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Abstract

In this report we derive both time and frequency-domain methods for inverse iden-
tification of sources in elastodynamics and acoustics. The inverse/design problem is
cast in a PDE-constrained optimization framework with efficient computation of gradi-
ents using the adjoint method. The implementation of source inversion in Sierra/SD is
described, and results from both time and frequency domain source inversion are com-
pared to actual experimental data for a weapon store used in captive carry on a military
aircraft. The inverse methodology is advantageous in that it provides a method for cre-
ating ground based acoustic and vibration tests that can reduce the actual number of
flight tests, and thus, saving costs and time for the program.
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1 Introduction

Methods for source localization are of high relevance in a variety of engineering and scien-
tific applications. The source localization challenge is often cast within the mathematical
framework of an inverse problem in which we are tasked with identifying a hidden driving
force given the measured response of a system. Important examples of this class of prob-
lems include earthquake source localization [1, 2], damage or defect identification from
acoustic emission [3, 4, 5], odor or contaminant localization [6], acoustics [14], and source
identification in electromagnetics [7], among others. In spite of the different physics in-
volved in the latter examples, their mathematical structures share many common features,
allowing us to develop methods that are applicable to a wide range of problems.

Most popular approaches used for source localization in wave propagation problems
(mechanical and electromagnetic) are centered around the concept of Time Reversal (TR)
[8, 7, 9]. In TR methods, by reversing time, the measured signal is back propagated through
the system and energy is focused on the region where sources are located, causing their il-
lumination. To be applicable, the TR concept requires linearity and non-lossy or slightly
lossy media. It is imperative to also mention that the TR concept has a frequency domain
analog called the Phase Conjugation Mirror (PCM) [10]. The TR/PCM concepts have been
extended to enhance robustness via the MUSIC (MUltiple SIgnal Classification) method
[11]. The MUSIC method considers the response received at each of the measurement
points in series, ultimately forming a response matrix for the entire measurement array.
Once the response matrix is formed, one can use a variety of robust techniques from linear
algebra (e.g. singular value decomposition) to infer measurement locations. Holography is
another technique that rests upon the same theoretical basis as TR/PCM, but makes addi-
tional assumptions about the frequency spread and/or the length scale at which measure-
ments are made [12]. Recently, a general Bayesian framework was proposed for obtaining
an optimal basis that minimize the reconstruction error in acoustic source identification
problems [13]. The latter work demonstrated that this framework can be used with classi-
cal acoustic source reconstruction methods. Interestingly, the authors found that iterative
optimization algorithms have not been widely used for source localization in acoustics and
elastic wave propagation. This finding contrasts with the widespread use of large scale op-
timization theory and algorithms in other inverse problems, including source identification
in contaminant transport [6]. In a related work, a stochastic PDE-constrained optimization
strategy [14] was recently developed to solve source inversion problem.

At Sandia, source localization arises in various stages of qualification testing and sim-
ulation. Acoustic excitation is typically applied in reverberation or direct field acoustic
testing (DFAT) in order to simulate in-service environments. Mechanical excitation is com-
monly applied on shaker tables to apply specified loads to components of interest. In both
cases, the measured or desired profiles of point accelerations or microphone pressures are
given and it is necessary to estimate the input loads (acoustic or mechanical) that repro-
duce these accelerations or pressures. These source inversion problems have driven the
code development work described in this report.
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We present in this work a PDE-constrained optimization formulation for the inverse
identification of sources in elastodynamics and acoustics. We have taken this approach
because it is applicable not only on linear inverse problems such as the one described in
this report, but also is easily extended to problems with nonlinearities, lossy mechanisms,
and large numbers of design variables. Many applications of interest include these extra
complexities.

This report is organized as follows. First, we provide formulations for the forward prob-
lems (acoustics and elastodynamics) of interest. Then, the inverse/design problem is cast in
a PDE-optimization framework. We provide precise details for the efficient computation of
gradients using an adjoint-based approach. Furthermore, we provide details on how to treat
Neumann boundary conditions as those usually encountered in force identification prob-
lems in acoustics and elastodynamics. We then provide results of a comparison between
numerical results obtained from the inverse problem and actual experimental data that was
recently taken while testing a weapon store in the reverberation chamber.
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2 Background

2.1 Forward Problem Formulation

2.1.1 Governing Equations

The strong-form of the initial-boundary value problems for solid mechanics, in the absence
of body forces, is given as

∇ ·σσσ = ρ üuu, in Ω× (0,T ) (1a)

