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Abstract

The scale and complexity of problems such as designing power grids or planning for cli-
mate change is growing rapidly, driving the development of complicated computer models.
More complex models have longer run times and incorporate larger numbers of inputs, both
continuous and discrete. For example, a detailed physics model may have continuous vari-
ables such as temperature, height or pressure along with discrete variables that indicate the
choice of a material for a particular piece or the model to be used to calculate air flow. A
power grid design model may have continuous variables such as generation capacity, power
flow or demand along with discrete varibles such as number of generators, number of trans-
mission lines or binary variables to indicate whether or not a node is chosen for generation
expansion [4]. A growing awareness of uncertainty and the desire to make risk-informed
decisions is causing uncertainty quantification (UQ) to be more routine and often required.
UQ provides the underpinnings necessary to establish confidence in models and their use;
therefore, much time and effort is being invested in creating efficient approaches for UQ.
However, these efforts have been focused on models that take continuous variables as in-
puts. When discrete inputs are thrown into the mix, the basic approach is to repeat the UQ
analysis for each combination of discrete inputs or some subset thereof; this rapidly becomes
intractable. Because of the computational complexity inherent in mixed discrete-continuous
models, researchers will focus on the uncertainty in their particular problem finding ways
to take advantage of symmetries, simplifications or structures. For example, uncertainty
propagation in certain dynamical systems can be efficiently carried out after various decom-
position steps or uncertainty propagation in stochastic programming is confined to scenario
generation. Unfortunately models are not always available for such machinations: models
may be embedded in legacy codes, may utilize commercial off the shelf codes or may be cre-
ated by stringing a series of codes together. It is also time consuming to start each problem
from scratch; worse there may not be any simplifications or symmetries to take advantage of.
For these situations a UQ method developed for any black box function is necessary. This
report documents a new conceptual model for performing UQ for mixed discrete-continuous
models which not only applies to any simulator function, but allows the use of the efficient
UQ methods that have been developed for continuous inputs only. The conceptual model is
presented and an estimation procedure is fleshed out for one class of problems. This is ap-
plied to variations of a mixed discrete-continuous optimization test problem. This procedure
provides comparable results to a benchmark solution with fewer function evaluations.
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Chapter 1

Introduction

The scale and complexity of problems such as designing power grids or planning for climate
change is growing rapidly, driving the development of complicated computer models. More
complex models have longer run times and incorporate larger numbers of inputs, both con-
tinuous and discrete. For example, a detailed physics model may have continuous variables
such as temperature, height or pressure along with discrete variables that indicate the choice
of a material for a particular component or the model to be used to calculate air flow. A
power grid design model may have continuous variables such as current, generation capac-
ity, power flow or demand along with discrete varibles such as number of generators [4]. A
growing awareness of uncertainty and the desire to make risk-informed decisions is making
uncertainty quantification (UQ) more routine. UQ provides the underpinnings necessary to
establish confidence in models and their use; therefore, much time and effort is being invested
in creating efficient approaches for UQ. However, these efforts have been focused on models
that take continuous variables as inputs. When discrete inputs are thrown into the mix, the
basic approach is to repeat the UQ analysis for each combination of discrete inputs or some
subset thereof; this rapidly becomes intractable. This report documents a new conceptual
model for performing UQ for mixed discrete-continuous models which not only applies to any
simulator function, but allows the use of the efficient UQ methods that have been developed
for continuous inputs only. The conceptual model and estimation procedure is described for
one class of problems and applied to a mixed discrete-continuous optimization test problem.
This procedure provides comparable results to a benchmark solution with fewer function
evaluations and opens up a new conceptual model for UQ on discrete-continuous models.

