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Abstract

Existing discretizations for stochastic PDEs, based on a tensor product between the deter-
ministic basis and the stochastic basis, treat the required resolution of uncertainty as uniform
across the physical domain. However, solutions to many PDEs of interest exhibit spatially
localized features that may result in uncertainty being severely over or under-resolved by
existing discretizations. In this report, we explore the mechanics and accuracy of using
a spatially varying stochastic expansion. This is achieved through an adaptive refinement
algorithm where simple error estimates are used to independently drive refinement of the
stochastic basis at each point in the physical domain. Results are presented comparing the
accuracy of the adaptive techinque to the accuracy achieved using uniform refinement.
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Chapter 1

Introduction

Uncertainty quantification (UQ) has been recognized as an essential computational technique
in the validation of simulation software. A key aspect of UQ is forward propagation of
uncertainty through a model to output Quantities-of-Interest (QoI). Abstractly, for a model
M with input parameters p and output responses u (succinctly stated as u = M(p)) the
forward propagation problem is to characterize the uncertainty in u given that the parameters
p are drawn from the probability space (�,F , ⇢), where � is the sample space, F is the �-
algebra and ⇢ is the probability density function (p.d.f.). In this report the model M is
assumed to be deterministic, that is it does not introduce additionally uncertainty beyond
what is prescribed by the input parameters. The nature of the characterization of the
uncertainty in u is somewhat up to the application and propagation methodology. This
report attempts to develop a smooth representation of the response u as a function of p,
while maintaing accuracy where the p.d.f. ⇢ is significant.

For this report the model of interests are all steady-state partial di↵erential equations
(PDE) of the form

L(x, p; u(x, p)) = f(x, p) for (x, p) 2 ⌦⇥ � (1.1)

where L is a nonlinear di↵erential operator, ⌦ is the physical domain, and u is the solution [9,
17]. Notice that the operator and source function are parameterized by p from the sample
space �. Additionally, the solution u is implicitly a function of this parameter. In this case
the input parameters are p 2 �, the output response is the PDE solution u, and the model
is implicitly defined by the PDE. If the sample space is endowed with a probability measure
then moments of the output response can be computed, for example:

E [u(x, ·)] =
Z

�

u(x, p)⇢(p) dp and Var [u(x, ·)] =
Z

�

(u(x, p)� E [u(x, ·)])2 ⇢(p) dp. (1.2)

These can be used in subsequent analysis, inversion or optimization algorithms.

Existing forward propagation of uncertainty techniques for PDEs largely fall into one
of two approaches: black-box and embedded. Black-box techniques, like Monte-Carlo [8]
and stochastic collocation [13], are built around a deterministic PDE code and externally
“sample” that code at carefully chosen points in parameter space. The end goal is to compute
moments (as in Monte-Carlo) or build an interpolated surface (as in stochastic collocation).
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Both black-box approaches have well known deficiencies. Monte-Carlo su↵ers from slow
convergence and stochastic collocation su↵ers from the “curse of dimensionality” (several
approaches such as anisotropic sparse grids [12] have been proposed to circumvent this issue).
Embedded techniques, like the stochastic Galerkin method [9], require a direct modification
of the code. The stochastic Galerkin method finds a projection of the PDE across stochastic
and physical space simultaneously, thus inducing an artificial coupling between parameters.
This method su↵ers from the same curse of dimensionality as stochastic collocation. Recent
advances in preconditioners has demonstrated that this technique can be made competitive
for linear problems [7], while e↵ective solution methods for nonlinear PDEs remains an
outstanding issue.

Both the black-box and embedded methods share a core theme. They assume that the
uncertainty in the solution and the sensitivity of the response to that uncertainty is uniformly
distributed acrossed the physical domain. This is implicit in the black-box techniques since
they have no control over localized resolution of the solution in space. For the stochastic
Galerkin method the uniformity assumption is apparent from the discrete space used. For
instance, given a set of basis functions { i}Mi=0, u is approximated as

u(x, p) ⇡
MX

i=0

ui(x) i(p). (1.3)

Here the coe�cient of the expansion ui is a function of only ⌦. In a fully discrete setting, ui

is approximated using a deterministic finite element basis resulting in

u(x, p) ⇡
MX

i=0

NX

j=0

ui,j�j(x) i(p). (1.4)

where �j is the spatial finite element basis. From this expansion it is clear that the approx-
imation for u is a tensor product between the deterministic and stochastic basis functions.

To understand the consequence of this, consider a convection dominated flow where
uncertainty is injected at a point in the center of the spatial domain (see Figure 1.1). Only the
solution downstream of the injection point will be a↵ected by the uncertainty. The upstream
solution will be fully defined by the deterministic PDE. Existing uncertainty propagation
methods would approximate both the upstream and downstream solutions with the same
resolution. But this wastes computational resources on the upstream solution and may under
resolve the solution downstream.

This report discusses an approach to break the tensor product structure in Eq. (1.4) and
allow the stochastic expansion to vary as a function of the spatial location. We also present
an algorithm for adaptively refining the approximation so that an improved distribution of
stochastic degrees of freedom is achieved.