σσσnnn = hhh, on ∂Ω
N × [0,T ] (1b)

σσσ = DDD : ∇∇∇uuu, in Ω× [0,T ] (1c)

uuu = 000, on ∂Ω
D× [0,T ] (1d)

uuu(0,T ) = 000, in Ω (1e)
u̇uu(0,T ) = 000, in Ω (1f)

where uuu is displacement, σσσ is the stress tensor, ρ is density, hhh is a prescribed traction vector,
nnn is the unit vector normal to the boundary, ∂ΩN is the part of the boundary where Neumann
boundary conditions are speficied, ∂ΩD is the portion of the boundary where uuu is specified.
Notice that ∂ΩN and ∂ΩD are non-overlapping and their union is all of ∂Ω. The variable
DDD represents the (fourth order) elasticity tensor describing the underlying material. We are
representing vector and tensor-valued fields (as well as constant vectors and tensors) with
bold symbols, while scalar fields and constants will be given in italics font. Derivatives are
denoted with over dots.

The strong form of the acoustics problem (counterpart to the elastodynamics problem
shown above) is given as

∇
2
φ =

1
c2 φ̈ , in Ω f × (0,T ) (2a)

∇φ ·nnn f =−ρ f ün, on ∂Ω
N
f × [0,T ] (2b)

φ = 0, on ∂Ω
D
f × [0,T ] (2c)

φ(0,T ) = 0, in Ω f (2d)

φ̇(0,T ) = 0, in Ω f (2e)

where φ is acoustic pressure, c is the wave speed of the fluid, Ω f is the fluid domain, nnn f
is the unit vector normal to the surface, ρ f is the fluid density, ün is the normal particle
acceleration applied over the Neumann boundary ∂ΩN

f , and ΩD
f is the Dirichlet boundary.

Remark 1. Radiation conditions can be specified over part or the entire boundary in both
the elastodynamics and the acoustics problems. The treatment of this type of boundary
conditions can be found in Reference [15].
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2.1.2 Discrete Equations

For both the acoustic and structural dynamic problems, the spatial discretization of the
governing equations is obtained by first constructing the variational or weak formulation
of the problems described in the previous section and then introducing a finite element
approximation scheme. The details of these discretization steps are not shown herein for
the sake of brevity and can be found in Reference [16]. We directly state that the resulting
semi-dicrete system is given as

[M]aaa(t)+ [C]vvv(t)+ [K]uuu(t) = fff (t), (3)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, aaa(t) is
the nodal acceleration vector, vvv(t) is the nodal velocity vector, uuu(t) is the nodal displace-
ment vector, and fff (t) is the nodal force vector. Also, initial and Dirichlet conditions can
be enforced in a straightforward way in Eq. (3). The semi-discrete system of equations for
acoustics problems is derived in a similar manner and details of this type of problems will
be omitted from hereon.

Equation (3) can be represented in the frequency-domain by taking the Fourier trans-
form of both sides of the equation to get

[H(ω)]zzz(ω) = FFF(ω), (4)

where [H(ω)] is the matrix form of the Helmholtz operator given as

[H(ω)] =−ω
2[M]+ iω[C]+ [K]. (5)

In the above equation, zzz(ω) and FFF(ω) are the Fourier transforms of the nodal displace-
ments, uuu(t), and force vector, fff (t), respectively.

2.1.3 Time Integration

We used the Newmark Beta method for the time integration of the semi-discrete equations
of motion, Eq. (3). In the sequel, we will use the parameter set {ppp} = {pppk : pppk ∈ Rd,k =
1, . . . ,P} as an argument of the forcing function. In this set, d represents spatial dimension
and P is the number of vectors used in the representation of the forcing function. This
parameter set will be described in more detail in a later section. The governing system of
equations at time tk+1 is given as

[M]aaak+1 +[C]vvvk+1 +[K]uuuk+1 = fff k+1({ppp}), (6)

while the Newmark-beta transition equations are given as

uuuk+1 = uuuk +∆tvvvk +
∆t2

2
[(1−2β )aaak +2βaaak+1], (7)

vvvk+1 = vvvk +∆t[(1− γ)aaak + γaaak+1], (8)

where γ and β are user-defined parameters. Further details on the implementation of this
time integration scheme can be found in References [15, 16].