Because of the computational complexity inherent in mixed discrete-continuous models,
first researchers will try to focus on the uncertainty in their particular problem finding ways to
take advantage of symmetries, simplifications or structures. For example, uncertainty propa-
gation in certain dynamical systems can be efficiently carried out after various decomposition
steps or uncertainty propagation in stochastic programming is confined to scenario genera-
tion. Unfortunately models are not always available for or amenable to such machinations,
for example, models may be embedded in legacy codes or there may not be a straightforward
way to simplify the problem. In this case, the second step typically relies on one of three
concepts in order to take advantage of the more efficient UQ methods designed for continous
inputs:

1. Separate analysis

11



Perform a separate analysis for each unique combination of discrete variables which
means any UQ method designed for continuous inputs can be employed. While this is
the most comprehensive analysis, it becomes computationally intensive for even modest
numbers of discrete variables. It is often unclear how to combine the results from each
separate analysis into one global uncertainty measurement.

2. Choose one discrete configuration

Assume isotropic model behavior across all unique combinations of discrete variables.
While it is unrealistic to assume that behaviors or correlations calculated with one
combination of discrete variables will extend to all other combinations, UQ methods
designed for continuous inputs can still be used.

3. Treat a discrete variable as if it were a continuous one.

This is unsatisfactory at best, e.g., for a variable such as height of an air vent unit
location (low, medium or high), and incomprehensible at worst, e.g., when a component
can be made of one of four materials. Once again, UQ methods designed for continuous
inputs can be used.

The basic UQ process has its roots in the law of large numbers. It is based on sampling the
model or some approximation to the model [13, 28]. Summary statistics are then calculated
from the outputs such as the mean, variance or pdf. The output pdfs are discrete approxima-
tions to the “true” pdf of model output values. The efforts expended to create more efficient
UQ methods for continuous inputs are focused on three things:

A. sampling procedures

More efficient sampling procedures strive to get the maximum information on which
to base the output statistics for the minimum number of actual functional evaluations.
The statistics here are calculated using actual function evaluations. Latin hypercube
sampling (LHS) [12], importance sampling [26] or grids are examples of efficient sampling
approaches.

B. reliability methods

Reliability methods seek to answer the question: what is the probability the function
value will exceed k? expand a bit here?

C. surrogate models or response surfaces

These are approximating surfaces based on a small set of model evaluations. Samples
from this approximate surface provide the base for the output statistics. Gaussian pro-
cess models (GP), spline fits or polynomial chaos expansions (PCE) [8] are examples of
surrogate approaches.

None of these methods were developed with discrete inputs in mind; in fact, many rely on
smoothness or continuity assumptions that make direct application suspect or impossible.
LHS is the only method that easily generalizes to both discrete and and continuous inputs.

12



This report introduces a new concept: aggregating and transforming discrete variables
into continuous probabilistic ones. This concept provides a natural means of performing
uncertainty quantification on mixed variable models that is significantly more tractable than
doing separate analyses on each combination of discrete variables (as in 1 above) while
retaining more information than using one set of discrete combinations (as in 2 above) or
treating a discrete variable as if it were continuous (as in 3).

The key idea is to replace a set of discrete variables by an associated probability, for
example, the probability the set of variables has a particular effect on a quantity of interest.
This approach has two distinct advantages: one, it directly incorporates uncertainty into the
model by taking into account that the state or effect of a discrete variable may be unknown,
and two, it makes possible the use of efficient UQ methods designed for continuous inputs.
This approach is not related to optimization nor is it sensitivity analysis, but an efficient way
to determine the overall variability in output values given the uncertain continuous inputs
and the variability stemming from the complete set or some subset of discrete variables. This
approach has one more desirable property: it satisfies the simplicity property laid out by [22],
“sets or subgroups of inputs can be treated as single entities (factors)”.

Detailed analysis is required to delineate classes of problems for which this new approach
will be effective, especially since the nature of the probabilistic transformation will be dif-
ferent for each class of problems. In this report I define a class of problems called model
choice problems; a second possible class of problems is presented in the discussion. Model
choice problems have a moderate number of discrete variables plus continuous variables and
moderate to long simulator run times. These characteristics make full LHS extremely time
consuming and the moderate number of discrete variables prevents a full analysis for each
separate configuration of discrete variables. For example, engineering applications are de-
tailed physics-based models with a variety of continuous and discrete inputs. Examples of
discrete inputs include a metal/material for a specific part or the model used to calculate
turbulence. Many of the discrete choices will be associated with continuous properties within
the black box of the simulator; for example, a material choice will have a hardening curve,
density or melting temperature. The both the discrete and continuous variables are assumed
to have known or estimated probability distributions. The model output (also called function,
simulator, objective function, cost function) is known and continuous with a single output;
extension to multiple outputs is straightforward.

