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ABSTRACT 
 

Objective: Population viability analysis (PVA) can be used to partition influences on population 

recovery, and to distinguish those under the control of the military.  We used PVA to evaluate threats to 

recovery of shortnose sturgeon (Acipenser brevirostrum) in a river adjacent to Fort Stewart, Georgia, 

USA.  We evaluated potential threats including groundwater withdrawal, poor water quality in summer, 

saltwater intrusion via rice canals, mercury effects, harvest as by-catch, and sedimentation of spawning 

habitat.  
 

Methodology: We assessed and ranked potential threats to population recovery using PVA.  A workshop 

ruled out groundwater withdrawal and sedimentation of spawning habitat caused by activities on Fort 

Stewart.  Models were developed to assess two potential threats to sturgeon growth and reproduction: 

high summer water temperatures and mercury uptake. To assess effects of summer water quality, we 

monitored temperature, salinity, and dissolved oxygen in the Canoochee and Ogeechee Rivers and used 

these to model and simulate spatial and temporal variation in water quality. In addition, we conducted a 

side-scan sonar survey of sediments to evaluate the availability of sturgeon spawning habitat.  We 

developed a sophisticated riverine PVA model to simulate sturgeon growth, survival, and reproduction in 

response to water quality, saltwater intrusion via rice canals, and harvest.  Simulation experiments that 

removed potential threats evaluated their effects on short-term extinction risk. To examine Fort Stewart‘s 

influence on water quality, a novel survey of headwater watersheds was designed with the goal of 

minimizing correlation among predictors and including watersheds with extreme land-use characteristics.  

We then developed relationships between water quality and watershed attributes, including military 

training activities. 

Results and Discussion: During the course of the project, we eliminated two threats and focused 

on the remaining four.  We identified six putative spawning locations with coarse substrate in deep 

pools.  PVA simulations found poor water quality, saltwater intrusion, and by-catch mortality to 

have significant individual and interactive influences on persistence. Of these, only water quality is 

potentially influenced by Fort Stewart‘s activities and we found that military training was 

associated with higher suspended sediment and organic carbon in Fort Stewart‘s headwater streams.  

Downstream, dissolved oxygen in the Ogeechee River was frequently below levels considered 

suitable for sturgeons.  Future research is needed to understand populations in southern rivers as a 

metapopulation and the effects of climate variation on summer habitat and winter connectivity. 

KEYWORDS; population viability analysis, shortnose sturgeon, Ogeechee River, Fort Stewart, 

blackwater river, mercury bioaccumulation, by-catch harvest, minimum river habitat length, rice canals, 

headwater watersheds, military training, sedimentation, spawning habitat, dissolved oxygen, Atlantic 

sturgeon 
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OBJECTIVE  

Population viability analysis (PVA) provides a scientific basis for assessing cumulative and separate 

effects through a combination of empirical analysis and modeling.  Mechanistic PVA models make it 

possible to partition the influences of contributing factors, with the goal of prioritizing recovery efforts.  

Three goals of this research were: (1) to quantitatively partition the influences on shortnose sturgeon 

recovery under the control of the military from those that are not, (2) to prioritize recovery efforts, and 

(3) to quantify population thresholds. Our modeling research quantified the cumulative and separate 

effects of the factors listed above on the long-term persistence of the shortnose sturgeon population in the 

Ogeechee River, adjacent to Fort Stewart.  Our empirical research improved our understanding of 

challenges shared by other fishes and rivers, including mercury effects and the effects of watershed 

management, rice canals, and climate change on water quality and shortnose sturgeon habitat. 

We conducted a coordinated field and modeling effort to quantify cumulative effects on the endangered 

shortnose sturgeon near Fort Stewart.  We designed and implemented a mechanistic, spatial PVA model 

that links sturgeon population dynamics to water quality (salinity, temperature, dissolved oxygen).  These 

linkages depended on modeling the physical habitat and developing empirical relationships between 

individual sturgeon growth, survival and reproduction and the river habitat, which is influenced by 

activities in the surrounding watersheds.  These relationships were obtained both by analyzing existing 

data and by collecting data to fill critical information gaps.  We estimated the importance of each factor 

by comparing the likelihood of persistence predicted with all factors simulated to those predicted 

removing one risk factor at a time--a virtual experiment that would not otherwise be possible. 

Our primary objective was to combine empirical and model-based research to determine which of various 

factors, if mitigated, would be most likely to lead to recovery of the shortnose sturgeon population in the 

Ogeechee River, and which of those are influenced by activities on Fort Stewart.  The PVA modeling 

approach evaluated the importance of each factor influencing shortnose sturgeon and addressed the 

following scientific questions: 

 

1. Is the population limited by habitat or spawner numbers, in the absence of other influences? 

a. What is the minimum viable population size? 

b. What is the minimum amount of habitat required for persistence? 

c. Do rice canals have a significant negative effect on juvenile habitat? 

2. Is summer water quality limiting the Ogeechee River population?   

3. Is availability of coarse substrate limiting spawning in the Ogeechee River?   

4. Is mercury limiting the Ogeechee River population? 

5. Is harvest mortality as by-catch limiting the Ogeechee River population? 
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BACKGROUND  

Rivers and estuaries along the Atlantic coast support both military installations and populations of the 

federally endangered shortnose sturgeon (Acipenser brevirostrum).  This project focuses on the 

population in the Ogeechee River system, near Fort Stewart, an unimpounded blackwater river.  The 

Ogeechee River, as an individual population segment, contains an order of magnitude fewer sturgeon than 

the neighboring Altamaha River (DeVries 2006) and two orders of magnitude fewer fish than the largest 

known population in the Hudson River (Bain et al. 2007).  Population estimates for this population have 

varied between 75 and 400 individuals since 1990 (Figure 1; Peterson and Farrae 2011).  Fort Stewart is 

the largest military installation in the southeastern US, nearly all of which drains to the Canoochee River 

(Figure 2), a tributary of the Ogeechee River. 

 

Figure 1.  Historical estimates of population sizes for the Ogeechee River shortnose sturgeon population.  

Source:  Farrae 2010. 

Farrae and Peterson (2010) estimated current abundance, annual survival, and temporary emigration 

parameters of Ogeechee River shortnose sturgeon population from 2007 – 2009, as shown in Figure 2.  

Their research, which was carried out as a complementary project to this one, fulfilled one of the goals of 

the NMFS (1998) Recovery Plan for the shortnose sturgeon: to determine abundance, age structure, and 

recruitment for population segments.   
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Figure 2.  Map of the Lower Ogeechee River, Georgia.  Modified from Farrae 2010. 

Prior to this study, the primary threats to shortnose sturgeon in the southeastern US included over-harvest 

and habitat degradation (Collins et al. 2000a), as well as high summer temperatures (Kynard 1997).  In 

the Ogeechee River, factors raised as potential threats to population recovery included (1) water quality 

degradation (due to point-source nutrient and BOD inputs, military activities that remove vegetation, and 

upstream agriculture), (2) saltwater intrusion through rice canals, (3) deposition of atmospheric mercury, 

and (4) by-catch in the shad fishery.  Each of these factors influences one or more lifestages through the 

following mechanisms:  (a) siltation of spawning gravels, (b) methyl mercury toxicity to early lifestages, 

(c) salinization of freshwater habitat, (d) degraded summer water quality in the freshwater-saltwater 

interface, and (e) incidental harvest.  Military land and water management practices influence some of 

these factors because rivers collect and concentrate the effects of land disturbances.  These potential 

threats are depicted in Figure 3 below. 
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Figure 3. Hypothesized effects (blue) of potential threats (green) that might influence shortnose sturgeon 

recovery in the Ogeechee River. 

PVA models can be used to forecast population sizes over time and the likelihood of population 

persistence into the future.  If a mechanistic model is built that includes risk factors, such as those above, 

simulations can quantify the effects of various threats, alone and together.  Below, we introduce the 

threats that were not eliminated early as a result of a workshop held early in the project.  These 

correspond to the questions listed in the Objective section above. 

Water quality—In Georgia, several rivers exhibit low oxygen levels (<2.5 mg/l) at the saltwater / 

freshwater interface, an area that normally aggregates both juveniles and adults (Rogers and Weber 1995). 

Increasing salinity and temperature decrease dissolved oxygen available for the shortnose sturgeon and 

other aquatic organisms. This is a particular concern in deeper waters inhabited by benthic organism like 

sturgeons. Consequently, river habitat with suitable water quality migrates inland during summer and 

during periods of low freshwater inflow. Shortnose sturgeon show signs of stress in water temperatures 

above 28°C (Kynard 1997, NMFS 1998). At these temperatures, concomitant low levels of DO may be 

lethal. Studies also show an age-related increase in salinity tolerance within the first year of life.  Smith et 

al. (2002) suggested that age-0 sturgeon are more-susceptible to poor water quality in summer because 

they are less tolerant of low DO and high temperatures and because lack of salt-water tolerance restricts 

their access to estuarine habitat where water temperatures may be lower. This is a particular concern 

during drought conditions, when the interface between salt and fresh water shifts upstream. Poor water 

quality can significantly decrease food consumption and growth, one reason that southern populations of 

sturgeon tend to cease foraging and lose weight over the summer. 
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Sediment—Hard bottom substrates are required for spawning by both Atlantic and shortnose sturgeon.  

Sturgeon eggs are adhesive, and if encapsulated by sand or silt, the developing egg is suffocated (Fox et 

al. 2000). Pre-larval sturgeon inhabit the interstitial spaces between coarse, hard substrates, where they 

are protected from predators and better able to resist drift (LaHaye et al. 1992).  Thus, we expect an 

interaction between mortality associated with premature exposure to salinity and substrate.  Fort Stewart 

would have a potential role in siltation of spawning grounds if the Canoochee River entered the larger 

Ogeechee River, where shortnose sturgeon are known to spawn, far enough upstream to have an impact.  

Fort Stewart may also be having an effect on sedimentation in the Canoochee River and in smaller 

tributaries, and therefore we investigated training effects on suspended sediment in headwaters. 

Mercury—Methylmercury concentrations in water and biota throughout blackwater coastal streams in the 

Atlantic coastal plain are higher than those typical of riverine systems farther inland (Hughes et al. 2000, 

Bonzongo and Lyons 2004) and total and MeHg concentrations in the Canoochee River in Georgia (~1.7 

ng/L) are consistent with the high concentrations of MeHg accumulated in fish in that system (USEPA 

2004).  Mercury sources to the Canoochee/Ogeechee system are predominantly atmospheric deposition, 

runoff, and soil erosion (USEPA 2004).  Blackwater streams tend to retain inorganic mercury in the water 

column and favor conversion of inorganic mercury to methylmercury because of their low pH, high 

organic matter, and extensive aerobic/anaerobic interfaces (Morel et al. 1998).  Methylmercury 

concentrations reported in USEPA 2004 for the Ogeechee River were nearly ten-fold higher than 

concentrations measured the nearby Savannah River system (Paller et al. 2004).  High methylmercury 

concentrations in water and other fish species suggest that adult shortnose sturgeon could accumulate 0.5 

to 1.0 mg/kg MeHg. A study by the USEPA (2004) to set TMDL limits on listed segments of the 

Canoochee River measured concentrations above 1.0 mg/kg in largemouth bass.  Although at a lower 

trophic level, sturgeon likely accumulate MeHg by feeding on filter-feeding molluscs (Leaner and Mason 

2002; Paller et al 2004), as evidenced by substantial MeHg bioaccumulation in other sturgeons 

(MacDonald et al. 1997, Alam et al. 2000, Buhler et al. 1973).  