10



2.2 Inverse Problem Formulation

2.2.1 Time Domain

We will work with a fully discrete space-time (or space-frequency) formulation. Let {ddd({ppp})}={
{uuu},{vvv},{aaa}

}
represent the discrete dynamic response of the system. Where, {uuu} =

{uuuk}N
k=1, {vvv}= {vvvk}N

k=1, and {aaa}= {aaak}N
k=1. Here N is used to denote the number of time

steps of data in the time histories. Assuming that we have a measured displacement history
(e.g. uuum1...uuumN ), we define an objective function J : Rl ×RP → R as

J({uuu},{ppp}) =
κ

2

(
{uuu}−{uuum}

)T
[Q]
(
{uuu}−{uuum}

)
+R({ppp}), (9)

where [Q] is a general weight matrix (or a boolean matrix to select a subset of measured
degrees of freedom), κ is a scaling constant, l is the number of degrees of freedom in the
system times the number of time steps, and R : RP →R is a regularization operator. Notice
that we are using the notation {uuu}= {uuu0,uuu1, ...,uuuN} to describe the displacement history.

The source identification problem addressed herein is cast as an optimization problem
as

minimize
{ppp},{uuu}

J({uuu},{ppp})

subject to Eqs (6)-(8)
and gi({ppp})≤ 0, i = 1 . . .n,

(10)

where the inequalities gi({ppp}) ≤ 0 can be, for instance, box constraints. We can express
the above optimization problem in a reduced form in which only the parameters in the set
{ppp} are the design variables. To this end, we first notice that for a given parameter set
{ppp} there is a unique displacement history {uuu({ppp})} (from the properties of our forward
dynamics problem and the time integration algorithm used). Then, we can define a new
objective function J̃({ppp})≡ J({uuu({ppp})},{ppp}). Using this objective function, we define a
reduced optimization problem as

minimize
{ppp}

J̃({ppp})

subject to
gi({ppp})≤ 0, i = 1 . . .n.

(11)

There is a large variety of gradient-based methods that can be used to solve the opti-
mization problem shown in (11) (see Reference [17]). We will assume that we are interfac-
ing with an external optimization package that requires us to supply only the computation
of the objective function and its gradient (e.g. for quasi-newton methods). Therefore, our
main task herein will be to devise an efficient strategy for evaluating the objective func-
tion, J̃({ppp}) and its reduced gradient, ∇{ppp}J̃. Second order optimization algorithms such
as Newton’s method, for which we would require the calculation of a Hessian, will be con-
sidered in future work. Also, a detailed discussion of optimization algorithms is outside
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the scope of this report and the interested reader can consult Reference [17] for further
information to this end.

2.2.2 Calculation of the Gradient using an Adjoint-Based Technique

We will use a Lagrangian-based approach to derive the gradient ∇{ppp}J̃. For notational
convenience, we will represent the discrete dynamical response of the system for a given
{ppp} as {ddd({ppp})}. Also, we introduce a corresponding set of Lagrange multipliers as
{d̂dd} =

{
{ûuu},{v̂vv},{âaa}

}
. From now on, we will suppress the dependence of the dynam-

ical response on the parameter set {ppp} for simplicity. We proceed by defining a Lagrange
operator as

L ({ddd},{d̂dd},{ppp}) = J̃({ppp})+ ûuuT
0

(
[M]aaa0 +[C]vvv0 +[K]uuu0− fff 0({ppp})

)
+

N

∑
k=1

{
ûuuT

k

(
[M]aaak +[C]vvvk +[K]uuuk− fff k({ppp})

)
+ v̂vvT

k [M]
(

vvvk− vvvk−1−∆t[(1− γ)aaak−1 + γaaak]
)

+ âaaT
k [M]

(
uuuk−uuuk−1−∆tvvvk−1−

∆t2

2
[(1−2β )aaak−1 +2βaaak]

)}
,

(12)

where the equilibrium and transition equations have been included (through the use of
Lagrange multipliers). Notice that since the governing equations are satisfied for a given
choice of {ppp}, we have L ({ddd},{d̂dd},{ppp}) = J̃({ppp}) for any choice of Lagrange multipliers
{d̂dd}. Hence, ∇{ppp}J̃({ppp}) = ∇{ppp}L ({ddd},{d̂dd},{ppp}). Using this fact, we can conveniently
derive the desired gradient. To this end, we introduce the following adjoint problem.
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The Adjoint Problem Taking variations of L ({ddd},{d̂dd},{ppp}) with respect to the dy-
namical response {ddd} as ∇{ddd}L · {δddd}, yields

∇aaa0L ·δaaa0 = δaaaT
0

(
[M]ûuu0−

∆t2

2
(1−2β )[M]âaa1−∆t(1− γ)[M]v̂vv1

)
, (13a)