13
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Chapter 2

Methods

2.1 Conceptual Model

The key to this new approach is to transform the discrete inputs into a continuous inputs
so that UQ methods designed for continuous inputs can be used. One can also think of this
process as summarizing the net effect of the discrete choices or as averaging over the discrete
effects. Let f represent the output function of discrete inputs D and continuous inputs C.
The traditional UQ process is:

1. define the densities for all inputs

2. propagate the uncertainties through the function

Figures 2.1 to 2.3 illustrate the new concept which has three general steps:

1. decompose the function f(D,C) (See Figure 2.1)

2. transform the discrete variable into a continuous variable and estimate the empirical
probability distribution function of this continuous variable (epdf) of the effects of the
discrete variables (See Figure 2.2)

3. use a UQ method designed for continuous inputs to propagate the uncertainties through
the function (See Figure 2.3)

The transformation of the discrete variables into a continuous random variable starts by
forcing an additive decomposition of the original function.

f(D,C) ≈ gD(D) + gC(C) (2.1)

≈ X + gC(C) (2.2)

where the random variable X has a probability density function equal to the pdf of gD(D).
The word “force” is chosen to emphasize the fact that such a decomposition may not be
additive in actuality. Because of this, any function with interactions between its discrete and
continuous variables will always have an approximate solution, never an exact one; see the
discussion for ideas on how to capture the error. With this decomposition in hand, the pdf of

15



f(D,C)

+

g_Cg_D

Figure 2.1. UQ process step one: decompose f(D,C) into
gD and gC

X = gD can be summarized with a histogram or estimated. Since the effects of the discrete
variables are now summarized in the pdf of a continuous variable, any UQ method designed
for continuous inputs can be employed to characterize the uncertainty in the entire problem.

The biggest hurdle is to efficiently estimate the functions gD and gC which are generally
high dimensional functions. The estimated probability distribution of X = gD must capture
the net effect of all discrete variables including any correlated effects induced by combinations
of discrete variables. Furthermore, it must accurately represent functional outputs. The
estimated probability distribution of X = gD describes the variability in the system due to
changes in discrete variables and is subsequently employed in the full uncertainty analysis.
As a side note, the distribution of values for each variable set can be retained to give some
information about variability sensitivities. After the effects of the discrete variables are
captured, the uncertainty analysis is carried out with a UQ method designed for continuous
inputs.

2.2 Functional Decomposition

Functional decompositions are common techniques for numerical investigations of complex
functions, i.e., linear regression, Taylor series, linearization. Sobol’ defined an ANOVA-
representation in [24] for an integrable function f(x) where x has dimension k as:

fD(x) = f0 +
k∑
i

fxi(xi) +
k∑

i<j

fxixj(xi, xj) + . . .+ gx1x2...xk(x1, x2, . . . , xk)

16



d_2

g_Dd_3

d_1

discrete inputs

on or off

{1, 2, 3, 4, 5}

Figure 2.2. UQ process step two: estimate epdf of gD

continuous inputs

epdf of g_D

g_C

epdf of f(D,C)

Figure 2.3. UQ process step three: use a UQ method de-
signed for continuous inputs to estimate the epdf of f(D,C)
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(integrable and square integrable functions are defined in the appendix). (define component
functions) Rabitz et al. use the ANOVA-representation as the basis for high dimensional
model representation (HDMR) asserting that lower dimensional component functions are
sufficient to represent most functions due to low levels of input interactions. A low level of
input interactions means that most inputs in their interactions with large numbers of other
variables simply do not appreciably impact the output function [15]. Equation 2.1 can be
viewed as a type of ANOVA/HDMR representation where interactions between discrete and
continuous variables are suppressed, but interactions within discrete or continuous variable
sets are allowed. Note that the ANOVA/HDMR decomposition gives no guidance on how to
estimate the component functions. Integration could be used to project the original function
down to the component function’s dimensions, but this would involve many more functional
evaluations than any direct UQ method. This is an area of active research; see for example
[17, 16, 5, 14, 10].