Harvest— Fishing mortality is considered by some to be an important threat to sturgeons in general, and 

southern shortnose populations in particular (Collins et al. 2000a). The recovery plan also lists fishing as 

a threat to shortnose sturgeon persistence (NFMS 1998).  Because the shortnose sturgeon is an 

endangered species, harvest is not permitted, but they are vulnerable to the Atlantic sturgeon fishery and 

to be caught during spawning migrations by the shad fishery. 

Extinction thresholds—PVA modeling can be used, not only to quantify threats to recovery, but also to 

identify extinction thresholds such as minimum viable population size (MVP) and minimum habitat.  One 

goal of this study is to determine whether such thresholds can be identified to provide guidance to 

resource managers. 
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MATERIALS AND METHODS 

SHORTNOSE-STURGEON WORKSHOP 

We conducted a workshop with the following objectives: 1) to assemble experts on shortnose sturgeon 

and the river‘s habitat, 2) to present our proposed project, 3) to solicit feedback on the proposed project 

from as many of the experts as possible, 4) to help modelers to develop a gestalt for this sturgeon species, 

its interactions with its physical habitat, and key human or military influences on the population, and 5) 

ask participants for feedback on whether to go forward with the project. The workshop was held February 

5, 2007 at the Hampton Inn and Suites in the Historic District of Savannah, Georgia.  We invited 27 

people with expertise in areas related to our project, and 21 attended. 

PVA MODELING 

Two components of the PVA model are the dynamic simulation of habitat and the biological and 

demographic response by shortnose sturgeon. Below, we provide a brief summary. 

Ogeechee River habitat.   We implemented an option to use longitudinal and seasonal relationships for 

temperature and salinity.  We developed a seasonal model for air temperature from historical climate data 

from the Savannah International Airport.  We developed an empirical model for water temperature based 

on air temperature and flow (from USGS).  We fitted a salinity relationship as a function of distance from 

ocean to data collection locations from a study by Alber and Sheldon (1999). The PVA model has been 

designed to import environmental drivers (flow and temperature) and to read habitat suitability 

information that will allow local water quality to influence habitat use and survival.   

Shortnose sturgeon biology.  Spawning migration and reproduction are simulated in late winter.  

Development of eggs is driven by temperature.  Incubation survival is simulated as a function of 

temperature and local egg density. Natural age-related mortality was simulated, as was mortality due to 

starvation, exposure to poor water quality conditions (salinity for age-0 sturgeon, temperature, low DO), 

and incidental harvest as by-catch in the shad fishery. 

We implemented two options for simulating sturgeon growth for juveniles and adults.  First, a simpler 

(non-bioenergetic) growth routine was implemented using parameters for shortnose sturgeon from the 

literature, including age-growth, weight-length, and fecundity-weight relationships.  Next, we 

implemented a bioenergetic growth and starvation mortality in the PVA model.  A stand-alone 

bioenergetics model was developed.  A modified version of this model that included prey dynamics was 

incorporated into the PVA model and calibrated against age-length relationships measured in the 

Ogeechee and Altamaha Rivers (Figure 4). 
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Figure 4. Simulated average daily growth in weight over twenty years showing positive growth in the 

winter and negative growth in summer (solid line).  On the x-axis, years are labeled in winter (~Jan 1) and 

mid-summer is indicated by upward ticks.  The ratio of simulated fish lengths to those expected based on 

field measurements fluctuated around the desired value of one (dash-dotted line).  

Simulation experiments. We conducted simulation experiments to evaluate two extinction thresholds of 

interest: minimum viable population size (MVP) and minimum habitat.  To estimate MVP, we simulated 

the Ogeechee River population with a range of initial population sizes and river lengths.  We adopted an 

operational definition for MVP as the initial size for which at least 95% of replicate populations persisted.  

To evaluate habitat limitation, we compared persistence over 20 historical years using three different 

assumptions about where spawning occurred, at 83, 100, and 125 km upstream.   

Our second set of simulation experiments evaluated the individual and combined effects on persistence 

over 20 years in simulations with and without three causes of mortality:  1) poor water quality, 2) rice 

canals and saltwater intrusion, and 3) by-catch harvest for an initial population size of 225 individuals.   

MERCURY TOXICITY 

We developed a model to predict bioaccumulation of contaminants in adults, transfer to eggs, and early 

mortality associated with concentrations of mercury in amphipod prey in the saltwater-freshwater 

transition zone of the Ogeechee River and estuary.  Our model requires estimates of 1) prey 

concentrations, 2) trophic exposure of shortnose sturgeon through several trophic pathways, 3) lifetime 

bioaccumulation by shortnose sturgeon in somatic and gonadal tissue, 4) transfer of contaminants to eggs 

and survival of eggs.  We implemented the model in Stella to predict concentrations in shortnose sturgeon 

and eggs. 

Our assessment of mercury as a threat to shortnose sturgeon, and particularly early lifestages, involved 

three sub-tasks.  First, we developed a bioenergetics model capable of partitioning growth of somatic and 

gonadal tissue of an adult female shortnose sturgeon.  Next, we added uptake of mercury from prey and 

partitioning of mercury between somatic and gonadal tissue (i.e., eggs).  We measured concentrations of 

both methyl mercury and total mercury in amphipods collected in the freshwater-saltwater transition zone 

and of incidentally collected gonadal tissue collected while staging (assessing maturity of eggs) shortnose 

sturgeon. Finally, we compared model predicted estimates of egg mercury concentrations with those from 

our samples. 

We developed a mercury uptake model to simulate change in the body burden and concentration of 
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methyl mercury in a female shortnose sturgeon over time as a result of feeding on a diet with estimated 

prey concentrations.  In addition, we estimated the concentration of methyl mercury in eggs produced by 

this female as an adult. 

Prey concentrations 

Shortnose sturgeon feed primarily on aquatic insects, crayfish and mollusks.  Fish are occasionally eaten.  

Shortnose sturgeon are primarily, but by no means exclusively, benthic feeders with a diet that reflects the 

availability of different prey types in estuary, reservoir, and riverine habitats.  In estuaries, shortnose 

sturgeon stomach contents are dominated by amphipod shrimp (Smith et al. 2002) and mollusks, 

particular species in the genus Corbicula. Amphipods were collected along a salinity gradient in the 

transition zone of the Ogeechee River during 2008.  Concentrations of both total and methyl mercury 

were measured by Patrick Pang at Cebam Analytical. 

Modeling mercury bioaccumulation.—One of our objectives was to simulate partitioning of contaminants 

between somatic and gonadal compartments.  Mercury is not a lipophyllic compound, and redistribution 

of MeHg in fish tissue results in elevated concentrations in muscle tissue and lower concentrations in 

gonadal tissue (Weiner and Spry 1996, Webb et al. 2006).  Latif et al. (2001) conducted experiments to 

study uptake of MeHg by females and transmitted to egg and larval stages of walleye (Stizostedion 

vitreum).  Egg and larval concentrations were positively correlated with maternal muscle concentrations 

of MeHg.  Mercury tends to bioaccumulate in sturgeons as they grow.  Webb et al. (2006) also found a 

positive relationship between shortnose sturgeon length and mercury.  Mercury concentrations among 89 

lake sturgeon increased with length according to the relationship Hg (ppm) = -4.146 + 0.046 Length (cm). 

We developed a bioenergetics model for shortnose sturgeon building on a bioenergetic model for white 

sturgeon (Bevelhimer 2002).  The bioenergetics model was implemented both as a stand-alone model in 

STELLA™, and incorporated, with modifications, in the PVA model.  The bioenergetics model includes 

equations for consumption and storage of energy in somatic and gonadal compartments as a function of 

ration and temperature (Figure 5).  Along with growth in these compartments, the model predicts the 

number and weight of eggs spawned. 

 

Figure 5.  Diagramatic representation of energy allocation in the white sturgeon bioenergetic model of 

Bevelhimer (2002). 
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To simulate bioaccumulation of mercury, we added new equations to simulate intake of prey with known 

contaminant concentrations. We implemented a modified version of the uptake model presented by 

Trudel and Rasmussen (2001; 2006) that simulates the body burden of an adult female as the balance 

between contaminants gained through feeding and contaminant loss through elimination and egg 

deposition (Figure 6). 

The somatic mercury burden of an adult female, Bs, increases through feeding on contaminated prey at 

rate P, and decreases through elimination at rate E, and redistribution of mercury to gonadal tissue at rate 

R (Equation 1).  

 ( )
dBs

P E R Bs
dt

    (0) 

 

 

Figure 6.  Stella™ model to simulate contaminant uptake.  Dashed shapes are simulated stocks (boxes) 

and converters (circles) from the bioenergetics model. 

Mercury intake.—The body burden of MeHg in fishes has been shown to accumulate primarily through 

feeding (Trudel and Rasmussen 2001). We track the body burden in somatic and gonadal tissue 

separately.  The rate of mercury assimilation (μg/d), assimilated by a female shortnose sturgeon, is 

 

 
,preyP C I

 (0)
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where α is its uptake efficiency, Cprey, is the concentration of mercury in prey (μg/g prey) and I is the 

female‘s rate of prey consumption.  Prey consumption is calculated as an allometric function of fish 

weight and temperature (Bevelhimer 2002). 

Mercury redistribution 

We simulate the redistribution of mercury from somatic to gonadal tissue.  When the female sturgeon‘s 

surplus energy is sufficient to permit egg development the model shifts all surplus energy from somatic to 

gonadal tissue. Other conditions must also be met, for example, the female has to be old enough to spawn 

and wait a minimum time since a previous spawning event.  The rate at which mercury in somatic tissue 

is redistributed, R, per unit time is given by Equation 3.   

 

 ,
Q

R W
Ws

   (0) 

 

where Q is the ratio of mercury concentration in female gonadal tissue to its concentration in whole fish, 

Ws is the weight of somatic tissue (later used to convert Bs to a concentration), and W is the rate of 

surplus energy gain, expressed in weight equivalents. 

We used data from white sturgeon in the lower Columbia River to estimate Q.  Mercury concentrations in 

white sturgeon were significantly higher in muscle (170.54 ± 12.67 ppb, n = 57) and liver (140.26 ± 23.02 

ppb, n = 49) than in gonadal tissue (27.26 ± 2.50 ppb, n = 49) (Webb et al. 2006).  Our estimate of Q = 

0.16 for sturgeon is higher than the value of 0.12 estimated by Trudel and Rasmussen (2001) for fish in 

general.  The Webb et al. sample did not include mature females (gonadosomatic index < 2), suggesting 

that a sample with older, ripe females with a high proportion of weight in gonadal tissue would yield a 

higher estimate of Q.   

Another way that one might estimate Q would be to assume that the relative protein content of eggs vs. 

somatic tissue corresponds to its affinity for gonadal tissue.  However, this approach did not yield a 

reasonable estimate because sturgeon eggs contained a higher (26.21 to 31.13% WW, Gessner et al. 

2002), not lower, percent protein than the edible portion of cultured sturgeon [12-15% WW, Beamish et 

al. 1996; 19.23% (SD=0.17) WW, Badiani et al. 1996]. 

Mercury losses 

Overall MeHg loss is simulated as the sum of the elimination rate and the loss of contaminants through 

egg deposition.  Each of these losses is discussed below. 

