SANDIA REPORT SAND2013-4549 Unlimited Release Printed June 2013

A Validation Test for Adagio through Replication of Big Hill and Bayou Choctaw JAS3D Models

Byoung Yoon Park

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors of the United States Government, any agency thereof, or any of their contractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd. Springfield, VA 22161

Telephone:	(800) 553-6847
Facsimile:	(703) 605-6900
E-Mail:	orders@ntis.fedworld.gov
Online order:	http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2013-4549 Unlimited Release Printed June 2013

A Validation Test for Adagio through Replication of Big Hill and Bayou Choctaw JAS3D Models

Byoung Yoon Park

Geomechanics Department Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-MS0751

Abstract

JAS3D, a three dimensional iterative solid mechanics code, has been used for structural analyses for the Strategic Petroleum Reserve system since the 1990s. JAS3D is no longer supported by Sandia National Laboratories, and has been replaced by Adagio. To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.

ACKNOWLEDGMENTS

This research is funded by SPR programs administered by the Office of Fossil Energy (FE) of the U.S. Department of Energy.

Dr. Courtney G. Herrick (SNL, Dept. 6211) provided a technical review and Dr. David J. Borns (SNL, Dept. 6912) and Dr. Moo Y. Lee (SNL, Dept. 6914) provided a management review. This report has been improved by these individuals.

CONTENTS

ACKNO	WLEDGMENTS	4
CONTEN	VTS	5
FIGURE	S	6
TABLES		7
NOMEN	CLATURE	8
1. INT	RODUCTION	9
1.1.	Software Identifier	9
1.2.	Points of Contact	. 9
2. BAY	YOU CHOCTAW MODEL	10
2.1.	Model Description	10
2.2.	Geomechanical Model	10
2.2.1	1. Salt dome geometry	10
2.2.2	2. Salt constitutive model	12
2.2.3	3. Material properties of lithologies around the salt dome	12
2.3.	Cavern Model	13
2.3.1	1. Cavern geometry and layout	13
2.3.2	2. Model history	13
2.4.	Thermal conditions	15
2.5.	Mesh	15
2.6.	Test Objective	18
2.7.	Input/Output	18
2.8.	Evaluation of Results	18
3. BIG	HILL MODEL	.24
3.1.	Model Description	24
3.2.	Geomechanical Model	24
3.2.1	1. Salt dome geometry	24
3.2.2	2. Salt Constitutive model and parameter values	26
3.2.3	3. Lithologies around the salt dome	26
3.2.4	4. Interfaces and Fault Model	27
3.3.	Cavern Model	28
3.3.1	1. Cavern geometry and layout	28
3.3.2	2. Model history	29
3.4.	Thermal Conditions	31
3.5.	Mesh	31
3.6.	Test Objective	33
3.7.	Input/Output	34
3.8.	Evaluation of Results	34

4.	CONCLUSIONS AND RECOMMENDATIONS	
5.	REFERENCES	46
API	PENDIX I: COMMON FILES	
I- I-	-A. Units.txt -B. BC_stratigraphy.txt	
I- I- I-	-C. BC_materials_PLC.txt -D. BH_stratigraphy_sftele.txt -E. BH_materials_PLC.txt	
API	PENDIX II. FILES RELATED TO BAYOU CHOCTAW MODEL	
II II	I-A. JAS3D Input Deck I-B. Adagio Input Deck	51 54
API	PENDIX III. FILES RELATED TO BIG HILL MODEL	65
II II	II-A. JAS3D Input Deck II-B. Adagio Input Deck	
DIS	TRIBUTION	

FIGURES

Figure 1: Stratigraphy near the Bayou Choctaw salt dome [Neal et al., 1993] and the thickness of
each layer used for modeling11
Figure 2: Major diameter and minor diameter of BC salt dome used for modeling11
Figure 3: Overview of the finite element mesh of the stratigraphy and cavern field at Bayou
Choctaw
Figure 4: Finite mesh discretization and boundary conditions at Bayou Choctaw
Figure 5: Comparison of overall volumetric closure normalized to overall storage volume for the
six SPR caverns immediately following each leach between JAS3D and Adagio. Adagio
results are indicated by symbols
Figure 6: Comparison of normalized volumetric closure of Cavern 15 over time between JAS3D
and Adagio. The volume was normalized by the volume of Cavern 15 immediately
following each leach
Figure 7: Comparison of normalized volumetric closure of Cavern 17 over time between JAS3D
and Adagio. The volume was normalized by the volume of Cavern 17 immediately
following each leach
Figure 8: Comparison of normalized volumetric closure of Cavern 18 over time between JAS3D
and Adagio. The volume was normalized by the volume of Cavern 18 immediately
following each leach
Figure 9: Comparison of normalized volumetric closure of Cavern 19 over time between JAS3D
and Adagio. The volume was normalized by the volume of Cavern 19 immediately
following each leach

Figure 10: Comparison of normalized volumetric closure of Cavern 20 over time between
JAS3D and Adagio. The volume was normalized by the volume of Cavern 20 immediately
following each leach
Figure 11: Comparison of normalized volumetric closure of Cavern 101 over time between
JAS3D and Adagio. The volume was normalized by the volume of Cavern 101 immediately
following each leach
Figure 12: Comparison of calculated minimum compressive stress histories between JAS3D and
Adagio23
Figure 13: Comparison of calculated minimum safety factor history for dilatant damage between
JAS3D and Adagio
Figure 14: Big Hill site plan view [Magorian and Neal, 1988]25
Figure 15: Cross-section (W-E #1 in Figure 14) near middle of dome [Magorian and Neal, 1988]
looking north
Figure 16: Log-log plot of a compilation of 16 fault thickness datasets reported in the literature
including the data used by Hull [1988], and the three datasets in Shipton, et al. [2006] 28
Figure 17: Perspective view of the cavern field at the Big Hill SPR site from the southeast
[Rautman and Lord, 2007]. Elevation unit is feet
Figure 18: Time sequence for the simulation
Figure 19: Overview of the finite element mesh of the stratigraphy and cavern field at Big Hill.
Figure 20: Finite mesh discretization and boundary conditions at Big Hill
Figure 21: Comparison of overall volumetric closure normalized to overall storage volume for
the fourteen SPR caverns immediately following each leach between JAS4D and Adagio.
Adagio results are indicated by symbols
Figure 22: Comparison between the JAS3D and Adagio results for the volume change of each
cavern due to salt creep for first 11 years. JAS3D results are indicated by symbols
Figure 23: Comparison between the JAS3D and Adagio results for the predicted relative
displacements between Caprock2 and Salt Dome right above the center of each cavern over
time. Adagio results are indicated by dashed lines

TABLES

Table 1: Material parameters used for the Bayou Choctaw salt.	12
Table 2: Material properties of the lithologies around the BC salt dome used in the analyse	s 13
Table 3: Geometric parameters for 24 caverns considered in the simulation [Neal et al.,	, 1993;
Stein, 2005; Hogan, 1980; Ehgartner et al., 2003]	14
Table 4: Range of operating pressures measured at the wellhead for SPR caverns at BC	14
Table 5. Material properties of Big Hill salt used in the analysis	26
Table 6. Material properties of lithologies around salt dome used in the analyses	27
Table 7: Geometric parameters and initial leach completion dates for the fourteen extant ca	averns.
	29

NOMENCLATURE

BC	Bayou Choctaw
BH	Big Hill
DOE	Department of Energy
D-P	Drucker-Prager
M-D	Multimechanism Deformation
MMB	Million Barrels
PLC	Power Law Creep
RF	Reduction Factor
SMF	Structural Multiplication Factor
SPR	Strategic Petroleum Reserve
SRN	Sandia Restricted Network
UTM	Universal Transverse Mercator
UTP	Union Texas Petroleum
WIPP	Waste Isolation Pilot Plant

1. INTRODUCTION

JAS3D, a three-dimensional iterative solid mechanics code for analyzing the large deformation response of nonlinear materials subjected to a variety of loads, has been used for structural analyses for the Strategic Petroleum Reserve (SPR) system since the 1990s. JAS3D is no longer supported by Sandia, and has been replaced by Adagio. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. The Adagio structure is different from JAS3D. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. Extant JAS3D input decks and user subroutines for the SPR works have to be converted for use with Adagio. The calculation results from the Adagio run on the SIERRA Framework have to be verified. This test should take precedence over the others for the future work.

These tests are based on Sandia report SAND2006-7589 entitled "Three Dimensional Simulation for Bayou Choctaw (SPR)" [Park and Ehgartner, 2006], and Sandia report SAND2012-1206 entitled "Interface Modeling to Predict Well Casing Damage for Big Hill Strategic Petroleum Reserve" [Park and Ehgartner, 2012]. The computational procedures and data described in those reports were used in this test so a direct comparison between the results using JAS3D and Adagio can be made. Therefore, this set of tests includes a replicate of the storage loss due to salt creep, compressive stresses, and minimum safety factor for dilatant damage over a 46 year period following initial leach and five drawdown leaches for Bayou Choctaw (BC) model. It also includes a replicate of the storage loss and relative displacements in the interbed between salt dome top and caprock bottom over a 56 year period for Big Hill (BH) model. The data used in these tests, such as the stratigraphy, salt dome geometry, cavern geometry and layout, cavern internal pressure history and material properties, etc. are identical to those used in the BC and BH JAS3D models [Park and Ehgartner, 2006; Park and Ehgartner, 2012]. These tests represent complex geomechanics problems in which the creep response of SPR caverns is modeled.

1.1. Software Identifier

- Code name: Adagio
- Version: 4.25.10-modified (BC model), 4.27.3-modified (BH model)

1.2. Points of Contact

- Testers/Evaluators: Byoung Yoon Park, Org. 6914, <u>bypark@sandia.gov</u>, 505/284-2729
- Point of Contact for Adagio: Kendall Pierson, Org. 1542, <u>khpiers@sandia.gov</u>, 505/284-5894
- For help or general questions concerning Adagio: <u>sierra-help@sandia.gov</u>

2. BAYOU CHOCTAW MODEL

2.1. Model Description

Three dimensional finite element analyses were performed to evaluate the structural integrity of caverns located within the BC site, which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns, which occurs when water is used to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns.

2.2. Geomechanical Model

2.2.1. Salt dome geometry

The stratigraphy near the BC salt dome is shown in Figure 1. The top layer of overburden, which consists of sand, silts and clays, has an average thickness of 500 ft. The caprock, consisting of gypsum, anhydrite, and sand, is on average 150 ft thick. The bottom of the deepest cavern (Cavern 25) is at an elevation of 5,790 ft. For the vertical direction constraint at the bottom of the model, sufficient thickness between the lowest cavern bottom and the model bottom is necessary so as to not affect the structural reaction by the bottom boundary. Therefore, the depth of the salt dome is considered to 8,000 ft below the surface. All SPR caverns are located below 2,000 ft.

The horizontal section of the dome forms an ellipse as shown Figure 2. The major and minor radii are obtained using the 4,000 ft contour, which is half of the model depth, by hand measuring the distances in Figure 2. Cavern 20 is closest to the dome edge. The elevation of Cavern 20 is approximately 4,000 ft below the surface. Thus, the 4,000 ft contour was selected to get the radii of salt dome. The major and minor radii are measured to be 4,882 ft and 4,265 ft, respectively.

Figure 1: Stratigraphy near the Bayou Choctaw salt dome [Neal et al., 1993] and the thickness of each layer used for modeling.

Figure 2: Major diameter and minor diameter of BC salt dome used for modeling.

2.2.2. Salt constitutive model

A power law creep model is used for the salt creep constitutive model, which considers only secondary or steady-state creep. The creep strain rate is determined from the following effective stress law:

$$\dot{\varepsilon} = A \left(\frac{\sigma}{\mu}\right)^n \exp\left(-\frac{Q}{RT}\right) \tag{1}$$

where, $\dot{\varepsilon}$ = creep strain rate,

 σ = effective or von Mises stress,

 μ = shear modulus, E/2(1+v), where E is Young's modulus and v is Poisson's ratio

T = absolute temperature,

A, n = creep constants determined from fitting the model to creep data,

Q = effective activation energy,

R = universal gas constant.

The material properties, including calibrated values (bold font), in Table 1 are used as salt material data in the test.

Parameter	Unit	Value	References
Young's modulus (E)	psi	4.496×106	Krieg, 1984
Density (p)	lb/in ³	0.083	Krieg, 1984
Poisson's ratio (v)	-	0.25	Krieg, 1984
Elastic modulus reduction factor (RF)	-	12.5	Morgan and Krieg, 1988
Bulk modulus (K)	psi	2.397×10 ⁵	Calculated using E and v
Shear modulus (µ)	psi	1.439×10 ⁵	Calculated using E and v
Creep constant (A)	Pa-4.9/s	5.79×10 ⁻³⁶	Krieg, 1984
Structure multiplication factor (SMF)	-	0.12	Park and Ehgartner, 2006
Calibrated creep constant	Pa-4.9/s	0.695×10 ⁻³⁶	Park and Ehgartner, 2006
Stress exponent (n)	-	4.9	Krieg, 1984
Thermal constant (Q)	cal/mol	12000	Krieg, 1984
Universal gas constant (R)	cal/(mol·K)	1.987	
Input thermal constant (Q/R)	cal/mol	6039	

Table 1: Material parameters used for the Bayou Choctaw salt.

2.2.3. Material properties of lithologies around the salt dome

The surface overburden layer, which is mostly comprised of sand, is expected to exhibit elastic material behavior. The sand layer is considered isotropic, and has no assumed failure criteria. The caprock layer, consisting of gypsum, anhydrite and sand, is also assumed to behave elastically. The sedimentary rock surrounding the salt dome is assumed to be an isotropic, homogeneous elastic sandstone. The mechanical properties used in the present analysis are listed in Table 2.

	Unit	Overburden	Caprock	Surrounding Rock
Young's modulus	psi	1.450×104	2.277×10 ⁶	5.076×10 ⁶
Density	lb/in ³	0.068	0.090	0.090
Poisson's ratio	-	0.33	0.29	0.33

Table 2: Material properties of the lithologies around the BC salt dome used in the analyses.

2.3. Cavern Model

2.3.1. Cavern geometry and layout

The cavern shapes and locations vary widely as shown in Figure 1 and Figure 2. Fifteen active and nine abandoned caverns exist at BC, producing a total cavern volume of some 164 million barrels (MMB). This includes 81 MMB in six SPR caverns, 31 MMB in nine Union Texas Petroleum (UTP) caverns, and about 52 MMB in abandoned caverns. Cavern 7 collapsed in 1954 and was filled with overburden material. The total cavern volume is important since the void space affects total creep closure (and consequent subsidence) in the BC salt mass.

Table 3 lists the geotechnical parameters for the twenty four caverns considered in the present simulation [Neal et al., 1993; Stein, 2005]. The origin of the coordinates system used in the modeling is the center coordinates of the dome. The shapes of caverns were simplified to the cylindrical shapes using the geometric parameters in Table 3. The faults shown in Figure 1 and Figure 2 are assumed not to affect the structural behavior of the SPR caverns in the analysis because they do not extend to the deep salt beyond the top of abandoned caverns.

2.3.2. Model history

The last sonar dates to measure the shape of caverns were between 1977 and 1993, as listed in Table 3. For the purposes of the present simulation, it is assumed that all caverns were leached twenty-one years ago (i.e., 1985) to simplify the model history. This simulation start time was chosen because it is the average of the sonar measurement dates. The sonar measurement dates represent a time when the cavern geometry had been measured with surety and therefore give a baseline from which volume changes can be determined.

The analysis simulates caverns that were leached to full size over a one year period by means of gradually switching from salt to fresh water in the caverns. It was assumed that the SPR caverns were filled with petroleum and non-SPR caverns were filled with brine at year one, and then permitted to creep for twenty years to reach the preset twenty-one year age for the caverns to be simulated. Subsequently, every five (5) years after the twenty first year, the SPR caverns were instantaneously leached. Modeling of the leaching process of the caverns was accomplished by deleting elements along the walls of the caverns so that the volume increased by 15% with each leach. The good salt quality at BC should provide a leach of 15 percent. Leaching is assumed to occur uniformly along the entire height of the cavern. However, leaching is not permitted in the floor or roof of the caverns. The 5-year period between each drawdown allows the stress state in the salt to return to a steady-state condition, as will be evidenced in the predicted closure rates. The simulation was terminated right before sixth leach to investigate the structural behavior of the dome for 46 years, during which creep closure to occur in all caverns.

The pressure conditions applied to the caverns were based on average wellhead pressures listed in Table 4. Cavern 15 operates over a range of pressures from 815 to 990 psi under normal

conditions. The pressure starts at 815 psi, then, due to creep and thermal expansion of fluids, the pressure gradually rises to 990 psi. At that time the brine is removed from the cavern to reduce the pressure down to 815 psi again. Thus, on average, a pressure of 903 psi is used for Cavern 15 wellhead pressure operating under normal conditions. In the same manner, the pressures of 903, 715, 925, 850, and 913 psi are used for the normal operating wellhead pressures of Cavern 17, 18, 19, 20, and 101, respectively.

Cavern Number	X Coordinate of Center	Y Coordinate of Center	Gross Volume	Elevation of Cavern Top	Elevation of Cavern Bottom	Cavern Height	Diameter Average	Last Sonar Date
	ft	ft	MMB	ft	ft	ft	ft	mmm-yyyy
Cavern 1	-1002	-27	8.42	-950	-1810	860	250.0	1977
Cavern 2	-817	369	9.02	-715	-1590	875	260.0	1977
Cavern 3	-821	1082	5.01	-890	-1875	985	200.0	1977
Cavern 4	-212	12	5.98	-620	-1710	1090	280.0	1980
Allied 6	-192	1353	0.82	-1195	-1562	367	126.4	Nov-1990
Cavern 7	-786	1679	4.01	-440	-1560	1120	160.0	Unknown
Cavern 8	-811	-604	3.12	-1235	-1976	741	200.0	1980
Cavern 10	-1706	-118	6.40	-990	-1902	912	200.0	1980
Cavern 11	-1458	521	9.50	-1030	-1800	770	280.0	1978
Cavern 13	-1241	969	4.31	-1103	-1880	777	240.0	1977
Cavern 15	92	669	16.45	-2605	-3296	691	412.0	Mar-1993
Cavern 16	-68	-675	10.49	-2612	-3228	616	349.1	Mar-1989
Cavern 17	573	736	12.17	-2600	-4023	1423	238.0	Mar-1993
Cavern 18	609	43	17.44	-2125	-4219	2094	244.0	Jun-1993
Cavern 19	-477	-1362	12.67	-2935	-4228	1293	260.0	Jun-1993
Cavern 20	-1561	-936	9.17	-3830	-4225	395	514.0	Mar-1993
Allied 24	664	-798	5.59	-3100	-4337	1237	179.1	Apr-1992
Allied 25	451	-1167	7.08	-3575	-5790	2215	151.2	Jun-1992
Cavern 26	747	1669	0.71	-3076	-3470	394	113.2	Sep-1991
Cavern 101	-951	-325	13.06	-2550	-4830	2280	201.0	Jun-1993
Cavern 102	-1169	270	4.20	-2640	-5339	2699	105.5	Oct-1984
Allied J1	-92	1682	0.75	-2854	-3945	1091	69.9	Jul-1989
Allied N1	358	1686	0.49	-2670	-3590	920	61.9	Jan-1987
UTP 1	369	1223	1.41	-2360	-3502	1142	94.0	Aug-1989

Table 3: Geometric parameters for 24 caverns considered in the simulation [Neal et al., 1993; Stein, 2005; Hogan, 1980; Ehgartner et al., 2003]

Table 4: Range of operating pressures measured at the wellhead for SPR caverns at BC.

	Operating Pressure Range (psi)					
Cavern	Low	High	Average Pressure			
Cavern 15	815	990	903			
Cavern 17	815	990	903			
Cavern 18	690	740	715			
Cavern 19	900	950	925			
Cavern 20	825	875	850			
Cavern 101	825	1000	913			

Workovers on the five SPR caverns were performed from 12/10/2000 to 7/25/2003. Caverns 15 and 17 are currently operated as a gallery, maintaining equal pressures at all times including during the workover periods. Thus Caverns 15 and 17 were workovered together and workovers on Caverns 19, 18, and 101B followed in order. Rather than complicating the analyses, the following assumptions were made based on the actual field conditions for the six SPR caverns:

- A constant pressure is applied for the majority of the time, with pressure drops periodically included.
- For workover conditions, zero wellhead pressure is used.
- The workovers on the Caverns 15 and 17 are performed one year after switching from brine to petroleum. Cavern 19 is workovered 3 months after the workover of Caverns 15 and 17 have been completed. The workover of Cavern 18 starts as soon as the workover of Cavern 19 has been completed. Then, Cavern 20 is workovered 2.5 years later. Finally, Cavern 101 is workovered as soon as the workover of Cavern 20 has been completed. This workover cycle is repeated every 5 years.
- Workover durations are 3 months for all caverns.
- For both normal and workover conditions, the caverns are assumed to be full of oil with a pressure gradient of 0.37 psi/ft of depth.

In the case of non-SPR caverns, except Cavern 7, the pressure due to brine head with a pressure gradient of 0.52 psi/ft is applied on the cavern walls. Cavern 7 was drilled in 1942 to a depth of 1,951 ft. It collapsed in 1954 and was filled with overburden material, which has an assumed density and Poisson's ratio as listed in Table 2. Thus the pressure gradient of 0.4 psi/ft is applied on the floor and roof.