The outline for this report is as follows. To make the process of forward propagation of
uncertainty explicit Chapter 2 presents a simplified nuclear-reactor simulation under uncer-
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Introduce uncertainty 

Convection direction 
Uncertainty propagates 

downstream 

Solution is (mostly) 
deterministic upstream 

Solution is (mostly) 

Figure 1.1. Example advection-di↵usion problem with un-
certainty introduced in the center of the domain. Notice that
the uncertainty is propagated only downstream of where it
was introduced.

tainty (this Chapter can be skipped for those with UQ experience). In Chapter 3, several
uncertainty propagation methods are summarized. Including the stochastic Galerkin method
that is reviewed in some detail. Critically, this includes the process of assembling the linear
system. Chapter 4 presents the spatially varying adaptive assembly. In this section we dis-
cuss the adaptive assembly process, in addition to presenting several adaptive algorithms. In
Chapter 5 we present numerical results comparing the uniform stochastic Galerkin methods
to the spatially varying method developed here. Two steady-state convection di↵usion prob-
lems are considered. Finally, in Chapter 6 we conclude and provide suggestions for future
directions.

11



12



Chapter 2

An Example Problem

To demonstrate one possible use case for forward uncertainty propagation we considered
a problem of potential interest to the nuclear reactor simulation community and, in par-
ticular, the Consortium for Advanced Simulation of Lightwater reactors (CASL) project1.
Figure 2.1 shows the simulation geometry. The figure shows a simplified fuel-rod fluid ge-
ometry modeling the heat transfer of the rod to the fluid. Heat energy is produced in the
Fuel sub-domain, it is passed through the Cladding and finally it is advected away (towards
the Outflow boundary) in the Fluid subdomain. The geometry of the figure and simulation
is understood to be only part of the physical domain, with the far left boundary of the Fluid
containing a symmetry boundary condition being the centerline of the fluid. To be precise,
the steady-state principal equations are

~u ·r~u� ⌫r2~u+rp = 0 x 2 ⌦F luid (2.1)

r · ~u = 0 x 2 ⌦F luid (2.2)

~u ·rT � ⌫r2T + S(⇠0) = 0 x 2 ⌦F luid [ ⌦Cladding [ ⌦Fuel (2.3)

and the fluid inflow condition is defined to be a plug flow with the magnitude defined by
the random variable ⇠1. The remaining boundary conditions are shown in Figure 2.1. The
source term is defined in terms of the random variable ⇠0

S(⇠0) =

(
⇠0 x 2 ⌦Fuel

0 x 2 ⌦F luid [ ⌦Cladding.
(2.4)

The heat production source random variable ⇠0 is normally distrubuted with mean 3.0 and
variance 0.0625, the magnitude of the inflow velocity, ⇠1, is normally distributed with mean
1.0 and variance 0.01. Therefore the stochastic space is normally distributed with dimension
two.

This problem was simulated using the Drekar [14] finite element code developed with
support from ASCR, LDRD and CASL. The physical domain is discretized by the finite
element methods using a quadrilateral mesh and equal order stabilized discretizations. The

1See http://www.casl.gov. The example referenced here was included in the image gallery (current as
of June 25, 2013) see http://www.casl.gov/media/gallery_images/CASL_24.jpg.
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Figure 2.1. Two dimensional geometry of a simplified sin-
gle pin reactor model. This problem has three subdomains,
and the boundary conditions are specified.

temperature flux boundary condition across the Fluid -Cladding and Cladding-Fuel interface
is enforced naturally. The stochastic space is discretized using a stochastic Galerkin method
using Hermite polynomial basis functions (for a discussion of the stochastic Galerkin method
see [9, 17] and Chapter 3).

Figure 2.2 shows the mean temperature and standard deviation in the fluid, cladding
and fuel. Here we see that the mean has a large variation inside the rod, but only a small
boundary layer is growing within the fluid. This suggests that the fluid, as described does
not transfer much energy away from the rod. Additionally the standard deviation plot shows
the temperature varying by around 5% as a result of the uncertainty in both the source and
the inflow condition.

Figure 2.3 shows three plots showing the mean of the temperature and velocity compo-
nents at three di↵erent heights of the rod. In addition, error bars on the plot denote one
standard deviation of the solution. The three di↵erent heights the solution is sampled at are
y = 5 (black line), y = 10 (blue line) and y = 15 (red line). For reference, the inflow condi-
tion is at y = 0 and the total height of the rod (as simulated) is 20. The first plot shows the
temperature field. Notice the temperature reaches a maximum at the centerline of the fuel
rod and increases with the height of the rod (this was already observed in Figure 2.2). The
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Figure 2.2. Mean and standard deviation of the tempera-
ture in a simplified reactor model. Here the left edge is the
center line of the fluid, and the right edge is the centerline of
the fuel rod.

Figure 2.3. Plots of the mean with standard deviation
error bars. This shows how the mean and standard deviation
of the di↵erent fields vary at three di↵erent heights on the
rod (y = 0 is the inflow).
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temperature decays all the way to the cladding, where the temperature remains relatively
flat due to the thermal-di↵usivity constant. Finally, in the fluid the formation of a boundary
layer is clear as the temperature decays to the inflow temperature of 300. The sensitivity of
the temperature is shown by the error bars, with a steady increase in the size of the error
bars with increasing height. The two velocity plots show the velocity evolving to a parabolic
flow (flow in a channel) with increasing height. This suggests that the flow is not yet fully
developed. Additionally, unlike the temperature, the velocity does not demonstrate an in-
crease in standard deviation with increasing height. This suggests it is relatively insensitive
to the uncertainty in the heat source and is primarily dominated by the uncertainty in the
inflow condition (this makes sense since the velocity is not dependent on the temperature
field the temperature is a dependent function of velocity). Adding a Bousinesq source term
to the momentum equation would cause a coupling from temperature to velocity, and would
certainly change this result.
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Chapter 3

The Stochastic Galerkin Method

In the previous chapters we motivated why solving a PDE with stochastic parameters is a
useful goal. However, practical numerical methods for solving the problems have not as of
yet been discussed. In this chapter, we review the stochastic Galerkin method that is critical
to the development of the spatially varying method developed in this report. Additional
methods for black-box UQ such as stochastic collocation [13] and Monte-Carlo [8] are not
discussed further.