The elimination rate, E, is represented by a function of weight, W, and temperature, T, 

 .TE W e   (0) 

This rate is applied to mercury in both the somatic and gonadal tissue.  We adopted parameter estimates, 

φ = 0.0029, β = -0.20, and λ = 0.066, from a study by Trudel and Rasmussen (1997) that included data 

from a wide range of piscivorous fish species.  

Because females spawn infrequently every (3 to 11 years), the loss of contaminants from gonadal tissue 

through egg deposition is simulated as an event-based, rather than a continuous, process. In years when a 

particular female shortnose sturgeon of weight W spawns, the bioenergetics model determines how many 

calories of eggs she deposits, which is converted to grams, Ws, by assuming 2,200 cal g-1 of eggs.  The 

mercury in the gonadal compartment, Bg, is also transferred to eggs (Equation 5).  When the female does 

not spawn, mercury in gonadal tissue is gained through redistribution from somatic tissue and lost 

through elimination (Equation 5). 
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Ws
Q Bg if female spawnsdBg

W
dt

R Bs E Bg if female does not spawn



  

  
  

 


 (0) 

Mercury simulations 

Water quality factors, such as temperature and low DO, are likely to influence growth and reproduction of 

shortnose sturgeon simulated by the Stella model.  We simulated female body (soma) concentrations and 

egg concentrations using historical temperatures and flows recorded at three upstream gages on the 

Ogeechee, Canoochee, and Black Rivers.  Simulations started with a 3-year-old with no prior exposure to 

mercury.  We used the feeding ration calibrated to match shortnose sturgeon growth observed in the 

Ogeechee River.  We simulated prey concentrations for the range of MeHg concentrations measured in 

amphipods from the Ogeechee‘s transition zone. 

WATER QUALITY 

Three components of this task were sampling the lower Ogeechee River, measuring water chemistry in 

the Canoochee River, which drains Fort Stewart, and implementing a water quality model.  Summer water 

sampling was conducted weekly in the lower Ogeechee River between fall 2007 and late August 2009. 

River sampling 

Ogeechee.—In the lower Ogeechee River, surface and bottom temperature, salinity, and dissolved oxygen 

(DO) were measured bi-weekly between the spring of 2007 and late-summer 2009.  These measurements 

were taken between Ogeechee River kms 20 and 80.  We used these data to evaluate the risk to shortnose 

sturgeon and other aquatic biota of episodic low DO and to develop equations to estimate water quality 

parameters in the dynamic PVA model. 

Canoochee.—The Canoochee River drains the majority of land on Fort Stewart and feeds into the tidal 

lower Ogeechee River at river km 55 (Figure 7).  We collected water samples from two bridges on each 

of two branches of the Canoochee River and two bridges below the confluence, which is approximately in 

the center of the installation (Figure 7).  We collected water samples from Bridges 27 and 28 on 

Canoochee Creek, which enters from the southwest, and Bridges 15 and 19 on the upper portion of the 

Canoochee River which flows in from the northwest, and from two downstream bridges on the mainstem 

(Figure 7).  Bridge 15 is located at the point that the Canoochee River enters Fort Stewart.  Bridge 19 is 

downstream of bridge 15 on the Canoochee River, upstream of the Canoochee Creek confluence.  On the 

southwest fork, Canoochee Creek runs past Bridges 27 and 28 downstream of the confluence with Taylor 

Creek.  A waste water treatment facility located on Taylor Creek supports both Fort Stewart and the city 

of Hinesville.  Canoochee Creek joins the Canoochee River, and continues past a large training area to the 

north with large areas of bare ground and under Bridges 38 and 40 before joining the Ogeechee River 

(Figure 8). 

The bridge farthest downstream, Bridge 40, experiences a small amount of tidal influence.  Water samples 

collected at this point measure the influence of Fort Stewart activities, natural vegetation, and in-stream 

processes, as well as the inflows to the installation from Canoochee Creek and the upper portion of the 

Canoochee River.  A DataSonde operated by Fort Stewart‘s Natural Resources Department at Bridge 40 

measured dissolved oxygen at regular intervals.   

We collected and analyzed water samples at bridges on the Canoochee River on two occasions:  Once in 

August 29, 2008 and again August 12, 2009.  The most significant difference between these two dates 

was that the 2008 samples were taken during the tail of tropical storm Faye, which occurred after a long 

period of drought, and the 2009 samples were taken in a week with no precipitation.  Water chemistry 

measurements were the same for these samples as those described above for headwater stream samples. 
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We conducted a separate analysis of Bridge 40 samples on three occasions to estimate the proportion of 

DOC likely to be converted to particulate organic matter (POC) in the saltwater-freshwater interface of 

the Ogeechee River.  We used the same procedure as described earlier to prepare the DOC sample, except 

that we transferred a larger, 250-ml, portion to allow sufficient sample after DOC analysis for the 

flocculation experiment.  Ocean water was collected at the ―farewell‖ buoy of St Simons sound and, 

depending on tide, had salinities ranging from 25.7 to 34.5 ppt.  Samples were diluted to achieve a 

salinity of around 3 ppt.  After testing one subsample for DOC, ocean water was added to a second 

subsample.  This sample was refrigerated and incubated for 24 h.  We estimated POC as the decrease in 

DOC in the subsample with ocean water added relative to DOC in the original river water sample. 

River modeling 

We developed two approaches to modeling three water quality variables (salinity, temperature, DO) in the 

river occupied by shortnose sturgeon.  These are described below. 

Empirical models—Based on these measurements, we used empirical relationships developed for 

temperature, salinity, and DO in the PVA model for historical simulations. In addition to previous linear 

models, we sought a DO model with quadratic terms for salinity and/or river km.  Taking the derivative 

and solving this could then be used to identify the location or salinity where DO is at a minimum.  

Although the quadratic terms were significant with minimum DO at and below the Canoochee 

confluence, the relationships were weak.   

Numerical model—In addition, we implemented the hydrodynamic component of the Environmental 

Fluid Dynamics Code (EFDC).  The EFDC hydrologic model now simulates temperature and salinity in 

the Ogeechee and lower Canoochee Rivers.  Before the PVA model could be used for future projections 

with different climate conditions, the water quality aspects of EFDC would need to be implemented and 

linked with the PVA. 
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Figure 7. Schematic map of bridge sample locations overlaid on a Google satellite map that indicates barren training areas (dotted outline) on Fort 

Stewart. Note also the contrast between developed areas surrounding Fort Stewart and the amount of forested and other less-developed land within 

the installation boundaries. 
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Figure 8.  Accessible, headwater watersheds included in our sample in the western portion of Fort Stewart, Georgia.  Watershed id‘s refer to those 

in Table 1. 
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WATERSHED ASSESSMENT 

Watershed sampling design 

Our study focused on headwater drainages, which are desirable for detecting the influences of watershed 

cover and training activities.  Therefore, we selected as our sampling unit drainages of roughly 200 ha on 

a 1:50,000 map.  We used the Soil and Water Assessment Tool (Gassman et al. 2007), with elevation and 

stream data, to delineate watersheds within Fort Stewart‘s boundaries that ultimately drain to the 

Canoochee River.  We used ARCGIS (ESRI, Redlands, CA) to identify and exclude non-headwater 

watersheds, watersheds in inaccessible training areas (in the eastern half of the installation), poorly-

delineated watersheds and watersheds lacking blue-line streams (wetland-dominated areas), watersheds 

on the Fort Stewart boundary not draining to the Canoochee River, and those draining to Taylor Creek 

(Figure 8).  Taylor Creek drainages were excluded because two point sources entering Taylor Creek 

would overwhelm watershed influences.  Our final list frame included 45 accessible headwater 

watersheds in the western half of Fort Stewart (all watersheds in Table 1). 

The primary purpose of this design was to provide data needed to develop good empirical models (Ator et 

al. 2003).  Two problems that often plague modeling efforts can be addressed at the sample selection 

stage are too little variability among important predictors and multicollinearity among predictors.  To 

address these issues, we developed a method with two goals:  1) to minimize correlation between the 

predictors and 2) to include watersheds with extreme values of anticipated predictors.  For each accessible 

headwater watershed, we characterized watershed attributes that we expected a priori to predict 

differences in water quality including percent wetland, forest, and bare ground.  To ensure that extremes 

were included in the sample, we defined strata based on the 25th and 75th quartiles of these three variables 

and sampled equally from each quartile.  We developed a method for minimizing correlation among 

watershed attributes within the sample.  We drew 100 stratified samples of 25 watersheds from the list 

frame of 45 watersheds and calculated the maximum absolute pairwise correlation for each sample.  We 

then retained the sample with the lowest maximum (candidate watersheds in Table 1).  Among the 

samples drawn, the maximum absolute correlation was 0.73 and the minimum (candidate sample) was 

0.45.  A site visit was conducted to choose 20 watersheds for instrumentation.  Although 15 watersheds 

were selected from the candidate sample (history code=3 in Table 1), 5 watersheds were not from the list 

of candidate watersheds (history code=1 in Table 1).  This deviation from the protocol ensured that 

samples from all 20 sites could be accessed within a half-day.  Water quality samples were taken at the 

outlets of all 20 watersheds in summer of 2008.  After this first sampling date, we decided to relocate four 

of the sites to the outlets of alternative watersheds because water levels in these four streams were so low.  

These flows may have been atypical during mid-summer, 2008, which ended a multi-year drought in the 

southeast.  Three suitable alternatives were identified and sampled in subsequent efforts (designated by 

―B‖ in Table 1), and the fourth was relocated to a non-headwater site not included in our analysis.   
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Table 1. List frame of accessible headwater watersheds on Fort Stewart and subsets representing those 

sampled.  Lab ids in column 1 with ‗A‘ appended indicate sites replaced after 2008, and replacement sites 

are indicated by a ‗B‘.  History codes indicate headwater accessible watersheds in list frame: 0=not in 

candidate sample, not sampled; 1=not in candidate sample, sampled; 2=candidate sample, not sampled 

(excluded during site visit); 3=candidate sample, sampled. 