2.4. Thermal conditions

The finite element model includes a depth-dependent temperature gradient which starts at 84.02 °F (28.90 °C) at the surface and increases at the rate of 0.0138 °F/ft (0.0251 °C/m). The temperature profile is based on the average temperature data recorded in well logs from BC prior to leaching [Ballard and Ehgartner, 2000]. The temperature distribution is important because the creep response of the salt is temperature dependent. Radial temperature gradients due to cavern cooling effects of the cavern product are not considered in these calculations. Previous 2D cavern studies have shown the predicted cavern deformation to be insensitive to the developed radial thermal gradients [Hoffman, 1992].

2.5. Mesh

A three dimensional mesh, which allows each cavern to be configured individually, was constructed. Figure 3 shows the overview of the finite element mesh of the stratigraphy and cavern field at BC. The mesh has been separated to show the individual material blocks. The X-axis of model is in the EW (East-West) direction, Y-axis is in the NS (North-South) direction, and Z-axis is the vertical direction.

Four material blocks are used in the model for the overburden, caprock, salt dome, and surrounding rock. The surrounding rock block encloses the caprock and salt dome block. The salt dome block contains 24 caverns. The caprock contains the upper part of Cavern 7 because

Cavern 7 collapsed, becoming filled mainly with sand up to the caprock layer. The caprock is made of gypsum, anhydrite, and sand. The surrounding rock is sedimentary rock that consists of sandstone and shale. In order to simplifying the mesh, the surrounding rock is assumed to be made of entirely sandstone because the Young's moduli of sandstone and shale are similar [Carmichael, 1984].

An elliptical shape is applied to the section of the dome as an approximation for the actual shape. The major and minor diameters of the salt dome are 4,882 ft and 4,265 ft, respectively. The lower boundary of the salt dome is considered to extend 8,000 ft below the surface. Since the overburden is 500 ft thick and the caprock is 150 ft thick, the height of the salt dome is assumed to be 7,350 ft. Each SPR cavern is modeled as having five cylindrical layers to be removed to account for the drawdown activities. The diameter of the SPR caverns will be increased by 7.24% per drawdown by deleting elements in the cylindrical layers at 21 years, and subsequently every 5 year. The shapes of all caverns are simplified by cylindrical shapes using the geometrical parameters in Table 3. The caverns can be classified by two groups. One group consists of those caverns located above 2,000 ft depth and the other group consists of those caverns located below 2,000 ft depth (Figure 1). All the caverns in the upper group are abandoned except Cavern 6. The caverns in the lower group are operated by DOE and Union Texas Petroleum (UTP).

Figure 4 shows the assembled mesh and the boundary conditions used for the BC model. The salt dome is modeled as being subjected to a regional far-field stresses acting from an infinite distance away. The lengths of the confining boundaries are 24,410 ft in the NS direction and 21,325 ft in the EW direction. These lengths are about five times the major or minor diameter of the salt dome, respectively. This ratio (5) is far better than the generally accepted ratio (3 to 4) between the maximum dimensions/minimum excavation sizes. The model consists of 409,248 nodes and 398,090 elements.

Figure 3: Overview of the finite element mesh of the stratigraphy and cavern field at Bayou Choctaw.

Figure 4: Finite mesh discretization and boundary conditions at Bayou Choctaw.

2.6. Test Objective

This test case will be used to specifically verify the following functional requirements:

- Computes the quasi-static, inelastic response of 3-dimensional solids using a nonlinear conjugate gradient solution algorithm.
- Use hexahedral element with hour glass control.
- Apply initial stress as the element variable.
- Apply no displacement kinematic boundary conditionss.
- Use a pressure boundary condition according to user defined subroutine.
- Models multilayer, multi-material stratigraphy of large physical extent.
- Individually control time intervals in the solution period.
- Use the Power Law Creep (PLC) model.
- Apply a gravity body force.

The following external interface requirements are also not specifically addressed but are verified implicitly:

- ASCII input
- GENESIS mesh file
- EXODUS output
- ASCII output

Adagio results will be compared to the results using previously qualified code JAS3D.

2.7. Input/Output

This test was run on Red Sky Unclassified Sandia Restricted Network (SRN) which is assembled in the space where legendary system ASCI Red once stood. Red Sky was open for limited user availability in January 2010. Red Sky on SRN has 2,816 nodes / 22,528 cores.

The common files used in JAS3D and Adagio input decks are provided in Appendix I. The input decks for JAS3D and Adagio are provided in Appendix II-A and B, respectively.

2.8. Evaluation of Results

The data from JAS3D version 2.2 was originally performed on a computer system named ELO, a Compaq Tru64 workstation, on which UNIX V.5.1.B is installed. The files and run control summary are described in Park et al. [2006].

Figure 5 shows a comparison of overall volumetric closure normalized to overall storage volume for the six SPR caverns immediately following each leach between JAS3D and Adagio, over the entire simulation period of 46 years. Adagio results lie on top the JAS3D results. Figures 6 through 11 show the comparisons of normalized volumetric closure of Caverns 15, 17, 18, 19, 20, and 101 over time between JAS3D and Adagio, respectively. The volumes were normalized by

the volume of caverns immediately following each leach. In all cases the Adagio results are extremely close to the JAS3D.

Figure 12 shows a comparison of the calculated minimum compressive stress histories between JAS3D and Adagio over the entire simulation period of 46 years. The negative sign (-) indicates a compressive stress. Figure 13 shows a comparison of the minimum safety factor histories for dilatancy damage. The Adagio results are very similar to the JAS3D.

JAS3D was qualified for use in the SPR program before becoming unsupported. JAS3D has been validated through several programs (most notably for the Waste Isolation Pilot Project) for modeling the creep behavior of salt in mined operations such as radioactive waste storage, oil storage, and so on. Overall, since the Adagio results are extremely close to the JAS3D results, Adagio is judged to be performing satisfactorily.

Figure 5: Comparison of overall volumetric closure normalized to overall storage volume for the six SPR caverns immediately following each leach between JAS3D and Adagio. Adagio results are indicated by symbols.

Figure 6: Comparison of normalized volumetric closure of Cavern 15 over time between JAS3D and Adagio. The volume was normalized by the volume of Cavern 15 immediately following each leach.

Figure 7: Comparison of normalized volumetric closure of Cavern 17 over time between JAS3D and Adagio. The volume was normalized by the volume of Cavern 17 immediately following each leach.

Figure 8: Comparison of normalized volumetric closure of Cavern 18 over time between JAS3D and Adagio. The volume was normalized by the volume of Cavern 18 immediately following each leach.

Figure 9: Comparison of normalized volumetric closure of Cavern 19 over time between JAS3D and Adagio. The volume was normalized by the volume of Cavern 19 immediately following each leach.

Figure 10: Comparison of normalized volumetric closure of Cavern 20 over time between JAS3D and Adagio. The volume was normalized by the volume of Cavern 20 immediately following each leach.

Figure 11: Comparison of normalized volumetric closure of Cavern 101 over time between JAS3D and Adagio. The volume was normalized by the volume of Cavern 101 immediately following each leach.

Figure 12: Comparison of calculated minimum compressive stress histories between JAS3D and Adagio.

Figure 13: Comparison of calculated minimum safety factor history for dilatant damage between JAS3D and Adagio.

3. BIG HILL MODEL

3.1. Model Description

Oil leaks were found in well casings of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to field observations, two instances of casing damage occurred at the depth of the interface between the caprock and top of salt. This damage could be caused by interface movement induced by cavern closure due to salt creep. A three dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate shear and vertical displacements across each interface. The model contains interfaces between each lithology and a shear zone to examine the interface behavior in a realistic manner. The advanced model in this test is a full 3-D rendering of the site and includes the lithologic interfaces and a fault, needed to simulate motion between the caprock and the salt dome. This model considers actual geometries and locations of the fourteen caverns. It also contains interfaces between the overburden and caprock; the two caprock lithologies; the caprock and salt dome; the dome and surrounding rock, and within a fault in the overburden and caprock layers. The shear displacement and vertical strain above the center of each cavern in the interface between caprock and salt dome will be calculated using Adagio and compared to the JAS3D results.

3.2. Geomechanical Model

3.2.1. Salt dome geometry

Figure 14 shows a plan view of the BH site with contour lines defining the approximate location of the salt dome top. The locations of the 14 SPR caverns currently in-use (101-114) and five potential expansion caverns (X1-5) are indicated. The figure also specifies the undeveloped area north of the DOE property line (Sabine Pass Terminal). The horizontal shape of the dome is approximately elliptical. The major and minor ellipse axes are measured as 7000 ft and 5800 ft, respectively. The West-East cross-section #1 through the northern-most row of caverns (Cavern 101-105) provides a geologic representation near the middle of the dome (Figure 15). The site has a thin overburden layer consisting of sandy soil; and an exceptionally thick caprock sequence comprised of two layers. The upper caprock is comprised mainly of gypsum and limestone, whereas the lower caprock is mostly anhydrite. A major fault extends approximately North-South along the entire length of the caprock and for an unknown depth into the salt. This fault zone has a pronounced effect on the subsidence measured above the site and is a consideration for future cavern placement [Ehgartner and Bauer, 2004]. For analysis purposes, the top layer of overburden is modeled as having a thickness of 300 ft, the upper caprock 900 ft thick, and the lower caprock 430 ft thick. The salt thickness over the caverns is approximately 660 ft. The bottom boundary of the present analysis model is set at 6000 ft below the surface.

Figure 14: Big Hill site plan view [Magorian and Neal, 1988]

Figure 15: Cross-section (W-E #1 in Figure 14) near middle of dome [Magorian and Neal, 1988] looking north.

3.2.2. Salt Constitutive model and parameter values

The salt constitutive model is the same as used in BC model (see Section 2.2.2). The creep constant, *A*, in Eq. (1) is adjusted by a structural multiplication factor (SMF) which is used to match the volumetric closure of caverns. Through a number of back-fitting analyses [Park et al., 2005], a calibrated power law creep constant was determined. The values used as input data in the test analyses are listed in Table 5.

Parameter	Unit	Value	Reference	
Young's modulus (E)	GPa	31	Krieg, 1984	
Density (ρ)	kg/m ³	2300	Krieg, 1984	
Poisson's ratio (v)	-	0.25	Krieg, 1984	
Elastic modulus reduction factor (RF)	-	12.5	Krieg, 1984	
Bulk modulus (K)	GPa	20.67	Using E, v	
Shear modulus (μ)	GPa	12.40	Using E, v	
Creep constant (A)	Pa ^{-4.9} /s	5.79×10 ⁻³⁶	Krieg, 1984	
Structural multiplication factor (SMF)	-	1.5	Park et al., 2005	
Calibrated creep constant	Pa ^{-4.9} /s	8.69×10 ⁻³⁶	Park et al., 2005	
Stress exponent (n)	-	4.9	Krieg, 1984	
Thermal constant (Q)	cal/mol	12000	Krieg, 1984	
Universal gas constant (R)	cal/(mol·K)	1.987	Mohr et al., 2011	
Input thermal constant (Q/R)	К	6039	Using Q and R	

Table 5. Material properties of Big Hill salt used in the analysis.

3.2.3. Lithologies around the salt dome

The surface overburden layer, which is mostly comprised of sandy soil, is modeled as exhibiting elastic material behavior. The sand layer is also considered isotropic and elastic, and has no assumed failure criteria. The upper caprock layer, consisting of gypsum and limestone, is also assumed to be elastic. The rock surrounding the salt dome is assumed to be isotropic, homogeneous elastic sandstone.

The anhydrite in the lower caprock layer is expected to experience inelastic material behavior. The anhydrite layer is considered isotropic and elastic until yield occurs [Butcher, 1997]. Once the yield stress is reached, plastic strain begins to accumulate. Yield is assumed to be governed by the Drucker-Prager (D-P) criterion:

$$\sqrt{J_2} = C - aI_1 \tag{2}$$

where $I_1 = \sigma_1 + \sigma_2 + \sigma_3 = 3\sigma_m$ is the first invariant of the stress tensor;

$$\sqrt{J_2} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{6}}$$
 is the square root of the second invariant

of the deviatoric stress tensor;

 σ_1 , σ_2 , and σ_3 are the maximum, intermediate, and minimum principal stresses, respectively;

 σ_m is the mean stress; and

C and *a* are D-P constants.

However, the material properties of the BH anhydrite are unknown. Therefore, the behavior of the BH anhydrite is assumed to be the same as the Waste Isolation Pilot Plant (WIPP) anhydrite. A non-associative flow rule is used to determine the plastic strain components. To use the soil and foams model for the lower caprock, JAS3D input parameters are derived from the elastic properties and the D-P constants, C and a [Park et al., 2005]. The material in Tables 5 and 6 are used as input data for Adagio.

	Unit	Overburden (Sandy soil)	Caprock 1 (Limestone and gypsum)	Caprock 2 (Anhydrite)	Surrounding Rock (Sandstone)	
Young's modulus	ng's modulus GPa		21	75.1	70	
Density	kg/m ³	1874	2500	2300	2500	
Poisson's ratio	Poisson's ratio 0.25		0.29 0.35		0.33	
Bulk modulus	Ilk modulus GPa N/A		N/A	83.44	N/A	
Shear modulus GPa		N/A	N/A 27.82		N/A	
A ₀	MPa	N/A	N/A	2338	N/A	
A ₁	A ₁ N/A		N/A	2.338	N/A	
A ₂		N/A	N/A	0	N/A	

Table 6. Material properties of lithologies around salt dome used in the analyses.

3.2.4. Interfaces and Fault Model

To investigate causes of well casing damage between the salt dome and the caprock, horizontal shear displacements and vertical strains at the interfaces need to be examined. Thus, interface blocks, special purpose analysis tools, are used to represent the interfaces between overburden and caprock 1; caprock 1 and caprock 2; caprock 2 and salt dome; surrounding rock and dome. The material behavior away from the interfaces is represented by material properties of caprock 1, caprock 2, and salt. The fault is considered in this model so as to better represent the large scale deformation.

There is no interface geometry and material property data obtained from the field. The interfaces and fault are assumed to behave mechanically like sandy soil, thus the overburden material properties (Table 6) are used in the analyses. In geology and related fields, a stratum is a layer of sedimentary rock or soil with internally consistent characteristics that distinguish it from other layers. A "stratum" is the fundamental unit in a stratigraphic column and forms the basis of the study of stratigraphy. Strata are typically seen as bands of different colored or differently structured material exposed in cliffs, road cuts, quarries, and river banks. Individual bands may vary in thickness from a few millimeters to a kilometer or more. In this study, the thicknesses of the interface materials are assumed to be a uniform 14 ft based on the measured largest thickness of the salt/caprock interface from a Weatherford multi-arm caliper survey data [Sattler and Ehgartner, 2011]. The thickness of fault varies from a millimeter to a hundred meters with fault displacement (Figure 16).

Figure 16: Log-log plot of a compilation of 16 fault thickness datasets reported in the literature including the data used by Hull [1988], and the three datasets in Shipton, et al. [2006].

3.3. Cavern Model

3.3.1. Cavern geometry and layout

The cavern shapes are approximately cylindrical and the cavern array is regular as shown in Figure 17. The cavern dimensions used in the model are simplified and are listed in Table 7 based on sonar data. The completion date for the initial leach of each cavern is also listed. The X- and Y-coordinates for the center of each cavern were calculated by subtracting the Universal Transverse Mercator (UTM) coordinates of the center of the dome from UTM coordinates of each cavern. That is, the origin for the coordinate system of the model is the center of the dome.

Figure 17: Perspective view of the cavern field at the Big Hill SPR site from the southeast [Rautman and Lord, 2007]. Elevation unit is feet.

Table 7: Geometric parameters and initial leach completion dates for the fourteen extar	۱t
caverns.	

Cavern ID	X (East)	Y (North)	Z (Vertical Center)	Diameter	Radius	Cavern Top	Cavern Bottom	Cavern Height	Leach Done Date
	m	m	m	m	m	m	m	m	mm/dd/yyyy
101	571.5	-167.9	-979.9	67.1	33.5	-698	-1262	563.9	9/18/1990
102	342.9	-167.9	-979.9	67.1	33.5	-698	-1262	563.9	10/21/1990
103	114.3	-167.9	-979.9	67.1	33.5	-698	-1262	563.9	11/28/1990
104	-114.3	-167.9	-979.9	67.1	33.5	-698	-1262	563.9	10/21/1990
105	-342.9	-167.9	-979.9	67.1	33.5	-698	-1262	563.9	11/11/1990
106	457.2	-365.8	-979.9	67.1	33.5	-698	-1262	563.9	10/16/1990
107	228.6	-365.8	-979.9	67.1	33.5	-698	-1262	563.9	4/24/1990
108	0.0	-365.8	-979.9	67.1	33.5	-698	-1262	563.9	6/14/1990
109	-228.6	-365.8	-979.9	67.1	33.5	-698	-1262	563.9	7/24/1990
110	-457.2	-365.8	-979.9	67.1	33.5	-698	-1262	563.9	4/19/1990
111	342.6	-563.6	-979.9	67.1	33.5	-698	-1262	563.9	7/15/1991
112	114.0	-563.9	-979.9	67.1	33.5	-698	-1262	563.9	6/19/1991
113	-114.6	-563.6	-979.9	67.1	33.5	-698	-1262	563.9	5/1/1991
114	-343.2	-563.6	-979.9	67.1	33.5	-698	-1262	563.9	8/29/1991

3.3.2. Model history

The caverns were leached from April 1990 through August 1991 as listed in Table 7. To simplify the model history for the purposes of the present simulation, it is assumed that all existing caverns were initially leached in 1990, which is considered time t = 1 year in the simulation. The analysis simulates caverns that were leached to full size over a one year period by means of gradually switching from salt to fresh water in the caverns. It was assumed that the SPR caverns were filled with petroleum one year after their initial leaches start. The caverns are simulated as creeping for thirty years. The simulation then performs oil drawdowns in the SPR caverns. Every five years after the 31^{st} year from the beginning of the simulation, every SPR cavern is modeled as being instantaneously leached. Modeling of the drawdown process of the caverns is performed by deleting elements along the walls of the caverns so that the volume is increased by 16% over the current volume. Leaching is assumed to occur uniformly along the entire height of the cavern. However, leaching is not permitted in the floor or roof of the caverns. The 5-year period between each drawdown allows the stress state in the salt to return to a steady-state condition, as will be evidenced in the predicted closure rates. The simulation continued until the 5^{th} drawdown was completed to examine the evolution of the shear displacement and vertical strain in the interfaces for a total of 56 years. Creep closure is allowed to occur in all caverns during the simulation period.

To investigate the cause of oil leaks and evaluate the other casings at the site, the slick well casing above the caverns were recently inspected with Weatherford multi-arm caliper. The time frame for the multi-arm caliper (present day), to survey the oil leaks at the well casings of Caverns 105 and 109, corresponds to approximately 21 years of simulation time and the corresponding analysis results will be compared to the field inspection data. Figure 18 shows the time sequence for this study of the BH site, including the initial cavern leaching and the five drawdown leaches modeled in the simulation.

The pressure condition applied to each cavern is based on an average wellhead pressure of 905 psi which occurs when the wells are operated at normal or static conditions. An analysis of cavern pressures at BH between the years 1990 to 2010 indicates a cavern is pressurized within its normal operating range 74.3% of the time (1351 days during each five year period between drawdown leaches). Other operations, such as fluid transfers and workovers, require lower cavern pressures for 20.8% of the time (380 days during each five year period). Recently, operations have been improved to minimize low cavern pressures to assist in reducing volumetric losses due to creep [Ehgartner, 2010]. Therefore, pressure drops are periodically included to simulate times during workover conditions. For simulation purposes, the pressure drop to 0 psi within each cavern lasts for 3 months which is about 4.9% of the time (89 days) during each 5-year period. Rather than complicating the analyses, the following assumptions were made for the workover scenario. To better simulate actual field conditions, not all caverns are in workover mode at the same time.

Workover scenario:

- A constant pressure (905 psi) indicating a normal condition is applied for the majority of the time.
- For cavern workover, the wellhead pressure is dropped to zero.
- Workover of Cavern 101 begins one year after the initial leach is completed. After that, workovers are performed on Caverns 102 through 114 in numerical order. Workovers begin as soon as the workover of the prior cavern is completed.
- Workover durations are 3 month for all caverns.
- This workover cycle is repeated every 5 years.
- For both normal and workover conditions, the caverns are assumed to be full of oil having a pressure gradient of 0.37 psi/ft of depth.

• Pressure due to the oil head plus the wellhead is applied on the cavern boundary during the normal operation.

Figure 18: Time sequence for the simulation.

3.4. Thermal Conditions

The finite element model includes a depth-dependent temperature gradient which starts at 76.7 °F (24.84 °C) at the surface and increases at the rate of 1.41 °F/100ft (2.57 °C/100 m). The temperature profile is based on the average temperature data recorded in well logs from BH prior to leaching [Ballard and Ehgartner, 2000]. The temperature distribution is important because the creep response of the salt is temperature dependent. Radial temperature gradients due to cavern cooling effects from the cavern contents are not considered in these calculations. Previous 2D cavern studies have shown the predicted cavern deformation to be insensitive to the developed radial thermal gradients [Hoffman, 1992].