2.3 Model Choice Problems

Recall that model choice problems involve moderate numbers of discrete variables and long
run times and that the new concept requires the probabilistic effect of all possible discrete
choices on the model to be captured within a single continuous variable X = gD which can
then be used in a UQ method designed for continuous inputs (see Figure 2.1).

2.3.1 The form of gD using ANOVA/HDMR

The ANOVA/HDMR decomposition of gD where D = (d1, d2, . . . , dk) are the k discrete
inputs, and C = (c1, c2, . . . , cl) are the l continuous inputs, takes this form:

gD(D) = f0 +
k∑
i

gdi(di) +
k∑

i<j

gdidj(di, dj) + . . .+ gd1d2...dk(d1, d2, . . . , dk).

The first term, f0, is the average value of the original function. The first summation is over
functions of single variables, the next over pairs of variables, the next over triples, etc. The
last term contains any residual contributions from interactions of all the discrete inputs. The
decomposition in its entirety will be equal to the original function and unique given certain
orthogonality conditions on the gi ([16]).

Cut-HDMR is one method of evaluating the component functions. In cut-HDMR speci-
fication of the component functions occurs around anchor points on a regular grid of input
points. Define input points around the anchor point as:

(di,D
∗

i ) = (d∗1, . . . , d
∗

i−1, di, d
∗

i+1, . . . , d
∗

k) (2.3)

(di, dj,D
∗

ij) = (d∗1, . . . , d
∗

i−1, di, d
∗

i+1, . . . , d
∗

j−1, dj , d
∗

j+1, . . . , d
∗

k)
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The active variables (in red) for the component function vary while all other variables are
held at their anchor point value. The functions gi are then constructed in a recursive fashion.

f0 = f(D∗,C∗) (2.4)

gi(di) = f(di,D
∗

i )− f0 (2.5)

gij(di, dj) = f(di, dj ,Dij)− gi − gj − f0 (2.6)

The last component function g12...k is found by subtracting off all of the lower dimensional
component functions. Finally, a component function is identically zero whenever any input
variable is equal to its anchor point value, that is, di = d∗i [16]. The component functions can
be defined by a table of values based on a regular grid of the original function evaluations.
Interpolation is used to evaluate function values not on the input grid. Each component
function represents a smaller dimension, a line, plane, hyperplane, et cetera, cut through the
original function.

2.3.2 Estimation of gD

By employing some steps from cut-HDMR to estimate gD, the function of discrete inputs, I
can exploit the nature of a completely discrete set of inputs since discrete inputs align with
how the lower dimensional functions are defined along cut lines, planes, etc. Cut-HDMR
techniques have other advantages as well. Enumeration of all discrete input combinations
provides a regular grid of inputs. After specification of the anchor point, considerable function
evaluations can be avoided, because any component function with di = d∗i is zero. No
interpolation is required to evaluate any other points.

Estimation of gD is summarized in four steps:

1. Choose an anchor point D∗, C∗ .

2. Enumerate all possible combinations of the discrete inputs D. Eliminate any that
contain di = d∗i as an input for a component function. Call this set D.

3. Create a set of samples (D, C∗) and evaluate the original function at these sample
points.

4. Estimate all possible component functions at all possible points.

2.3.3 Model choice process

The model choice process proceeds in three steps.

1. Estimate gD as outlined above.

19



2. Create the output epdf of gD:

(a) Sample over the discrete inputs. This should be a large sample and can include
any distributional information about the discrete inputs. Epistemic methods could
also be applied.

(b) Evaluate gD at these inputs.

(c) Estimate the distribution of the outputs, the epdf of gD.

3. Perform UQ using a method designed for continuous inputs for the transformed func-
tion.

(a) The transformed function is

f(D,C) ≈ X + gC (2.7)

(b) X is a random variable distributed as the epdf of gD.

(c) gC = f(D∗,C)

(d) The continuous inputs C retain their original meaning and distributions.