 

Watershed 

id (Lab id) 

 

History 

code 

 

Training 

area 

Road 

density 

(ha)  

 

Barren 

(%) 

 

Wetland 

(%) 

 

Grass 

(%) 

 

Forest 

(%) 

Months 

since 

burn 

 

Area 

(ha) 

64 (1) 3 F-13 12.9446 0 49 12 34 19 164 

66 0 F-12 23.7424 0 15 21 49 23 390 

69 0 F-12 48.8100 0 14 17 54 25 137 

96 (2) 3 F-12 31.2324 0 9 33 46 26 105 

101 0 F-19 9.1005 0 36 7 54 28 264 

115 (5) 1 F-19 16.0025 0 30 3 58 37 227 

117 0 F-15 21.9184 0 30 8 50 24 256 

141 0 F-18 12.9515 0 29 4 62 35 199 

147 0 F-19 20.1080 4 28 36 20 30 114 

186 0 F-16 10.5175 0 13 3 80 34 111 

199 (3) 3 F-6 13.7667 0 12 7 79 27 249 

216 2 C-1 16.9245 0 24 10 58 26 436 

218 (4) 3 F-6 17.4024 0 12 1 82 21 126 

244 0 B-12 9.5701 0 49 21 23 9 175 

255 0 F-8 22.4441 0 5 3 85 25 144 

281 2 B-19 27.2529 0 5 7 79 25 110 

298 0 E-19 25.1825 0 18 15 55 25 110 

327 (20B) 3 F-4 11.0074 0 20 1 76 42 202 

334 2 C-14 12.0085 0 29 4 64 32 243 

339 (16) 3 E-19 26.3872 5 17 33 26 28 297 

347 (6) 1 F-4 23.9496 2 12 8 71 43 163 
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Watershed 

id (Lab id) 

 

History 

code 

 

Training 

area 

Road 

density 

(ha)  

 

Barren 

(%) 

 

Wetland 

(%) 

 

Grass 

(%) 

 

Forest 

(%) 

Months 

since 

burn 

 

Area 

(ha) 

348 2 B-19 20.9766 5 11 7 71 36 121 

362 2 B-19 8.6118 0 27 7 63 36 353 

364 0 E-11 62.7127 23 24 29 5 29 160 

379 (17) 3 E-16 56.0612 3 21 20 43 25 240 

385 (20A) 1 F-2 26.0140 0 8 8 77 34 130 

386 (19) 3 F-2 43.8582 2 12 10 59 27 128 

388 (9B) 1 F-3 12.4118 0 9 4 83 51 259 

401 (13) 3 E-16 0.1292 0 23 7 67 24 124 

423 0 E-16 17.9836 0 29 17 46 25 253 

433 0 F-1 28.9074 0 21 9 58 21 109 

440 (14) 3 E-16 28.0448 0 29 16 50 20 269 

504 (7) 3 F-2 6.9816 0 25 1 72 25 470 

511 (18) 3 E-14 32.4106 0 24 14 54 26 461 

526 (12) 3 E-14 22.1880 0 29 12 54 21 271 

555 (11B) 3 E-6 24.7788 0 25 4 65 27 222 

556 2 B-8 27.0620 1 10 3 76 36 149 

559 0 E-13 35.4104 0 25 10 55 24 200 

561 0 E-7 28.3344 0 29 0 63 22 104 

565 (15) 1 E-13 1.9474 0 34 10 56 21 174 

569 0 B-8 26.6425 2 7 16 65 29 132 

588 2 E-13 42.5639 0 16 1 71 22 111 

592 0 B-8 19.2748 0 20 15 56 21 415 

595 2 E-7 34.9800 0 24 6 63 29 498 
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Watershed 

id (Lab id) 

 

History 

code 

 

Training 

area 

Road 

density 

(ha)  

 

Barren 

(%) 

 

Wetland 

(%) 

 

Grass 

(%) 

 

Forest 

(%) 

Months 

since 

burn 

 

Area 

(ha) 

602 (8) 3 E-3 3.2632 0 25 1 73 36 143 

604 (10) 3 E-7 49.3029 0 10 6 67 25 364 

617 2 E-3 8.1777 11 24 19 43 33 136 

619 0 E-4 17.4304 0 23 2 69 32 338 

625 (11A) 3 E-3 43.5642 0 16 1 63 31 122 

643 (9A) 1 E-3 24.1218 0 10 1 76 32 226 
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Water samples were collected by hand under base-flow conditions and using rising-stage samplers for 

rain events.  Rising-stage samplers were installed at the outlets of twenty watersheds to capture chemistry 

during rain events.  Water samples were collected on August 22, 2008 following Hurricane Faye (4.923 

cm rainfall) and December 12, 2008 (0.4191 cm rainfall).  Water samples were collected manually on 

four other occasions, one following a rain and three under base-flow conditions.  For the samples 

collected manually on May 7, 2009, 0.83 cm antecedent rainfall was recorded across five stations on Fort 

Stewart.  Base flow samples were collected manually in spring of 2009 (February 12, March 30, and June 

16).      

Samples were all collected on the same half day, stored on ice and transported to the laboratory for 

filtration sub-sampling, and storage prior to analysis. Samples collected August 29, 2008 and all samples 

collected in 2009 were filtered within one day.  The August 22 and December 12, 2008 collections were 

stored on ice for two days before processing.  Water samples were analyzed for the following analytes:  

total suspended solids (TSS, mg L-1), total organic carbon (TOC, mg L-1), dissolved organic carbon 

(DOC, mg C L-1), total nitrogen (TN, mg N L-1), nitrate (NO3 , mg N L-1), ammonium (NH4
+, mg N L-1), 

total phosphorus (TP, mg P L-1), and soluble reactive phosphate (SRP, mg P L-1).  DOC, and TOC, and 

TN were not measured for the February 2009 samples due to concern about holding times. 

Fort Stewart base samples were collected in 1.5L acid-washed (10% HCl) polypropylene containers.  Fort 

Stewart event samples were collected in 2 separate 1-L acid-washed polypropylene containers and mixed 

in an acid-washed 2-L container prior to sub-sampling.   

These samples were delivered to a University of Georgia, Marine Extension laboratory in Brunswick, 

Georgia.  Three unfiltered 125-ml subsamples were transferred into pre-washed amber glass bottles with 

Teflon-lined open-cap tops.  The contents of two bottles were acidified.  All unfiltered samples were 

frozen until analysis.  An Apollo 9000 analyzed acidified samples for TN (high-temperature catalytic 

oxidation with chemi-luminescent detection) and TOC (sparge-combustion).  The non-acidified sample 

was analyzed for TP using the ascorbic acid-molybdenum blue method (QuickChem method 31-115-01-

3-A; Lachat, Inc. 1998). 

Samples were filtered for analysis of dissolved nutrients and carbon (125-ml samples through 0.45 μm 

filter).  Those to be used for N and P analysis were frozen in polypropylene bottles, whereas those 

intended for DOC analysis were refrigerated in amber-glass bottles.  SRP concentration was determined 

using the ascorbic acid-molybdenum blue method (QuickChem method 31-115-01-3-A; Lachat, Inc. 

1998).  We measured NO3 concentration using cadmium reduction of nitrate, followed by azo-dye 

colorimetry (QuickChem method 31-107-04-1-C; Lachat, Inc. 1999).  Ammonium concentration was 

determined by phenate colorimetry (QuickChem method 31-107-06-1-E; Lachat, Inc. 1994).  The 

remaining unfiltered sample was used for analysis of TSS.  TSS concentrations were determined 

gravimetrically on 200-ml subsamples filtered using 0.45-μm filters. TSS mass was determined using a 

Sartorius analytical balance after drying for 2.5 h at 105oC.   

After receiving measurement results from the laboratory, ORNL conducted quality assurance checks on 

the data to ensure that the sum of constituents did not exceed total values.  DOC represented a very high 

percentage of TOC, and in a few cases, slightly exceeded TOC.  As another check, we compared total 

inorganic N with TN.  We removed one high NH4
+ measurement that exceeded TN from our analyses for 

NH4
+ and organic nitrogen (ON), which is calculated by difference. 

Fort Stewart land cover and land use 

Modeling land use and military training influences required us to characterize spatial attributes of 

watersheds on Fort Stewart.  We summarized land-use and land cover (LULC) watershed attributes used 

as potential predictors, including percentages of various land cover types, time since last managed burn 

(months prior to 1-1-2008), length of road (m), and a variety of variables measuring training activity in a 

watershed.  Area (ha) of land cover in each watershed was characterized by the 2001 National Land 
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Cover Database (Homer et al. 2004) for four dominant cover types:  1) barren, 2) forest, 3) grassland, and 

4) wetland.  Road length (m) was calculated using GIS methods, where all roads except for the main 

highway on Fort Stewart are unpaved.  We defined the following LULC predictors in models for stream 

chemistry, percent forest (Forest), percent grassland (Grassland), percent wetland (Wetland), time since 

burn (Burn), and the sum of percent barren and road density (Bare+Rd). 

Fort Stewart is partitioned into training areas that completely cover the installation.  We assessed training 

intensity by summarizing the scheduling of training areas for two types of activities:  heavy equipment 

training (Equipment) and use of off-road vehicles (Tanks).  We used average number of hours that 

training areas were reserved for each of these training activities over the years 2001 to 2005 as recorded 

in the Range Facility Management Support System, RMFSS database maintained by Fort Stewart.  The 

RFMSS data were consistent with an independent survey of use filled out by two individuals familiar 

with training activities on the installation. 

Empirical modeling 

We developed empirical models for water quality measurements as functions of watershed attributes 

described in section 6.2 above.  Response variables were loge transformed concentrations of TSS, TOC, 

DOC, TN, NO3 (defined here to include both NO3 and NO2), NH4
+, TP, and SRP in units of mg L-1 

incremented by one.   

We identified predictors based on previous studies and expected responses.  Most predictor variables that 

we included were static watershed attributes characterizing land cover (ha), military training activity, and 

months since burning.  We expected an increase in TSS and possibly other analytes in response to 

military training activities in a watershed, linear meters of road, and barren area (Houser et al. 2006).  We 

included wetland area because wetlands often reduce levels of sediment and inorganic nutrients, but can 

increase organic nitrogen and carbon.  Antecedent rainfall and growing season both varied over time, but 

not space. We quantified antecedent rainfall, Rainfall in cm, by summing the total spatially-averaged 

daily rainfall for all dates between the last date of dry weather (zero rainfall) and the date of sample 

collection, inclusive. Each date‘s total rainfall represents an average of five locations on Fort Stewart.  

The second predictor is an indicator variable, GrSeason, which was set to one for samples taken during 

the growing season (April – October) and to zero for winter samples.   

We considered a class of linear mixed models with two components, one for fixed effects and one for 

error structure (random component).  The random component allowed us to account for spatial and 

temporal dependence among samples.  Following the recommendation of Zuur et al. (2009), we 

incorporated temporal covariates (Rainfall, GrSeason) into the fixed component of the mixed models.  

For the random component of the model, we considered models with different error variance for sampling 

date and Event, and we considered models with and without correlation from samples collected from the 

same watershed. 

For each analyte, we followed the approach described by Zuur et al. (2009, p.120-122) for selecting 

among alternative mixed models.  Mixed models include both a random and a fixed component.  The 

Zuur et al. procedure begins by setting the fixed component of the model to include all predictors 

(―global‖ model) and comparing alternative random components.  After selecting the global model 

producing the lowest Akaike‘s information theoretic criterion (AICc), we compared reduced fixed-effect 

models fitted using maximum likelihood.  These were implemented using R‘s gls (‗nlme‘ package, 

Pinheiro and Bates 2000) and aicctab (‗AICcmodavg‘ package). 

Burnham and Anderson (2002) recommend proposing and comparing candidate models, each a subset of 

the full model, including only predictors reasonably expected to have an influence.  Our goal was to 

identify a subset of models supported by Akaike‘s Information Criterion,

2 ( 1)
2 2

1

k k
AICc LL k

n k
, where LL is the log-likelihood of a candidate model given the data, 
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k is the number of parameters fitted, and n is sample size.  Choosing models supported by AICc balances 

the need for additional predictors to achieve a close fit against the need for a robust, parsimonious model 

that will generalize to explain patterns in new datasets (Burnham and Anderson 2002).  We present model 

weights for each of k models,
k

i

AICc

k AICc

i

e
w

e
. 

We compared the global fixed model with each of six error models using AICc for parameters fitted by 

restricted maximum likelihood (REML).  Six error models considered were 1) errors independent and 

equal variance, 2) errors correlated within watershed and equal variance, 3) errors correlated within 

watershed and variance different for event samples, 4) errors uncorrelated and variance different for event 

samples, 5) errors correlated within watershed and variances by sampling date, and 6) errors uncorrelated 

and variances by sampling date.  In general, we selected the error model with the lowest AICc, but if the 

error model included watershed correlation and the correlation was estimated to be negative, we selected 

the next-best model with no correlation assumed or estimated. 