∇uuukL ·δuuuk = δuuuT
k

(
[M](âaak− âaak+1)+ [K]ûuuk +κ[Q](uuuk−uuumk),

)
, (13b)

∇vvvkL ·δvvvk = δvvvT
k

(
[C]ûuuk−∆t[M]âaak+1 +[M]v̂vvk− [M]v̂vvk+1

)
, (13c)

∇aaakL ·δaaak = δaaaT
k

(
[M]ûuuk−β∆t2[M]âaak−

∆t2

2
[M](1−2β )âaak+1, (13d)

−∆t[M](γ v̂vvk +(1− γ)v̂vvk+1)
)
, (13e)

∇uuuNL ·δuuuN = δuuuT
N

(
[M]âaaN +[K]ûuuN +κ[Q](uuuN −uuumN )

)
, (13f)

∇vvvNL ·δvvvN = δvvvT
N

(
[C]ûuuN +[M]v̂vvN

)
, (13g)

∇aaaNL ·δaaaN = δaaaT
N

(
[M]ûuuN −∆t2

β [M]âaaN −∆tγ[M]v̂vvN

)
. (13h)

Setting the above expressions to zero for arbitrary values of the variations, we get the
following backward time stepping equations, which constitute what we call the adjoint
problem.

(i) Final conditions
[C] ûuuN +[M]v̂vvN = 0 (14a)

ûuuN = ∆t2
β âaaN +∆tγ v̂vvN (14b)

[M] âaaN +[K]ûuuN = κ[Q](uuumN −uuuN) (14c)
(ii) Backward transition equations

ûuuk−β∆t2âaak−∆tγ v̂vvk =
∆t2

2
(1−2β )âaak+1 +∆t(1− γ)v̂vvk+1 (14d)

[C] ûuuk +[M](v̂vvk−∆tâaak+1− v̂vvk+1) = 0 (14e)
[M] âaak +[K]ûuuk = [M]âaak+1 +κ[Q](uuumk −uuuk) (14f)

(iii) Last transition equation

ûuu0 =
∆t2

2
(1−2β )âaa1 +∆t(1− γ)v̂vv1 (14g)

In summary, the adjoint problem allows us to obtain Lagrange multipliers {d̂dd} that
satisfy the equation ∇{ddd}L = 000.
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The Gradient Equation Taking a variation of the Lagrange operator with respect to the
parameter set {ppp}, we get

∇{ppp}L ({ddd},{d̂dd},{ppp}) · {δ ppp}= ∇{ddd}L · {δddd}+∇{ppp}L · {δ ppp}, (15)

where we have used the chain rule of differentiation, and

{δddd}= ∇{ppp}{ddd} · {δ ppp} (16)

in the first term. Recall that the solution to the adjoint problem is a set of Lagrange multi-
pliers {ddd} that satisfy ∇{ddd}L = 000. Hence, using Lagrange multipliers that are a solution
the adjoint problem, the first term of Eq. (15) is zero. Then, using these Lagrange multi-
pliers, we can obtain the expression of the reduced gradient from Eq. (15) and Eq. (12)
as

∇{ppp}J̃ = ∇{ppp}L =−
N

∑
k=1

ûuuT
k

(
∇{ppp} fff k({ppp})

)
+∇{ppp}R. (17)

In summary, the steps to evaluate the cost function and its gradient for a given set of
parameters {ppp} are:

1. Obtain {ddd} by solving the forward governing equations Eq. (6)-(8).

2. Obtain {d̂dd} by solving the adjoint problem in Eqs. (14a)-(14g).

3. Evaluate the cost function J̃ using Eq. (9).

4. Evaluate the gradient ∇{ppp}J̃ using Eq. (17).

2.2.3 Treatment of Neumann Boundary Conditions

Assume that the force vector at time k is given as

fff k = fff (tk) =
∫

ΓN

[N]T vvv(xxx, tk) dΓN . (18)

For instance, in the above expression vvv(xxx, tk) = v(tk)nnn(((xxx))) can be the normal velocity speci-
fied over the boundary in an acoustics problem. It can also represent the surface traction in a
structural problem. Furthermore, this formulation would also work for structural acoustics
problem in which we could have both acoustic and structural loads.

We are interested in estimating the function vvv(xxx, t). We could consider the general
case where this function is approximated using a finite element interpolation in space and

14



time. However, for the sake of brevity we will consider a particular case in which the
spatial variation of the load is prescribed by a set of patches on the surface. Furthermore,
the direction of the load over individual patches is assumed to be known, leaving as the
main unknown a function of time over each patch. The main goal is to derive concrete
expressions for the gradient of the Lagrangian with respect to the unknown parameters.