(e) The last term of equation (2.7) takes its form from the idea of cut-HDMR; the dis-
crete variables are held at their anchor point values while the continuous variables
vary.

In essence, gD captures the discrete variation around the anchor point while gC captures the
continuous variation around the anchor point.

2.4 Summary of the conceptual model

We began with an extremely general conceptual model (2.1 and showed one way to apply it
to one class of problems generally based on cut-HDMR; however, any estimation procedure
or surrogate process can be used to estimate gD and gC . For example, one could create a
multivariate adaptive regression spline (MARS [7]) fit for gD and a Gaussian process model
for gD. There are many places to customize the conceptual model or the process to the
problem at hand. A number of suggestions follow:

1. include an interaction term for a subset of D,C when strong interactions are known or
suspected

2. use another method to estimate the HDMR component functions, such as RS-HDMR
[15] when more of the input space needs to be explored

3. use a lower order set of component functions to estimate gD (for example, only functions
of one or two variables) when the function evaluation budget is too small to evaluate
the original function on a full factorial design

4. use a full or lower order HDMR estimate for gC when the function evaluation budget
is small

20



5. use a constant value (such as the mean) for unimportant variables.
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Chapter 3

Model Choice Example

The function for this example comes from [23], one of a number of mixed variable problems
for use in optimization testing. This problem has four discrete binary variables and three
continuous variables.

f(x,y) = (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 − ln(y4 + 1) (3.1)

+(x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

Subject to: y ∈ {0, 1}4 0 ≤ x ≤ 5 Note that the range for the discrete part of the problem
is [− ln 2, 3.0] and for the continuous part [0, 29]. We assign various distributions to the inputs.

3.1 Proof of concept example

The proof of concept example was used for initial testing of the conceptual model in order to
assess the feasibility of transforming a set of discrete inputs into a continuous variable for use
in UQ methods designed for continuous inputs. To that end gD and gC are not estimated,
but are directly assigned to be

gD = (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 − ln(y4 + 1)

gC = (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

and f(D,C) = gD + gC is an exact representation of the original function. For this example,
yi are identically distributed binary random variables with Pr(0) = Pr(1) = 0.5 and xi are
identically distributed uniform random variables on [0, 5].

We now proceed through steps two and three of the model choice process. For step two,
a large set of discrete samples are generated (1000 LHS samples), gD is evaluated, and the
output values are summarized with a histogram. This histogram is the edpf of gD shown
in Figure 3.1. For step 3 the epdf of gD and the three uniformly distributed xi are the
continuous random inputs to a variety of UQ methods designed for continuous inputs to
assess the uncertainty in X + gC .
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Figure 3.1. Proof of concept example: epdf based on 1000
LHS inputs to gD
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Results from the UQ methods designed for continuous inputs on X + gD are shown
in Figure 3.2. The numbers in the key indicate the number of function evaluations. For
the new techniques, the function evaluations are written as 1000 + x, to reflect the 1000
evaluations that were used to estimate the pdf of gD plus the additional evaluations used by
the continuous UQ method. The benchmark cdf of the original function outputs (in pink)
was created from exhaustively sampling the original function. The output cdf is estimated
as a histogram from 10,000 LHS samples; there really is no other established method that
can handle arbitrary distributions on the discrete variables. The other three curves are the
result of UQ methods designed for continuous inputs: polynomial chaos expansion (PCE),
efficient global reliabilility (EGRA) and local reliability. PCE is a surrogate model using
a multidimensional orthogonal polynomial basis and estimated stochastic coefficients [8].
Level 4 quadrature points were used to estimate the coefficients; this adds 1024 function
evaluations. The complete cdf (black) shows good agreement with the benchmark LHS.
An efficient global reliability method is shown in green (EGRA) [2] which adds 21 function
evaluations. EGRA creates a surrogate model using a Gaussian process, refining the model
around limit points x in order to apply a reliability method. The reliability method seeks
to answer the question, what is the probability the function value exceeds x by transforming
the input variables and linearizing about the most probable point. Since this problem is
highly nonlinear, the reliability cdf in red gives a notably different result, although it adds
the fewest function evaluations. Overall, this example illustrates how the conceptual model
can lead to comparable results with fewer functional evaluations.