3.5. Mesh

A three dimensional mesh, which allows each cavern to be configured individually, was constructed to investigate shear displacements and vertical strains at the interfaces. Figure 19 shows the overview of the finite element mesh of the stratigraphy and cavern field at BH. The mesh has been separated to show the individual material blocks. The X-axis of model is in the East direction, Y-axis is along the North direction, and Z-axis is the vertical direction, up being positive. The mesh consists of nineteen material blocks. Five blocks used are Overburden, Caprock 1, Caprock 2, Salt Dome, and Surrounding Rock. Four blocks are used for the interfaces, and another four blocks are used for the fault. The other six blocks are used for the initial leach and five drawdown leaches for the fourteen caverns.

The Surrounding Rock block encircles Caprock 1, Caprock 2, and Salt Dome. The interface block under the Overburden block is split off from it. The thickness of every interface is 14 ft, thus the thickness of Overburden block becomes 286 ft (= 300 ft - 14 ft). In the same manner, the interface under Caprock 1 block is split off from it, thus the thickness of Caprock 1 block becomes 886 ft. The interface under Caprock 2 block is split off from it, thus the thickness of Caprock 2, and Salt dome is split off from the inside of the Surrounding Rock block, thus the radii of Caprock1, Caprock 2, and Salt Dome are not changed but the inside radius of Surrounding Rock increases 14 ft.

The thickness of the fault (shear zone) is also assumed to be 14 ft. The strike direction and dip of the fault are 22° and 90°, respectively. The strike direction was approximated from Figure 14, and the dip was assumed to be vertical for the simplification. The fault runs between Caverns

103 and 104, Caverns 108 and 109, and Caverns 113 and 114. The fault is assumed to extend down to the top of Salt Dome from the surface.

The interior of the model consists of material blocks Salt Dome, Caprock 1, and Caprock 2. It is idealized as an elliptical cylinder with its 7000 ft major diameter in the N-S direction, 5800 ft minor diameter in the E-W direction, and being 5700 ft high (the salt dome is 4370 ft high). Fourteen cavern blocks exist inside the Salt Dome block. All caverns are idealized as cylinders 1850 ft high with 220 ft diameters. The cylinder blocks are surrounded by five onion ring blocks to idealize five drawdowns. The thickness of ring increases from inside to outside with 8.5, 9.1, 9.8, 10.6, and 11.4 ft to idealize 16% volume increments. The top of caverns is 660 ft down from the top of salt (2290 ft below the surface).

Figure 20 shows the assembled mesh and the boundary conditions. The salt dome is modeled as being subjected to a regional far-field stresses acting from an infinite distance away. The lengths of the confining boundaries are 14,000 ft (two times the dome's major diameter) in the N-S direction and 11,600 ft (two times the dome's minor diameter) in the E-W direction. The mesh consists of 554,540 nodes and 545,580 elements with 19 element blocks, 6 node sets, and 84 side sets. The mesh was created using CUBIT[†] version 13.0.

Figure 19: Overview of the finite element mesh of the stratigraphy and cavern field at Big Hill.

[†] A mesh generation software copyrighted by Sandia Corporation

Figure 20: Finite mesh discretization and boundary conditions at Big Hill.

3.6. Test Objective

This test case will be used to specifically verify the following functional requirements:

- Computes the quasi-static, inelastic response of 3-dimensional solids using a nonlinear conjugate gradient solution algorithm.
- Use hexahedral element with hour glass control.
- Apply initial stress as the element variable.
- Apply no displacement kinematic boundary conditionss.
- Use a pressure boundary condition according to user defined subroutine.
- Models multilayer, multi-material stratigraphy of large physical extent.
- Individually control time intervals in the solution period.
- Use the Power Law Creep (PLC) model.
- Use the Soil and Foams model.
- Use the Drucker-Prager (D-P) yield criterion
- Apply a gravity body force.

The following external interface requirements are also not specifically addressed, but are verified implicitly:

- ASCII input
- GENESIS mesh file
- EXODUS output
- ASCII output

Adagio results will be compared to the results using previously qualified code JAS3D.

3.7. Input/Output

This test was run on RedSky Unclassified SRN which is assembled in the space where legendary system ASCI Red once stood. Red Sky was open for limited user availability in January 2010. RedSky on SRN has 2,816 nodes / 22,528 cores.

The input decks for JAS3D and Adagio are provided in Appendix III-A and B, respectively.

3.8. Evaluation of Results

The analysis using JAS3D version 2.4.C was originally performed on RedSky which Adagio is currently installed on. The detail descriptions of the analysis results are provided in Park and Ehgartner [2012].

Figure 21 shows a comparison of overall volumetric closure normalized to overall storage volume for the fourteen SPR caverns immediately following each leach between JAS3D and Adagio, over the entire simulation period of 56 years. The Adagio results are indicated by symbols. The Adagio results lie on top of the JAS3D results.

Figure 22 shows a comparison between the JAS3D and Adagio results for the volume change of each cavern due to salt creep during the first 11 years. The JAS3D results are indicated by symbols. The JAS3D results match the Adagio results.

Figure 23 shows a comparison between the JAS3D and Adagio results for the predicted relative displacements between Caprock2 and Salt Dome blocks right above the center of each cavern over time. The Adagio results are indicated by dashed lines. The Adagio results are in excellent agreement with the JAS3D results.

JAS3D was previously qualified for use in the SPR program. Overall, since the Adagio results lie match the JAS3D results very closely, Adagio is judged to be performing satisfactorily.

Figure 21: Comparison of overall volumetric closure normalized to overall storage volume for the fourteen SPR caverns immediately following each leach between JAS4D and Adagio. Adagio results are indicated by symbols.

Figure 22: Comparison between the JAS3D and Adagio results for the volume change of each cavern due to salt creep for first 11 years. JAS3D results are indicated by symbols.

Figure 23: Comparison between the JAS3D and Adagio results for the predicted relative displacements between Caprock2 and Salt Dome right above the center of each cavern over time. Adagio results are indicated by dashed lines.

4. CONCLUSIONS AND RECOMMENDATIONS

To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.

The Adagio is now the primary code for SPR geomechanical analyses. Several additional validation tests are recommended to be performed to complete the present code validation.

- Kayenta model The Big Hill wellbore model is constructued to predict well casing damage. The Sandia Geomodel, which is a constitutive model in JAS3D that can be used to express cement behavior, is contained in the wellbore model. The Geomodel was not validated for parallel computing environments, and is no longer supported. The Kayenta model is the successor of the Geomodel in Adagio.
- Elastic-Plastic model Elastic-plastic linear hardening models are used to model materials, typically metals, that undergoing plastic deformation at finite strains. Linear hardening generally refers to the shape of a uniaxial stress-strain curve where the stress increases linearly with the plastic, or permanent, strain. This model is contained in the wellbore model to express the steel casing behavior.
- Multimechanism Deformation (M-D) model This constitutive model considers three fundamental features of a creeping material such as a steady-state creep rate, a transient strain limit, and both a work-hardening and recovery time rate of change [Sobolik, et al., 2010]. The M-D model will be used for future SPR analyses.
- Contact surface algorithm This model is used to express the interbeds between lithologies, and the interfaces between the material blocks for future SPR analyses.

5. REFERENCES

- Ballard, S. and B.L. Ehgartner, 2000, *CAVEMAN Version 3.0: System for SPR Cavern Pressure Analysis*, SAND2000-1751, Sandia National Laboratories, Albuquerque, NM 87185-0750.
- Butcher, B.M. 1997. A Summary of the Sources of Input Parameter Values for the WIPP Final Porosity Surface Calculations, SAND97-0796, Albuquerque, NM: Sandia National Laboratories.
- Carmichael, R. S., 1984, *CRC Handbook of Physical Properties of Rocks*, CRC (Chemical Rubber Company) Press, Inc. Boca Raton, Fl.
- Ehgartner, B. L., S. Bauer, C. Rautman, T. Hinkebein, and S. Wallace, 2003, *Bayou Choctaw 20 Raw Water Drawdown*, Letter to Robert E. Myers, DOE SPR PMO FE-4421 dated April 23, 2003, Sandia National Laboratories, Albuquerque, NM.
- Ehgartner, B.L. and S. Bauer, 2004, Large Scale Salt Deformation: Comments on Subsidence Using Thermal, Creep and Dissolution Modeling to Assess Volumetric Strain, SAND2004-0095C, Sandia National Laboratories, Albuquerque, NM 87185.
- Ehgartner, B.L., 2010, *Ullage Losses*, Memorandum from B. Ehgartner to R.E. Myers, DOE SPR PMO dated October 27, 2010. Sandia National Laboratories, Albuquerque, New Mexico.
- Hoffman, E.L., 1992, *Investigation of Analysis Assumptions for SPR Calculations*, memo to J. K. Linn dated February 7, 1992, Sandia National Laboratories, Albuquerque, New Mexico.
- Hogan, R. G., 1980, Strategic Petroleum Reserve (SPR) Geological Site Characterization Report Bayou Choctaw Salt Dome, SAND80-7140, Sandia National Laboratories, Albuquerque, New Mexico.
- Hull, J., 1988. *Thickness-displacement relationships for deformation zones*, J. Struct. Geol., 10, 431-435.
- Krieg, R. D., 1984, Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project, SAND83-1908, Sandia National Laboratories, Albuquerque, NM 87185.
- Magorian, T.R, and J.T. Neal, 1988. *Strategic Petroleum Reserve (SPR) Addition Geological Site Characterization Studies Big Hill Salt Dome, Texas*, SAND88-2267, Albuquerque, NM: Sandia National Laboratories.
- Mohr, P.J., B.N. Taylor, and D.B. Newell, 2011, *The 2010 CODATA Recommended Values of the Fundamental Physical Constants (Web Version 6.0)*, Available at http://physics.nist.gov/constants, National Institute of Standards and Technology, Gaithersburg, MD 20899.
- Neal, J. T., T. R Magorian, K. O. Byrne, and S. Denzler, 1993, Strategic Petroleum Reserve (SPR) Additional Geologic Site Characterization Studies Bayou Choctaw Salt Dome, Louisiana, SAND92-2284, Sandia National Laboratories, Albuquerque, New Mexico 87185, Livermore, California 94550.

- Park, B.Y., B.L. Ehgartner, M.Y. Lee, and S.R. Sobolik, 2005. *Three Dimensional Simulation for Big Hill Strategic Petroleum Reserve (SPR)*, SAND2005-3216, Sandia National Laboratories, Albuquerque, NM.
- Park, B.Y., B.L. Ehgartner, and M.Y. Lee, 2006. Three Dimensional Simulation for Bayou Choctaw Strategic Petroleum Reserve (SPR), SAND2006-7589, Sandia National Laboratories, Albuquerque, NM.
- Park, B.Y., B.L. Ehgartner, 2012, Interface Modeling to Predict Well Casing Damage for Big Hill Strategic Petroleum Reserve, SAND2012-1206, Sandia National Laboratories, Albuquerque, NM.
- Rautman, C.A. and A.S. Lord, 2007. Sonar Atlas of Caverns Comprising the U.S. Strategic Petroleum Reserve Volume 2: Big Hill Site, Texas, SAND2007-6023, Sandia National Laboratories, Albuquerque, NM.
- Sattler, A. and B. Ehgartner, 2011. *Big Hill Logging Results with the Weatherford Multi Arm Caliper Tasks 1.1.4 Activity a1 and Task 1.1.6 activity a1*, Letter report to Robert E. Myer, DOE Project Manager, dated June 7, 2011.
- Shipton, Z.K., A.M. Soden, J.D. Kirkpatrick, A.M. Bright, and R.J. Lunn, 2006. *How thick is a fault? Fault displacement-thickness scaling revisited. In Abercrombie*, R. (Eds) Earthquakes: Radiated Energy and the Physics of Faulting, pages pp. 193-198, AGU.
- Sobolik, S.R., J.E. Bean, and B.L. Ehgartner, 2010. Application of the Multi-Mechanism Deformation Model for Three-Dimensional Simulations of Salt Behavior for the Strategic Petroleum Reserve, the 44th US Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium held in Salt Lake City, TU June 27-30, 2010.
- Stein, J. S., 2005, *RE: Data of Bayou Choctaw*, E-mail to B.Y. Park, Sandia National Laboratories, Carlsbad, NM, dated July 11, 2005.

APPENDIX I: COMMON FILES

I-A. Units.txt

```
$Unit conversion (A_B = A to B):
$Angul ar:
$ rad = {rad_deg =180/3.1415926536} deg
$ deg = {deg_rad =1/rad_deg} rad
$
$Length:
              {mm_m=0.001 } m
{m_mm=1/mm_m} mm
$ mm
          =
$ m
           _
$ cm
              {cm_mm=10 } mm
           =
             {m_cm=1/cm_mm} cm
{m_cm=0.01 } m
{m_cm=0.01 } m
{m_cm=1/cm_m} cm
{ft_m=0.3048} m
{m_ft=1/ft_m} ft

$ mm
          _
$ cm
           =
$ m
           =
$ ft
          =
$ m
           =
$ in
          = \{in_m=0.0254\} m
$
           = {m_in=1/in_m} in
  m
$
$Pressure:
$Pressure:
$ MPa = {MPa_Pa = 1E6} Pa
$ Pa = {Pa_MPa = 1/MPa_Pa} MPa
$ psi = {psi_Pa=6894.757} Pa
$ Pa = {Pa_psi=1/psi_Pa} psi
$ Pa = {Pa_psf=0.0208854} psf
$ psf = {psf_Pa=1/Pa_psf} Pa
$ MPa = {MPa_psf=MPa_Pa*Pa_psf} psf
$ MPa = {MPa_psi=MPa_Pa*Pa_psi} psi
$ psf = {psf_psi=psf_Pa*Pa_psi} psi
$ psf = {psf_psi=psf_Pa*Pa_psi} psi
$ 
$Time:
$ mus
$ min
$ h
                           = 1e-6
          = {mus_s
                                                    S
              {min_s
{h_min
                           = 60
          =
                                                     S
                           = 60
                                                    min
           =
$ d
$ mon
                           = 24
              {d_h
           =
                                                     h
                           = 30.4166666667
          =
              {mon d
                                                     d
d
                           = 365
$
              {yr_d
   yr
          =
$
  dec
          =
              {dec_yr
                           = 10
                                                     yr
$
              \{cen\_dec = 10\}
  cen
          =
                                                    dec
              \{mil\_cen = 10\}
$ mil
          =
                                                    cen
                           = h_min*min_s
= d_h*h_s
= mon_d*d_s
$ h
           _
              {h_s
                                                     s
$ d
           =
              {d_s
                                                     s
$ mon
          =
              {mon_s
                                                     s
              {yr_s
{dec_s
                           = yr_d*d_s }
= dec_yr*yr_s }
= cen_dec*dec_s}
$
   yr
                                                     S
           =
$
  dec
          _
                                                     s
$
  cen
          =
              {cen_s
                                                    S
                           = mil_cen*cen_s}
$
  mi I
              {mil_s
                                                     s
          =
$
   S
              {s_mus
                           = 1/mus_s
                                                     mus
           =
$
  S
           =
              {s_min
                           = 1/min_s
                                                    min
$
              {s_h
                           = 1/h_s
                                                    h
   s
           =
$
   S
           =
              {s_mon
                           = 1/mon_s
                                                     mon
$
  s
           =
             {s_yr
                           = 1/yr_s
                                                    yr
I-B. BC_stratigraphy.txt
$ Thi cknesses of each layer
                                             t_OB={t_OB=500*ft_m} m
t_CR={t_CR=150*ft_m} m
h_SD={h_SD=7350*ft_m} m
$
   thickness of overburden:
  thickness of caprock:
height of salt dome:
$
$
$ thickness of surrounding rock:t_SR={t_SR=t_CR+h_SD} m
I-C. BC_materials_PLC.txt
$Material Properties
$
$Common:
$ NAME_
$ T
$ R
                 _VALUE
                                                             Description_(UNIT)
                 = {T=300}
= {R=1.9858775}
                                                        $ Absolute temperature (K)
$ Universal gas
                                                                                                          constant
                                                                                                                                (cal / (mol *K))
                                                                                           gas
(previous: 1.988071571)
$-Reference: "Gas constant" in Wikipedia
$
$Halite at Bayou Choctaw:
$ NAME_____VALUE_____
                                                            _Description_(UNIT)___
```

\$ SMF = {SMF = 0.12 } \$ Structure Multiplication Factor from WIPP 25oC Hailite Basel i ne = {E_bch = 31.0E9} = {rho_bch = 2300.} = {nu_bch = 0.2E1 \$ RF_bch \$ Salt redution factor \$ Young's Modul us(Pa) \$ Densi ty (kg/m^3) \$ Poi sson's Rati o \$ E_bch \$ rho_bch \$ nu_bch \$ K_bch = \$ mu_bch = \$ Stress exponent for undefined mechanism \$ Creep constant for undefined mechanism (1/s) \$ Creep constant used in power law creep model (Pa^-n/s) \$ n2_bch = \$ A2_bch \$ A_PLC = = \$ 02_bch $= \{ 0\overline{2} bch = 12000 \}$ \$ Activation energy for undefined mechanism (cal/mol) } \$-Temperatures are not applied to each node in the mesh \$-Reference: Kriet, 1984; Morgan and Krieg, 1988 \$Caprock at Bayou Choctaw: \$ NAME_____VALUE_____ _Description_(UNIT) E_bcc = {E_bcc = 1.572E10} \$ Yc rho_bcc = {rho_bcc = 2319. } be nu_bcc = {nu_bcc = 0.288 } \$ Pc -Reference: Hogan, R. G. , 1980(SAND80-7140) \$ Young' s Modul us(Pa)
\$ Densi ty (kg/m^3)
\$ Poi sson' s Rati o \$ E_bcc \$ rho_bcc \$ \$ \$0verburden: Source burden.Description_(UNIT)\$ NAME______VALUE_____Description_(UNIT)_____\$ E_bco = {E_bco = 0.1E9 }\$ Young's Modulus(Pa)\$ rho_bco = {rho_bco = 1874. }\$ Density (kg/m^3)\$ nu_bco = {nu_bco = 0.33 }\$ Poisson's Ratio\$-Reference: -Reference: Hoffman and Engartner, 1992 (SAND92-2183c) \$Surrounding Rock: ____Description_(UNIT)_____ \$ Young's Modulus(Pa) (Carmichael, 1984) \$ Density (kg/m^3) (Lama and Vutukuri, 1978) \$ Poisson's Ratio (Lama and Vutukuri, 1978) VALUE \$ NAME___ = {E_bcs = 35.0e9 } = {rho_bcs = 2500. } = {nu_bcs = 0.33 } \$ E bcs \$ rho_bcs \$ nu_bcs \$-Reference: \$------I-D. BH_stratigraphy_sftele.txt \$ Thi cknesses of each layer Thickness of soft element {TSE=14.0*ft_m} m
thickness of overburden: t_OB= {t_OB =300*ft_m-TSE} m
thickness of overburden: t_UOB={t_UOB=TSE} m
thickness of caprock (limestone): t_CRL={t_CRL=900*ft_m-TSE} m
thickness of under_c1: t_UC1={t_UC1=TSE} m
thickness of caprock (anhydrite): t_CRN={t_CRN=430*ft_m-TSE} m
thickness of under_c2: t_UC2={t_UC2=TSE} m
height of salt dome: h_SD= {h_SD= +370*ft_m} m
height of model: h_MDL={h_MDL=t_OB+t_UOB+t_UC1+t_CRN+t_UC2+h_SD} m
thickness of surrounding rock: t_SR= {t_SR=h_MDL-t_OB} m
height of dome perimeter: h_DP= {h_DP = h_MDL=t_OB} m \$ \$ thickness of surrounding rock: \$ height of dome perimeter: \$ depth of fault: d_FLT={d_FLT=h_MDL} m I-E. BH materials PLC.txt \$Material Properties \$ \$Common: _VALUE_ _Description_(UNIT) \$ NAME_ $= \{T=300\} \\ = \{R=1.9858775\}$ \$ Absolute temperature (K) \$ T \$ R Uni versal gaś (cal/(mol *K))\$ constant (previ ous: 1. 988071571) \$-Reference: "Gas constant" in Wikipedia \$Halite at Big Hill: _VĂLUE_ \$ NAME____ Description_(UNIT) \$ SMF $= {SMF}$ = 1.5 } \$ Structure Multiplication Factor from WIPP 25oC Hailite Basel i ne \$ RF_bhh
\$ E_bhh ${RF_bhh = 12.5}{E_bhh = 31.0E9}$ Salt redution factor } = \$ Young's Modulus(Pa) \$ Densi ty (kg/m^3)
\$ Poi sson' s Rati o \$ rho_bhh ${\bar{rho}_{bhh} = 2300.}$ = \$ $\{nu_bhh = 0.25\}$ nu_bhh = \$ K_bhh = \$ mu_bhh = \$ n2_bhh \$ A2_bhh \$ A_PLC $= \{n2_bhh = 4.9\} \\ = \{A2_bhh = 9.672E12\} \\ = \{A_PLC = 5.79E-36\}$ \$ Stress exponent for undefined mechanism \$ Creep constant for undefined mechanism (1/s) \$ Creep constant used in power law creep model (Pa^-n/s) $= \{02_bhh = 12000\}$ \$ 02 bhh \$ Activation energy for undefined mechanism (cal/mol)