Now assume that we have a partition of the Neumann boundary ΓN (i.e. we have parti-
tioned it into patches). This partitioning of the boundary is expressed as

ΓN =
M⋃

j=1

ΓN j , (19)

and
ΓN j ∩ΓNl = ∅ for j 6= l.

SIERRA/SD uses a load representation in which the direction of the load is fixed and
the change of its magnitude with time or frequency is specified through a scalar function
over each partition. The load can then be represented as

vvv(xxx, t) =
M

∑
j=1

χχχΓNj
(xxx)ggg jh j(t), (20)

where ggg j is a given load direction on the jth partition and h j(t) defines the time dependency
of the load over this partition. Also, we have used the characteristic function

χχχΓNj
(xxx) =

{ 1 xxx ∈ ΓN j

0 otherwise.

The functions h j are taken as expansions of the form

h j(t) =
P

∑
q=1

p j
qφq(t), (21)

where p j
q,q = 1, . . . ,P are unknown parameters corresponding to partition (patch) j and

that act as coefficients of the the basis function φq(t). Then, the force vector can be param-
eterized by the unknowns {ppp} (grouping all parameters in a vector).

Notice that for the present case the coefficients p j
q are scalars. Now, the gradient of the

Lagrangian with respect to the unknown parameters in {ppp} can be determined. Using Eq.
(20) and (21) with Eq. (18), the derivative of the force vector with respect to the unknown
coefficients can be obtained as

∂ fff (t)

∂ p j
q

=
∫

ΓNj

[N]T ggg jφq(t) dΓN j . (22)
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The gradient of the Lagrangian with respect to the unknown coefficients is obtained by
substituting Eq. (22) into Eq. (17) to get

∂L

∂ p j
q

= −
N

∑
k=1

ûuuT
k

(
∂ fff k({p})

∂ p j
q

)
+

∂R

∂ p j
q

(23)

= −
N

∑
k=1

∫
ΓNj

ûuuT
k [N]T ggg jφq(tk) dΓN j +

∂R

∂ p j
q

(24)

= −
N

∑
k=1

∫
ΓNj

ûuuT(xxx, tk)ggg jφq(tk) dΓN j +
∂R

∂ p j
q
. (25)

For the case where the basis functions φq are interpolants and P = N, the gradient of
the Lagrangian becomes

∂L

∂ p j
q

=−
∫

ΓNj

ûuuT(xxx, tq)ggg j dΓN j +
∂R

∂ p j
q
. (26)

Remark 2. For acoustics problems, ggg j is the normal vector on Partition j. Since we can
directly specify the scalar (normal) velocity and acceleration, there is no need to multiply
by the normal in acoustic problems.

2.3 Regularization

The inverse problem at hand is in general ill-posed. The regularization operator introduced
in a previous section is meant to address this issue. In this section, we will derive a specific
form for this operator. It is important to bear in mind that there are other methodologies
for regularization such as early stoppage and coarsening of the solution space, but we will
restrict our attention to the penalty-like forms such as that used in Eq. (9). The simplest
forms of the regularization operator are of the Tikhonov type although other forms such
as total variation are also possible. In the Tikhonov approach, one uses Sobolev norms, in
general, as the regularization operator. Specifically, given functions h j(t), we will define

R̂({h}) =
α

2

M

∑
j=1

(h j,h j), (27)

where α is a regularization parameter to be determined. Given approximations of the form
in Eq. (21), the regularization operator can be expressed in term of the unknown coefficients
as

R̂(h1({p}1), ...,hM({p}M)) = R({p}1, ...,{p}M) =
α

2

M

∑
j=1
{p}T

j
(
{φ},{φ}T){p} j, (28)
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where (·, ·) is an inner product defined according to the type of regularization used (e.g.
contains first derivatives when the H1(0, t f ) space is used).

Let’s now derive an expression for the derivative of the regularization operator with
respect to the unknown parameters. This is simply obtained as

∂R

∂ pr
q

=
∂

∂ pr
q

α

2

M

∑
j=1
{p}T

j
(
{φ},{φ}T){p} j (29)

= α{p}T
r ({φ},φq) (30)

= α(hr,φq). (31)

In the case where the regularization operator is defined with the L2 inner product, the
above inner product is given as

(hr,φq) =
∫ t f

0
hr(t)φq(t)dt, (32)

which can be expressed as
(hr,φq) = [W ]{p}r, (33)

where the entries of the matrix [W ] are

Wi j =
∫ t f

0
φi(t)φ j(t)dt.