3.2 Example using the full model choice process

This example employs the full model choice process on the problem defined in equation
3.1. Again, yi are identically distributed binary variables with Pr(0) = Pr(1) = 0.5 and xi

are identically distributed uniform random variables on [0, 5]. The function gD is created
with its full ANOVA decomposition; gC is defined by the original function with the discrete
variables set at their anchor point, i.e., gC = f(D∗, C). The anchor point is chosen to be
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Figure 3.2. Proof of concept example
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(D∗, C∗) = (0, 0, 0, 0, 2.5, 2.5, 2.5). The three step model choice process is implemented as
follows:

3.2.1 Estimate gD

The full ANOVA decomposition of gD is

gD(y) = gD∗ + gd1 + gd2 + gd3 + gd4

+gd1d2 + gd1d3 + gd1d4 + gd2d3 + gd2d4 + gd3d4

+gd1d2d3 + gd1d2d4 + gd2d3d4 + gd1d3d4 + gd1d2d3d4

A component function is identically zero when evaluated at a point such that a component
variable takes an anchor point value, for example, gd1d2d3(0, d2, d3) = 0. To illustrate the
estimation of a single variable component functions, consider gd1. Because d1 = y1 is a bi-
nary variable, there are only two points to consider. gd1(0) = 0 because it is evaluated at
an anchor point. gd1(1) = f(1, 0, 0, 0, 2.5, 2.5, 2.5) requiring one function evaluation. This
completely determines gd1. The other single variable component functions are similarly es-
timated. These evaluations are used to determine the values of the 16 component functions
{y1, y2, y3, y4, y12, y13, . . . , y1234}; the sum of the component functions estimates gD.

3.2.2 Estimate the epdf of gD

At this point we have gD, by applying cut-HDMR estimation to a full ANOVA/HDMR
decomposition, and we sample it to create the epdf of gD consistent with the distributions
of D. Ths is essentially a mini-UQ that captures the uncertainty in the discrete variables.
We advocate a utilizing a large random sample (perhaps ¿100 times the number of discrete
inputs) at this step, especially when the discrete choices are equiprobable. The LHS samples
can be too uniform, because they are chosen according to an equiprobable bin. The cut-
HDMR form of gD used here is extremely cheap to run, so evaluating a large sample takes
very little time.

Large samples are necessary here, because in effect we are averaging over the effect of
the discrete variables. To illustrate this point, two epdfs of gD were created, one with 50
samples and one with 1000 samples. With only 50 samples the lower gD function values are
over-represented and the granularity of the epdf is not well resolved. (show histograms??)

Each of these epdfs are used with the other continuous variables x as inputs to a PCE
estimate of the functional output cdf. Figure 3.4 shows the two estimates of the PCE-
created cdf with the benchmark LHS estimate (green). While there is close agreement using
the 1000-sample epdf of gD with PCE (blue cdf); the 50-sample epdf if gD with PCE shows
the underestimates of the discrete effects carries through to the final cdf (red).
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3.2.3 Estimate uncertainty using a UQ method designed for con-

tinuous inputs

As in section 3.1 the 1000 sample epdf of gD and distributions of x are used in three different
UQ methods for continuous inputs and compared to the benchmark LHS result. The results
are shown in Figure 3.5 along with the total number of function evaluations (recall that 14
evaluations were used to estimate gD. Against the exhaustive LHS (pink) as the benchmark,
PCE (blue) and EGRA (green) show excellent agreement. The reliability method (red) suffers
when faced with this highly nonlinear problem; it doesn’t even converge for probability levels
0.2 or 0.3.
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Figure 3.6. Epdf of gD with Pr(0) = 1/6

3.3 Example using the full model choice process with

different input distributions

Up to this point, all the variables have been uniformly distributed. This example illus-
trates how this method captures the effect of different distributions on y and x; y now has
Pr(0) = 1/6 and Pr(1) = 5/6, while x are normally distributed with means 2.5 and standard
deviations σ1 = 1.0, σ2 = 2.0, σ3 = 3.0. First, the benchmark LHS analysis is repeated with
the new distributions for comparison. The cut-HDMR full ANOVA representation of gD does
not change; nothing in its definition requires knowledge of the input variable distributions.
However, estimation of the epdf must be re-done in order to reflect the new distributions of
y. 1000 random samples of the discrete variables drawn with respect to their new distribu-
tions lead to the epdf of gD shown in Figure 3.6 which is quite different from the previous
histogram in Figure 3.3.