3.1 Notation

We employ the standard definitions for the deterministic finite element space, see for exam-
ple [1, 2, 4]. Let L2

!(⌦) be the space of square integrable functions on the domain:

L2
!(⌦) =

⇢
f :

Z

⌦

f(x)2!(x) dx <1
�
. (3.1)

If the measure ! on the domain is omitted it is assumed to be 1, or it is clear from context.
Similarly the space Hk(⌦) is the space of k di↵erentiable functions:

Hk(⌦) =
�
f 2 L2(⌦) : f (i) 2 L2(⌦) for i = 1 . . . k

 
. (3.2)

If homogeneous Dirichlet conditions are implied on atleast a subset of the boundary then
the standard notation Hk

0 (⌦) is used. The space Hk for k = 0 . . . is a Hilbert space equiped
with norm

kfk2Hk =
kX

i=0

Z

⌦

(f (i)(x))2 dx 8f 2 Hk(⌦) (3.3)

and inner product

(f, g)Hk =
kX

i=0

Z

⌦

f (i)(x)g(i)(x) dx 8f, g 2 Hk(⌦). (3.4)

We will drop the subscript notation on both the norm and inner product where it is clear
from context. The discrete approximation of a Hilbert space is denoted by V h where h is a
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parameter indicating the resolution of the finite element mesh. Note that V h is understood
to be in the range of piecewise linear finite element basis functions defined on the mesh.

In the stochastic space we are interested in functions who live in L2
⇢(�). If the solution to

the deterministic Hilbert space is V h then the PDE solved with uncertain parameters is in
the Bochner space L2

⇢(�, V
h). Note for the purposes here this is simply the completion of the

product space V ⇥ L2
⇢(�). Discrete approximations of the stochastic space will be denoted

by Uk(�) ⇢ L2
⇢(�) where k is the polynomial order of the approximation, that is

Uk(�) =

(
f 2 L2

⇢(�) : f =
kX

i=0

↵kp
k, p 2 �

)
(3.5)

The notation for the Bochner space will be extended to any discrete space. For instance if
Uk(�) ⇢ L2

⇢(�) is a discrete subset then Uk(�, V h) is the Bochner space equivalent (simply
the completion of V h ⇥ Uk(�)).

3.2 Stochastic Galerkin Weak Form

Let u(·, ·) 2 L2(�, H1
0 (⌦)) be the solution to the PDE with uncertain parameters drawn from

the probability space (�,F , ⇢)

L(u(x, p); x, p) = f(x, p)

u(@⌦d, p) = 0.
(3.6)

Further assume that Eq. 3.6 has an equivalent weak form statement for fixed p 2 �

Find u(p) 2 H1
0 (⌦) such that a(u(p); v |p) = L(v |p) 8v 2 H1

0 (⌦) (3.7)

where u(p) is the deterministic solution at p 2 �. The ‘;’ is used to indicate that a(·; ·) is
possibly nonlinear in the first position.

To find u 2 L2(�, H1
0 (⌦)) the stochastic Galerkin method uses a projection over the

stochastic space giving
Z

�

Z

⌦

(f(x, p)� L(x, p; u(x, p)) v(x, p)⇢(p) dxdp = 0 8v 2 L2(�, H1
0 (⌦)) (3.8)

()
Z

�

L (v(·, p) |p)� a (u(·, p), v(·, p) |p) ⇢(p) dp = 0 8v 2 L2(�, H1
0 (⌦)). (3.9)

This is the weak form residual for the approximation of the stochastic solution. This section
is concerned with discretization of Eq. (3.9) and how to assemble Jacobian operators and
residual right hand side vectors for this problem. In particular, finite element assembly in
the context of a full nonlinear iterative solve will be considered.
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3.2.1 Approximation and Assembly

The discrete statement of the stochastic Galerkin equation is to find uh,k 2 Uk(�, V h) such
that Z

�

a
�
uh,k, v

�
⇢(p) dp =

Z

�

L (v) ⇢(p) dp 8v 2 Uk(�, V h) (3.10)

where the explicit dependence on the stochastic parameter p has been dropped to simplify
presentation. To be concrete any function in f 2 Uk(�, V h) can be written as

f(x, p) =
MX

i=0

NX

j=0

fi,j�j(x) i(p) (3.11)

where �i is a finite element basis function [1, 2, 4] and  i is a spectral basis function over
stochastic space [9, 10, 17]. Through out this report we use low-order finite element basis
functions and orthogonal polynomials for the stochastic space. For simplicity we instead
write

f(x, p) =
MX

i=0

fi(x) i(p) where fi(x) =
NX

j=0

fi,j�i(x) (3.12)

in this section.

To solve Eq. 3.10 we will use Newton’s method, the corresponding residual is

Bi(u
h,k) =

1

k ik2L2

Z

�

�
L(vi)� a(uh,k, vi)

�
 i(p)⇢(p) dp i 2 [0,M ]. (3.13)

Notice that Bi is actually a vector of length N+1 if you fully expand the basis as in Eq. 3.11.
Further because L is linear and a is linear in the second slot the  i factors out. The Jacobian
from Newton’s method is defined as

Aij =
@Bi

@uj

=
1

k ik2L2

Z

�

�@a
@u

(uh,k, vi) i(p) j(p)⇢(p) dp. (3.14)

Notice that constructing this with quadrature would amount to computing O(P 2) entries
(where each is a deterministic matrix of size (N + 1) ⇥ (N + 1)) over a set of quadrature
points. This is prohibitively expensive for high dimensional stochastic spaces. Instead the
Jacobian is approximated with the stochastic expansion

� @a

@u
(uh,k; vi) ⇡

MX

l=0

J l l(p) (3.15)

where the matrix Jk is defined using a Galerkin projection

J l =
1

k ik2L2

Z

�

�@a
@u

(uh,k; vl) l(p)⇢(p) dp. (3.16)
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Now the Jacobian is approximated by substituting Eq. (3.15) into Eq. (3.14), giving

Āij =
MX

l=0

J lClji (3.17)

where the sparse tensor C is

Cijl =
h i j li
h 2

l i
. (3.18)

Note that Cijl is symmetric in i and j (Cijl = Cjil).