49

\$-Temperatures are not applied to each node in the mesh
\$-Reference: Kriet, 1984; Morgan and Krieg, 1988 \$ \$0verburden: \$ NAME_ VALUE _Description_(UNIT) \$ E_bho = {E_bho = 0.1E9 \$ Young's Modulus(Pa) $= \{rho_bho = 1874. \\ = \{nu_bho = 0.33\}$ \$ Densi ty (kg/m^3)
\$ Poi sson' s Rati o \$ rho_bho } } \$ nu_bho \$--Reference: Hoffman and Ehgartner, 1992 (SAND92-2183c) \$Caprock 1 (Limestone) at Big Hill: ____Description_(UNIT) \$ Young's Modulus(Pa) \$ Density (kg/m^3) \$ Poisson's Ratio _VALUE_____ = {E_bhl = 21e9 = {rho_bhl = 2500. \$ NAME \$ E_bhī \$ rho_bhl \$ nu_bhl $= \{ nu_bhl = 0.29 \}$ j \$-Reference: Hoffman and Ehgartner, 1992 (SAND92-2183c) \$-Reference: Butcher, 1997 (SAND97-0796) \$ \$Surrounding Rock: _VALUE \$ NAME_ = {E_bhs = 70.0e9 = {rho_bhs = 2500. \$ E_bhs } \$ rho_bhs \$ nu_bhs $= \{nu_bhs = 0.33\}$ \$-Reference:

APPENDIX II. FILES RELATED TO BAYOU CHOCTAW MODEL

II-A. JAS3D Input Deck

title SPR Bayou Choctaw, 24cav5I (BC salt, SMF={SMF=0.12}, E4={E4=35e9}, WHP=each) **\$Material Properties** * Caprock (Material 2): \$ Young's Modulus={E2=1.572E10}(Hogan,R.G., SAND80-7140) \$ Density={rho2=2319.}, Poisson's Ratio={nu2=0.288}(Hogan,R.G., SAND80-7140) * \$Overburden (Material 3): \$ Young's Modulus={E3=0.1E9}(Hoffman and Ehgartner, 1993) \$ Density={rho3=1874.}, Poisson's Ratio={nu3=0.33}(Hoffman and Ehgartner, 1993) \$Surrounding Rock (Material 4): \$ Young's Modulus={E4}(Carmichael, 1984) \$ Density={rho4=2500.}, Poisson's Ratio={nu4=0.33}(Lama and Vutukuri, 1978) = {minute=60.} s
= {hour=60.*minute} s
= {day=24.*hour} s
= {week=7.*day} s \$ minute \$ hour \$ day \$ week - {week=7. day's s
= {month=day*30.} s
= {year=day*365.} s
= {decade=10.*year} s
= {century=10.*decade} s \$ month \$ year \$ decade \$ century start time 0.0 ITERATION PRINT, 20 MAXIMUM ITERATIONS, 40000 TARGET TOLERANCE, 00005 ACCEPTABLE TOLERANCE.00001 predictor scale factor, 0.0,0.0 time steps, 1 PLOT every, 1 PLOT every, 1 print every, 1 write restart frequency, 0 write restart frequency, 0 syst time {1.*day} \$ 1 day - transition to freshwater in well next time {1.*day} next time {1. uay; * . ua; time steps, 9 PLOT every, 9 print every, 9 write restart frequency, 0 next time {10. *day} \$ 10 days time stars 4 time steps, 4 PLOT every, 4 print every, 1 write restart frequency, 0 next time {month} \$ 1 month time steps, 12 PLOT every, 12 PLOT every, 12 print every, 12 write restart frequency, 0 next time {3. *month} \$ 3 months time steps, 9 \$ = (12-3) months PLOT every, 1 print every, 9 \$ 1 year - change to oil/brine/liquid in caverns \$ 540 months = 45 years next time {year} time steps, 540 write restart every, 0 PLOT every, 1 print every, 30 nd time {46.*year} end time \$ 46 years - all of this to setup up initial \$ Output thermal stress external, tmpnod

plot state, EqCS, temp plot nodal, displacement, tmpnod plot element, sig, vonmis, eps, pressure \$ Node boundary
no displacement Z 2 \$ Bottom of mesh no displacement x 3 \$ West side no displacement x 4 \$ East side no displacement y 5 \$ South side no displacement y 6 \$ North side \$ Pressures on side set are the initial cavern pressure 10 user 1. \$ 1\$ pressure in cavern 20 user 1. \$ 2\$ pressure in cavern pressure pressure 30 user 1. \$ 3\$ pressure in cavern pressure 3 40 user 1. \$ 4\$ pressure in cavern 60 user 1. \$ 5\$ pressure in cavern pressure 4 pressure 6 60 User 1. \$ 5\$ pressure in cavern 70 user 1. \$ 6\$ pressure in cavern 71 user 1. \$ 6\$ pressure in cavern 80 user 1. \$ 7\$ pressure in cavern 100 user 1. \$ 8\$ pressure in cavern 110 user 1. \$ 9\$ pressure in cavern 130 user 1. \$10\$ pressure in cavern 150 user 1. \$11\$ pressure in cavern Wall pressure 7 7 Floor and Roof pressure pressure 8A pressure 10 pressure 11 pressure 13 130 user 1. \$10\$ pressure in cavern 150 user 1. \$11\$ pressure in cavern 160 user 1. \$12\$ pressure in cavern 170 user 1. \$13\$ pressure in cavern 180 user 1. \$14\$ pressure in cavern 190 user 1. \$15\$ pressure in cavern 200 user 1. \$16\$ pressure in cavern pressure 15A pressure 16 pressure 17 pressure 18 pressure 19A pressure 20A pressure 240 user 1. \$10\$ pressure in cavern 24 pressure 250 user 1. \$17\$ pressure in cavern 25 pressure 260 user 1. \$18\$ pressure in cavern 25 pressure 260 user 1. \$19\$ pressure in cavern 26 pressure 1010 user 1. \$20\$ pressure in cavern 1018 pressure 1010 user 1. \$20\$ pressure in cavern 102A pressure 1030 user 1. \$22\$ pressure in cavern J1 pressure 1040 user 1. \$23\$ pressure in cavern J1 pressure 1050 user 1. \$24\$ pressure in cavern V1P1 \$ Pressures on side set are the pressures after the 1st leach pressure 151 user 1. \$ pressure in cavern 15A pressure 171 user 1. \$ pressure in cavern 17 pressure 181 user 1. \$ pressure in cavern 18 pressure 191 user 1. \$ pressure in cavern 19A pressure 201 user 1. \$ pressure in cavern 20A pressure 1011 user 1. \$ pressure in cavern 101B \$ Pressures on side set are the pressures after the 2nd leach pressure 152 user 1. \$ pressure in cavern 15A pressure 152 user 1. \$ pressure in cavern 17 pressure 182 user 1. \$ pressure in cavern 18 pressure 182 user 1. \$ pressure in cavern 18 pressure 192 user 1. \$ pressure in cavern 19A pressure 202 user 1. \$ pressure in cavern 20A pressure 1012 user 1. \$ pressure in cavern 101B \$ Pressures on side set are the pressures after the 3rd leach S Pressures on side set are the pressures after pressure 153 user 1. \$ pressure in cavern 15A pressure 173 user 1. \$ pressure in cavern 17 pressure 183 user 1. \$ pressure in cavern 18 pressure 193 user 1. \$ pressure in cavern 19A pressure 203 user 1. \$ pressure in cavern 20A pressure 1013 user 1. \$ pressure in cavern 101B \$ Pressures on side set are the pressures after the 4th leach pressure 154 user 1. \$ pressure in cavern 15A pressure 174 user 1. \$ pressure in cavern 17 pressure 184 user 1. \$ pressure in cavern 18 pressure 194 user 1. \$ pressure in cavern 19A pressure 204 user 1. \$ pressure in cavern 20A pressure 1014 user 1. \$ pressure in cavern 101B \$ Pressures on side set are the pressures after the 5th leach pressure 155 user 1. \$ pressure in cavern 15A pressure 175 user 1. \$ pressure in cavern 17 pressure 185 user 1. \$ pressure in cavern 18 pressure 195 user 1. \$ pressure in cavern 19A pressure 205 user 1. \$ pressure in cavern 20A pressure 1015 user 1. \$ pressure in cavern 101B gravi ty gravitational constant = 9.81 direction 0. 0. -1.

end gravity material 1, power law creep, {rho1}
bulk modulus = {K1/RF}
two mu = {2*mu1/RF} \$ Salt creep constant = {SMF*A} stress exponent = {n} thermal constant = {TCMF*Q} END \$ {thi ck1=2240.28} active limits, 10, 0.0,0.01 $\$ lnitial leaching of cavern material 10, power law creep, {rho1} $\$ Salt bulk modulus = {K1/RF} two mu = $\{2^{mu1/RF}\}$ creep constant = {SMF*A} stress exponent = {n} thermal constant = {TCMF*Q} END active limits, 11, 0.0, {21.*year} \$ 1st
material 11, power law creep, {rho1} \$ Salt
bulk modulus = {K1/RF}
two mu = {2*mu1/RF}
creep constant = {SMF*A}
stress exponent = {n}
thermal constant = {TCME*0} \$ 1st leach at 21 years thermal constant = {TCMF*Q} FND active limits, 12, 0.0, {26.*year} \$ 2nd material 12, power law creep, {rho1} \$ Salt bulk modulus = {K1/RF} \$ 2nd leach at 26 years two mu = {2*mu1/RF} creep constant = {SMF*A} stress exponent = {n} thermal constant = {TCMF*Q} END active limits, 13, 0.0, $\{31. *year\}$ \$ 3rd material 13, power law creep, $\{rho1\}$ \$ Salt bulk modulus = $\{K1/RF\}$ \$ 3rd leach at 31 years two mu = $\{2^{mu1/RF}\}$ creep constant = {SMF*A} stress exponent = {n} thermal constant = {TCMF*Q} END active limits, 14, 0.0,{36.*year} \$ 4th material 14, power law creep, {rho1} \$ Salt bulk modulus = {K1/RF} \$ 4th leach at 36 years two mu = {2*mu1/RF} creep constant = {SMF*A} stress exponent = {n} thermal constant = {TCMF*Q} END active limits, 15, 0.0, {41.*year} \$ 5th leach at 41 years
material 15, power law creep, {rho1} \$ Salt
bulk modulus = {K1/RF}
two mu = {2*mu1/RF}
creep constant = {SMF*A}
stress exponent = {n}
thermal constant = {TCMF*Q}
FND END material 2, elastic, {rho2} \$ Caprock (Gypsum and Limestone) youngs modul us = {E2} poissons ratio = {nu2} end \$ {thi ck2=45.72} material 3, elastic, {rho3}
youngs modulus = {E3}
poissons ratio = {nu3} \$ Overburden (sand) end \$ {thick3=152.4} \$ Rock surrounding salt dome (sandstone) material 4, elastic, {rho4} youngs modul us = {E4} poissons ratio = {nu4} end

```
initial value USIGZZ=Function Z 3, 1., material 3
initial value USIGXX=Function Z 3,
initial value USIGYY=Function Z 3,
                                                                                                 {nu3/(1. -nu3)},
{nu3/(1. -nu3)},
                                                                                                                                             material
                                                                                                                                                                      3
                                                                                                                                             material 3
 initial value USIGZZ=Function Z 2,
                                                                                                  1., material
 initial value USIGXX=Function Z 2,
initial value USIGYY=Function Z 2,
                                                                                                 {nu2/(1. -nu2)},
{nu2/(1. -nu2)},
                                                                                                                                             material
                                                                                                                                                                      2
                                                                                                                                                                       2
                                                                                                                                             material
 initial value USIGZZ=Function Z 4, 1., material
                                                                                                                                    4
 initial value USIGXX=Function Z 4, {nu4/(1.-nu4)},
initial value USIGYY=Function Z 4, {nu4/(1.-nu4)},
                                                                                                                                             material
                                                                                                                                             material 4
initial value USIGZZ=Function Z 1, 1., material
initial value USIGZZ=Function Z 1, 1., material
unitial value USIGXX=Function Z 1, 1., material
initial value USIGYY=Function Z 1, 1., material 1
initial value USIGYY=Function Z 1, 1., material 1
initial value USIGZZ=Function Z 1, 1., material 10
initial value USIGXX=Function Z 1, 1., material
initial value USIGYY=Function Z 1, 1., material
initial value USIGYY=Function Z 1, 1., material
                                                                                                                                     10
initial value USI GYY=Function Z 1, 1., material 10
initial value USI GZZ=Function Z 1, 1., material 11
initial value USI GZZ=Function Z 1, 1., material 11
initial value USI GYY=Function Z 1, 1., material 11
initial value USI GYY=Function Z 1, 1., material 12
initial value USI GZZ=Function Z 1, 1., material 12
initial value USI GZZ=Function Z 1, 1., material 12
initial value USI GZZ=Function Z 1, 1., material 13
initial value USI GZZ=Function Z 1, 1., material 13
initial value USI GZZ=Function Z 1, 1., material 13
initial value USI GZZ=Function Z 1, 1., material 13
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 14
initial value USI GZZ=Function Z 1, 1., material 15
initial value USI GZZ=Function Z 1, 1., material 15
initial value USI GYY=Function Z 1, 1., material 15
                                                                                                                                     10
 function 3 polynomial $ initial stress function for overburden (mat. 3)
{a0_3=0.} $ a0
{a1_3=rho3*9.81} $a1
 end
 function 2 polynomial $ initial stress function for caprock (mat. 2) a0_2=rho2*9.81*thick3-a1_3*thick3 $a0
       {a1_2=rho2*9.81}
                                                             $a1
 end
 function 1 polynomial $ initial stress function for salt (mat. 1, 10~15)
       {a0_1=rho1*9.81*(thi ck2+thi ck3)-a1_2*thi ck2-a1_3*thi ck3} $a0
       {a1_1=rho1*9.81}
                                                             $a1
 end
 function 4 polynomial $ initial stress function for surrounding rock (mat. 4) a0_4=rho4*9.81*thick3-a1_3*thick3 $a0
        {a1_4=rho4*9.81}
                                                             $a1
 end
 exi t
```

II-B. Adagio Input Deck

\$ {thick4= 2286.}

```
{include("/home/bypark/common/units.txt")}
{include("/home/bypark/common/BC_stratigraphy.txt")}
{include("/home/bypark/common/BC_materials_PLC.txt")}
  Time at the initial leaches begin
   bgn_s = {bgn_s=0.} s
Times at the leaches for all SPR caverns start
$
          Dist_s = {Dist_s=bgn_s + 21. *yr_s} s $ {Dist_s/yr_s} years
D2nd_s = {D2nd_s=D1st_s + 5. *yr_s} s $ {D2nd_s/yr_s} years
D3rd_s = {D3rd_s=D2nd_s + 5. *yr_s} s $ {D3rd_s/yr_s} years
D4th_s = {D4th_s=D3rd_s + 5. *yr_s} s $ {D4th_s/yr_s} years
D5th_s = {D5th_s=D4th_s + 5. *yr_s} s $ {D5th_s/yr_s} years
$
$
$
$Time at the simulaton completes
           end_s = {end_s =D5th_s + 5. *yr_s} s $ {end_s/yr_s} years
$ number of nodes = {nnod = 409248.}
  MAXIMUM ITERATIONS = {nmax=10000}
#
#
#
   In-sute stress with stratigraphy
```

Gravity, gr={gr=9.81} (m/s^2) # # {sigv_OB = -rho_bco*gr*t_OB } Pa # Vertical stress at bottom of overburden (top of capročk) # {sigv_CR = sigv_OB-rho_bcc*gr*t_CR } Pa # Vertical stress at bottom of caprock (top of salt dome) # {sigv_SD = sigv_CR-rho_bch*gr*h_SD } Pa # Vertical stress at bottom of salt dome # {sigv_SR = sigv_OB-rho_bcs*gr*t_SR } Pa # Vertical stress at bottom of surrounding rock begin sierra SPR Bayou Choctaw 24cav5d_scn2 BC salt SMF 0.12 E4 3.5e+10 WHP each title SPR Bayou Choctaw, 24cav5d_scn2, BC salt, SMF={SMF}, E_bcs={E_bcs}, WHP=each # Define the file name containing the Fortran 77 user subroutine user subroutine file = usrpbc_bc24cav5d.F define direction y with vector $0.0\ 1.0\ 0.0$ define direction x with vector $1.0\ 0.0\ 0.0$ define direction z with vector $0.0\ 0.0\ 1.0$ define direction negative_z with vector 0.0 0.0 -1.0 define point origin with coordinates 0.0 0.0 0.0 #----- Functions ------# ASCENDING ORDER IS REQUIRED FOR DEFINING FUNCTION begin definition for function function_1 # Gravity type is piecewise linear begin values 0.0 1.0 {end_s} 1.0 0.0 end values end definition for function function_1 #----- Materials -----begin property specification for material mat_1 # Salt dome (salt) density = {rho_bch} density = {rno_bcn}
begin parameters for model power_law_creep
shear modulus = {mu_bch/RF_bch } # (Pa)
bulk modulus = {K_bch/RF_bch } # (Pa)
creep constant = {A_PLC*SMF } #
creep exponent = {n2_bch }
thermal constant = {02_bch/R } # (K)
end parameters for model power_law_creep
end property specification for material mat_1 (Pa^-n/s) begin solid section solid_1 strain incrementation = midpoint_increment hourglass rotation = scaled end solid section solid_1 begin property specification for material mat_2 # Caprock (gysum and limestone)
 density = {rho_bcc}
 begin parameters for model elastic
 youngs modulus = {E_bcc } # (Pa)
 poissons ratio = {nu_bcc }
 end parameters for model elastic
 end property specification for material mat_2 begin solid section solid_2
 strain incrementation = midpoint_increment hourglass rotation = scaled end solid section solid_2 begin property specification for material mat_3 # Overburden (sand)
 density = {rho_bco} begin parameters for model elastic youngs modul us = {E_bco
poissons ratio = {nu_bco # (Pa) } end parameters for model elastic end property specification for material mat_3 begin solid section solid_3 strain incrementation = midpoint_increment hourglass rotation = scaled end solid section solid_3 begin property specification for material mat_4 # Farfield (sandstone)
 density = {rho_bcs} begin parameters for model elastic