Now the epdf of gD and the normally distributed x are used as the continuous inputs to
the three UQ methods and the resulting cdfs are shown in Figure 3.7. Once again, the PCE
cdf (green) and EGRA (pink) give comparable results to the benchmark LHS cdf (red), while
the reliability cdf (blue) fails.

3.4 Example with interactions

In this section, we add an interaction term α to the test problem in equation 3.1.

f(x,y) = (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 − ln(y4 + 1)

+α(y4 + 1)x3 + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

where yi are binary variables with Pr(0) = Pr(1) = 1/2 and xi are normally distributed
variables with mean 2.5 and standard deviations 1.0, 2.0, 3.0. The model choice process is
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Figure 3.8. Epdf of gD for example with interactions, α =
1.0

followed as in previous sections, leading to the estimate of the pdf of gD shown in Figure 3.8.
The effect of the interaction term increases the value of the function 3.2; it also increases the
value of gD. Some of the interaction will be detected by this method, but only the interaction
between variables and their anchor point values.

Once again, the benchmark 10000 LHS cdf (red) of the original problem with interactions
is shown for comparison with the same three UQ methods in Figure 3.7. EGRA (pink) and
PCE (green) methods show this method has inflated function values, while the reliability
method (blue) underestimates the function values, especially compared to PCE and EGRA.
Two possible reasons for these different results are one, that gD overestimates the effect of
the discrete variables on the function (data not shown), and two the variability in x3, one of
the interaction terms, is greater that the variability of any of the other inputs. More work is
definitely needed to understand functions with interactions.

3.5 More on defining model choice problems

During testing, it became clear that certain mixed variable problems are not appropriate for
this method.

• periodic problems

• problems where the discrete variable controls the amplitude or reversals in growth such
as y = axK where α controls the amplitude.
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• problems where the discrete variables are not separable from the continuous variables.
One example of this is a pump-and-treat well problem; the discrete variables reflect
whether a pump is on or off and the continuous variables describe the location of the
well.

• Very little variability due to discrete variables

3.6 Convergence

I begin a discussion of convergence with the definition of uniform convergence:

Definition We say that a sequences of functions converges uniformly on E to a function
f(D,C) if for every ǫ > 0 there is an integer N such that n ≥ N implies

|fn(D,C)− f(D,C)| ≤ ǫ

for all x ∈ E.

[20]

Convergence can be split into two parts: one, convergence of the decomposition 2.1 to the
function f(D,C) and two, the convergence of the estimates of the decomposition gDn

and gCn

to gD and gC . I know that for functions with interactions between D and C, the estimates
fn(D,C) fail to uniformly converge to f(D,C) since there is no mechanism to capture the
effect of the interactions. However, it is still possible for the estimates of gDn

and gCn
to

converge uniformly to gD and gC ; this will be based on the convergence properties of the
algorithm used to estimate gDn

and gCn
. For functions without such interactions, uniform

convergence is achieved for both the function fn(D,C) and the parts gDn
, gCn

based on the
convergence properties of the estimation procedure.

How much is lost when there are interactions between the discrete and continuous inputs?
Sobol’ provides some guidance in [25], since forcing the additive decomposition in 2.1 can
be thought of as the factor fixing approach in sensitivity analysis where either the discrete
or the continuous inputs are fixed. For a set of inputs fixed at z0, the approximation error
depends on z0 :

δ(z0) =
1

Var(f(D,C))

∫
[f(D,C)− f(D, z0)]

2dD

assuming f(D,C) is square integrable and the expected error is of the same order as the
total sensitivity Stot

z for the group of inputs z0, i.e., E (δ(z0)) = 2Stot
z .

talk about convergence of cutHDMR?? and convergence of HDMR? needed here??
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the number of samples needed for representation to a given tolerance is invariant
to the dimensionality of the function, thereby providing for a very efficient means
to perform high dimensional interpolation.