We compared all reasonable models involving subsets of the nine predictors.  Because watershed 

influences of LULC predictors often depend on rainfall, we also considered a candidate model adding 

relevant interactions between LULC predictors and rainfall for those LULC predictors retained in the 

best-supported models (rainfall was always kept).  We identified sets of supported models based on AICc-

derived model weights.  We find these weights to be intuitively useful.  In addition, models are 

considered to have information-theoretic support if the difference in AICc (∆AICc) between the model of 

interest and the minimum-AICc model is low (substantial support: ∆AICc < 2, moderate support 4< 

∆AICc <7, low support ∆AICc > 10; p. 170 Anderson 2008).  We present full tables of model sets for five 

analytes with models having better predictive capability (TSS, TOC, DOC, TN and ON).  Because AICc 

is a relative comparison of models, we present goodness-of-fit statistics for the model with the lowest 

AICc statistics and for the global model. 

SEDIMENTATION 

Our original research plan was to characterize sediment at spawning sites identified by Dr. Doug Peterson 

(UGA) and Daniel Farrae using telemetry, with the goal of evaluating effects on egg viability.  The 

telemetry approach did not succeed because of the small number of adults tagged and failure to observe 

upstream movements during the year that the telemetry array was in place.   

Because our efforts at telemetry did not succeed in identifying substrates suitable for shortnose sturgeon 

spawning, UGA provided results of an ongoing side-scan sonar analysis for the Ogeechee River.  Note 

that the primary goal of this study was to evaluate spawning habitat for Atlantic sturgeon, which are also 

in this river system.  The recent introduction of recreational multi-beam side-scan sonar equipment allows 

low cost and rapid acquisition of bathymetric data and substrate imagery in any navigable stream.  

However, utilization of this data is hindered by a lack of established protocols for processing and 

classification.  Dr Nibbelink supervised a Masters student, John Hook, who worked with Thom Litts and 

Adam Kaiser (Georgia Department of Natural Resources). Litts and Kaiser developed a heads-up 

digitizing method (Table 2), and one objective was to compare this classification with one obtained by 

using image correction/automatic classification methods available with more costly image analysis 

packages. 

Mr. Hook conducted a side-scan sonar scan of the Ogeechee River and evaluated the potential for suitable 

spawning locations based on his survey. Side scan and multi-beam sonar surveys were performed on the 

Ogeechee River from river kilometer (rkm) 32 near Fort McAllister to approximately rkm 320 near 

Louisville, Georgia from January 2009 to June 2009. The whole navigable (with small boat) Ogeechee 

River was run with side-scan and 3D SONAR from February – June 2009, with additional targeted 

stretches being scanned during April, 2010.  Surveys were performed at high flows using Hummingbird® 
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997SI side scan and 967C multi-beam sonar systems. Side-scan recordings were georeferenced 

(longitude, latitude) and the resultant imagery imported into ArcGIS.  Side scan images were used to 

digitize the stream banks. A depth profile of the potentially suitable reaches during springtime flows was 

then created using Inverse-Distance Weighting to interpolate between the digitized banks and the multi-

beam swaths.  

Stream substrate was visually interpreted. Hard substrates found included exposed limestone bedrock, 

small limestone boulders, coarse gravel, hard-consolidated clay, and landowner-placed rip rap. The 

remaining substrates identified consisted of sand, soft clay, and silt sediments. We assumed that all hard 

substrates – exposed bedrock, cobble, gravel, boulders, and hard consolidated sediments – were 

potentially suitable for use by sturgeon.  All other substrate types were deemed unsuitable.  

Multi-beam data were used to construct a bathymetric profile of stream reaches containing potentially 

suitable substrates.  Depths at these locations during the survey periods ranged from 1.1 meters at the 

most downstream reach at river kilometer (rkm) 84.3 to a maximum depth of 5.6 meters at one of the 

most upstream reaches at rkm 219.6.  The Ogeechee River swelled by more than three meters over the 

following two weeks and all reaches identified as containing suitable substrates would have met minimum 

depth requirements at some time during the February through April time-frame for Atlantic sturgeon 

spawning movements in southern rivers.  The minimum depth associated with a documented Atlantic 

sturgeon spawning location is 1.5 m (Collins et al. 2000a); therefore, this depth was deemed the minimum 

potentially suitable depth in this study.  Shortnose sturgeon have similar requirements.  Collins et al. 

(2000b; 2002) used telemetry of juvenile shortnose sturgeon in nursery areas with depths between 2.1 and 

13.4 m. 

Table 2.  Classification scheme developed by Litts, Kaiser, and Wes Tracy to identify habitat from side-

scan sonar data. 

Substrate type Code Description 

Sandy  S  An area predominantly (>75%) composed of particles < 15 mm 

Rocky fine  Rf  An area predominantly composed of rocks from 16 mm to 500 

mm in diameter across the widest side 

Rocky boulder  Rb  An area with ≥ 3 boulders (≥ 500 mm) within 3 m of each other 

Limestone fine bedrock  Lb  An area predominated by solid limestone bedrock 

Limestone outcrop  Lo  Any limestone outcropping that is deeply fractured or shaped into 

blocks > 500 mm, includes limestone walls 

Mixed  Mx  A heterogenous mixture of rocky types with sand or limerock 

No data  No   Beyond sonar range 

Sonar shadow  SS  Dark areas caused by objects blocking sonar beam 

Unsure sandy  Us  An area with sonar distortion that is likely >75% sand 

Unsure rocky  Ur  An area with sonar distortion that is likely >75% rocky 

Island  Isl  Islands that may be occasionally inundated during high flow 

events 
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UGA surveyed three 1-km sites on the Ogeechee River, Georgia, using Hummingbird side-scan and 

multi-beam sonar units.  In addition, 3D (depth) data were collected for the whole river.  The images were 

processed at three levels of effort and complexity, from raw images exported as bitmaps, to extensively 

manipulated images which were normalized, corrected for slant-range distortions and geo-referenced.  

Substrate type was classified using heads up and automated techniques and accuracy was assessed across 

all methods.  Greatest accuracy was achieved using raw images, with lower accuracy at greater levels of 

processing.  Heads up classification yielded greater accuracy than automated for all processing levels.  

Our results indicate a trade-off between processing complexity and accuracy.  Ecologically relevant 

habitat variables can be derived even at the lowest levels of processing effort and complexity, but are 

limited to location by river kilometer and proportional area of a given substrate class.  Fully processed 

images allow for importation into a GIS and determination of area and position, at the cost of effort and 

accuracy.  

The timing of substrate characterization did not allow us to specifically represent spawning locations in 

the PVA.  However, it is possible to compare our assumptions about upstream spawning distances with 

those simulated. 

FISHERY BY-CATCH 

We planned and implemented a survey of shad nets in the Ogeechee River in the first year.  We also 

obtained state regulations that govern days during which shad fishing is legal.  Next, we implemented 

capture and harvest as by-catch in the PVA model using information from our survey on net locations, 

legal fishing dates and published survival rates for captured shortnose sturgeon.  PVA-simulated 

individual adults migrating upstream were subject to capture in shad nets only during these times.  

Finally, we ran simulations with and without by-catch mortality to assess the quantitative influence on 

simulated population persistence. 

 



 

25 

 

RESULTS AND DISCUSSION 

SHORTNOSE STURGEON WORKSHOP 

A workshop report was submitted to SERDP in March, 2007. Workshop participants stressed the 

importance of spawning and early lifestages and the importance of water quality as a priori factors that 

might limit the Ogeechee shortnose sturgeon population.  Those attendees that participate in the Ogeechee 

River Working Group and the northern shortnose sturgeon biologists believe that spawning habitat and 

early life stages are the most critical phases.  However, spawning locations are not well described but 

likely occur adjacent to Fort Stewart, upstream of the Canoochee confluence.  One concern is that age-0 

sturgeon will drift downstream into brackish conditions near the tidally influenced area adjacent to Fort 

Stewart before developing saltwater tolerance. Spatially, the main implication for the modeling is that the 

model should represent the river habitat far enough upstream to capture reproduction. 

Participants also emphasized the importance of water quality, including Fort Stewart‘s influence on 

biological oxygen demand and dissolved oxygen, and the role of saltwater intrusion as mediated by rice 

canals and groundwater extraction from the upper aquifer. 

As a result of the workshop, we revised our plan in a number of ways.  We shifted emphasis from 

sedimentation and its potential effects on early lifestages of shortnose sturgeon from the Canoochee River 

to the Ogeechee River farther upstream where spawning takes place.  We increased emphasis on water 

quality in the saltwater-freshwater interface.  Therefore, we modified the planned watershed study on Fort 

Stewart to focus on water quality impacts rather than sediment impacts.  In addition, we added plans to 

evaluate the impacts of saltwater inputs through the rice canals. 

Based on one workshop presentation, we eliminated groundwater withdrawal as a potential influence on 

shortnose sturgeon.  Dr. Reichard‘s isotope tracer study did not demonstrate connection between the deep 

Floridian aquifer, the source of groundwater targeted by pumping, and surface water in the Ogeechee-

Canoochee Rivers.  Finally, we added plans for a field survey of shad nets to ensure accurate simulation 

of by-catch mortality. 

PVA MODELING 

We developed an individual-based and spatially-explicit PVA model for shortnose sturgeon.  An 

empirical method for linking salinities in the zone of rice canal influence with those farther downstream 

was implemented and used to assess effects on shortnose sturgeon. We addressed several research 

questions using the PVA model to evaluate whether the population limited by spawner numbers or 

habitat, in the absence of other influences? 

a. What is the minimum viable population size? 

b. What is the minimum amount of habitat required for persistence? 

c. Do rice canals have a significant negative effect on juvenile habitat? 

 

We addressed the first set of research questions by evaluating two extinction thresholds of interest: 

minimum viable population size (MVP) and minimum habitat.  

Spawner limitation— To estimate MVP, we simulated the Ogeechee River population with two initial 

population sizes and river lengths (Figure 9).  An operational definition for MVP using this approach is 

the initial size for which at least 95% of replicate populations persist.  We note that this operational 

definition does not, strictly speaking, identify a threshold as larger initial populations take longer to reach 

extinction even if the same outcome will eventually be reached. 

We compared simulations with and without immigration.  Simulated ―open‖ populations, i.e., those with 

immigration, experienced a higher likelihood of persistence compared with the simulated isolated 

populations (Figure 10).  Emigration was allowed but never occurred in the simulations, possibly because 

this could only occur from the bottom-most cell. 
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Figure 9.  Ten-year time series for each of 30 replicate shortnose sturgeon populations starting with an 

initial population of 150 individuals and 1985-1995 historical climate and river flow.  Results are shown 

for three river lengths, 83, 100, and 125 km, corresponding to the simulated location of spawning. 
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Figure 10. Model-predicted increase in population persistence over 50 y for different initial population 

sizes.  We simulated immigration for the open population but not for the isolated population. 
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Habitat limitation— We compared persistence over 20 historical years using three different assumptions 

about where spawning occurred, at 83, 100, and 125 km upstream.  The fraction of replicate populations 

that persisted increased with distance upstream (Figure 10) for a range of initial population sizes. We 

observe that the time horizon for these simulations is quite short (20 y).  This is because our model is 

designed to run historical years and is not yet adapted to forecast future climate conditions.  We note that 

persistence over 20 y is not a highly encouraging result when one is really interested in the long-term 

prognosis. 