3.3 Example Convection Di↵usion Problem

To demonstrate and motivate the spatially varying stochastic expansions we consider the
solution of the stochastic partial di↵erential equation

�⌫(⇠)@
2u(x,⇠ )

@x2
+
@u(x,⇠ )

@x
= 0 x 2 (0, 1), ⇠ 2 N (0, 1), (3.19)

u(0) = 1, u(1) = 6. (3.20)

Uncertainty is introduced by the normally distributed random variable ⇠ with the di↵usion
coe�cient taking the form

⌫(⇠) = ⌫0 + ↵e�⇠ (3.21)

where ↵ = 0.25. The expectation and variance of ⌫ are

E[⌫] = ⌫0 + ↵e�
2/2 and Var[⌫] = ↵2e�

2
(e�

2 � 1). (3.22)

Clearly, depending on the parameters ⌫0, � and the realization of the random variable ⇠ the
balance between convection and di↵usion in Eq. (3.19) can vary widely. The solution to this
problem as a function of ⇠ and x is

u(x,⇠ ) = 1 +
5

e⌫(⇠)�1 � 1

⇣
e⌫(⇠)

�1x � 1
⌘
. (3.23)

Using normalized Hermite basis functions in the stochastic domain, Fig. 3.1 shows the
coe�cients of each stochastic basis solving Eq. (3.19) as function of space. Note that because
the basis functions are normalized, the “influence” of coe�cients carries the same weight on
the solution value u(x, ·) allowing a direct comparison between the coe�cients (the smaller
the coe�cient the less it e↵ects the solution value u(x, ·)). This allows us to determine the
level of resolution required for the expansion of the stochastic solution at a fixed point in
space. We see that for problems with viscosity near zero (including stochastic perturbation)
there is a high dependence on the required resolution of the stochastic solution on the spatial
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Figure 3.1. The convection-di↵usion system using a log-
normal distribution of the viscosity and a tensor product
stochastic discretization.

domain. However as the viscosity is allowed to vary more widely (and hence gets larger)
the required resolution of the stochastic solution becomes independent of space. Note that
the low order solution is required regardless of expansion. This is a function of the chosen
dirichlet boundary conditions, otherwise its influence can be made arbitrarily large.
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Chapter 4

Spatially Varying Discretization

4.1 Adaptive Assembly

4.1.1 Abstract Basis

The assembly outlined in Sec. 3.2.1 is by now a fairly standard approach for embedded
uncertainty quantification. In this section we take a step back to the general case where the
basis is not assumed to be formed by a tensor product, but is still separable. In this case we
will define our test and trial spaces to be

Vh := Span
�
{�i(x)⌘i(✓)}Ni=1

�
⇢ V ⇥ ⌅. (4.1)

This gives us the N nonlinear equations
Z

�

[L(�i|✓)� a(u;�i|✓)] ⌘i(✓) dP (✓) = 0. (4.2)

Choosing our discrete trial space to be Vh and writing u ⇡ û =
PN

i=1 ui�i⌘i gives N equations
for N unknowns

Bi(û) =
1

h⌘2i i

Z

�

(L(�i|✓)� a(û;�i|✓)) ⌘i(✓) dP (✓) = 0 8i 2 [1 . . . N ]. (4.3)

Di↵erentiating with respect to uj gives

Aij =
@Bi

@uj

=
1

h⌘2i i

Z

�

�@a
@u

(û;�j,�i|✓)⌘j(✓)⌘i(✓) dP (✓). (4.4)

Comparing to Eq. (3.14), we see that each i, j pair corresponds to a single entry in the matrix
A, before it was denoting a block matrix.

To clarify things we will write the expansion of @a/@u in terms of a di↵erent basis over
the stochastic space. Thus defining

⌅K := Span
�
{⇠i}Ki=1

�
⇢ ⌅. (4.5)
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and writing

� @a

@u
(û;�j,�i|✓) ⇡

KX

k=1

Jk
ij⇠k(✓). (4.6)

Using a Galerkin projection we have

Jk
ij =

1

h⇠2ki

Z

�

�@a
@u

(û;�j,�i|✓)⇠k(✓) dP (✓). (4.7)

(Notice that for ⇠k =  we have that Jk from Eq. (3.16) can be written as [Jk]ij = Jk
ij)

Substituting back into the exact expression for Aij yields the new, approximate, expression

Âij =
KX

k=1

Jk
ij

h⇠k⌘j⌘ii
h⌘2i i

. (4.8)

The point of using the space⌅ K should now be clear. The question of how to approximate
@a/@u is largely independent of how the test and trial spaces are chosen, as long as one is
willing to adjust the tensor used in the approximation.

4.1.2 Locally Defined Stochastic Basis

Equations (4.3) and (4.8) give a very general view of what an adaptive strategy for stochastic
Galerkin methods might look like. Here we go through a more practical view that explic-
itly handles spatially varying discrete stochastic spaces. First some additional notation is
necessary.