[21].
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Chapter 4

Discussion

At the heart of creating surrogate models or response surfaces is continuity. The true values
of the original function can be ignored in some areas, because they can be approximated
by a surface informed by a few functional inputs and outputs. The original function does
not vary too far from the approximation made through these points; if it does, we can
evaluate more input points near the evaluated points. Even if the output is discontinuous or
discrete [18, 9], we can exploit the continuity of the inputs to find and assess these jumps.
Not so with the discrete inputs; in fact, traditionally in statistics, the discrete covariates
fundamentally change the response—in regression-type problems: the mean or the slope, in
classification-type problems: the classification [3]. With complicated models, the situation is
not so straightforward. This brings difficulties to both types of UQ methods: better sampling
strategies will omit some discrete combinations and the creation of surrogates or response
surfaces generally fails with discete inputs (or the software does not accept them). Some work
is beginning to address the lack of surrogates for mixed discrete-continuous problems [9, 29,
19, 27], including a bioinformatics method for protein engineering that employs some discrete
input HDMR modeling [6]. Reliability methods for mixed discrete-continuous problems [11]
are also being developed as the need to do UQ on these problems becomes more common. I
have presented one method for estimating the functions in the additive decomposition; many
others can be used, especially in order to taylor the estimation procedure to the function
evaluation budget and known input variable interactions.

I have shown that the idea of transforming a set of discrete variables into a continuous
probabilistic one is a powerful method for UQ in model choice problems. Another class of
problems where this method may be pertinent are repeated units problems. These problems
are often critical infrastructure or logistics problems that occur in a high dimensional space
with many discrete and continuous variables; in fact the discrete variables may outnumber
the continuous ones. The nature of the probabilistice transform in this class would be to
transform the counts into a related continuous quantity. For example, the number of nodes
in an electric grid would be transformed into the amount of wire needed for that number
of nodes; on or off variables could be transformed into total rate produced; the number of
trucks in a platoon could be replaced by the cost to place and use a truck. In cases where one
seeks to optimize a cost function, replacing numbers of items with costs would be especially
effective.

This type of transformation opens a path to a plethora of possibilities for future work
such as:
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1. Employing different procedures for estimating gD and gC including other ways to use
HDMR

2. Using less than full factorial discrete inputs to estimate gD
3. Testing this method on model choice problems with interactions and on a real world

problem

4. Use sparse grids and stochastic collocation to estimate gD and gC . This would dovetail
nicely with the discretization of the sparse grid.

5. Investigate the use of this kind of decomposition or transformation in sensitivity analysis

6. Analyze some repeated units problems

7. Investigating other classes or problems and which probabilistic transformations would
be appropriate

Behind all the details of distributions and decompositions lies the novel concept of this
report: transformation of discrete variables into associated continuous variables for use in
UQ methods designed for continuous inputs. This was motivated by problems in statistical
genetics where the effect of discrete genotypes on the trait of interest are represented as
additive continuous random variables [1]. The concept opens a wide playing field for trans-
formations and application and combination of different surrogates and sampling techniques.
For example, using the

In summary, a collection of discrete variables is transformed into a continuous, proba-
bilistic variable by estimating the joint effect of the variables on the output function for use
in uncertainty quantification. UQ can now be carried out one time rather than multiple
times for each combination of discrete variables. All uncertain variables are included without
assuming isotropic behavior across all unique discrete combinations. The discrete variables
are not treated as if they were continuous ones, but naturally transformed into a probabilis-
tic continuous variable. While some iteration over discrete combinations is still required,
the potential savings in function evaluations provided by efficient UQ methods designed for
continuous inputs can be tremendous.
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Appendix

Let

f+ = max(f, 0) f− = −min(f, 0)

Definition Let f be measurable and consider the two integrals

∫
E

f+dµ
∫
E
f−dµ

If both integrals are finite, we say that f is integrable on E in the Lebesque sense with respect
to µ.

A function is square integrable if f 2 is integrable.
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