We investigated the relationship between river length and relevant sources of mortality represented in the 

model to understand our results.  Our bioenergetics growth model, when embedded in the PVA model, 

predicted that a fraction of juveniles starved during their first summer.  Pulses of reproduction in spring 

resulted in depletion of prey over summer, as illustrated by alternating sturgeon and prey peaks in Figure 

11.  Together, premature exposure to salinity and density-dependent starvation accounted for higher 

juvenile mortality in populations simulated to be restricted to a shorter section of the Ogeechee River.  

We discovered an interesting trade-off between upstream starvation and premature exposure to high 

salinity.  Juveniles choosing to remain upstream experienced high rates of starvation, whereas those 

moving downstream were killed by elevated salinities. 
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Figure 11. Model-simulated shortnose sturgeon population dynamics and prey dynamics over a twenty-

year simulation. 

One of the main objectives of this study was to compare anthropogenic threats to the population.  To 

address the second set of questions, we evaluated the relative importance of three factors (by-catch 

harvest, poor water quality/habitat, rice canals) on population viability.  According to the PVA model, all 

three were determined to have an influence, as summarized by Figure 12. Simulated habitat-related 

mortality had its largest numerical impact during the first year, acting on the juvenile life stage as 

described earlier. 
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Figure 12.  Fraction of 100 replicate populations (white) that persisted and the average number of adults 

produced (black) and over a twenty-year period for each of five scenarios in which factors were removed.  

Values presented are for an initial population size of 225 individuals.  Error bars indicate 1 SE among 

replicate scenarios. 

The effects of the three factors were clearly not additive (Figure 12), but removing the effects of all three 

factors produced a larger benefit to persistence than any one factor alone.  Of the three individual factors, 

habitat (water quality) appeared to have the largest effect.  Cumulative mortality in simulations with one 

or more factors ―turned off‖ illustrates the effects of these factors (Figure 13), some of which (i.e., 

harvest) will be described in later sections. 

 

Figure 13.  Average simulated mortality with all sources of mortality, without harvest, without rice 

canals, and without any sources of habitat mortality, and without any of the three factors. Values are 

averaged over 100 replicate simulations for an initial population size of 225 individuals. 
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MERCURY TOXICITY 

The first three tasks leading toward assessment of mercury effects on shortnose sturgeon were to model 

bioenergetics, to add uptake of mercury along with biomass, and estimation of prey concentrations of 

methyl mercury.  We completed all three of these tasks.  The bioenergetics model developed for shortnose 

sturgeon provided the underpinning for modeling mercury uptake. 

Mercury uptake was incorporated into the bioenergetics model as described in the Methods section.  We 

simulated whole body and egg concentrations bracketing the range measured in amphipod prey, 0.04 to 

0.1 mg/kg (Figure 14).  We found that model-predicted concentrations in gonadal tissue were lower than 

those measured (open bars in Figure 15).  Samples taken during 2008 were analyzed for methyl and total 

mercury. These values were incorporated as input to the mercury accumulation model and used to predict 

concentrations in somatic and gonadal tissue for a female shortnose sturgeon. 

 

Figure 14. Simulated 

whole body total Hg in 

shortnose sturgeon for 

two prey concentrations 

that bracket values 

measured in Ogeechee 

River amphipods.   

The simulated whole-

body total mercury 

concentration was below 

the USEPA threshold of 

1.0 mg/kg.  If we adopt 

higher prey 

concentrations of 

mercury that are 

consistent with measured 

egg concentrations, we 

get estimates between 0.27 and 0.66 mg/kg, which is closer to, but still below the regulatory threshold. 

There is no information on the toxicity of methylmercury to early life history stages of shortnose sturgeon 

to indicate whether these levels are likely to have effects on normal development. 

 

 

Figure 15.  Comparison of 

measured data and model-

predicted whole-body 

concentrations in amphipod 

prey (solid bars), shortnose 

sturgeon (striped bars), and 

shortnose sturgeon eggs (open 

bars) for two levels bracketing 

measured prey concentrations. 
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WATER QUALITY 

Three objectives of this task were to characterize water quality in the Ogeechee and Canoochee Rivers 

and to develop equations to estimate water quality parameters in the lower Ogeechee River for use in the 

PVA model. 

Ogeechee Sampling.— In the Ogeechee River, the lowest values of DO occurred in summer.  Nearly 40% 

of biweekly DO measurements measured during the months from June to September were below 4 mg L-1 

(Figure 16).  Variability in summer DO was high and only partially explained by variation in temperature 

and flow.  Spatially, there was not much evidence for a DO sag below the Canoochee inflow at river km 

56, but DO values below 4 mg L-1 were not uncommon in the transition zone.  Concentrations below 3.5 

mg L-1 have been associated with increased routine metabolism, decreased growth, and mortality in 

juvenile shortnose sturgeon (Niklitschek and Secor 2009).  The lowest DO (2.24 mg L-1) was recorded 

during the pre-dawn period in June, which could have been caused by night-time algal respiration.  

Surface and bottom values were not significantly different. 

 

Figure 16.  Distributions of bi-

weekly dissolved oxygen 

measurements in summer 

months (June to Sept) and 

winter months (Nov – Mar), 

2007 to 2009 in the lower 

Ogeechee River.  Each box 

extends from the lower 25th to 

the 75th percentile, with the 

median and mean shown as solid 

and dashed horizontal lines, 

respectively.  Upper and lower 

whiskers indicate 5th and 95th 

percentiles, and symbols show 

extreme values. 

 

 

Canoochee Sampling.—The general pattern observed for most analytes (Figure 17) was that of lower 

concentrations in the NW branch of the Canoochee River, and higher concentrations in the SW branch 

(Canoochee Creek).  Like headwater samples, nitrogen was dominated by organic forms (Figure 17A).  

Levels of organic nitrogen were much higher in the storm samples collected in 2008 than in the base-flow 

samples collected in 2009.  Inorganic nitrogen in the 2008 tropical storm Faye samples and in 2009 

samples upstream of Bridge 38 was primarily in the form of NH4
+ (Figure 17A).  In contrast, levels of 

NO3 were much higher than NH4
+ in two bridge samples taken downstream of a large training area north 

of the Canoochee River and Canoochee Creek  
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Figure 17. Water chemistry measurements, including A) nitrogen, B) phosphorus, C) total suspended 

solids (TSS), and dissolved organic carbon (DOC), taken from six bridges on the lower Canoochee River 

on two occasions (August 2008 and August 2009).  Bridges 15 and 19 are on the upper branch of the 

Canoochee River.  Bridges 27 and 28 are located below Taylor Creek on Canoochee Creek.  Bridges 38 

and 40 are located on the Canoochee River downstream of the Canoochee Creek confluence and 

downstream of a large, barren area used for training.  

Phosphorus levels were lowest in the upstream Canoochee River samples (Bridges 15 and 19, Figure 7) 

and high in the Canoochee Creek (Bridges 27 and 28) and lower Canoochee River samples (Bridges 38 

and 40) (Figure 17B).  In 2008, the highest TP value (at Bridge 38 in Figure 17B) coincided with the 

highest TSS value.  TP measured (and re-measured to confirm) at Bridge 38 in the 2009 sample was 

extremely high (29 mg L-1), but values at downstream Bridge 40 were considerably lower (Figure 17B).  

However, TSS at Bridge 38 was not particularly high in the 2009 samples (Figure 17C). 

A large peak in TSS was measured during storm Faye in 2008 at Bridge 38 (Figure 17C).  This particular 

bridge is below a large barren, training area with several artillery ranges in the center of Fort Stewart.  

This peak did not correspond with high values in samples from either of the upstream branches, and also 

seemed to be ameliorated by the time water reached Bridge 40.  DOC was higher in the Canoochee Creek 

samples (Bridges 27 and 28) than in the upstream Canoochee River samples (Bridges 15 and 19), with 

intermediate values downstream after their convergence (Bridges 38 and 40), as shown in Figure 17C.  

DOC showed a similar spatial pattern to that of ON, with low values in the upper Canoochee and high 

values in Canoochee Creek (Bridges 27 and 28 in Figure 17C), with intermediate values farther 



 

32 

 

downstream beyond the Canoochee Creek confluence.  Concentrations of DOC in the 2008 storm Faye 

samples at Bridges 38 and 40 were 3 or 4 times higher than those during 2009 base-flow conditions 

(Figure 17C).  To assess the potential of DOC to flocculate and thus increase its availability to 

heterotrophic microbes in the benthos, we measured POC formation after adding seawater to DOC 

samples collected at Bridge 40 on three occasions.  In our August 2008, March 2009, and May 2009 

samples, 17.1%, 17.9%, and 23.7% of DOC flocculated as POC, respectively.  We concluded that 

approximately 20% of DOC would become POC upon reaching the freshwater-saltwater interface in the 

Ogeechee River. 

Ogeechee Modeling.—The PVA model requires three water quality variables, temperature, salinity, and 

dissolved oxygen.  High temperatures and salinities and low levels of dissolved oxygen are assumed to 

cause mortality after one day of exposure.  According to Secor and Niklitschek (2001), age-0 shortnose 

begin to exhibit physiological and behavioral changes to DO below 4.5 mg/L when temperatures are in 

the range 22-27°C. Tolerances of older fish have not been characterized.  Habitat quality is reduced for 

water quality in poor and marginal ranges, which influences habitat choice. 

We defined relationships for each of the three variables as functions of one or more of the following 

variables: distance from the ocean, X in river km, flow below the Black Creek and Ogeechee River 

confluence, season and the other two water quality variables.  These relationships are described below.  

We also added normally distributed error, ε, with zero mean and standard deviation 1.96*sqrt (mean 

square error) to each fitted relationship used to predict water quality, Equations 6 to 9.  This is considered 

a reasonable approximation of the prediction error when sample sizes are large. 

Equation 6 describes a relationship fitted to salinity data collected in the Ogeechee River below the 

influence of rice canals and reported in graphs by Sheldon and Alber (2005).  This relationship, with 

parameters estimated using SAS™ NLIN, explained 75% of variation in salinity. 

2( , ) 1 .

e

Salina SalincQ

Salinb SalindQ

x
S x Q Ssw

x

   (1) 

To simulate salinity influences of rice canals, salinities between river km Rice_low and Rice_hi were set 

to those at a downstream location, Rice_ptr.  This downstream location was selected by visually 

comparing movies of salinities simulated using the Environmental Fluid Dynamics Code (EFDC) with 

and without rice canals.  The EFDC model was calibrated to simulate temperature and salinity in the 

Ogeechee River. 

Seasonal variation in water temperature was modeled from air temperature, Tair and Julian day based on 

data at the Eden gage on the Ogeechee River (Equation 7).  We simulated air temperature using Equation 

7, which we fitted to over fifty years of National Climate Data Center data measured at the Savannah 

International Airport. 

 0 1( ) ( ) ,w t airT day w wT day  (1) 

 0
2

( ) ( ) sin
365air avg max avgT day T T T day J  (1) 

We predicted water temperature from air temperature and Julian day.  Note that the equations above can 

be used to simulate future water temperatures. 

We used our water quality survey data for the Ogeechee River to evaluate seasonal and longitudinal 

variation.  Because bottom and surface measurements were not significantly different, we used an average 
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if both were available and either available measurement if not.  Longitudinal variation in temperature was 

not significant, but seasonal variation was significant (represented by the sine term in Equation 8).  In the 

Ogeechee River, water temperature also showed a significant decrease in response to increased total flow 

(all three upstream gages).  Season alone explained at least 94% of variation in water temperatures 

measured during 2007 – 2009.  Lower oxygen levels occurred at high temperatures during summer and 

fall.  Values below 4 mg L-1 were observed between July and September in the lower Canoochee River 

and below the Canoochee confluence on the Ogeechee River (Figure 16).  Similar patterns were observed 

in the upper estuary between Fort McAllister and Ossabaw Sound (Dom Guadanoli, Georgia Department 

of Natural Resources, personal communication).   