As a simplification, we may use [W ] = [I] where [I] is the identity matrix. The latter corre-
sponds to the case where the `2 space is used as opposed to L2. In this case, the gradient of
the regularization operator simplifies to

∂R

∂ pr
q

= α pr
q. (34)

2.3.1 Frequency Domain Equations

The same approach used to derive the gradient of the objective function in the time domain
can be used to arrive at counterpart equations in the frequency domain. We will provide just
a summary of these equations in this report as the derivations and arguments presented in
the previous section carry in a straightforward way to the frequency domain. We will work
with complex-valued functions in the frequency domain. Therefore, the objective function
to be minimized is

J̃({ppp}) =
κ

2

N

∑
k=1

(zzzk− zzzmk)
h [Q](zzzk− zzzmk)+R({ppp}), (35)
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where h denotes the complex-conjugate transpose operation, and we denote as {zzz({ppp})}
the solution to the Helmholtz problem in Eq. (4) corresponding to a given {ppp} for all
frequencies.

For the frequency domain case, the Lagrangian is constructed using the real part of the
forward problem as

L ({zzz},{ẑzz},{ppp}) = J̃({ppp})+
N

∑
j=1

Re
(

ẑzzh
j

(
[H(ω j)]zzz j−{F({p})} j

))
, (36)

where ẑzz j is a Lagrange multiplier corresponding to frequency step j. Using the same
approach as we used in the time domain, we introduce an adjoint problem for the frequency
domain case as

[H(ω j)]ẑzz j = κ[Q]
(

zzzm j − zzz j

)
, (37)

where the overline denotes complex conjugation. Recall that this adjoint problem, for
given {zzz},{ppp}, is equivalent to ∇{zzz}L ({zzz},{ẑzz},{ppp}) = 000. Recall that for {zzz} satisfying
Eq. (4), and {ẑzz} the corresponding solution to the adjoint problem, Eq. (37), we have
∇{ppp}J̃({ppp}) = ∇{ppp}L ({zzz},{ẑzz},{ppp}). Using the latter, we can then arrive at an expression
for the gradient in the frequency domain. The reduced gradient with respect to the real part
of {ppp} is given as

∇Re({ppp}k)J̃({ppp}) =−Re
∫

ΓNk

gggT
k ẑzz j(xxx)dΓNk +∇Re({ppp}k)R, (38)

while the imaginary part is given as

∇Im({ppp}k)J̃({ppp}) =−Im
∫

ΓNk

gggT
k ẑzz j(xxx)dΓNk +∇Im({ppp}k)R. (39)
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Figure 1. The acoustic mesh and structural representation of the
system of interest.

3 Numerical Results on a Weapon Store

In this section, we describe the results that have been obtained on a source inversion prob-
lem involving a weapon store flown on a military aircraft. Figure 1 shows the geometry
of the problem of interest. It consists of an ellipsoidal-shaped domain, with an outer sur-
face that is divided into 171 patches. Acoustic acceleration inputs will be applied at each
of these patches. Figure 2 shows the locations of the 17 microphones where the experi-
mental measurements of acoustic pressure were taken. The goal is to come up with a set of
patch accelerations that will produce the best match possible with the measured microphone
pressures. We use both the time and frequency domain source inversion methodologies de-
scribed in the previous sections to accomplish this goal. It is important to mention that
the Barzilai-Borwein (BB) optimization algorithm from the Rapid Optimization Package
(ROL), which is part of Trilinos[18], was used to obtain the results shown in this section.

Remark 3. The results shown in this section correspond to an acoustics problem. We
have also extensively tested the formulations and algorithms shown in previous sections in
structural problems. Notice that the inverse problem formulation and algorithms shown in
previous sections apply.

3.1 Frequency Domain Approach

In the case of the frequency-domain inversion, we minimize Equation (35). In order to
demonstrate the effectiveness of the implementation, we took Fourier transforms of the
measured time history data at the microphone locations shown in Figure 2, and then used
the frequency domain source inversion methodology in Sierra/SD to solve the inverse prob-
lem by minimizing Equation (35) at the single frequency of f = 315Hz. The result was a
set of patch inputs on the 171 surface patches shown in Figure 1. Using the converged set of
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Figure 2. The locations of the 17 microphones where experimen-
tal data was collected.

patch inputs from the inverse problem, we ran a forward Helmholtz problem at f = 315Hz
and compared the real and imaginary parts of the acoustic pressure at the microphone loca-
tions shown in Figure 2. Figures 3 and 4 show the comparisons between the experimental
data and the simulation results. Good agreement is observed. This simulation was per-
formed on 128 cores on Glory. Glory is a high performance computing platform at Sandia
National Laboratories. However, due to the expense of the Helmholtz solves for the for-
ward and adjoint problems in the inverse iterations, this inverse problem took several hours
to run.

