interpolated to the 12 km resolution RGPS data grid.
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7 Conclusions

The elastic-decohesive anisotropic rheology has been incorporated into the LANL CICE code.
Sensitivity analyses were performed to determine the effect of rheologic parameters on response
functions such as ice volume, ice extent, ice speed, and correlations with deformation measures.
Additional samples with variations in the two most significant parameters (tensile strength and
shear strength) suggest that reducing the shear strength has the most impact on matching ice
motion and deformation.

A ten year run was completed to assess the performance of the EDC rheology for longer time
scales. Results indicate that the EDC rheology produces lower average velocities than the EVP
rheology, which can result in a better match with the data especially for velocities in the region
of the Fram Strait. However, the ice thickness increases too much over the ten year run for the
EDC rheology, suggesting that interactions with the ridging routine and dynamics are causing too
much new ice to form. One limitation with the EDC model is the assumption of zero crack closing
strength. A possible next step is to implement the proposed closing algorithm from [31], which
would potentially reduce the amount of closing and therefore reduce the amount of ice ridging.
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