youngs modulus = {E_bcs
poissons ratio = {nu_bcs} } # (Pa) end parameters for model elastic end property specification for material mat_4 begin solid section solid_4 strain incrementation = midpoint_increment hourglass rotation = scaled end solid section solid_4 #----- Finite Element Model ----------\$\$ Defined blocks in CUBIT \$ Block 1 = salt dome except caverns \$ 2 = caprock 4 = overburden
4 = surrounding rock (farfield)
10 = initial leach \$ \$ \$ \$ 11 = 1st drawdown leach 12 = 2nd drawdown leach \$ \$ \$ 13 = 3rd drawdown leach 14 = 4th drawdown leach \$ 15 = 5th drawdown leach \$ begin finite element model bc_24cav5d_scn2 Database name = 24cav5d_coar.g Database type = exodusl1 begin parameters for block block_1 # Salt dome material mat_1 solid mechanics use model power_law_creep section = solid_1 end parameters for block block_1 begin parameters for block block_10 # initial leach material mat_1 solid mechanics use model power_law_creep $section = solid_1$ end parameters for block block_10 begin parameters for block block_11 # 1st drawdown leach material mat_1 solid mechanics use model power_law_creep section = solid_1 end parameters for block block_11 begin parameters for block block_12 # 2nd drawdown leach material mat_1 solid mechanics use model power_law_creep section = solid_1 end parameters for block block_12 begin parameters for block block_13 # 3rd drawdown leach material mat_1 ______ solid mechanics use model power_law_creep section = solid_1 end parameters for block block_13 begin parameters for block block_14 # 4th drawdown leach material mat_1 solid mechanics use model power_law_creep $section = solid_1$ end parameters for block block_14 begin parameters for block block_15 # 5th drawdown leach material mat_1 solid mechanics use model power_law_creep section = solid_1 end parameters for block block_15 begin parameters for block block_2 # Caprock material mat_2 solid mechanics use model elastic $section = solid_2$ end parameters for block block_2 begin parameters for block block_3 # Overburden material mat_3

```
solid mechanics use model elastic
section = solid_3
      end parameters for block block_3
     begin parameters for block block_4 # Surrounding rock
           material mat_4
           solid mechanics use model elastic
           section = solid_4
      end parameters for block block_4
end finite element model bc_24cav5d_scn2
begin adagio procedure procedure_1
      #----- Time Step Control ------
     begin time control
          begin time stepping block p0
start time = 0.0
                 begin parameters for adagio region region_1
          number of time steps = 1
end parameters for adagio region region_1
end time stepping block p0
          begin time stepping block p1
start time = 0.01 # 0.01 sec
begin parameters for adagio region region_1
                number of time steps = 99
end parameters for adagio region region_1
           end time stepping block p1
          begin time stepping block p2
                 start time = 1.0
                                                                # 1 sec
                begin parameters for adagio region region_1
number of time_steps = 59
                 end parameters for adagio region region_1
          end time stepping block p2
          begin time stepping block p3
start time = 60.0 # 60 sec = 1 min
begin parameters for adaging region region_1
                     number of time steps = 59
          end parameters for adagio region region_1
end time stepping block p3
          begin time stepping block p4
start time = {h_s} # 3600 sec = 60 min = 1 hr
begin parameters for adagio region region_1
                number of time steps = 23
end parameters for adagio region region_1
           end time stepping block p4
          begin time stepping block p5
start time = {d_s} # 1 day
begin parameters for adagio region region_1
    number of time steps = 9
                 end parameters for adagio region region_1
          end time stepping block p5
          begin time stepping block p6
start time = {10. *d_s} # 10 day
begin parameters for adagio region region_1
number of time steps = 20 #1 step={(mon_s-10. *d_s)/20/d_s} days
and parameters for adagio on region 1
                 end parameters for adagio region region_1
          end time stepping block p6
          begin time stepping block p7
start time = {mon_s} # 1 month
begin parameters for adagio region region_1
    number of time steps = 60 #1 step={(3*mon_s-mon_s)/60/d_s} days
end parameters for adagio region region_1
end time stepping block = 7
end tim
           end time stepping block p7
          begin time stepping block p8
start time = {3.*mon_s} # 3 months
begin parameters for adagio region region_1
number of time steps = 270 #1 step={(yr_s-3*mon_s)/270/d_s} days
                 end parameters for adagio region region_1
          end time stepping block p8
          begin time stepping block p9
```

```
start time = {yr_s} # Change to oil/brine/liquid in caverns: 1 years
begin parameters for adagio region region_1
    number of time steps = 240 # 1 step={(3.*yr_s-yr_s)/240/mon_s} month
    end parameters for adagio region region_1
end time stepping block p9
    begin time stepping block p10
start time = {3.*yr_s} # 3 years
begin parameters for adagio region region_1
number of time steps = 2160 # 1 step={(D1st_s-3.*yr_s)/2160/mon_s} month
end parameters for adagio region region_1
whether stepping block p10
    end time stepping block p10
    begin time stepping block p11
start time = {D1st_s} $ 1st drawdown leach: {D1st_s/yr_s} years
begin parameters for adagio region region_1
number of time steps = 600 # 1 step={(D2nd_s-D1st_s)/600/mon_s} month
end parameters for adagio region region_1
end time stepping block p11
   begin time stepping block p12
start time = {D2nd_s} $ 2nd drawdown leach: {D2nd_s/yr_s} years
begin parameters for adagio region region_1
number of time steps = 600 # 1 step={(D3rd_s-D2nd_s)/600/mon_s} month
end parameters for adagio region region_1
end time stepping block p12
    begin time stepping block p13
start time = {D3rd_s} $ 3rd drawdown leach: {D3rd_s/yr_s} years
begin parameters for adagio region region_1
    number of time steps = 600 # 1 step={(D4th_s-D3rd_s)/600/mon_s} month
end parameters for adagio region region_1
    end time stepping block p13
    begin time stepping block p14
    start time = {D4th_s} $ 4th drawdown leach: {D4th_s/yr_s} years
begin parameters for adagio region region_1
    number of time steps = 600 # 1 step={(D5th_s-D4th_s)/600/mon_s} month
    end parameters for adagio region region_1
end time stepping block p14
    begin time stepping block p15
start time = {D5th_s} $ 5th drawdown leach: {D5th_s/yr_s} years
begin parameters for adagio region region_1
    number of time steps = 600 # 1 step={(end_s-D5th_s)/600/mon_s} month
end parameters for adagio region region_1
ord time stepping block p15
    end time stepping block p15
    termination time = {end_s} # {(end_s-bgn_s)/yr_s} years since simulation starts
end time control
begin adagio region region_1
    use finite element model bc_24cav5d_scn2
    #----- Restart -----
      begin restart data restart_1
          database type = exodusII
output database Name = bc_24cav5d_scn2.rsout
      end restart data restart_1
    #----- Boundary Conditions ------
    begin gravity
include all blocks
         gravitational constant = {gr}
         direction = negative_z
function = function_1
    end gravity
    begin prescribed temperature
include all blocks
         read variable = tmpnod
    end prescribed temperature
    begin fixed displacement # Bottom of mesh
        node set = nodelist_2
components = z
    end fixed displacement
```

#

#

```
begin fixed displacement # West side
          node set = nodelist_3
          components = x
        end fixed displacement
        begin fixed displacement # East side
          node set = nodelist_4
          components = x
        end fixed displacement
        begin fixed displacement # South side
          node set = nodelist_5
          components = y
        end fixed displacement
        begin fixed displacement # North side
          node set = nodelist_6
          components = y
        end fixed displacement
The following sets of "begin pressure blocks" define the
surfaces and time periods associated with the sequential
leachings. Note that "cavity_pressure" is the subroutine
name not the file name. The file name is usrpbc_bc_24cav5d.F
which was specified earlier in this input file.
#
#
#
#
#
#_____
###
        Pressures on side set after the initial leach (Non SPR caverns)
#
        Time period from 0.01 seconds to {end_s/yr_s} years
#
###
       begin pressure
          surface = surface_10
                       surface_10 surface_20 surface_30 surface_40 surface_60 \#
surface_80 surface_100 surface_110 \#
surface_130 surface_160 surface_240 surface_250 surface_260 \#
                       surface_1020 surface_1030 surface_1040 surface_1050
          surface subroutine = cavity_pressure_10
active periods = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15
        end pressure
###
        Pressures on side set after the initial leach (SPR caverns)
#
        Time period from 0.01 seconds to {D1st_s/yr_s} years
###
       begin pressure # pressure in cavern 7 wall
          surface = surface_70
          surface subroutine = cavity_pressure_70
active periods = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
        end pressure
       begin pressure # pressure in cavern 7 floor and ceiling
surface = surface_71
surface subroutine = cavity_pressure_71
active periods = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
ord pressure
        end pressure
       begin pressure # pressure in cavern 15 and 17
surface = surface_150 surface_170
          surface subroutine = cavity_pressure_1517
          active periods = p1 p2 p3 p\overline{4} p5 p6 p\overline{7} p8 p9 p10
        end pressure
       begin pressure # pressure in cavern 18
          surface = surface_180
          surface subroutine = cavity_pressure_18
active periods = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
       end pressure
        begin pressure # pressure in cavern 19
          surface = surface_190
          surface subroutine = cavity_pressure_19
active periods = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
        end pressure
        begin pressure # pressure in cavern 20
          surface = surface_200
          surface subroutine = cavity_pressure_20
```

```
active periods = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
       end pressure
       begin pressure # pressure in cavern 101
          surface = surface_1010
          surface subroutine = cavity_pressure_101
          active periods = p1 p2 p3 p\overline{4} p5 p6 p7 p8 p9 p10
       end pressure
###
       Pressures on side set after the 1st drawdown leach
#
#
       Time period from {D1st_s/yr_s} years to {D2nd_s/yr_s} years
###
       begin pressure # pressure in cavern 15 and 17
          surface = surface_151 surface_171
surface subroutine = cavity_pressure_1517
          active periods = p11
       end pressure
       begin pressure # pressure in cavern 18
surface = surface_181
surface subroutine = cavity_pressure_18
          active periods = p11
       end pressure
       begin pressure # pressure in cavern 19
surface = surface_191
surface subroutine = cavity_pressure_19
          active periods = p11
       end pressure
       begin pressure # pressure in cavern 20
surface = surface_201
surface subroutine = cavity_pressure_20
          active periods = p11
       end pressure
       begin pressure # pressure in cavern 101
          surface = surface_1011
surface subroutine = cavity_pressure_101
          active periods = p11
       end pressure
###
       Pressures on side set after the 2nd drawdown leach
#
#
       Time period from {D2nd_s/yr_s} years to {D3rd_s/yr_s} years
###
       begin pressure # pressure in cavern 15 and 17
          surface = surface_152 surface_172
surface subrouti ne = cavi ty_pressure_1517
          active periods = p12
       end pressure
       begin pressure # pressure in cavern 18
          surface = surface_182
surface subrouti ne = cavi ty_pressure_18
          active periods = p12
       end pressure
       begin pressure # pressure in cavern 19
surface = surface_192
          surface subroutine = cavity_pressure_19
active periods = p12
       end pressure
       begin pressure # pressure in cavern 20
          surface = surface_202
surface subroutine = cavity_pressure_20
          active periods = p12
       end pressure
       begin pressure # pressure in cavern 101
          surface = surface_1012
          surface subroutine = cavity_pressure_101
          active periods = p12
       end pressure
###
       Pressures on side set after the 3rd drawdown leach
```

```
60
```

```
Time period from {D3rd_s/yr_s} years to {D4th_s/yr_s} years
"###
       begin pressure # pressure in cavern 15 and 17
         surface = surface_153 surface_173
         surface subroutine = cavity_pressure_1517
         active periods = p13
       end pressure
       begin pressure # pressure in cavern 18
         surface = surface_{183}
         surface subroutine = cavity_pressure_18
         active periods = p13
       end pressure
       begin pressure # pressure in cavern 19
surface = surface_193
         surface subroutine = cavity_pressure_19
         active periods = p13
       end pressure
       begin pressure # pressure in cavern 20
surface = surface_203
surface subroutine = cavity_pressure_20
active periods = p13
cad uncertainty_pressure_20
       end pressure
       begin pressure # pressure in cavern 101
surface = surface_1013
         surface subroutine = cavity_pressure_101
         active periods = p13
       end pressure
###
       Pressures on side set after the 4th drawdown leach
#
       Time period from {D4th_s/yr_s} years to {D5th_s/yr_s} years
#
###
       begin pressure # pressure in cavern 15 and 17
         surface = surface_154 surface_174
         surface subroutine = cavity_pressure_1517
         active periods = p14
       end pressure
       begin pressure # pressure in cavern 18
         surface = surface_184
         surface subroutine = cavity_pressure_18
         active periods = p14
       end pressure
       begin pressure # pressure in cavern 19
surface = surface_194
surface subroutine = cavity_pressure_19
         active periods = p14
       end pressure
       begin pressure # pressure in cavern 20
surface = surface_204
         surface - surface_204
surface subroutine = cavity_pressure_20
active periods = p14
       end pressure
       begin pressure # pressure in cavern 101
         surface = surface_1014
         surface subroutine = cavity_pressure_101
         active periods = p14
       end pressure
###
       Pressures on side set after the 5th drawdown leach Time period from {D5th_s/yr_s} years to {end_s/yr_s} years
#
#
###
       begin pressure # pressure in cavern 15 and 17
         surface = surface_155 surface_175
         surface subroutine = cavity_pressure_1517
         active periods = p15
       end pressure
       begin pressure # pressure in cavern 18
         surface = surface_185
```

```
61
```

```
surface subroutine = cavity_pressure_18
            active periods = p15
         end pressure
         begin pressure # pressure in cavern 19
            surface = surface_195
            surface subroutine = cavity_pressure_19
            active periods = p15
         end pressure
         begin pressure # pressure in cavern 20
            surface = surface_205
            surface subroutine = cavity_pressure_20
            active periods = p15
         end pressure
         begin pressure # pressure in cavern 101
            surface = surface_1015
surface subroutine = cavity_pressure_101
            active periods = p15
         end pressure
         #----- Element Death ------
###
          Use element death option to simulate leachings
"
###
         begin element death leach_0 # Initial leach
            block = block_{10}
            criterion is always true
            death start time = 0.01
         end element death leach_0
         begin element death leach_1 # 1st drawdown leach
            block = block_11
            criterion is always true
death start time = {D1st_s+d_s}
         end element death leach_1
         begin element death leach_2 # 2nd drawdown leach
            block = block_12
         criterion is always true
death start time = {D2nd_s+d_s}
end element death leach_2
         begin element death leach_3 # 3rd drawdown leach
            block = block_13
criterion is always true
death start time = {D3rd_s+d_s}
         end element death leach_3
         begin element death leach_4 # 4th drawdown leach
        block = block_14
criterion is always true
death start time = {D4th_s+d_s}
end element death leach_4
        begin element death leach_5 # 5th drawdown leach
block = block_15
            criterion is always true
death start time = {D5th_s+d_s}
         end element death leach_5
         #----- Initial Conditions ------
         begin initial condition # Overburden (sand)
            block = block_3
initialize variable name = unrotated_stress
           subroutine real parameter: top = 0.0  # (m) surface
subroutine real parameter: bot = {-t_OB} # (m) overburden bottom
subroutine real parameter: p1 = 0.0  # (Pa) vertical stress at surface
subroutine real parameter: p0 = {sigv_OB} # (Pa) vertical stress at overburden bottom
subroutine real parameter: kvert_xx = {nu_bco/(1.-nu_bco)}
subroutine real parameter: kvert_yy = {nu_bco/(1.-nu_bco)}
subroutine real parameter: kvert_zz = 1.0
subroutine real parameter: kvert_xy = 0.0
            subroutine real parameter: kvert_yz = 0.0
subroutine real parameter: kvert_yz = 0.0
subroutine real parameter: kvert_zx = 0.0
subroutine string parameter: dir = Z
element block subroutine = geo_is
```

end initial condition

begin initial condition # Caprock (gypsum and limestone) block = block_2 initialize variable name = unrotated_stress variable type = element subrouti ne real parameter: top = { -t_OB} # (m) caprock top subrouti ne real parameter: bot = {-t_CR-t_OB} # (m) caprock bottom subrouti ne real parameter: p1 = {sigv_OB } # (Pa) vertical stress at caprock top subrouti ne real parameter: p0 = {sigv_CR } # (Pa) Vertical stress at caprock bottom subrouti ne real parameter: kvert_xx = {nu_bcc/(1.-nu_bcc)} subroutine real parameter: kvert_yy = {nu_bcc/(1.-nu_bcc)} subroutine real parameter: kvert_zz = 1.0 subroutine real parameter: kvert_zz = 0.0 subroutine real parameter: kvert_yz = 0.0 subroutine real parameter: kvert_zz = 0.0 subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition begin initial condition # Salt dome block = block_1 block_10 block_11 block_12 block_13 block_14 block_15 initialize variable name = unrotated_stress The trained evaluation of trained evaluation of the trained evaluation of t subroutine real parameter: kvert_yy = 1.0 subroutine real parameter: kvert_zz = 1.0 subroutine real parameter: kvert_xy = 0.0 subroutine real parameter: kvert_yz = 0.0 subroutine real parameter: kvert_zx = 0.0 subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition begin initial condition # Surrounding rock (sandstone) $block = block_4$ initialize variable name = unrotated_stress variable type = element subroutine real parameter: top = { $-t_0B$ } # (m) Top of caprock subroutine real parameter: bot = { $-h_SD-t_CR-t_0B$ } # (m) Bottom of surrounding rock subroutine real parameter: p1 = {sigv_0B} # (Pa) vertical stress at caprock top subroutine real parameter: p0 = {sigv_SR} # (Pa) vertical stress at surrounding rock bottom subroutine real parameter: kvert_xx = {nu_bcs/(1.-nu_bcs)} subroutine real parameter: kvert_yy = {nu_bcs/(1.-nu_bcs)} subroutine real parameter: kvert_zz = 1.0 subroutine real parameter: $kvert_xy = 0.0$ subroutine real parameter: $kvert_yz = 0.0$ subroutine real parameter: $kvert_xz = 0.0$ subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition #----- Results Output -----begin results output output_1 database name = $bc_24cav5d.e$ database type = exodusl I at time O increment = 0.01 at time 0.01 increment = 0.99increment = 59 at time 1 at time {min_s} at time {h_s} at time {d_s} increment = {h_s-min_s} increment = {I_S-ImT_S} increment = {d_S-h_S} increment = {mon_S-d_S} # At 1 day use 29 day increment increment = {yr_S-mon_S} # At 1 month use 11 month increment increment = {3.*mon_S} # At 1 year use 3 month increment at time {mon_s} at time {yr_s} nodal variables = displacement as displ = temperature as temp = force_external as fext nodal variables nodal variables element variables = temperature as tempe element variables = stress as sig element variables = von_mises as vonmis element variables = unrotated_stress as stress element variables = log_strain as eps element variables = ecreep as eqcs

```
gl obal variables = total_iter as itotal
end results output output_1
#------ Solver -------
begin solver
begin loadstep predictor
type = scale_factor = 1.0 0.0
end loadstep predictor
begin cg
target relative residual = 1.e-7 during p0 p1 p2 p3 p4 p5 p6 p7 p8 # 0-1 year
target relative residual = 1.e-7 during p10 p1 p12 p13 p14 p15
acceptable relative residual = 1.e-7 during p10 p1 p12 p13 p14 p15
acceptable relative residual = 1.e-5 during p9 # Default is 10 times target relative
residual
acceptable relative residual = 2.e-5 during p10 p11 p12 p13 p14 p15
maximum iterations = {nmax}
reset limits 1000000 50000000 1000 0.5
iteration print = 20
line search tangent
preconditioner = diagonal
end cg
end solver
end adagio region region_1
```

```
end adagi o procedure procedure_1
```

end sierra SPR Bayou Choctaw 24cav5d_scn2 BC salt SMF 0.12 E4 3.5e+10 WHP each

APPENDIX III. FILES RELATED TO BIG HILL MODEL

III-A. JAS3D Input Deck

```
{include("/home/bypark/common/units.txt")}
{include("/home/bypark/common/BH_stratigraphy_sftele.txt")}
{include("/home/bypark/common/BH_materials_PLC.txt")}
  $ Time at the initial leaches begin
            bgn_s = {bgn_s=0.} s
  $
     Times at the drawdown leaches for all SPR caverns start
            Dist_s = {Dist_s=bgn_s + 31. *yr_s} s $ {Dist_s/yr_s} years
D2nd_s = {D2nd_s=D1st_s + 5. *yr_s} s $ {D2nd_s/yr_s} years
D3rd_s = {D3rd_s=D2nd_s + 5. *yr_s} s $ {D3rd_s/yr_s} years
D4th_s = {D4th_s=D3rd_s + 5. *yr_s} s $ {D4th_s/yr_s} years
D5th_s = {D5th_s=D4th_s + 5. *yr_s} s $ {D5th_s/yr_s} years
  $
  $Time at the simulaton completes
            end_s = {end_s = D5th_s + 5. *yr_s} s $ {end_s/yr_s} years
   number of nodes = \{nnod = 554540\} 
  $ number of degree of freedom = {ndof = 6*nnod }
  title
 bh_full_5d, PLC, step=plot=1 mon, OB mat. for inter and fault in OB, C1 and C2
 $Read Restart Continue $ No restart
 start time 0.0
ITERATION PRINT,
                                    20
 ITERATION PRINT, 20
MAXIMUM ITERATIONS, {ndof} LEVEL 0 $ was {ndof}
MAXIMUM ITERATIONS, {int(sqrt(ndof))} LEVEL 1 $ sqrt(nnod)/1 (level)
$ Acceptable tolerance is set larger than (or equal to) the target tolerance
TARGET TOLERANCE, 5.e-5 LEVEL 0 $ was 5.e-5
TARGET TOLERANCE, 5.e-4 LEVEL 1 $
ACCEPTABLE TOLERANCE 1.e-4 LEVEL 0 $ was 1.e-5
ACCEPTABLE TOLERANCE 1.e-3 LEVEL 1 $
$ predictor scale factor 0 0 0 0
     predictor scale factor, 0.0,0.0 time steps, {h_s/10} $1 step={h_s/(h_s/10)} sec PLOT every, {h_s/10}
     print every, {h_s/10}
write restart frequency, 0
 next time {h_s}
                                    $ 1 hour
     time steps, 230
PLOT every, 230
                                       $1 step={(d_s-h_s)/230/min_s} mins
     print every, 230
write restart frequency, 0
 next time {1.*d_s}
time steps, 90
                                    $ 1 days
$1 step={(10. *d_s-1. *d_s)/90/h_s} hours
     PLOT every, 90
 PLOT every, 90
print every, 90
write restart frequency, 0
next time {10.*d_s} $ 10 days
time steps, 40 $1 step={(mon_s-10.*d_s)/40/d_s} days
PLOT every, 40
print every 10
time stop:,
PLOT every, 40
print every, 10
write restart frequency, 0
next time {mon_s} $ 1 month
time steps, {ITS=12} $1 step={(3.*mon_s-mon_s)/ITS/d_s} days
PLOT every, {ITS}
print every, {ITS}
write restart frequency, 0
next time {3.*mon_s} $ 3 months
time steps, 9 $1 step={(bgn_s+yr_s-3.*mon_s)/9/d_s} days
 next time {bgn_s+yr_s} $ Change to oil/brine/liquid in caverns: {(bgn_s+yr_s)/yr_s} years
time steps, {(end_s/yr_s-1)*ITS} $ 1 step={(end_s-(bgn_s+yr_s))/((end_s/yr_s-1)*ITS)/mon_s}
 months
     write restart every,
     PLOT every, 1
     print every, {ITS}
  end time {end_s} $ {(end_s-bgn_s)/yr_s} years since simulation starts
  $$ Defined blocks in CUBIT
  $ Block 1=salt dome except caverns
                2=overburden
```

```
$
$
             3=caprock1
             4=caprock2
$
             5=surrounding rock
$
             6=interface between overburden and caprock1
$
             7=interface between caprock1 and caprock2
             8=interface between caprock2 and salt dome
$
$
$
             9=interface between dome and surrounding rock
             11=fault in salt dome
$
             12=fault in overburden; and interface between overburden and caprock1
             13=fault in caprock1; and interface between caprock1 and caprock2
14=fault in caprock2; and interface between caprock2 and salt dome
$
$
$
             100=initial reach
Ś
             101=1st drawdown leach
$
             102=2nd drawdown leach
$
             103=3rd drawdown leach
             104=4th drawdown leach
             105=5th drawdown leach
$
$ Define Functions
$ In-sute stress with stratigraphy
$ Gravity, gr={gr=9.81} (m/s^2)
$
    {sigv_0B = -rho_bho*gr*t_0B} Pa
$
                                                                          $ Vertical stress at bottom of overburden (top of
UOB)
$ {sigv_UOB= sigv_OB -rho_bho*gr*t_UOB} Pa
                                                                               $ Vertical stress at bottom of UOB (top of
caprock1)
    {sigv_CRL= sigv_UOB-rho_bhl*gr*t_CRL} Pa
                                                                           $ Vertical stress at bottom of caprock1 (top of
$
ŪCĪ)
$ {sigv_UC1= sigv_CRL-rho_bho*gr*t_UC1} Pa
                                                                               $ Vertical stress at bottom of UC1 (top of
caprock2)
$
    {sigv_CRN= sigv_UC1-rho_bhn*gr*t_CRN} Pa
                                                                           $ Vertical stress at bottom of caprock2 (top of
ÚC2)
$ {sigv_UC2= sigv_CRN-rho_bho*gr*t_UC2} Pa
                                                                           $ Vertical stress at bottom of UC2 (top of salt
dome)
dome)
$ {sigv_SD = sigv_UC2-rho_bhh*gr*h_SD} Pa $ Vertical stress at bottom of salt dome
$ {sigv_SR = sigv_UOB-rho_bhs*gr*t_SR} Pa $ Vertical stress at bottom of surrounding rock
$ {sigv_DP = sigv_OB -rho_bho*gr*h_DP} Pa $ Vertical stress at bottom of dome perimeter
$ {sigv_FOB= -rho_bho*gr*(t_OB+t_UOB)} Pa $ Vertical stress at bottom of fault in
overburden (top of caprock1)
$ {sigv_FC1= sigv_FOB-rho_bho*gr*(t_CRL+t_UC1)} Pa $ Vertical stress at bottom of fault in
caprock1 (top of caprock2)
$ {sigv_FC2= sigv_FC1-rho_bho*gr*(t_CRN+t_UC2)} Pa $ Vertical stress at bottom of fault in
caprock2 (top of salt dome)
$ {sigv_FSD= sigv_FC2-rho_bhh*gr*h_SD} Pa $ Vertical stress at bottom of fault in salt
dome
dome
Guine

$ ASCENDING ORDER IS REQUIRED FOR DEFINING FUNCTION

function 1 linear $ initial stress function for salt dome area

{-h_SD-t_UC2-t_CRN-t_UC1-t_CRL-t_U0B+t_OB} {sigv_SD} $ Bottom of salt dome

{    -t_UC2-t_CRN-t_UC1-t_CRL-t_U0B+t_OB} {sigv_UC2} $ Bottom of UC2 (top of salt dome)

{    -t_CRN-t_UC1-t_CRL-t_U0B+t_OB} {sigv_UC2} $ Bottom of UC2 (top of UC2)

{    -t_UC1+t_CRL-t_U0B+t_OB} {sigv_UC1} $ Bottom of UC1 (top of caprock2)

{    -t_UC1+t_CRL-t_U0B+t_OB} {sigv_UC1} $ Bottom of caprock1 (top of UC1)

{    -t_U0B+t_OB} {sigv_U0B} $ Bottom of UOB (top of caprock1)

{    -t_0B} {sigv_OB} $ Bottom of overburden (top of U0B)

0.0 $ Top of overburden
end function 1
-t_OB} {sigv_OB } $ Bottom of overburden (top of UOB)
   ò. o
                                                                     0.0
                                                                                       $ Top of overburden
end function 2
ò. o
                                                                     Õ. 0
                                                                                      $ Top of overburden
end function 3
function 4 linear $ initial stress function for fault area
   $ Top of overburden
    Õ. 0
                                                                      Õ. O
end function 4
```