• Let T ⇢ {1 . . . N} ⇥ {1 . . . P}, where N is the number of deterministic degrees of
freedom and P is the maximum number of stochastic degrees of freedom, such that

T = {(i, j) : i 2 {1 . . . N} and j 2 {1 . . . Pi}} where 0 < Pi  P.

Here Pi is the number of stochastic basis functions associated with a particular deter-
ministic degree of freedom i. The cardinality |T | is equal to the number of unknowns
in the system. Finally let � be an invertible map between T and {1 . . . |T |} (thus
� : T ! {1 . . . |T |} and ��1 : {1 . . . |T |}! T ).

• Let the deterministic basis be defined by �i(x) for i = 1 . . . N . The full set of stochastic
basis functions is defined to be  i(✓) for i = 1 . . . P . For any particular determinsitic
basis, the set of associated stochastic basis is denoted as  (✓)ij where j 2 {1 . . . Pi} and
 i
j(✓) =  j(✓). Using the definition of T from above we have the full discrete space

Sh = Span
�
�i(x) 

i
j(✓) 8(i, j) 2 T

�
(4.9)
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Using these definitions of T , � and Sh from above we can outline the assembly of a spatially
varying adaptive basis.

First write the approximation to u as

u(x,✓ ) ⇡ û(x,✓ ) =
NX

i=1

PiX

j=1

uij�i(x) 
i
j(✓). (4.10)

The using the approximation û the residual vector B is defined as

B�(i,m)(û) =
1

h( i
m)

2i

Z

�

[L(�i|✓)� a(û;�i|✓)] i
m(✓) dP (✓) (4.11)

This equation corresponds directly to Eq. (4.3). Now to construct the Jacobian operator we
di↵erentiate the residual with respect to the coe�cients

A�(i,m)�(j,n) =
@B�(i,m)

@ujn

=
1

h( i
m)

2i

Z

�

�@a
@u

(û;�j,�i|✓) i
m(✓) 

j
n(✓) dP (✓) (4.12)

which corresponds to Eq. (4.4). Here again we approximate the integral over @a/@u using a
truncated expansion in the stochastic space. This gives

� @a

@u
(û;�j,�i|✓) =

PX

k=1

Jk
ij k(✓) (4.13)

where again using a Galerkin projection

Jk
ij =

1

h 2
ki

Z

�

�@a
@u

(û;�j,�i|✓) k(✓) dP (✓). (4.14)

Notice that here we have used the generic master basis over the stochastic space because
this expansion is not associated with any deterministic basis. Again plugging this into the
expression for the Jacobian gives the new (approximate) Jacobian operator

Â�(i,m)�(j,n) ⇡
PX

k=1

Jk
i,j

h k j
n 

i
mi

h( i
m)

2i . (4.15)

4.2 Example Convection Di↵usion Problem

Figure 4.1 again shows the coe�cients of a set of normalized Hermite basis functions varying
as a function of space. In this case however, only polynomials of order 0�5 (inclusive) cover
the whole domain. Polynomials of order 6�10 are only active on the interval [0.5, 1.0]. From
these images it is clear that for some values of ⌫,� and � the very highest order polynomials
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Figure 4.1. The convection-di↵usion system using a log-
normal distribution of the viscosity and a spatially varying
stochastic expansion.

are not needed on the interval from [0, 0.5]. For instance the upper left hand corner image
shows that to achieve point wise accuracy up to approximately 10�7 only the first six Hermite
polynomials are needed on the interval from [0, 0.5]. However on the interval from [0.5, 1.0]
almost all 10 polynomials are needed. This shows that the requirement for accuracy varies
across the physical domain and that adaptively improving the approximation space may lead
to a more accurate solution with fewer unknowns.
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4.3 Adaptive Algorithm

The adaptive algorithm we have developed follows the rough outline presented in [6, 3] for
adaptive finite element methods. The process proceeds in four stages:

SOLVE ! ESTIMATE ! MARK ! REFINE . (4.16)

In the SOLVE stage the PDE is solved, this step will not be discussed further here. In
the ESTIMATE step error indicators are used to compute an approximation of the local
contribution to the error. These error indicators are used by the MARK step to choose a
subset of the discretization to enrich using refinement. Finally REFINE is the step where the
discretization is improved. For instance in finite element h-refinement the mesh elements
are subdivided increasing the fidelity of the discretization. We discuss our approach to
ESTIMATE, MARK and REFINE below. Ideally, the goal of this algorithm is to achieve
an equidistribution of error across the mesh. If this is successful then a uniform refinement
scheme would be the optimal approach. In practice, this equidistribution is not achieved but
it serves as a motivating benchmark for the algorithm.

4.3.1 ESTIMATE

In this section we present two error estimators. The first is an element based estimator that
uses a higher-order approximation to compute error estimates. The second uses a nodal error
estimator based on asymptotic convergence assumptions for polynomial approximations.

Element indicator

The first adaptive estimator is costly and suboptimal from a practical perspective; however,
it will give a proof of principle demonstration of the adaptive spatially varying stochastic
discretization. The general approach has been succinctly outlined in the monograph [15]. Let
L�1
h represent a discrete solution operator mapping the right hand side of a PDE f 2 L2(⌦)

to a discrete representation Vh. Further let L̂�1
h map the same right hand side f 2 L2(⌦)

to a more accurate solution space V̂h where Vh ⇢ V̂h. For instance in deterministic finite
element methods Vh may be the space of piecewise linear polynomials defined on a mesh,
and V̂h might be these space of piecewise quadratics.