We note from equations (36) and (37) that this approach will require multiple Helmholtz
solves at each frequency. With a broadband set of experimental data such as this, the
expense of the Helmholtz solves at each frequency point and the number of frequency
points that are required (about 700), the frequency domain approach would lead to a very
computationally expensive inverse problem. For a problem that had a more narrow band
of interest on the frequency axis, it is likely that the frequency-domain approach would be
more efficient than the time-domain. Since the frequency range of interest for the system is
so broad, we have found that the time domain approach is the most efficient approach for
this problem.

3.2 Time Domain Approach

In the time-domain, we solve the problem described in (11). We note from equations
(14) that this will involve forward and backward time-marching solutions. We take a time
step equal to the inverse of the sampling frequency of the experimental data, or 1

25600 =
3.9063e−05. Each of these solutions takes about half an hour on 128 cores on glory. In
order to determine the time-span required for the transient solutions, we consider the lowest
frequency of interest, 40Hz. If we sweep out 6 cycles at this frequency, then it will require
6
40 = 0.15 seconds of time history, which corresponds to about 4000 time steps. This
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Figure 3. A comparison of measured and predicted acoustic pres-
sures (real component) from a frequency-domain solution of the
source inversion problem on a system-level reverberation chamber
test. Experimental and simulation results are compared at all 17
microphones at f = 315Hz.
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Figure 4. A comparison of measured and predicted acoustic pres-
sures (imaginary component) from a frequency-domain solution
of the source inversion problem on a system-level reverberation
chamber test. Experimental and simulation results are compared
at all 17 microphones at f = 315Hz.
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number of time steps will be required for both the forward and adjoint problems in each
iteration of the inverse problem.

In order to produce a set of patch inputs that reproduce the experimental data, the source
inverse methodology in Sierra/SD described in the previous sections was used to solve the
inverse problem. Given these patch inputs, we then ran the forward problem described
by the time-domain acoustic equation (see Equation (3)) with those inputs and wrote the
microphone pressures to a history file. This allowed for a direct comparison of the predicted
and measured microphone pressures.

Figure 5 shows comparisons of the simulated and experimental acoustic pressures at
microphones 1 and 2. The plots on the left show the entire time history, whereas the plots on
the right show a closeup of the when the response first becomes non-zero. Good agreement
is observed between the experimental and simulated data. Figure 6 shows closeups of
different regions of the time histories for microphone 1. These figures show that good
agreement is observed throughout the entire time history.

Figure 7 show similar results for microphones 3 and 4. Again, the agreement between
experimental and simulated data is good. The remaining figures in the report show the same
comparisons for the remaining 13 microphones. In all cases the matches are of a similar
level of accuracy.

Finally, we examine the direct output of the inversion process to see if the results fall
within the bounds expected from the physics of the problem. In Figure 15 we show the
acoustic acceleration time histories, in m

s2 , for the first two patches in Figure 1. These accel-
eration time histories are the direct output of the inverse problem solution. The amplitudes
of the inputs fall within the range of expected values, and do not show any unexpected
behavior. However, more investigation is needed here, and a later report will investigate
the patch results and accuracy metrics in more detail.
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Acoustic pressures at microphone 1. A closeup view of microphone 1.
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Acoustic pressures at microphone 2. A closeup view of microphone 2.

Figure 5. A comparison of measured and predicted acoustic pres-
sures at microphones 1 and 2.
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0.06 0.062 0.064 0.066 0.068 0.07 0.072 0.074 0.076 0.078 0.08
−250

−200

−150

−100

−50

0

50

100

150

200

Time (s)

A
co

us
tic

 P
re

ss
ur

e 
at

 M
ic

 1

 

 

simulation
experimental data

0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098 0.1
−250

−200

−150

−100

−50

0

50

100

150

200

Time (s)

A
co

us
tic

 P
re

ss
ur

e 
at

 M
ic

 1

 

 

simulation
experimental data

Time span from t = 0.06s to t = 0.08s Time span from t = 0.08s to t = 0.1s

Figure 6. Closeup views of the time span from t = 0.02s to
t = 0.1s of experimental and predicted acoustic pressures at mi-
crophone 1.
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Acoustic pressures at microphone 3. A closeup view of microphone 3.
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Acoustic pressures at microphone 4. A closeup view of microphone 4.