 $\begin{array}{ll} 0.\ 0 & 1.\ 0 \\ \{end_s\} & 1.\ 0 \end{array}$ end function 11

_____ \$ Initial Condition \$\$ Salt dome and each drawdown leach \$ cmpt di initial value USIGZZ=Function Z dir ftn scl matid 1., material 1, initial value USIGXX=Function Z 1., material 1. initial value USIGYY=Function Z 1., 1, material initial value USIGZZ=Function Z 1, 1., material 100 initial value USIGXX=Function Z 1, 1., material 100 initial value USIGYY=Function Z 1, 1., material 100 initial value USIGZZ=Function Z initial value USIGXX=Function Z 1., material 1., material 101 material 101 1 1, 1., material initial value USIGYY=Function Z 1. initial value USIGZZ=Function Z 1, 1., material 102 initial value USIGXX=Function Z 1., material 102 1. 1., material 102 initial value USIGYY=Function Z 1, initial value USIGZZ=Function Z initial value USIGXX=Function Z 1., material 103 1, 1., material 103 1. initial value USIGXX=Function Z initial value USIGXZ=Function Z initial value USIGXZ=Function Z initial value USIGXX=Function Z initial value USIGXZ=Function Z initial value USIGXZ=Function Z initial value USIGXX=Function Z 1., material 103 1, 1., material 104 1, 1., material 104 1, 1. 1., material 104 1., material 105 material 105 1, 1. 1., initial value USIGYY=Function Z 1, 1., material 105 \$\$ Overburden initial value USIGZZ=Function Z initial value USIGXX=Function Z 1., material 2 1. {nu_bho/(1. -nu_bho)}, material 2
{nu_bho/(1. -nu_bho)}, material 2 1, initial value USIGYY=Function Z 1. \$\$ Interface between overburden and caprock1 initial value USIGZZ=Function Z 1., material 6 1. {nu_bho/(1.-nu_bho)}, material 6 {nu_bho/(1.-nu_bho)}, material 6 initial value USIGXX=Function Z 1, initial value USIGYY=Function Z 1. \$\$ Caprock1 initial value USIGZZ=Function Z initial value USIGXX=Function Z 1. , material 3 {nu_bhl/(1.-nu_bhl)}, material 3
{nu_bhl/(1.-nu_bhl)}, material 3 1. initial value USIGYY=Function Z 1. \$ Interface between caprock1 and caprock2 initial value USIGZZ=Function Z 1., material 7 1, initial value USIGXX=Function Z initial value USIGYY=Function Z {nu_bho/(1.-nu_bho)}, material 7 {nu_bho/(1.-nu_bho)}, material 7 1, 1, \$\$ Caprock2 initial value USIGZZ=Function Z initial value USIGXX=Function Z initial value USIGYY=Function Z 1. 1., material 4 {nu_bhn/(1.-nu_bhn)}, material 4
{nu_bhn/(1.-nu_bhn)}, material 4 1. 1. \$\$ Interface between caprock2 and salt dome initial value USIGZZ=Function Z initial value USIGXX=Function Z initial value USIGYY=Function Z 1., material 8 1, {nu_bho/(1.-nu_bho)}, material 8
{nu_bho/(1.-nu_bho)}, material 8 1. 1. \$\$ Surrounding rock initial value USIGZZ=Function Z initial value USIGXX=Function Z initial value USIGYY=Function Z 2. 1. material 5 {nu_bhs/(1.-nu_bhs)}, material 5 {nu_bhs/(1.-nu_bhs)}, material 5 2 2 \$\$ Dome perimeter initial value USIGZZ=Function Z initial value USIGXX=Function Z initial value USIGYY=Function Z material 9 {nu_bho/(1.-nu_bho)}, material 9
{nu_bho/(1.-nu_bho)}, material 9 3. \$\$ Fault in salt dome initial value USIGZZ=Function Z material 11 4. 1., 1., material 11 1., material 11 4, initial value USIGXX=Function Z 1., initial value USIGYY=Function Z 4. \$\$ Fault in overburden; and interface between overburden and caprock1 initial value USIGZZ=Function Z 1., material 2 4, {nu_bho/(1.-nu_bho)}, material 12 {nu_bho/(1.-nu_bho)}, material 12 initial value USIGXX=Function Z 4. initial value USIGYY=Function Z 4, \$\$ Fault in caprock1; and interface between caprock1 and caprock2 initial value USIGZZ=Function Z 4, 1., material 13 {nu_bho/(1.-nu_bho)}, material 13 {nu_bho/(1.-nu_bho)}, material 13 initial value USIGXX=Function Z 4. initial value USIGYY=Function Z 4. \$\$ Fault in caprock2; and interface between caprock2 and salt dome initial value USIGZZ=Function Z initial value USIGXX=Function Z 1., material 14 {nu_bho/(1.-nu_bho)}, material 14 4, 4, initial value USIGYY=Function Z {nu_bho/(1.-nu_bho)}, material 14 4 \$ dir nset no displacement Z 2 \$ Bottom of mesh

\$ West side
\$ East side no displacement x 3 no di spl acement x3no di spl acement x4no di spl acement y5no di spl acement y6 no di spl acement y no di spl acement y \$ South side \$ North side Gravi ty Gravitational Constant {gr} Magnitude 1.0 Use Function 11 Direction 0. 0. -1 End Gravity \$ Pressure Boundaries \$ Pressures on side set after the initial leach \$ sset ftn scl
pressure 1010 user 1. \$ pressure in cavern 1 pressure 1010 user 1. \$ pressure in cavern 1 pressure 1020 user 1. \$ pressure in cavern 2 pressure 1030 user 1. \$ pressure in cavern 3 pressure 1040 user 1. \$ pressure in cavern 4 pressure 1050 user 1. \$ pressure in cavern 5 pressure 1060 user 1. \$ pressure in cavern 6 pressure 1070 user 1. \$ pressure in cavern 7 pressure 1080 user 1. \$ pressure in cavern 7 pressure 1070 user 1. \$ pressure in cavern / pressure 1080 user 1. \$ pressure in cavern 8 pressure 1090 user 1. \$ pressure in cavern 9 pressure 1100 user 1. \$ pressure in cavern 10 pressure 1110 user 1. \$ pressure in cavern 11 pressure 1120 user 1. \$ pressure in cavern 12 pressure 1130 user 1. \$ pressure in cavern 13 pressure 1140 user 1. \$ pressure in cavern 14 pressure 1140 user 1. \$ pressure in cavern 14 \$ Pressures on side set after the 1st drawdown leach pressure 1011 user 1. \$ pressure in cavern 1 pressure 1021 user 1. \$ pressure in cavern 2 pressure 1031 user 1. \$ pressure in cavern 3 pressure 1031 user 1. \$ pressure in cavern 3 pressure 1041 user 1. \$ pressure in cavern 4 pressure 1051 user 1. \$ pressure in cavern 5 pressure 1061 user 1. \$ pressure in cavern 6 pressure 1071 user 1. \$ pressure in cavern 7 pressure 1081 user 1. \$ pressure in cavern 8 pressure 1091 user 1. \$ pressure in cavern 8 pressure 1010 user 1. \$ pressure in cavern 10 pressure 1101 user 1. \$ pressure in cavern 10 pressure 1111 user 1. \$ pressure in cavern 10 pressure 1121 user 1. \$ pressure in cavern 12 pressure 1131 user 1. \$ pressure in cavern 13 pressure 1141 user 1. \$ pressure in cavern 14 \$ Pressures on side set after the 2nd drawdown leach pressure 1012 user 1. \$ pressure in cavern 1 pressure 1022 user 1. \$ pressure in cavern 2 pressure 1022 user 1. \$ pressure in cavern 2 pressure 1032 user 1. \$ pressure in cavern 3 pressure 1042 user 1. \$ pressure in cavern 4 pressure 1052 user 1. \$ pressure in cavern 5 pressure 1062 user 1. \$ pressure in cavern 6 pressure 1072 user 1. \$ pressure in cavern 7 pressure 1082 user 1. \$ pressure in cavern 8 pressure 1082 user 1. \$ pressure in cavern 8 pressure 1082 user 1. \$ pressure in cavern 8 pressure 1092 user 1. \$ pressure in cavern 9 pressure 1102 user 1. \$ pressure in cavern 10 pressure 1112 user 1. \$ pressure in cavern 11 pressure 1122 user 1. \$ pressure in cavern 12 pressure 1132 user 1. \$ pressure in cavern 13 pressure 1142 user 1. \$ pressure in cavern 14 \$ Pressures on side set after the 3rd drawdown leach pressure 1013 user 1. \$ pressure in cavern 1 pressure 1023 user 1. \$ pressure in cavern 2 pressure 1033 user 1. \$ pressure in cavern 3 pressure 1043 user 1. \$ pressure in cavern 4 pressure 1043 user 1. \$ pressure in cavern 4 pressure 1053 user 1. \$ pressure in cavern 5 pressure 1063 user 1. \$ pressure in cavern 6 pressure 1073 user 1. \$ pressure in cavern 7 pressure 1083 user 1. \$ pressure in cavern 8 pressure 1093 user 1. \$ pressure in cavern 9 pressure 1103 user 1. \$ pressure in cavern 10 pressure 1113 user 1. \$ pressure in cavern 10 pressure 1103 user 1. \$ pressure in cavern 10 pressure 1123 user 1. \$ pressure in cavern 11 pressure 1123 user 1. \$ pressure in cavern 12 pressure 1133 user 1. \$ pressure in cavern 13 pressure 1143 user 1. \$ pressure in cavern 14 \$ Pressures on side set after the 4th drawdown leach pressure 1014 user 1. \$ pressure in cavern 1

```
pressure 1024 user 1. $ pressure in cavern 2
pressure 1034 user 1. $ pressure in cavern 3
pressure 1034 user 1. $ pressure in cavern 4
pressure 1054 user 1. $ pressure in cavern 5
pressure 1054 user 1. $ pressure in cavern 6
pressure 1074 user 1. $ pressure in cavern 7
pressure 1074 user 1. $ pressure in cavern 7
pressure 1084 user 1. $ pressure in cavern 8
pressure 1094 user 1. $ pressure in cavern 9
pressure 1094 user 1. $ pressure in cavern 10
pressure 1114 user 1. $ pressure in cavern 11
pressure 1124 user 1. $ pressure in cavern 12
pressure 1134 user 1. $ pressure in cavern 13
pressure 1144 user 1. $ pressure in cavern 14
 $ Pressures on side set after the 5th drawdown leach
pressure 1015 user 1. $ pressure in cavern 1
pressure 1025 user 1. $ pressure in cavern 2
pressure 1025 user 1. $ pressure in cavern 2
pressure 1035 user 1. $ pressure in cavern 3
pressure 1045 user 1. $ pressure in cavern 4
pressure 1055 user 1. $ pressure in cavern 5
pressure 1065 user 1. $ pressure in cavern 6
pressure 1075 user 1. $ pressure in cavern 7
pressure 1085 user 1. $ pressure in cavern 8
pressure 1085 user 1. $ pressure in cavern 8
pressure 1085 user 1. $ pressure in cavern 8
pressure 1095 user 1. $ pressure in cavern 9
pressure 1105 user 1. $ pressure in cavern 10
pressure 1115 user 1. $ pressure in cavern 11
pressure 1125 user 1. $ pressure in cavern 12
pressure 1135 user 1. $ pressure in cavern 13
pressure 1145 user 1. $ pressure in cavern 14
 $____
                        -----
$ Output
 $
thermal stress external, tmpnod
plot state, EqCS, temp
plot nodal, displacement, tmpnod
 plot element, sig, vonmis, eps, pressure
 $
      Define Material Properties
 $
material 1, Power Law Creep, {rho_bhh} $ Sal
TWO MU = {2*mu_bhh/RF_bhh } $ (Pa)
BULK MODULUS = {K_bhh/RF_bhh } $ (Pa)
CREEP CONSTANT = {A_PLC*SMF }
                                                                                                                   $ Salt
                                                                                                                                                   $ (Pa^-n/s)
                                                          = {n2_bhh
   STRESS EXPONENT
   THERMAL CONSTANT
                                                          = \{02\_bhh/R\}
                                                                                                             $ (K)
 END material 1
 $ Salt dome height={h_SD} m
active limits, 100, 0.0, 0.01 \ Initial leaching of caverns
material 100, Power Law Creep, {rho_bhh} $ Salt
TWO MU = {2*mu_bhh/RF_bhh} $ (Pa)
BULK MODULUS = {K_bhh/RF_bhh} $ (Pa)
CREEP CONSTANT = {A_PLC*SMF} $
STRESS EXPONENT = {n2_bhh} }
THERMAL CONSTANT = {02_bhh/R} $ (K)
                                                                                                                                                   $ (Pa^-n/s)
THERMAL CONSTANT
END material 100
active limits, 101, 0.0, {D1st_s} $ 1st leach at {D1st_s/yr_s} years
material 101, Power Law Creep, {rho_bhh} $ Salt
TWO MU = {2*mu_bhh/RF_bhh} $ (Pa)
BULK MODULUS = {K_bhh/RF_bhh} $ (Pa)
CREEP CONSTANT = {A_PLC*SMF} $ (Pa^-n/s)
                                                                                                                                                   $ (Pa^-n/s)
                                                         = {n2_bhh }
= {02_bhh/R }
   STRESS EXPONENT
   THERMAL CONSTANT
                                                                                                             $ (K)
 END material 101
active limits, 102, 0.0, {D2nd_s} $ 2nd leach at {D2nd_s/yr_s} years
material 102, Power Law Creep, {rho_bhh} $ Salt
TWO MU = {2*mu_bhh/RF_bhh} $ (Pa)
BULK MODULUS = {K_bhh/RF_bhh} $ (Pa)
                                                          = {K_bhh/RF_bhh }
= {A_PLC*SMF
   CREEP CONSTANT
                                                                                                                }
                                                                                                                                                   $ (Pa^-n/s)
                                                         = {n2_bhh
   STRESS EXPONENT
                                                         = {n2_bhh }
= {02_bhh/R }
   THERMAL CONSTANT
                                                                                                             $ (K)
END material 102
active limits, 103, 0.0, {D3rd_s} $ 3rd leach at {D3rd_s/yr_s} years
material 103, Power Law Creep, {rho_bhh} $ Salt
TWO MU = {2*mu_bhh/RF_bhh} $ (Pa)
BULK MODULUS = {K_bhh/RF_bhh} $ (Pa)
CREEP CONSTANT = {A_PLC*SMF} $ (Pa^-n/s)
                                                                                                                                                   $ (Pa^-n/s)
                                                          = {n2_bhh
   STRESS EXPONENT
                                                                                        }
```

THERMAL CONSTANT = {02_bhh/R } \$ (K) END material 103 active limits, 104, 0.0, $\{D4th_s\}$ \$ 4th leach at $\{D4th_s/yr_s\}$ years material 104, Power Law Creep, $\{rho_bhh\}$ \$ Salt TWO MU = $\{2^{mu}bh/RF_bhh\}$ \$ (Pa) BULK MODULUS = $\{K_bhh/RF_bhh\}$ \$ (Pa) CREEP CONSTANT = $\{A_PLC^*SMF\}$ \$ (Pa^-n/s STRESS EXPONENT = $\{n2_bhh\}$ THERMAL CONSTANT = $\{02_bhh/R\}$ \$ (K) FND material 104 \$ (Pa^-n/s) END material 104 active limits, 105, 0.0, {D5th_s} \$ 5th leach at {D5th_s/yr_s} years material 105, Power Law Creep, {rho_bhh} \$ Salt TWO MU = {2*mu_bhh/RF_bhh} \$ (Pa) BULK MODULUS = {K_bhh/RF_bhh} \$ (Pa) CREEP CONSTANT = {A_PLC*SMF} \$ (Pa^-n/s) \$ (Pa^-n/s) = {n2_bhh } = {02_bhh/R } STRESS EXPONENT THERMAL CONSTANT \$ (K) END material 105 material 2, elastic, {rho_bho} \$ Overburden (sand)
YOUNGS MODULUS = {E_bho } \$ (Pa)
POISSONS RATIO = {nu_bho } POISSONS RATIO = {nu_bho } END material 2 \$ Overburden thickness={t_OB} m material 3, elastic, {rho_bhl } \$ Caprock 1 (Gypsum and Limestone)
YOUNGS MODULUS = {E_bhl } \$ (Pa)
POLSSONS RATIO = {nu_bhl } END material 3 \$ Caprock1 thickness={t_CRL} m material 4, SOIL N FOAMS, {rho_bhn} \$ Caprock 2 (Anhydrite)
TWO MU = {2.*mu_bhn}
BULK MODULUS = {K_bhn} $AO = \{AO_bbn\}$ $A1 = \{A1_bbn\}$ $A2 = \{A2_bbn\}$ PRESSURE CUTOFF = 0.0 FUNCTION | D = 0end material 4 \$ Caprock2 thickness={t_CRN} m material 5, elastic, {rho_bhs} \$ Farfield (sandstone)
YOUNGS MODULUS = {E_bhs } \$ (Pa)
POISSONS RATO = {nu_bhs } END material 5 \$ Surrounding rock thickness={t SR} m material 6, elastic, {rho_bho} \$ Interface between overburden and caprock1(sand)
YOUNGS MODULUS = {E_bho } \$ (Pa)
POISSONS RATI0 = {nu_bho } END material 6 \$ under_ob thickness={t_UOB} m material 7, elastic, {rho_bho} \$ Interface between caprock1 and caprock2 (sand)
YOUNGS MODULUS = {E_bho } \$ (Pa)
POISSONS RATI0 = {nu_bho } END material 7 \$ under_c1 thickness={t_UC1} m material 8, elastic, {rho_bho} \$ Interface between caprock2 and salt dome (sand)
YOUNGS MODULUS = {E_bho } \$ (Pa)
POISSONS RATIO = {nu_bho } END material 8 \$ under_c2 thickness={t_UC2} m material 9, elastic, {rho_bho} \$ Interface between dome and surrounding rock (sand)
YOUNGS MODULUS = {E_bho } \$ (Pa)
POISSONS RATIO = {nu_bho } END material 9 \$ hight of dome perimeter={h_DP} m material 11, Power Law Creep, {rho_bhh} \$ Fault in salt dome TWO MU = {2*mu_bhh/RF_bhh } \$ (Pa) BULK MODULUS = {K_bhh/RF_bhh } \$ (Pa) = {A_PLC*SMF = {n2_bhh } = {02_bhh/R } \$ CREEP CONSTANT STRESS EXPONENT } \$ (Pa^-n/s) THERMAL CONSTANT \$ (K) END material 11

```
$ height of fault in salt dome={h_SD} m
material 12, elastic, {rho_bho} $ Fault in overburden and under_ob (sand)
YOUNGS MODULUS = {E_bho } $ (Pa)
POISSONS RATIO = {nu_bho }
END material 12
$ height of fault in Overburden={t_OB+t_UOB} m
material 13, elastic, {rho_bho} $ Fault in Caprock 1 and under_c1 (sand)
YOUNGS MODULUS = {E_bho } $ (Pa)
POISSONS RATIO = {nu_bho }
END material 13
$ height of fault in Caprock1={t_CRL+t_UC1} m
material 14, elastic, {rho_bho} $ Fault in Caprock 2 and under_c2 (sand)
YOUNGS MODULUS = {E_bho } $ (Pa)
POISSONS RATIO = {nu_bho}
end material 14
$ height of fault in Caprock2={t_CRN+t_UC2} m
exit
```