Now let u = L�1(f) be the continuous “exact” solution, uh = L�1
h (f) 2 Vh and ûh =

L̂�1
h (f) 2 V̂h. The high order solution represents a more accurate version of the original

solution and will be used to estimate the error in the L2 norm:

ku� uhk2  ku� ûhk2 + kûh � uhk2. (4.17)
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Note that because ûh is higher-order than uh, then the term ku � ûhk2 is relatively small
compared to kûh� uhk2. Thus a reasonable bound on the L2 error in the low order solution
is

ku� uhk2 . kûh � uhk2. (4.18)

While a bound on the error is useful for error estimation, to adaptively refine the solution a
localization of that error must be constructed. A readily computed approximation is

kûh � uhk2 =
X

K

⌘K (4.19)

where ⌘K = kûh � uhk2L2(K) is the element wise indicator for the L2 error.

Nodal indicator

The second type of indicator is based on an assumption of being in an asymptotic regime
with respect to the stochastic solution space. Here we briefly review the idea, we point
the interested reader to the further discussion and analysis found in [11, 16]. Assume the
stochastic function g(⇠) is approximated by

g(⇠) ⇡ ĝ(⇠) =
MX

j=1

gj j(⇠) (4.20)

where  j are orthonormal basis functions with respect to the relevant probablility density
function. Using orthonormality the variance of the approximation is

Var[ĝ] =
MX

j=2

g2j . (4.21)

The simple error indicator we will use is

⌘g =
g2M

Var[ĝ]
. (4.22)

Assuming that the expansion of M terms is su�cient to put the approximation in the
asymptotic regime, then the indicator determines how much of the variance is provided by
the last coe�cient. If that ratio is high, then adding an additional term is required until
asymptotic convergence is achieved.

4.3.2 MARK

The goal of the MARK stage of the adaptive refinement algorithm is to produce a list
(denoted M below) of either elements or deterministic degrees of freedom to refine. Note
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that because this is a list multiple entries can be repeated. The input to the mark step is
the error estimates for each element or deterministic degree of freedom. There are several
possible approaches to marking, here we list two such approaches we have considered (see
for instance [6] for other approaches used in adaptive mesh refinement).

Algorithm 1: MARK PERCENT

input E : Vector of index/error indicators pairs (nodal or elemental)
input ⌧ : Tolerance for this marking strategy
output M: List of marked indices (either nodal or elemental)

M ;
⌘max  Max{⌘ : (i,⌘ ) 2 E}
for (i,⌘ ) 2 E do

// i is the index and ⌘ is the indicator

if ⌧ · ⌘max < ⌘ then

M M :: i // :: is a concatenation operator

end

end

Algorithm 1 is a simple strategy appropriate for marking either nodes or elements. To
simplify the discussion we will always refer to the type of entry to be marked as an “element”.
However, it is understood that error indicators based on nodes can also be used. The
algorithm takes as input a list of error indicators (this implicitly includes the index associated
with the element under consideration for marking) and a user specified error tolerance. This
alogrithm marks all elements whose error indicator is within a percentage of the largest
error indicator. The percentage used is specified by the user tolerance. At the end of the
algorithm, M contains a list of indices that need to be marked.

Algorithm 2: MARK MEAN

input E : Vector of index/error indicators pairs (nodal or elemental)
input ⌧ : Tolerance for this marking strategy
output M: List of marked indices (either nodal or elemental)

M ;
⌘mean  Mean{⌘ : (i,⌘ ) 2 E}
for (i,⌘ ) 2 E do

// i is the index and ⌘ is the indicator

if ⌧ · ⌘mean  ⌘ then

M M :: i // :: is a concatenation operator

end

end
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A second marking strategy seen in Algorithm 2, has the same inputs and outputs as the
previous algorithm. The goal of this approach is to mark all indicators significantly larger
then the mean value of the error indicator. This ensures that the very largest elements are
refined multiple times.

Each of the above MARKing strategies can be used in isolation. However, it maybe
e↵ective to use them in combination or with varying error tolerances. This will cause elements
to be marked multiple times. To be precise, we introduce here an additional notation to
specify the exact sequence of MARKing schemes and tolerances. For instance one possibility
would be to MARK using Alg. 1 followed by Alg. 2. This would be written

M = MARK PERCENT(E , ⌧p) :: MARK MEAN(E ,⌧m).

Note that we have specified arbitrary tolerances ⌧p and ⌧m with an assumed set of error
indicators E . Again the “::” operator is used to denote concatenation between two lists.

4.3.3 REFINE

In the ESTIMATE and MARK sections we presented an error indicator and marking strategy
based on “nodal” coe�cients (or more precisely the error in the coe�cient of a particular
basis function). We also presented an element-wise error indicator which localizes the error
to an element of the mesh and a compatible marking strategy. Here we discuss the refinement
algorithms used in both these contexts.

Element Error Indicators

Let M be the list of marked elements. For K 2 M, let IK be the indices for the set of
deterministic basis functions whose support overlaps with element K. Then the refinement
algorithm is

Pi  Pi + 1 8i 2 IK s.t. K 2M. (4.23)

Stated succinctly this simply says the stochastic order for each basis intersecting with K is
increased by one (note that this includes multiple fields). If an element is marked multiple
times then the polynomial order can be incremented multiple times for each iteration of the
adaptive refinement algorithm.