We fitted multiple linear regression models for dissolved oxygen. In the Ogeechee River, salinity, log-

transformed total flow (all three gauges), water temperature, Tw, river km, X, and the percent of upstream 

flow from the Canoochee River, %Qc explained 79% of variation in DO in the Ogeechee River (Equation 

9).  We subtracted 0.3 mg L-1 from the intercept to account for the fact that measurements are during the 

day, based on an average difference of 0.6 mg L-1 between day and night (Mulholland et al. 2005). 

 0, , , 3Og S Og Qt tot T Og w x pDO v v S v Q v T v X v pQ
 (1) 

WATERSHED ASSESSMENT 

Research to understand water quality influences of military landscapes usually involves intensive 

sampling in a few watersheds. In this study, we developed a survey design of accessible headwater 

watersheds intended to improve our ability to distinguish land-water relationships in general, and training 

influences in particular, on Fort Stewart, Georgia. We sampled and analyzed water from watershed outlets 

(Jager et al. 2011).  

We examined the distributions of water chemistry analytes measured in headwater watersheds. TSS 

measurements were highly variable (average 51.7; range 0.7 to 941.1 mg L-1; Figure 18A).  The median 

DOC in our samples was 31.08 mg L-1, with a range from 2.76 to 63.94 mg L-1 (Figure 18A).  Total 

nitrogen was dominated by organic forms of nitrogen (85%) in these streams (Figure 18B).  Inorganic 

nitrogen was primarily in the form of ammonium ions, NH4
+ (Figure 18B).  On average, SRP represented 

approximately one-third of total phosphorus (Figure 18B).  Median values of both TSS and TP were high 

after tropical storm Faye in August, 2008, but not after rainfall on and before March 30, 2009. 
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Figure 18. Water chemistry measurements from headwater watersheds on Fort Stewart, Georgia.  Each 

box extends from the lower 25th to the 75th percentile, with the median and mean shown as solid and 

dashed horizontal lines, respectively.  Upper and lower whiskers indicate 5th and 95th percentiles, and 

symbols show extreme values. Two groups are shown:  A) Concentrations of total suspended sediment 

(TSS), dissolved (DOC), and total organic carbon (TOC) are reported in mg L-1; B) Concentrations of 

NH4
+, nitrate plus nitrite (NO3), and organic nitrogen (ON) are in mg N L-1.  Concentrations of soluble 

reactive phosphorus, SRP, and total phosphorus (TP) are in mg P L
-1

. 

The highest positive correlations between pairs of measured water-chemistry variables were between 

DOC and TOC (0.960), TN and DON (0.895), TN and NH4
+ (0.668), TN and SRP (0.707), TP and SRP 

(0.772), TOC and DON (0.598), TSS and NO3 (0.553).  The highest negative correlation was between 

DOC and NO3 (-0.499) and DOC and TSS (-0.424).  Among watershed attributes, stream-crossing 

training activity was correlated with grassland area (0.611) and wetland area (0.459).  Other positive 

correlations were found between road and bare ground (0.51), wetland and forest area (0.488).  Negative 

correlations were found between months-since-burn and wetland (-456), and between months-since-burn 

and stream-crossing activity (-0.499). 

We successfully developed correlative models for total suspended solids (TSS), total nitrogen, and 

organic C and N, which dominated in this blackwater ecosystem.  TSS tended to be higher in samples 

after rainfall and during the growing season and models that included %wetland suggested a ―build-and-

flush‖ relationship.  We also detected a positive association between TSS and tank-training, which 

suggests a need to intercept sediment-laden runoff from training areas. Models for organic C revealed a 

negative association with %grassland. Total and organic N both showed negative associations with 

%grassland, %wetland, and %forest. Unexpected positive associations were observed between organic C 

and equipment-training activity and between organic N and %bare ground and roads.  
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SEDIMENTATION 

A side-scan sonar survey of the entire navigable portion of the Ogeechee River was completed by Nate 

Nibbelink and John Hook (UGA) using Humminbird SONAR units at a relatively fast speed. The survey 

found that substrate diversity was low, dominated by silt/sand substrate and relatively few sites with 

gravel/cobble substrates.  Eight stream reaches totaling 50,892 square meters were identified as 

potentially suitable for spawning use by Atlantic sturgeon (Table 3, Figure 19). This represents 0.2% of 

the roughly 23,900,000 m2 surveyed. Of the 50,892 m2 identified, 34,949 m2 or 68% were naturally 

occurring hard substrates. The remaining 15,943 m2 consisted of introduced gravel and rip rap.  

Table 3. Location, size, depth, and composition of potentially suitable spawning grounds for Atlantic 

sturgeon (>1.5 m) and shortnose sturgeon (>2.2 m) in the Ogeechee River, Georgia. Source: Hook (2011) 

River 

Kilometer 

Size  

(sq. m) 

Depth  

range (m) 

 

Composition 

84.3 6774.3 1.1 – 2.4 Consolidated clay, ―mudrock‖ 

134.8 2076.6 1.3 – 3.1 Exposed limestone bedrock 

138.9 4934.1 1.4 – 3.8 60 cm or smaller limestone boulders mixed with sand 

139.5 5816.1 2.1 – 3.9 Exposed limestone bedrock 

141.3 10711.2 2.3 – 4.6 Matrix of sand, exposed bedrock, and small boulders 

180.4 4636.7 2.3 – 4.6 Exposed limestone bedrock and coarse gravel 

219.0 4365.3 2.4 – 5.6 Concrete chunks, rip rap 

219.6 11578.2 2.5 – 4.8 Concrete chunks, rip rap 

The bad news is that we identified very few sites with suitable rearing substrate in the Ogeechee River. 

The good news from this study is that future studies can focus efforts to sample for eggs and larvae near 

these areas using egg mats to evaluate spawning success without too much difficulty.  This assumes that 

spawning sturgeon actually focus their spawning activities at sites with these characteristics.   

Our PVA modeling compared results for spawning distances of 83 km, 100 km, and 125 km.  We note 

that the first suitable site moving upstream occurs near the confluence of the Black River and Ogeechee 

River, near 83 km.  Interestingly, tributary confluences are known to be used for spawning by sturgeon 

species including shortnose sturgeon (Collins et al. 2000b) and white sturgeon (A. transmontanus) (Perrin 

et al. 2003).  Coarse substrates inputs can characterize these depositional areas. 
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Figure 19. Potentially suitable spawning locations for Atlantic and shortnose sturgeon in the Ogeechee 

River, Georgia (river km). Results indicate low substrate diversity dominated by silt/sand substrate. 

The UGA sonar survey did not address the role of military activities.  However, we note that the first 

suitable substrate occurs at river km 84.3, and the Canoochee River, which drains most of Fort Stewart, 

enters the Ogeechee River at river km 55.  Although we ruled out the potential impact of military activity 

on shortnose sturgeon in the Ogeechee River based on the physical downstream location of the 

Canoochee River, we note that other coastal installations with rivers that support sturgeon may experience 

effects caused by training activities that lead to sedimentation. 

FISHERY BY-CATCH 

We completed a by-catch survey in 2008.  These data were used to estimate parameters for the harvest 

model.  Simulations were conducted to evaluate the relative importance of by-catch to population 

viability.  Although the effects of poor water quality on shortnose sturgeon habitat were predicted to have 

a larger individual impact than harvest, removing simulated harvest resulted in the largest reduction in 

mortality (Figure 13). 
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CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH 

This project set out to address a number of scientific questions listed below about factors, military and 

non-military, influencing the shortnose sturgeon population in the Ogeechee River, adjacent to Fort 

Stewart in Georgia.  Most of these were addressed during the course of the project.  Other questions have 

been addressed by preliminary simulations but require additional simulations to obtain a complete answer.  

In addition, new questions were raised during the course of our study. 

1. Is the population limited by habitat or spawner numbers? 

a. What is the minimum viable population size? 

b. What is the minimum amount of habitat required for persistence? 

c. Do rice canals have a significant negative effect on juvenile habitat? 

2. Is summer habitat limiting the Ogeechee River population? 

3. Is the availability of coarse substrate limiting spawning in the Ogeechee River?   

4. Is mercury limiting the Ogeechee River population? 

5. Is harvest mortality as by-catch limiting the Ogeechee River population? 

 

Our PVA study evaluated a wide range of potential threats to the shortnose sturgeon population in the 

Ogeechee River (Figure 3).  Our results elevated the importance of habitat limitation for early life stages.  

Successful reproduction is likely affected by access to upstream spawning and incubation habitat with 

coarse substrates and deep water and by summer water quality in downstream habitat (dissolved oxygen 

and salinity).  Harvest as by-catch in the shad fishery was also a non-negligible influence on simulated 

populations.  By addressing the questions above, this study provide insights needed to design future 

research for and implement proper management of the Ogeechee River stock of shortnose sturgeon as 

well as other populations in the southern USA.  These are discussed in the section below titled 

―Implications for Future Research‖. 

Beyond this, we determined that connections with populations in the surrounding rivers are non-

negligible and that southeastern populations should be understood in terms of their metapopulation 

dynamics.  The Ogeechee stock appears to be limited by persistent recruitment failure (Peterson and 

Farrae 2011).  This study has generated interesting hypotheses about seasonal patterns of migration for 

this population that could be further explored using our spatially PVA model.  Understanding the role of 

this river in the larger context of a metapopulation that includes populations in surrounding rivers is 

needed to help define distinct population segments (DPS‘s) and to develop meaningful recovery goals. 

Population recovery: PVA-based evidence for habitat and spawner limitation 

We used our spatially explicit PVA model for shortnose sturgeon to evaluate extinction thresholds.  Two 

thresholds of interest are minimum viable population size (MVP) and minimum habitat amount required 

to persist.  To estimate MVP, we simulated the Ogeechee River population with a range of initial 

population sizes.  An operational definition for MVP using this approach is the initial size for which at 

least 95% of replicate populations persist.  We note that this operational definition does not, strictly 

speaking, identify a threshold as larger initial populations take longer to reach extinction even if the same 

outcome will eventually be reached.  This is discussed by Jager et al. (2010) in a regional assessment of 

MVP thresholds for white sturgeon in the Pacific Northwest. 

In simulations of the Ogeechee River, persistence over time periods of hundreds of years were not 

possible, but our results clearly show that this population would not be predicted to persist over such 

periods.  Preliminary investigation of meta-population dynamics with immigration from the larger, nearby 

Altamaha River population suggests that the Ogeechee River population acts as a sink that is supported 

by its neighbors.  For the short 20-year time horizon that we simulated, the MVP threshold was high if no 
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additional sources of mortality (e.g., due to poor habitat) were simulated.  However, with these factors the 

likelihood of persistence was fairly low (between 25 and 200 initial individuals) and we found that 

persistence did not continue to improve for large initial populations.  This suggests that the MVP is low (a 

small number of successfully reproducing females can sustain the population) and that density-

dependence, as represented in the model, is important.   