III-B. Adagio Input Deck

```
{include("/home/bypark/common/units.txt")}
{include("/home/bypark/common/BH_stratigraphy_sftele.txt")}
{include("/home/bypark/common/BH_materials_PLC.txt")}
 $ Time at the initial leaches begin
                 bgn_s = {bgn_s=0.} s
 $
     bgn_s = {bgn_s=0.}s
Times at the drawdown leaches for all SPR caverns start
D1st_s = {D1st_s=bgn_s + 31.*yr_s} s $ {D1st_s/yr_s} years
D2nd_s = {D2nd_s=D1st_s + 5.*yr_s} s $ {D2nd_s/yr_s} years
D3rd_s = {D3rd_s=D2nd_s + 5.*yr_s} s $ {D3rd_s/yr_s} years
D4th_s = {D4th_s=D3rd_s + 5.*yr_s} s $ {D4th_s/yr_s} years
D5th_s = {D5th_s=D4th_s + 5.*yr_s} s $ {D5th_s/yr_s} years
 $
 $
 $
 $
 $
 $
 $Time at the simulaton completes
                                     = {end_s =D5th_s + 5. *yr_s} s $ {end_s/yr_s} years
                  end_s
 $
     number of nodes = \{nnod = 554540\}
 $
     number of degree of freedom = {ndof = 6*nnod }
MAXIMUM ITERATIONS = {nmax=10000}
 $
 #
 # In-sute stress with stratigraphy
 #
     Gravity, gr={gr=9.81} (m/s^2)
       {sigv_OB = -rho_bho*gr*t_OB} Pa
                                                                                                                                          $ Vertical stress at bottom of overburden (top of
 $
 UOB)
 $
     {sigv_UOB= sigv_OB -rho_bho*gr*t_UOB} Pa
                                                                                                                                                    $ Vertical stress at bottom of UOB (top of
 caprock1)
        {sigv_CRL= sigv_UOB-rho_bhl*gr*t_CRL} Pa
                                                                                                                                            $ Vertical stress at bottom of caprock1 (top of
$ {sigv_UC1= sigv_CRL-rho_bho*gr*t_UC1} Pa
caprock2)
 UC1)
                                                                                                                                                   $ Vertical stress at bottom of UC1 (top of
     {sigv_CRN= sigv_UC1-rho_bhn*gr*t_CRN} Pa
                                                                                                                                            $ Vertical stress at bottom of caprock2 (top of
 UC2)
 $ {sigv_UC2= sigv_CRN-rho_bho*gr*t_UC2} Pa
                                                                                                                                            $ Vertical stress at bottom of UC2 (top of salt
 dome)
dome)
$ {sigv_SD = sigv_UC2-rho_bhh*gr*h_SD} Pa  $ Vertical stress at bottom of salt dome
$ {sigv_SR = sigv_U0B-rho_bhs*gr*t_SR} Pa  $ Vertical stress at bottom of surrounding rock
$ {sigv_DP = sigv_0B -rho_bho*gr*h_DP} Pa  $ Vertical stress at bottom of dome perimeter
$ {sigv_FOB= -rho_bho*gr*(t_OB+t_UOB)} Pa  $ Vertical stress at bottom of fault in
overburden (top of caprock1)
$ {sigv_FC1= sigv_FOB-rho_bho*gr*(t_CRL+t_UC1)} Pa $ Vertical stress at bottom of fault in
caprock1 (top of caprock2)
$ {sigv_FC2= sigv_FC1-rho_bho*gr*(t_CRN+t_UC2)} Pa $ Vertical stress at bottom of fault in
caprock2 (top of salt dome)
$ {sigv_FSD= sigv_FC2-rho_bhh*gr*h_SD} Pa
$ Vertical stress at bottom of fault in salt
$ Vertical stress at bottom of fault in salt
$ Vertical stress at bottom of fault in salt
$ Vertical stress at bottom of fault in salt
$ Vertical stress at bottom of fault in salt
$ Vertical stress at bottom of fault in
$ Vertical stress at bottom of faul
 $ {sigv_FSD= sigv_FC2-rho_bhh*gr*h_SD} Pa
                                                                                                                                                       $ Vertical stress at bottom of fault in salt
 dome
```

```
begin sierra bh_full_5d
```

title bh_full_5d PLC step plot 1 mon OB mat. for inter and fault in OB C1 and C2

```
# Define the file name containing the Fortran 77 user subroutine
   user subroutine file = usrpbc_bh_full_5d.F
   define direction y with vector 0.\;0\;1.\;0\;0.\;0 define direction x with vector 1.\;0\;0.\;0
   define direction z with vector 0.0 0.0 1.0
   define direction negative_z with vector 0.0 0.0 -1.0
   define point origin with coordinates 0.0 0.0 0.0
   #----- Functions ------
   # ASCENDING ORDER IS REQUIRED FOR DEFINING FUNCTION
   begin definition for function function_1 # Gravity
      ťype is piecewise linear
      begin values
       0.0 1.0
{end_s} 1.0
      end values
   end definition for function function_1
   begin definition for function function_2
      type is piecewise linear
begin values
       egin varac_
-10. 0.0
0.0 0.0
10. 8.344444444e+11
      end values
   end definition for function function_2
   #----- Materials ------
   begin property specification for material mat_1 # Salt
      density = {rho_bhh}
  density = {rno_bnn}
begin parameters for model power_law_creep
shear modulus = {mu_bhh/RF_bhh } # (Pa)
bulk modulus = {K_bhh/RF_bhh } # (Pa)
creep constant = {A_PLC*SMF } #
creep exponent = {n2_bhh }
thermal constant = {02_bhh/R } # (K)
end parameters for model power_law_creep
end property specification for material mat_1
                                                                        # (Pa^-n/s)
   begin solid section solid_1
      štrain incrementation = midpoint_increment
      hourglass rotation = scaled
   end solid section solid_1
  begin property specification for material mat_2 # Overburden (sand)
    density = {rho_bho}
    begin parameters for model elastic
    youngs modulus = {E_bho } # (Pa)
    poissons ratio = {nu_bho }
    end parameters for model elastic
end property specification for material mat_2
   begin solid section solid_2
   strain incrementation = midpoint_increment
hourglass rotation = scaled
end solid section solid_2
  begin property specification for material mat_3 # Caprock 1 (Gypsum and Limestone)
    density = {rho_bhl}
    begin parameters for model elastic
      youngs modul us = {E_bhl }
poissons ratio = {nu_bhl }
end parameters for model elastic
                                                         # (Pa)
   end property specification for material mat_3
   begin solid section solid_3
      štrain incrementation = midpoint_increment
      hourglass rotation = scaled
   end solid section solid_3
   begin property specification for material mat_4 # Caprock 2 (Anhydrite)
density = 2300
      begin parameters for model soil_foam
         shear modulus
                                   = {mu_bhn} 
                                                       __# (Pa)
                                    = \{K_bhn\} \\ = \{A0_bhn\} \\ = \{A1_bhn\} \\ = \{A2_bhn\} \\
                                                       # (Pa)
         bulk modulus
         a0
         а1
         a2
```
pressure cutoff = 0.0
pressure function = function_2 end parameters for model soil_foam end property specification for material mat_4 begin solid section solid_4 strain incrementation = midpoint_increment hourglass rotation = scaled end solid section solid_4 begin property specification for material mat_5 # Farfield (Sandstone) begin property specification for material mat. density = {rho_bhs} begin parameters for model elastic youngs modulus = {E_bhs } # (Pa) poissons ratio = {nu_bhs} end parameters for model elastic end property specification for material mat_5 begin solid section solid_5 strain incrementation = midpoint_increment hourglass rotation = scaled end solid section solid_5 \$--_____ \$\$ Defined blocks in CUBIT \$ Block 1=salt dome except caverns 2=overburden \$ \$ 3=caprock1 \$ 4=caprock2 5=surrounding rock \$ \$ 6=interface between overburden and caprock1 \$ \$ 7=interface between caprock1 and caprock2 8=interface between caprock2 and salt dome 9=interface between dome and surrounding rock \$\$\$ 11=fault in salt dome 12=fault in overburden; and interface between overburden and caprock1 13=fault in caprock1; and interface between caprock1 and caprock2 14=fault in caprock2; and interface between caprock2 and salt dome 100=initial reach 101=1st drawdown leach \$ 102=2nd drawdown leach \$ 103=3rd drawdown leach 104=4th drawdown leach \$ 105=5th drawdown leach begin finite element model bh full 5d Database name = /gscratch2/bypark/bh_cs/mesh/sftele/bh_full_5d.g Database type = exodusl1 begin parameters for block block_1 # Salt dome material mat_1 solid mechanics use model power_law_creep section = solid_1 end parameters for block block_1 begin parameters for block block_100 # initial leach material mat_1
solid mechanics use model power_law_creep $section = solid_1$ end parameters for block block_100 begin parameters for block block_101 # 1st drawdown leach material mat_1 solid mechanics use model power_law_creep $section = solid_1$ end parameters for block block_101 begin parameters for block block_102 # 2nd drawdown leach material mat_1 solid mechanics use model power_law_creep section = $solid_1$ end parameters for block block_102 begin parameters for block block_103 # 3rd drawdown leach material mat_1 solid mechanics use model power_law_creep $section = solid_1$

end parameters for block block_103 begin parameters for block block_104 # 4th drawdown leach material mat_1 solid mechanics use model power_law_creep $section = solid_1$ end parameters for block block_104 begin parameters for block block_105 # 5th drawdown leach material mat_1 solid mechanics use model power_law_creep section = solid_1 end parameters for block block_105 begin parameters for block block_2 # Overburden material mat_2 solid mechanics use model elastic section = solid_2 end parameters for block block_2 begin parameters for block block_3 # Caprock 1 material mat_3 solid mechanics use model elastic section = solid_3 end parameters for block block_3 begin parameters for block block_4 # Caprock 2 material mat_4 solid mechanics use model soil_foam $section = solid_4$ end parameters for block block_4 begin parameters for block block_5 # Surrounding rock material mat_5 solid mechanics use model elastic $section = solid_5$ end parameters for block block_5 begin parameters for block block_6 # Interface between overburden and caprock1 material mat_2 solid mechanics use model elastic $section = solid_2$ end parameters for block block_6 begin parameters for block block_7 # Interface between caprock1 and caprock2 material mat_2 solid mechanics use model elastic section = $solid_2$ end parameters for block block_7 begin parameters for block block_8 # Interface between caprock2 and salt dome material mat 2 solid mechanics use model elastic section = $solid_2$ end parameters for block block_8 begin parameters for block block_9 # Interface between dome and surrounding rock material mat_2 solid mechanics use model elastic section = $solid_2$ end parameters for block block_9 begin parameters for block block_11 # Fault in salt dome material mat_1 solid mechanics use model power_law_creep section = $solid_1$ end parameters for block block_11 begin parameters for block block_12 # fault in overburden; and interface between overburden and caprock1 material mat_2 solid mechanics use model elastic $section = solid_2$ end parameters for block block_12 begin parameters for block block_13 # fault in caprock1; and interface between caprock1 and caprock2 material mat_2 solid mechanics use model elastic $section = solid_2$

end parameters for block block_13

begin parameters for block block_14 # fault in caprock2; and interface between caprock2 and salt dome material mat_2 solid mechanics use model elastic $section = solid_2$ end parameters for block block_14 end finite element model bh_full_5d begin adagio procedure procedure_1 #----- Time Step Control -----begin time control begin time stepping block pO start time = 0.0 begin parameters for adagio region region_1 number of time steps = {h_s/10} \$1 step={h_s/(h_s/10)} sec end parameters for adagio region_region_1 end time stepping block p0 begin time stepping block p1
start time = {h_s} \$ 1 hour
begin parameters for adagio region region_1
number of time steps = 230 \$1 step={(d_s-h_s)/230/min_s} mins
end parameters for adagio region region_1
end time stepping block p1 begin time stepping block p2
start time = {1.*d_s} \$ 1 day
begin parameters for adagio region region_1
sumber of time steps = 90 \$1 step={(10.*d_s-1.*d_s)/90/h_s} hours end time stepping block p2 begin time stepping block p3
start time = {10. *d_s} \$ 10 days
begin parameters for adagio region region_1
number of time steps = 40 \$1 step={(mon_s-10. *d_s)/40/d_s} days
end parameters for adagio region_region_1 end time stepping block p3 begin time stepping block p4
start time = {mon_s} \$ 1 month begin parameters for adagio region region_1 number of time steps = {ITS=12} \$1 step={(3. *mon_s-mon_s)/ITS/d_s} days end parameters for adagio region region_1 end time stepping block p4 begin time stepping block p5
start time = {3.*mon_s} \$ 3 months
begin parameters for adagio region region_1
number of time steps = 9 \$1 step={(bgn_s+yr_s-3.*mon_s)/9/d_s} days
end parameters for adagio region region_1
end time stepping block p5 end time stepping block p5 begin time stepping block p6
start time = {bgn_s+yr_s} \$ Change to oil/brine/liquid in caverns: {(bgn_s+yr_s)/yr_s} years begin parameters for adagio region region_1 number of time steps = {(D1st_s-(bgn_s+yr_s))/yr_s*ITS} \$ 1 step={(D1st_s-yr_s)/360} s end parameters for adagio region region_1 end time stepping block p6 begin time stepping block p7
start time = {D1st_s} # {D1st_s/yr_s} years
begin parameters for adagio region region_1
 number of time steps = {(D2nd_s-D1st_s)/yr_s*ITS} # 1 step={(D2nd_s-D1st_s)/60} s
end parameters for adagio region region_1
end block mathematical block mathmatical block mathmatical block mathematical block ma end time stepping block p7 begin time stepping block p8
start time = {D2nd_s} \$ 1st drawdown leach: {D1st_s/yr_s} years begin parameters for adagio region region_1 number of time steps = {(D3rd_s-D2nd_s)/yr_s*ITS} # 1 step={(D3rd_s-D2nd_s)/60} s end parameters for adagio region region_1 end time stepping block p8 begin time stepping block p9

```
start time = {D3rd_s} $ 3rd drawdown leach: {D3rd_s/yr_s} years
begin parameters for adagio region region_1
    number of time steps = {(D4th_s-D3rd_s)/yr_s*ITS} # 1 step={(D4th_s-D3rd_s)/60} s
    end parameters for adagio region region_1
end time stepping block p9
   begin time stepping block p10
start time = {D4th_s} $ 4th drawdown leach: {D4th_s/yr_s} years
begin parameters for adagio region region_1
    number of time steps = {(D5th_s-D4th_s)/yr_s*ITS} # 1 step={(D5th_s-D4th_s)/60} s
end parameters for adagio region region_1
   end time stepping block p10
  begin time stepping block p11
start time = {D5th_s} $ 5th drawdown leach: {D5th_s/yr_s} years
begin parameters for adagio region region_1
number of time steps = { (end_s-D5th_s) /yr_s*ITS} # 1 step={((end_s-D5th_s))/60} s
   end parameters for adagio region region_1
end time stepping block p11
   termination time = {end_s} # {(end_s-bgn_s)/yr_s} years since simulation starts
end time control
begin adagio region region_1
   use finite element model bh_full_5d
   #----- Restart -----
     begin restart data restart_1
        database type = exodusl1
output database Name = bh_ful1_5d.rsout
     end restart data restart_1
   #----- Boundary Conditions ------
   begin gravity
include all blocks
      gravitational constant = {gr}
direction = negative_z
       function = function_1
   end gravity
   begin prescribed temperature
      include all blocks
read variable = tmpnod
   end prescribed temperature
   begin fixed displacement # Bottom of mesh
       node set = nodelist_2
       components = z
   end fixed displacement
   begin fixed displacement # West side
node set = nodelist_3
    components = x
   end fixed displacement
   begin fixed displacement # East side
      node set = nodelist_4
components = x
   end fixed displacement
   begin fixed displacement # South side
       node set = nodelist_5
       components = y
   end fixed displacement
   begin fixed displacement # North side
       node set = nodelist_6
   components = y
end fixed displacement
   The following sets of "begin pressure blocks" define the
surfaces and time periods associated with the sequential
leachings. Note that "cavity_pressure" is the subroutine
name not the file name. The file name is usrpbc_bh_full_5d.F
which was specified earlier in this input file.
```

#

#####

```
76
```

```
Pressures on side set after the initial leach (SPR caverns) Time period from 0.01 seconds to \{D1st_s/yr_s\} years To reduce the impact of the death volume, apply the surface pressure 1 period earlier, i.e. p4 rather than p5 (1 d_s).
#
#
#
#
###
       begin pressure # pressure in cavern 101
          surface = surface_1010
          surface subroutine = cavity_pressure_101
          active periods = p0 p1 p2 p\overline{3} p4 p5 p\overline{6}
       end pressure
       begin pressure # pressure in cavern 102
          surface = surface_1020
surface subroutine = cavity_pressure_102
          active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 103
surface = surface_1030
surface subroutine = cavity_pressure_103
          active periods = p0 p1 p2 \overline{p3} p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 104
          surface = surface_1040
surface subroutine = cavity_pressure_104
          active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 105
surface = surface_1050
          surface subroutine = cavity_pressure_105
          active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 106
          surface = surface_1060
surface subroutine = cavity_pressure_106
          active periods = p0 p1 p2 \overline{p3} p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 107
          surface = surface_1070
          surface subroutine = cavity_pressure_107
          active periods = p0 p1 p2 p\overline{3} p4 p5 p\overline{6}
       end pressure
       begin pressure # pressure in cavern 108
          surface = surface_1080
surface subroutine = cavity_pressure_108
          active periods = p0 p1 p2 p\overline{3} p4 p5 p\overline{6}
       end pressure
       begin pressure # pressure in cavern 109
          surface = surface_1090
          surface subroutine = cavity_pressure_109
active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 110
          surface = surface_1100
          surface subroutine = cavity_pressure_110
          active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 111
          surface = surface_1110
          surface subroutine = cavity_pressure_111
          active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 112
          surface = surface_1120
          surface subroutine = cavity_pressure_112
          active periods = p0 p1 p2 p\overline{3} p4 p5 p\overline{6}
       end pressure
       begin pressure # pressure in cavern 113
```

###

```
77
```

```
surface = surface_1130
         surface subroutine = cavity_pressure_113
active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
       begin pressure # pressure in cavern 114
         surface = surface_1140
surface subroutine = cavity_pressure_114
         active periods = p0 p1 p2 p3 p4 p5 p6
       end pressure
###
#
       Pressures on side set after the 1st drawdown leach
#
       Time period from {D1st_s/yr_s} years to {D2nd_s/yr_s} years
###
       begin pressure # pressure in cavern 101
         surface = surface_1011
surface subroutine = cavity_pressure_101
         active periods = p7
       end pressure
       begin pressure # pressure in cavern 102
         surface = subroutine = cavity_pressure_102
active periods = p7
       end pressure
       begin pressure # pressure in cavern 103
surface = surface_1031
         surface subroutine = cavity_pressure_103
active periods = p7
       end pressure
       begin pressure # pressure in cavern 104
         surface = surface_1041
         surface subroutine = cavity_pressure_104
active periods = p7
       end pressure
       begin pressure # pressure in cavern 105
         surface = surface_1051
         surface subroutine = cavity_pressure_105
active periods = p7
       end pressure
       begin pressure # pressure in cavern 106
         surface = surface_1061
         surface subroutine = cavity_pressure_106
active periods = p7
       end pressure
       begin pressure # pressure in cavern 107
surface = surface_1071
surface subroutine = cavity_pressure_107
         active periods = p7
       end pressure
       begin pressure # pressure in cavern 108
         surface = surface_1081
surface subroutine = cavity_pressure_108
active periods = p7
       end pressure
       begin pressure # pressure in cavern 109
         surface = surface_1091
         surface subroutine = cavity_pressure_109
active periods = p7
       end pressure
       begin pressure # pressure in cavern 110
         surface = surface_1101
         surface subroutine = cavity_pressure_110
         active periods = p7
       end pressure
       begin pressure # pressure in cavern 111
         surface = surface_1111
         surface subroutine = cavity_pressure_111
         active periods = p7
       end pressure
```

```
begin pressure # pressure in cavern 112
         surface = surface_1121
        surface subroutine = cavity_pressure_112
active periods = p7
      end pressure
      begin pressure # pressure in cavern 113
         surface = surface_1131
        surface subroutine = cavity_pressure_113
active periods = p7
      end pressure
      begin pressure # pressure in cavern 114
         surface = surface_1141
        surface subroutine = cavity_pressure_114
active periods = p7
      end pressure
###
      Pressures on side set after the 2nd drawdown leach
      Time period from {D2nd_s/yr_s} years to {D3rd_s/yr_s} years
###
      begin pressure # pressure in cavern 101
surface = surface_1012
         surface subroutine = cavity_pressure_101
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 102
         surface = surface_1022
        active periods = p8
      end pressure
      begin pressure # pressure in cavern 103
surface = surface_1032
         surface subroutine = cavity_pressure_103
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 104
         surface = surface_1042
         surface subroutine = cavity_pressure_104
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 105
         surface = surface_1052
         surface subroutine = cavity_pressure_105
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 106
surface = surface_1062
surface subroutine = cavity_pressure_106
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 107
surface = surface_1072
         surface subroutine = cavity_pressure_107
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 108
         surface = surface_1082
         surface subroutine = cavity_pressure_108
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 109
         surface = surface_1092
         surface subroutine = cavity_pressure_109
         active periods = p8
      end pressure
      begin pressure # pressure in cavern 110
         surface = surface_1102
         surface subroutine = cavity_pressure_110
```