Nodal Error Indicators

The nodal based indicators are computed for each degree of freedom in the deterministic
problem. If the marking strategy returns a list of deterministic degrees of freedom M to be
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marked, then the refinement algorithm is

Pi  Pi + 1 8i 2M. (4.24)

Again, if a deterministic index appears multiple times in M then its stochastic polynomial
order is increased multiple times.
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Chapter 5

Results

In this chapter we present results for two convection-di↵usion problems that demonstrate the
performance of the adaptive refinement algorithm. In general, finding steady-state problems
that the adaptive methodology performs well on can be di�cult. Problems are required
to have a degree of spatially locality in the solution which unfortunately eliminates many
steady-state di↵usion problems. However, convection-di↵usion problems appear to have the
right locality properties so that the proposed approach can be e↵ective. Further study of
highly nonlinear and transient problems is necessary to go beyond the proof-of-principle
problems discussed here.

5.1 Convection Di↵usion with an Internal Layer

The first model problem used to test the spatially varying adaptive UQ technology is a high
Peclet number convection-di↵usion problem with an internal layer. In this case

�r· ⌫rT + w


sin ✓
cos ✓

�
·rT = 0x 2 ⌦

T (@⌦l) = 1

T (@⌦b) = 0

(5.1)

The angle ✓ is distributed according to N (40, 2), the viscosity ⌫ = 10 and the magnitude
of the velocity w = 108 (giving a Peclet number of 107). For stabilization we employ a
streamlined upwind Petrov-Galerkin method [5]. This method does a reasonable job of
stabilizing the internal layer, with relatively small overshoots and undershoots observed for
the 60 ⇥ 60 mesh used in these studies. Figure 5.1 is a schematic image of the domain,
boundary conditions and convection direction.

An “exact” solution to this problem is constructed using a 20th order stochastic Galerkin
projection using a Hermite basis. Furthermore, to provide a reference to compare the adap-
tive scheme to, a sequence of 10 uniformly refined stochastic Galerkin problems (starting
with order p = 1) using a Hermite basis are solved. In Figure 5.2 the blue line shows the
error measured in the L2 norm over physical and stochastic space as a function of the number
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Figure 5.1. The left image shows a schematic diagram of
a high Peclet number convection-di↵usion problem with an
internal layer (see Eq. (5.1)). The solution using SUPG is
shown in the image on the right for ✓ = 40.

of unknowns. Note that this is a semi-log plot and the log of the error is converging linearly
in the total number of unknowns. Thus if N is the number of unknowns and Err is the error,
then

log Err = �↵N + � ) Err = e�e�↵N / e�↵N . (5.2)

This implies the convergence rate is exponential as expected for polynomial refinement.
Below we discuss results using both the element based and nodal mesh refinement schemes.

5.1.1 Element Based Refinement

To test the element based error indicators we used the MARKing strategy

MARK PERCENT(E , 0.1) :: MARK MEAN(E ,10.0)

with an initial polynomial order of 0 over the physical domain. The high-order discretization
used to compute the error indicator increases the polynomial order by one throughout the
physical domain (thus it is still allowed to vary spatially, but will be one polynomial order
higher). An iterative GMRES solver is converged to a relative tolerance of 10�6 using an
ILU(2) preconditioner.
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Figure 5.2. The plot shows the error as a function of
total number of unknowns for refinement of both uniform and
spatially varying stochastic expansions for the convection-
di↵usion problem defined in Eq. (5.1).

Figure 5.2 shows convergence using both uniform refinement (blue line) and the spatially
varying adaptive method using element-wise indicators (red line) in the L2 norm as a function
of the number of unknowns. The error plotted is for the high-order solution thus the error
between the first order uniformly refined solution is the same. Note that the adaptive method
requires far fewer unknowns than uniform refinement of the stochastic Galerkin discretization
to achieve the same level of accuracy. The reason for this improvement over the uniform
case can be seen in Fig. 5.3. Each image is a color plot of the polynomial order at each point
in the physical domain (red corresponds to high order and blue corresponds to 0th order) as
a function of levels of refinement (the first image is after one level of refinement, the second
image is after two, and so on). Note how the refinement is strongly localized over the range
of values for the angle ✓. With the strongest refinement taking place where the solution is
most sensitive to the angle.
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Figure 5.3. This shows the polynomial order of the
stochastic Galerkin expansion over fourteen levels of refine-
ment for the convection-di↵usion problem using the element
based indicator and marking strategy. Plot of the L2 con-
vergence for this sequence can be seen in Fig. 5.1 labeled
“Element”.
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5.1.2 Nodal Based Refinement

To test the nodal based error indicators we used the MARKing strategy

MARK PERCENT(E , 0.1) :: MARK PERCENT(E ,0.025)

with an initial polynomial order of one across the physical domain. An initial polynomial
order of one is required to compute the nodal indicator in Eq. 4.22. The green line in Fig. 5.2
shows the L2 convergence measured as a function of the number of unknowns. Note that the
convergence is slightly slower than using the element based indicators. However, it remains
faster than uniform refinement. After eight levels of refinement the uniform scheme achieves
an error around 3 ⇥ 10�3 requiring greater than 35, 000 unknowns. The adaptive scheme
after eight levels of refinement requires only around 17, 000 unknowns, about half as many
as the uniform refinement, yet achieves the same level of accuracy. Of course this must be
balanced with the increased cost of solving the adaptive system multiple times. Figure 5.4
shows the color plots of the nodally refined polynomial order. Again the images show that
the refinement occurs primarily near the region with greatest uncertainty focusing on the
location of the jump in the solution. These images are comparable, but di↵erent than the
element based refinement scheme in Fig. 5.3.