Figure 7. A comparison of experimental and predicted acoustic
pressures at microphones 3 and 4.
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Acoustic pressures at microphone 5. A closeup view of microphone 5.
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Acoustic pressures at microphone 6. A closeup view of microphone 6.

Figure 8. A closeup view of the early time comparison of ex-
perimental and predicted acoustic pressures at microphones 5 and
6.
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Acoustic pressures at microphone 7. A closeup view of microphone 7.
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Acoustic pressures at microphone 8. A closeup view of microphone 8.

Figure 9. A closeup view of the early time comparison of ex-
perimental and predicted acoustic pressures at microphones 7 and
8.
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Acoustic pressures at microphone 9. A closeup view of microphone 9.
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Acoustic pressures at microphone 10. A closeup view of microphone 10.

Figure 10. A closeup view of the early time comparison of ex-
perimental and predicted acoustic pressures at microphones 9 and
10.
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Acoustic pressures at microphone 11. A closeup view of microphone 11.
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Acoustic pressures at microphone 12. A closeup view of microphone 12.

Figure 11. A closeup view of the early time comparison of ex-
perimental and predicted acoustic pressures at microphones 11 and
12.
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Acoustic pressures at microphone 13. A closeup view of microphone 13.
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Acoustic pressures at microphone 14. A closeup view of microphone 14.

Figure 12. A closeup view of the early time comparison of ex-
perimental and predicted acoustic pressures at microphones 13 and
14.
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Acoustic pressures at microphone 15. A closeup view of microphone 15.
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Figure 13. A closeup view of the early time comparison of ex-
perimental and predicted acoustic pressures at microphones 15 and
16.
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Acoustic pressures at microphone 17. A closeup view of microphone 17.

Figure 14. A comparison of measured and predicted acoustic
pressures at microphone 17.
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Figure 15. Acoustic accelerations on first and second patches of
Figure 1.
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4 Conclusions

In this report, structural and acoustic source inversion algorithms have been presented in
both time and frequency domains. These algorithms have been implemented in Sierra/SD
with an interface to the Rapid Optimization Library (ROL). Gradients of the Lagrangian
with respect to the design variables have been derived using the adjoint method, and ex-
plicit expressions for the gradient have been given in terms of the solution of the forward
and adjoint problems. The minimization problems have been defined in terms of partial dif-
ferential equation constrained optimization. A source inversion problem has been solved
for a store flown on a military aircraft in both the time and frequency domains, correspond-
ing to a recent experimental test in the reverberation chamber. The results of this source
inversion problem were used to solve a forward problem to generate predicted microphone
pressures for 17 microphones that were used in the experiment. Good agreement between
the experimental measurements and the numerical simulations was observed, confirming
that the inverse problem was solved to sufficient accuracy.

The next steps in this work are to examine the accuracy metrics for the inverse problem
in more detail, and to examine the predictions of the forward problem for points that are
away from the microphone measurement locations. The accuracy of these extrapolated
predictions will depend on the number of measurement points and the number of patches.
This work only solved the acoustic inverse problem, and so our current efforts involve
extending the source inversion capability to coupled structural acoustics, which will include
both the accelerometer data in the structure as well as the microphones. This will allow the
algorithm to find patch inputs that drive the forward problem to match both the microphone
and accelerometer measurements. In addition, we are extending the formulation to include
second-order (Newton) methods, in order to compare the convergence behavior of first and
second order approaches for this class of inverse problems.

33



References

[1] C. Larmat, J. Tromp, Q. Liu, and J. P. Montagner. Time reversal location of glacial
earthquakes. Journal of Geophysical Research, 2002.

[2] H. Kawakatsu and J. Montagner. Time reversal seismic source imaging and moment
tensor inversion. Geophys. J. Int., 2008.

[3] R. Unnthorsson, T. Runarsson, and M. Jonsson. Acoustic emission based fatigue
failure criterion for cfrp. International Journal of Fatigue, 2008.

[4] A. Carpinteri, G. Lacidogna, and N. Pugno. Structural damage diagnosis and life-
time assessment by acoustic emission monitoring. Engineering Fracture Mechanics,
2007.

[5] O. E. Andreikiv, V. R. Skal’s’kyi, and O. M. Serhienko. Acoustic-emission criteria
for rapid analysis of internal defects in composite materials. Materials Science, 2001.
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