#

```
active periods = p8
       end pressure
      begin pressure # pressure in cavern 111
surface = surface_1112
         surface subroutine = cavity_pressure_111
         active periods = p8
       end pressure
      begin pressure # pressure in cavern 112
         surface = surface_1122
         surface subroutine = cavity_pressure_112
         active periods = p8
       end pressure
      begin pressure # pressure in cavern 113
surface = surface_1132
         surface subroutine = cavity_pressure_113
         active periods = p8
       end pressure
      begin pressure # pressure in cavern 114
surface = surface_1142
surface subroutine = cavity_pressure_114
         active periods = p8
      end pressure
###
      Pressures on side set after the 3rd drawdown leach
       Time period from {D3rd_s/yr_s} years to {D4th_s/yr_s} years
###
      begin pressure # pressure in cavern 101
surface = surface_1013
         surface subroutine = cavity_pressure_101
active periods = p9
       end pressure
      begin pressure # pressure in cavern 102
         surface = surface_1023
         surface subroutine = cavity_pressure_102
         active periods = p9
       end pressure
      begin pressure # pressure in cavern 103
         surface = surface_1033
         surface subroutine = cavity_pressure_103
         active periods = p9
       end pressure
      begin pressure # pressure in cavern 104
         surface = surface_1043
surface subroutine = cavity_pressure_104
         active periods = p9
      end pressure
      begin pressure # pressure in cavern 105
surface = surface_1053
         surface = surface_1055
surface subroutine = cavity_pressure_105
active periods = p9
      end pressure
      begin pressure # pressure in cavern 106
         surface = surface_1063
         surface subroutine = cavity_pressure_106
         active periods = p9
       end pressure
      begin pressure # pressure in cavern 107
         surface = surface_1073
         surface subroutine = cavity_pressure_107
         active periods = p9
       end pressure
      begin pressure # pressure in cavern 108
         surface = surface_1083
         surface subroutine = cavity_pressure_108
         active periods = p9
      end pressure
      begin pressure # pressure in cavern 109
```

#

```
80
```

```
surface = surface_1093
         surface subroutine = cavity_pressure_109
active periods = p9
       end pressure
       begin pressure # pressure in cavern 110
         surface = surface_1103
surface subroutine = cavity_pressure_110
          active periods = p9
       end pressure
       begin pressure # pressure in cavern 111
          surface = surface_1113
          surface subroutine = cavity_pressure_111
          active periods = p9
       end pressure
       begin pressure # pressure in cavern 112
         surface = surface_1123
surface subroutine = cavity_pressure_112
          active periods = p9
       end pressure
       begin pressure # pressure in cavern 113
surface = surface_1133
surface subroutine = cavity_pressure_113
active periods = p9
       end pressure
       begin pressure # pressure in cavern 114
surface = surface_1143
          surface subroutine = cavity_pressure_114
          active periods = p9
       end pressure
###
       Pressures on side set after the 4th drawdown leach
Time period from {D4th_s/yr_s} years to {D5th_s/yr_s} years
###
       begin pressure # pressure in cavern 101
          surface = surface_1014
          surface subroutine = cavity_pressure_101
          active periods = p10
       end pressure
       begin pressure # pressure in cavern 102
         surface = surface_1024
surface subroutine = cavity_pressure_102
          active periods = p10
       end pressure
       begin pressure # pressure in cavern 103
surface = surface_1034
surface subroutine = cavity_pressure_103
          active periods = p10
       end pressure
       begin pressure # pressure in cavern 104
         surface = surface_1044
surface subroutine = cavity_pressure_104
active periods = p10
       end pressure
       begin pressure # pressure in cavern 105
          surface = surface_1054
          surface subroutine = cavity_pressure_105
          active periods = p10
       end pressure
       begin pressure # pressure in cavern 106
          surface = surface_1064
          surface subroutine = cavity_pressure_106
          active periods = p10
       end pressure
       begin pressure # pressure in cavern 107
          surface = surface_1074
          surface subroutine = cavity_pressure_107
          active periods = p10
       end pressure
```

#

```
begin pressure # pressure in cavern 108
         surface = surface_1084
         surface subroutine = cavity_pressure_108
active periods = p10
       end pressure
      begin pressure # pressure in cavern 109
         surface = surface_1094
         surface subroutine = cavity_pressure_109
         active periods = p10
       end pressure
      begin pressure # pressure in cavern 110
         surface = surface_1104
surface subroutine = cavity_pressure_110
         active periods = p10
      end pressure
      begin pressure # pressure in cavern 111
surface = surface_1114
surface subroutine = cavity_pressure_111
         active periods = p10
      end pressure
      begin pressure # pressure in cavern 112
         surface = surface_1124
         surface subroutine = cavity_pressure_112
active periods = p10
       end pressure
      begin pressure # pressure in cavern 113
         surface = surface_1134
         surface subroutine = cavity_pressure_113
         active periods = p10
       end pressure
      begin pressure # pressure in cavern 114
         surface = surface_1144
         surface subroutine = cavity_pressure_114
         active periods = p10
      end pressure
###
      Pressures on side set after the 5th drawdown leach
Time period from {D5th_s/yr_s} years to {end_s/yr_s} years
###
      begin pressure # pressure in cavern 101
         surface = surface_1015
         surface subroutine = cavity_pressure_101
         active periods = p11
       end pressure
      begin pressure # pressure in cavern 102
surface = surface_1025
surface subroutine = cavity_pressure_102
         active periods = p11
      end pressure
      begin pressure # pressure in cavern 103
surface = surface_1035
         surface subroutine = cavity_pressure_103
         active periods = p11
      end pressure
      begin pressure # pressure in cavern 104
         surface = surface_1045
         surface subroutine = cavity_pressure_104
         active periods = p11
      end pressure
       begin pressure # pressure in cavern 105
         surface = surface_1055
         surface subroutine = cavity_pressure_105
         active periods = p11
       end pressure
      begin pressure # pressure in cavern 106
         surface = surface_1065
         surface subroutine = cavity_pressure_106
```

#

```
active periods = p11
      end pressure
      begin pressure # pressure in cavern 107
surface = surface_1075
        surface subroutine = cavity_pressure_107
        active periods = p11
      end pressure
      begin pressure # pressure in cavern 108
        surface = surface_1085
        surface subroutine = cavity_pressure_108
        active periods = p11
      end pressure
      begin pressure # pressure in cavern 109
surface = surface_1095
        surface subroutine = cavity_pressure_109
        active periods = p11
      end pressure
      begin pressure # pressure in cavern 110
surface = surface_1105
        surface subroutine = cavity_pressure_110
        active periods = p11
      end pressure
      begin pressure # pressure in cavern 111
        surface = surface_1115
        surface subroutine = cavity_pressure_111
        active periods = p11
      end pressure
      begin pressure # pressure in cavern 112
         surface = surface_1125
        surface subroutine = cavity_pressure_112
        active periods = p11
      end pressure
      begin pressure # pressure in cavern 113
        surface = surface_1135
        surface subroutine = cavity_pressure_113
        active periods = p11
      end pressure
      begin pressure # pressure in cavern 114
surface = surface_1145
        surface subroutine = cavity_pressure_114
        active periods = p11
      end pressure
      #----- Element Death ------
###
       Use element death option to simulate leachings
..
###
      begin element death leach_0 # Initial leach
        \breve{b}lock = block_100
        criterion is always true
        death start time = 0.01
      end element death leach_0
      begin element death leach_1 # 1st drawdown leach
        block = block_101
criterion is always true
        death start time = {D1st_s+1.0}
      end element death leach_1
      begin element death leach_2 # 2nd drawdown leach
        \breve{b}lock = block_102
        criterion is always true
      death start time = {D2nd_s+1.0}
end element death leach_2
      begin element death leach_3 # 3rd drawdown leach
        block = block_103
criterion is always true
        death start time = {D3rd_s+1.0}
      end element death leach_3
      begin element death leach_4 # 4th drawdown leach
```

```
block = block_{104}
         criterion is always true
         death start time = {D4th_s+1.0}
      end element death leach_4
      begin element death leach_5 # 5th drawdown leach
         \breve{b}lock = block_105
         criterion is always true
         death start time = {D5th_s+1.0}
      end element death leach_5
      #----- Initial Conditions ------
      begin initial condition # Overburden (sand)
         block = block_2 block_6 block_12
         initialize variable name = unrotated stress
         variable type = element
        bottom
         subroutine real parameter: kvert_xx = {nu_bho/(1.-nu_bho)}
        subroutine real parameter: kvert_yy = {nu_bho/(1.-nu_bho)}
subroutine real parameter: kvert_zz = 1.0
         subroutine real parameter: kvert_xy = 0.0
         subroutine real parameter: kvert_yz = 0.0
         subroutine real parameter: kvert_zx_= 0.0
         subroutine string parameter: dir = Z
         element block subroutine = geo_is
      end initial condition
      begin initial condition # Caprock 1 (gypsum and limestone)
         block = block_3
         initialize variable name = unrotated_stress
         variable type = element
        subroutine real parameter: top = { -t_UOB-t_OB} # (m) caprock 1 top
subroutine real parameter: bot = {-t_CRL-t_UOB-t_OB} # (m) Bottom of caprock 1 (top of
UCL)
         subroutine real parameter: p1 = {sigv_UOB} # (Pa) vertical stress at overburden bottom subroutine real parameter: po = {sigv_CRL} # (Pa) Vertical stress at bottom of caprock 1
(top of UCL)
        subroutine real parameter: kvert_xx = {nu_bhl/(1.-nu_bhl)}
subroutine real parameter: kvert_yy = {nu_bhl/(1.-nu_bhl)}
subroutine real parameter: kvert_zz = 1.0
subroutine real parameter: kvert_zy = 0.0
         subroutine real parameter: kvert_yz = 0.0
         subroutine real parameter: kvert_zx = 0.0
        subroutine string parameter: dir = Z
element block subroutine = geo_is
      end initial condition
      begin initial condition # Interface between caprocks 1 and 2
         block = block_7
         initialize variable name = unrotated_stress
         variable type = element
         subroutine real parameter: top = {
                                                      -t_CRL-t_UOB-t_OB} # (m) Bottom of caprock 1 (top
of UC1)
         subroutine real parameter: bot = {-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of UCL (top of
caprock 2)
         subroutine real parameter: p1 = {sigv_CRL} # (Pa) Vertical stress at bottom of caprock 1
(top of UC1)
         subroutine real parameter: po = {sigv_UC1} # (Pa) vertical stress at bottom of UC1 (top
of caprock 2)
         subroutine real parameter: kvert_xx = {nu_bho/(1.-nu_bho)}
                                       kvert_yy = {nu_bho/(1.-nu_bho)}
kvert_zz = 1.0
         subroutine real
                          parameter:
                          parameter:
         subroutine real
         subroutine real parameter:
                                       kvert_xy = 0.0
         subroutine real parameter: kvert_yz = 0.0
         subroutine real parameter: kvert_zx = 0.0
         subroutine string parameter: dir = Z
         element block subroutine = geo_is
      end initial condition
      begin initial condition # Caprock 2 (anhydrite)
         block = block_4
         initialize variable name = unrotated_stress
         variable type = element
         subroutine real parameter: top = {
                                                    -t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of UC1 (top
of caprock 2)
```

subroutine real parameter: bot = {-t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of caprock anhydrite (top of UC2) subroutine real parameter: p1 = {sigv_UC1} # (Pa) vertical stress at bottom of UCL (top of caprock 2) subroutine real parameter: po = {siqv_CRN} # (Pa) vertical stress at bottom of caprock anhydrite (top of UC2) subroutine real parameter: kvert_xx = {nu_bhn/(1. -nu_bhn)} kvert_yy = {nu_bhn/(1. -nu_bhn)} kvert_zz = 1.0 subroutine real parameter: subroutine real parameter: subroutine real parameter: $kvert_xy = 0.0$ subroutine real $kvert_yz = 0.0$ parameter: subroutine real parameter: kvert_zz = 0.0 subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition begin initial condition # Interface between caprock 2 and salt dome \breve{b} lock = block_8 initialize variable name = unrotated_stress variable type = element subrouti ne real -t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of parameter: top = { caprock 2 (top of UC2) subroutine real parameter: bot = {-t_UC2-t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of UC2 (top of salt dome) subroutine real parameter: p1 = {sigv_CRN} # (Pa) vertical stress at bottom of caprock anhydrite (top of UC2) subroutine real parameter: po = {sigv_UC2} # (Pa) vertical stress at bottom of UC2 (top of salt dome) parameter: kvert_xx = {nu_bho/(1.-nu_bho)} subroutine real kvert_yy = {nu_bho/(1.-nu_bho)}
kvert_zz = 1.0 subroutine real parameter: subroutine real parameter: parameter: $kvert_xy = 0.0$ subroutine real subroutine real parameter: $kvert_yz = 0.0$ subroutine real parameter: kvert_zx = 0.0 subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition begin initial condition # Surrounding rock block = block_5 initialize variable name = unrotated_stress variable type = element subroutine real parameter: top = { -t_UOB-t_OB} # (m) Bottom of UOB (top of caprock 1) subroutine real parameter: bot = {-h_SD-t_UC2-t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of surrounding rock subroutine real parameter: p1 = {sigv_UOB} # (Pa) vertical stress at bottom of UOB (top of caprock 1) subroutine real parameter: po = {sigv_SR} # (Pa) vertical stress at bottom of surrounding rock subroutine real parameter: kvert_xx = {nu_bhs/(1.-nu_bhs)} subroutine real parameter: kvert_yy = {nu_bhs/(1.-nu_bhs)} subroutine real parameter: kvert_zz = 1.0 subroutine real parameter: $kvert_xy = 0.0$ subroutine real parameter: $kvert_yz = 0.0$ subroutine real parameter: $kvert_zz = 0.0$ subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition begin initial condition # interface between dome and surrounding rock block = block_9 initialize variable name = unrotated_stress variable type = element subroutine real parameter: top = { -t_UOB-t_OB} # (m) Bottom of UOB (top of caprock 1) subroutine real parameter: bot = {-h_SD-t_UC2-t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of dome perimeter . subroutine real parameter: p1 = {sigv_UOB} # (Pa) vertical stress at bottom of UOB (top of caprock 1) subroutine real parameter: po = {sigv_DP} # (Pa) vertical stress at bottom of dome perimeter subroutine real parameter: kvert_xx = {nu_bho/(1. -nu_bho)} kvert_yy = {nu_bho/(1. -nu_bho)} kvert_zz = 1.0 parameter: subroutine real subroutine real parameter: subroutine real parameter: $kvert_xy = 0.0$ $kvert_yz = 0.0$ subroutine real parameter: subroutine real parameter: kvert_zz = 0.0 subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition

begin initial condition # fault in caprock \breve{b} lock = block_13 block_14 initialize variable name = unrotated_stress variable type = element subroutine real parameter: top = { -t_UOB-t_OB} # (m) Bottom of UOB (top of caprock 1) subroutine réal parameter: bot = {-t_UC2-t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of UC2 (top of salt dome) subroutine real parameter: p1 = {sigv_FOB} # (Pa) vertical stress at bottom of UOB (top of caprock 1) subroutine real parameter: po = {sigv_FC2} # (Pa) vertical stress at bottom of UCN (top of salt dome) subroutine real parameter: kvert_xx = {nu_bho/(1.-nu_bho)} kvert_zz = 1.0
kvert_zz = 0.0 parameter: subroutine real parameter: subroutine real subroutine real parameter: subroutine real parameter: $kvert_yz = 0.0$ subroutine real parameter: $kvert_zz = 0.0$ subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition begin initial condition # Salt dome and fault in the salt dome block = block_1 block_11 block_100 block_101 block_102 block_103 block_104 block_105 initialize variable name = unrotated_stress variable type = element subroutine real parameter: top = { of UC2 (top of salt dome) -t_UC2-t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom subroutine real parameter: bot = {-h_SD-t_UC2-t_CRN-t_UC1-t_CRL-t_UOB-t_OB} # (m) Bottom of salt dome subroutine real parameter: p1 = {sigv_UC2} # (Pa) vertical stress at bottom of UC2 (top of salt dome) po = {sigv_SD} # (Pa) vertical stress at bottom of salt dome kvert_xx = 1.0 subroutine real parameter: subroutine real parameter: subroutine real parameter: $kvert_y = 1.0$ $kvert_z = 1.0$ subroutine real parameter: parameter: subroutine real $kvert_xy = 0.0$ subroutine real parameter: kvert_yz = 0.0 subroutine real parameter: kvert_zx_= 0.0 subroutine string parameter: dir = Z element block subroutine = geo_is end initial condition #----- Results Output -----begin results output output_1 database name = bh_full_5d.e database type = exodusIIincrement = {h_s} increment = {d_s-h_s} increment = {9.*d_s} at time 0.0 at time $\{h_s\}$ at time $\{d_s\}$ at time $\{10. *d_s\}$ increment = $\{mon_s-10. *d_s\}$ at time increment = {mon s} {mon s} 3. *mon_s} at time increment = {mon s] at time {bgn_s+yr_s} increment = {mon_s} nodal variables = displacement as displ nodal variables = temperature as tempn
= force_external as fext nodal variables element variables = temperature as tempe element variables = stress as sig element variables = von_mises as vonmis element variables = unrotated_stress as stress element variables = log_strain as eps # log strain tensor dead element element variables = max_principal_stress as sig1 # Largest eigenvalue of the stress tensor element variables = intermediate_principal_stress as sig2 # Middle eigenvalue of the stress tensor element variables = min_principal_stress as sig3 # Smallest eigenvalue of the stress tensor element variables = stress_invariant_1 as I1 # Trace of the stress tensor, Positive for tensi on # I1 = sig1 + sig2 + sig3
Second invariant of the stress tensor element variables = stress_invariant_2 as I2 # 12 = sig1*sig2 + sig2*sig3 + sig3*sig1 global variables = total_iter as itotal

```
end results output output_1
#------- Solver -------
begin solver
begin loadstep predictor
type = scale_factor
scale factor = 1.0 0.0
end loadstep predictor
begin cg
target relative residual = 1.e-7 during p0 p1 p2 p3 p4 p5 # 0-1 year
target relative residual = 1.e-7 during p6 p7 p8 p9 p10 p11
acceptable relative residual = 1.e-5 during p6 # Default is 10 times target relative
residual
acceptable relative residual = 2.e-5 during p7 p8 p9 p10 p11
maximum iterations = (nmax)
reset limits 1000000 50000000 1000 0.5
iteration print = 20
line search tangent
preconditioner = diagonal
end cg
end solver
end adagio region region_1
end adagio procedure procedure_1
end sierra bh_full_5d
```

DISTRIBUTION

External Distribution

Electronic copies to:

Wayne Elias (<u>wayne.elias@hq.doe.gov</u>) for distribution to DOE SPR Program Office, Washington, DC

Diane Willard (<u>diane.willard@spr.doe.gov</u>) for distribution to DOE and DM SPR Project Management Office, New Orleans, LA

Sandia Distribution

Print copies to:

1	MS0376	J. G. Arguello	1526
1	MS0706	D. L. Lord	6912
1	MS0706	Anna C.S. Lord	6912
5	MS0750	Carolyn Kirby	6913
1	MS0751	M. Y. Lee	6914
2	MS0751	B. Y. Park	6914
1	MS0751	S. R. Sobolik	6914
1	MS1033	S. J. Bauer	6914
1	MS1395	C. G. Herrick	6211

Electronic copies to:

Technical Library

Martin Nemer	1512	mbnemer@sandia.gov
David Rudeen	6211	dkrudee@sandia.gov
John Merson	6910	jamerso@sandia.gov
Giorgia Bettin	6912	gbettin@sandia.gov
Paula Weber	6912	pdgabel@sandia.gov
Barry Roberts	6912	blrober@sandia.gov
David Borns	6912	dlborns@sandia.gov
Karen Gutierrez	6912	kagutie@sandia.gov

9536 (electronic copy)

Sandia National Laboratories