5.2 Convection Di↵usion Around a Cylinder

The second problem considered models steady-state heat transfer from a solid body into
a fluid with variable but spatially constant thermal conductivity. Mathematically this is
represented as a problem with two domains, a small interior cylinder represented as a circle
in two dimensions, surrounded by a fluid whose flow is modeled as a constant left to right
convection over the cylinder. Figure 5.5 shows a plot of the mesh used containing 3240 cells
and 3375 nodes, and a color plot showing the fluid domain (blue) and the solid cylinder
(red). To be precise, the steady-state principal equations are

�⌫r2T +


1
0

�
·rT = 0 x 2 ⌦F luid, (5.3)

�r2T = 1 x 2 ⌦Solid. (5.4)

Note that the flow is from left to right across the fluid domain (there is no flow or advection in
the solid cylinder). The boundary conditions are natural on the inflow and outflow boundary
(left and right) and the temperature is set to zero on the upper and lower boundaries. Heat
is generated in the cylinder using a constant source term of one, the heat is taken away
from the cylinder using the advection and di↵usion in the fluid domain. The strength of the
di↵usion in the fluid is defined by the stochastic parameter ⌫ which is spatially constant but
allowed to vary uniformly from [0.02, 2.0].

37



Figure 5.4. This shows the polynomial order of the
stochastic Galerkin expansion over eight levels of refinement
for the convection-di↵usion problem using the nodal indica-
tor and marking strategy. Plot of the L2 convergence for this
sequence can be seen in Fig. 5.1 labeled “Nodal” (note the
scale on the color maps is the same as in Fig. 5.3).

Figure 5.5. Plot of the mesh (left) and subdomains (right)
for the cylinder in cross flow problem. The subdomain plot
shows the “fluid” (blue) and the solid cylinder (red).

38



Figure 5.6. Color map of the average (left) and standard
deviation (right) for the cylinder in cross flow convection dif-
fusion problem.

The reference stochastic Galerkin solution uses a 15th order Legendre polynomial expan-
sion. The mean and standard deviation can be seen in Fig. 5.6. The blue line in Fig. 5.7
shows the convergence as teh stochastic basis is uniformly refined. Again this demonstrates
the expected exponential convergence.

5.2.1 Element Based Refinement

The refinement using the element based indicators used the MARKing strategy

MARK PERCENT(E , 0.01) :: MARK AVERAGE(E ,5.0)

with an initial polynomial order of one for the low order solution. Unlike the previous case,
the REFINE step incremented the stochastic polynomial order by two (instead of one) if
an element was marked for refinement. Six levels of refinement were performed, Fig. 5.8
shows a sequence of color maps of the polynomial order across the physical domain for each
level of refinement. The red line in Fig. 5.7 demonstrates that this adaptive scheme is more
accurate then uniform refinement. Ultimately it achieves a greater level of accuracy then
uniform refinement requiring about 20% fewer unknowns. The color plots show how higher-
order expansions are required down-stream of the cylinder with relatively little refinement
required upstream. It is also interesting to note that in a small region immediately upstream
of the cylinder little to no refinement is needed.
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Figure 5.7. The plot shows the error as a function of
total number of unknowns for refinement of both uniform
and spatially varying stochastic expansions for the cylinder
in cross flow problem.
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Figure 5.8. This shows the polynomial order of the
stochastic Galerkin expansion for the cylinder in cross flow
problem over six levels of refinement using the element indi-
cator and marking strategy. Plot of the L2 convergence for
this sequence can be seen in Fig. 5.7 labeled “Element”.

5.2.2 Nodal Based Refinement

The refinement using the nodal based indicators used the MARKing strategy

MARK PERCENT(E , 0.1) :: MARK PERCENT(E ,0.025)

with an initial polynomial order of one. The REFINE step incremented the stochastic
polynomial order by one (unlike for the element based approach above) if an element was
marked for refinement. Six levels of refinement were performed, Fig. 5.9 shows a sequence of
color maps of the polynomial order across the physical domain for each level of refinement.
The green line in Fig. 5.7 demonstrates that this adaptive scheme is more accurate then
uniform refinement, but less accurate then the element based scheme.
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Figure 5.9. This shows the polynomial order of the
stochastic Galerkin expansion for the cylinder in cross flow
problem over six levels of refinement using the nodal indica-
tor and marking strategy. Plot of the L2 convergence for this
sequence can be seen in Fig. 5.7 labeled “Nodal”.

42



Chapter 6

Conclusions

We have demonstrated a novel spatially varying approach exploiting the finer granularity
of embedded uncertainty quantification methods. This method does not require a tensor
product between the stochastic approximation and the deterministic finite element basis as is
typically used in both black-box and embedded uncertainty propagation methods. Focusing
on polynomial chaos (PC) expansions as the stochastic basis, we developed an adaptive
method for forming these discretizations. This was demonstrated on two convection-di↵usion
problems including a high Peclet number 2D convection di↵usion problem and a model heat
transfer problem. These demonstrated that for problems with spatial locality this method
can reduce the number of unknowns required to achieve a similar amount of accuracy using
uniform stochastic refinement.

This report demonstrated that the spatially varying discretizations can be useful for
uncertainty quantification. However, much work needs to be done to refine the method
before it is practically useful. In particular adaptive refinement continues to prove di�cult.
This is because of the challenge of developing high quality cheap error indicators and robust
marking schemes. Some specific options are to use adjoint-based error estimates. This
has the advantage of localizing both because of the forward problem but also because of
the possibly local quantity of interest. These methods often localize in space for adaptive
mesh refinement. Another issue that must be considered is implementation for a number of
parameter dimensions greater then one. This could lead to substantial improvement because
the shear number of unknowns required for the full stochastic expansion is extremely large.
Finally, in order to be practical, good load balancing algorithms and linear solvers must be
developed for a fast parallel implementation.
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