The habitat requirement for shortnose sturgeon spawning populations was previously suggested to be 200 

km, based on a comparison of rivers lacking shortnose sturgeon with those supporting sizable populations 

(Kynard 1997). This distance is roughly the distance to the fall line, a geologic feature separating the 

Coastal Plain and Piedmont ecoregions, represents a natural barrier for fishes and marks a distinct break 

in the upstream distribution of many aquatic species in the Coastal Plain.  We were therefore interested in 

further investigating the role of premature exposure to salinity by simulated spawning to a location in the 

river beyond 125 km (the distance investigated in our experiments).  This required artificially extending 

physical habitat (data describing width, depth) beyond the 83 km that were characterized in the field (the 

Canoochee River enters at ~river km 53).  However, preliminary simulations in which we artificially 

extended the river and upstream location of spawning did not continue to show a benefit, a result that we 

have not had the opportunity to investigate further.  Now that we have a list of six likely locations for 

spawning, these PVA results could be made more realistic for the Ogeechee River population. 

Summer water quality limits PVA-simulated population recovery 

Nutrient pollution is an important cause of impairment (37% of US river miles) and organic enrichment 

leading to low dissolved oxygen (24% of US river miles) (USEPA 1994; Richter et al 1997). In 

blackwater rivers of the southeastern US, dissolved oxygen is below levels favorable for biota during a 

significant portion of the summer. 

In this study, we evaluated the effects of summer habitat on shortnose sturgeon in the Ogeechee River 

using both field monitoring of water quality and population modeling. Our water quality monitoring in 

the Canoochee and Ogeechee Rivers shed light on the occurrence and frequency of hypoxic conditions in 

the lower river.  Nearly 40% of biweekly DO measurements measured during the months from June to 

September were below 4 mg L-1.  We also documented exports of organic C and N from Fort Stewart.  

These ultimately influence dissolved oxygen levels in estuaries downstream.  

Researchers are starting to recognize the important role played by organic forms of N and C in blackwater 

stream metabolism (Kaushal and Lewis 2005). Algal growth and subsequent decomposition plays a 

smaller role in oxygen depletion than direct consumption of organic carbon by heterotrophic bacteria 

(Mallin and others 2004). Typical of blackwater systems (Meyer 1990), organic forms dominated both 

nitrogen and carbon in headwater streams on Fort Stewart. Concentrations of organic carbon were high 

and predominantly dissolved, with a high DOC:ON ratio. Our models for both OC and ON suggested a 

dilution effect following rainfall. 

Based on our simulations, we believe that summer habitat, combined with small river size and the 

presence of rice canals may be limiting the shortnose sturgeon population in the Ogeechee River and 

causing it to act as a demographic sink.  One interesting result of our simulations was the trade-off 

observed between mortality of juveniles that encountered elevated salinities prematurely in downstream 

areas and upstream starvation for juveniles that remained further upstream.  This suggests a habitat 

squeeze for juveniles in smaller coastal rivers with limited access to spawning habitat farther upstream.  

The location of spawning habitat has not been confirmed in the Ogeechee River despite efforts to track 18 

adults (3 females and 15 males) during one year (Peterson and Farrae 2011).  However, juveniles have 

occasionally been sampled (Fleming et al. 2003). 

Coarse substrate required for spawning is rare 

Siltation is considered the single, greatest threat to aquatic life, affecting 45% of river miles in the east US 

(USEPA 1994, Richter and others 1997). Spawning habitat and substrate are considered to be important 
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causes of declines for many sturgeon populations, and this factor was highlighted by the shortnose 

sturgeon recovery plan.   

Our research addressed this question as follows.  First, we learned during our workshop that tributaries of 

the Canoochee River on Fort Stewart is not considered important habitat for spawning adult shortnose 

sturgeon.  Two remaining directions for research were 1) to understand sedimentation as an issue for 

other aquatic biota on Fort Stewart, and 2) to understand the potential for sedimentation in the Ogeechee 

River mainstem.  We used a watershed study to address the on-base impacts of training on sediment 

concentrations in headwaters on Fort Stewart.  We used side-scan sonar to evaluate sediment in the 

Ogeechee River.  Each of these is summarized below. 

Watershed study.—Concentrations of TSS measured in headwater streams draining Fort Stewart were 

variable and higher during event samples, with a mean value of 52.9 mg L-1 (range 7 to 941 mg L-1). 

Concentrations were particularly high after tropical storm Faye in August, 2008. TSS concentrations 

exceeding 80 mg L-1 have been associated with significant declines in macro-invertebrate density (Bilotta 

and others 2008). However, the biological significance of these levels likely depends on the frequency 

and duration of sediment loadings (Bilotta and Brazier 2008), and not just concentrations. Although 16% 

of our event samples exceeded this limit, our non-event samples did not. 

Our watershed study on Fort Stewart sought to examine the influences of military training activities. We 

found a positive association between TSS and tank training and a weaker positive association with roads 

and bare ground (Jager et al. 2011).  Roads and barren areas used for training were found to be associated 

with elevated TSS in two studies on Fort Benning (Maloney and others 2005a, b; Houser and others 

2006), but a negative response in a third (Bhat 2006). Military training in headwater watersheds at Fort 

Benning was also linked with high silt levels and reduced abundances of less-tolerant benthic 

invertebrates (Quist and others 2003, Maloney and Feminella 2006).  

In our Canoochee River sampling, we detected elevated levels of TSS in headwater streams during one 

event that might be a concern for aquatic biota that inhabit headwater streams on Fort Stewart, and TSS 

levels were higher in those watersheds affected by tank training.  TSS was also high downstream in the 

Canoochee samples below a large denuded training area on Fort Stewart. 

Creating buffers of riparian vegetation surrounding water has been recommended before and is 

highlighted in environmental manuals produced by Fort Stewart (DEIS 2010) and other installations. Our 

ability to detect training effects on TSS suggests that either the policies have not yet been fully 

implemented or they are not having their intended effect. Future studies that combine our survey-based 

approach with more-intensive monitoring of the timing and intensity of training are needed to better 

understand the mechanisms for these empirical relationships involving military training. This would be 

the next step toward developing practical recommendations. 

Side-scan sonar study.—Our side-scan sonar study suggests that suitable locations for spawning are rare.  

These results suggest that an absence of suitable spawning, incubation, and rearing substrate may be one 

factor limiting the Ogeechee population.  In addition, it is likely that juvenile movement downstream into 

higher salinity habitat is hastened by the lack of interstitial habitat.  The timing of the survey, which 

happened concurrently with our PVA modeling, did not allow us to represent specific spawning locations.  

Integrating these spawning locations into the PVA model is a next step in evaluating this population. 

Simulated mercury concentrations are below EPA’s threshold 

We developed a model of mercury uptake for a shortnose sturgeon female and compared predicted MeHg 

concentrations based on measured prey concentrations with those measured.  Both our modeling results 

and measurements suggest that levels are somewhat elevated, but they did not exceed the EPA threshold.  

We therefore rank mercury below three other potential threats preventing recovery of the Ogeechee 

population. However, we caution that levels in other species (largemouth bass) above the 1.0 mg/kg 

threshold have been caught in the Canoochee River on Fort Stewart. 
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Harvest mortality limits PVA-simulated population recovery 

Our PVA simulations compared population dynamics with and without by-catch.  Our results suggest that 

by-catch could be a problem if mortality of captured sturgeon is similar to that published by Mark Connor 

in the Savannah River and if net avoidance is not significantly higher than what we assumed.  We 

therefore conclude that this factor is not one that should be neglected.   

Implications for future research 

Our results suggest that future research to improve management for this species in southeastern rivers 

should focus on understanding the apparent sensitivity of shortnose sturgeon to availability of upstream 

river habitat for spawning and rearing of early lifestages.  Our PVA modeling suggested to us a general 

theory for understanding coastal rivers and the anadromous populations that they support as a habitat 

―squeeze‖ for juveniles between density-dependent factors upstream and high salinities downstream. The 

length of suitable river habitat decreases seasonally as water temperatures rise.  One can envision suitable 

river habitat as a series of accordions, shrinking and expanding seasonally. Locating refuge during periods 

of poor water quality in summer remains an important direction of research.  We envision river habitat as 

being effectively ―shortened‖ by man-made influences, including man-made canals and climate changes 

that result in sea-level rise.  We, therefore, recommend research to understand future climate change 

effects and the potential for closing rice canals as an adaptive measure. 

In southern populations, metapopulation connectivity between adjacent rivers is restricted temporally to 

winter (low temperatures) when salinity tolerance is higher.  Coastal corridors connecting riverine 

populations are, therefore, potentially important during this time.  PVA analysis is needed to evaluate 

alternative management options for improving habitat conditions in the lower river(s) and to test the 

generality of the theory proposed by this study for metapopulation support among sturgeon populations in 

rivers of different lengths.  This effort would be best carried out in collaboration with field telemetry of 

individuals tagged in the three rivers, Altamaha, Ogeechee, and Savannah, which is needed to quantify 

straying rates and understand the age, gender, and circumstances of those migrating between rivers. 

Sediment.—Our research highlighted the rarity of suitable coarse substrate for spawning for both Atlantic 

and shortnose sturgeon (Hook 2011). Higher-resolution surveys conducted at a slower speed might 

identify other locations.  Although some hard-bottom areas may have been missed, the extremely low 

gradient and wide floodplain limits occasions for riverbed scouring (Hook 2011).  Field work using egg 

mats and larval sampling is needed to confirm that shortnose sturgeon spawning occurs at these sites.  In 

addition, we are interested in whether a general longitudinal pattern of increased incidence of 

cobble/gravel substrates farther upstream would be found, justifying the long spawning migration to 

distances closer to fall line.  The next step in a PVA analysis should incorporate the locations found here 

into the PVA model to conduct a more realistic assessment of premature juvenile exposure to high 

salinities.   

Water quality.—One goal of our study was to evaluate the role of Fort Stewart and military activities.  We 

developed relationships that could now be useful for managing the robust redhorse (Moxostoma 

robustum) and other TES aquatic species found in smaller rivers and streams on Fort Stewart.  In 

addition, our water quality monitoring demonstrated that Fort Stewart can potentially influence poor 

summer water quality in the larger Ogeechee River.  To identify the impact of Fort Stewart, more-

intensive monitoring of nutrient fluxes and organic carbon is needed to track development of adverse 

conditions in the estuary and coastal river.  This would necessitate installation of flow gages or frequent 

monitoring of our staff gages, which would allow estimation of loadings from measured concentrations. 

Harvest.—Our PVA results highlighted by-catch as one of three important factors reducing population 

persistence.  However, the ability of sturgeon to avoid nets has not been assessed, nor has the sensitivity 

of our results to assumptions about avoidance.  Field studies can be designed to estimate avoidance.  The 

next step in this research is to obtain permission to use shad nets to catch tagged adult sturgeon during 
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upstream migration.  If the number of tagged adults in spawning conditions is combined with tracking 

sturgeon that escape the nets, a statistical estimate of net avoidance can be developed. Meanwhile, 

sensitivity analysis can be used to evaluate PVA results to assumed avoidance. 

Atlantic sturgeon.—Although our project focused on the shortnose sturgeon, some of our findings and 

modeling results also apply to the Atlantic sturgeon, species that is also present in this river system. 

Farrae et al. (2009) estimated the abundance of age 1 Atlantic sturgeon in the Ogeechee River to be 450 in 

2007, and numerous other researchers have captured age 1 Atlantic sturgeon in the system.  Listing of 

Atlantic sturgeon under the Endangered Species Act is imminent.  The individual-based modeling 

approach used in our PVA lends itself to understanding potential competitive interactions between two 

such species.  
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