
LLNL-TR-587361

NEAMS Static Analysis

B. Oliver, T. Dahlgren, M. C. Miller

October 3, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

 LLNL-TR-587361 / 1

NEAMS Static Analysis
Bill Oliver, Klocwork Administrator, oliver4@llnl.gov
Tamara Dahlgren, SQA Engineer, dahlgren1@llnl.gov

Mark C. Miller, NEAMS ECT Technical Area Lead, miller86@llnl.gov

Table of Contents
Introduction to static analysis ... 2

Why use Static Analysis Tools ... 2

Anecdotes from Industry .. 2

Introduction and description of the 4 NEAMS codes ... 3

Static Analysis approach ... 4

Results ... 5

MOAB .. 5

HDF5 .. 7

AMP ... 9

VisIt ... 11

Conclusions & Recommendations .. 13

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

 LLNL-TR-587361 / 2

Introduction to static analysis

Why use Static Analysis Tools
Advanced Static Analysis tools can find defects in source code without actually running the code. These
tools are capable of finding a large set of defects depending on which checkers are enabled. The tool
used on the NEAMS project is developed by a company named “Klocwork.” For C and C++ codes it has
more than 150 checkers. These checkers can find issues in source code inter-procedurally including such
defects as memory/resource leaks, buffer overflows, use of uninitialized variables, null pointer
dereferences and many others. Some of these defects can also be found with dynamic tools such as
Valgrind. However the Klocwork static analysis tool has several advantages over dynamic analysis tools
like Valgrind. First, Klocwork can find more types of defects and it looks in more places to find defects.
Valgrind, for example, requires that the code be executed to find defects. That means valgrind can find
defects only in the code paths that are actually executed. In addition, running a code with Valgrind can
cause the code to run significantly slower. On the other hand, the time it takes to analyze a code with
Klocwork is only on the same order as the time it takes to compile the code. Changes to fix defects are
confirmed by a short re-compile instead of a potentially very long re-execution. In addition static
analysis provides 100 percent code coverage whereas dynamic analysis provides only as much coverage
as the portion of code actually executed. We are not suggesting static analysis should replace dynamic
analysis. Neither approach can find all defects. We recommend the use of a static analysis tool in
conjunction with a dynamic tool. This facilitates the discovery of the largest possible set of defects.

Anecdotes from Industry
Klocwork has over 1000 customers which include Motorola, Intel, Qualcomm, and John Hopkins to name
just a few. In a case study by John Hopkins titled “Enhancing software reliability and developer
productivity while building the next generation of human prosthetics”, a DARPA project, Klocwork was
shown to increase the reliability of the code by finding critical defects that went undetected by
conventional testing techniques. In summarizing the benefits of using Klocwork that study states the
following: “Since the software is an embedded real-time system, defects such as array bounds
violations, use of uninitialized data, null pointer references, and thread synchronization errors are all
examples of potentially critical issues that were found by the tool.”

In another case study, Motorola asserts “large scale deployment of static analysis leads to measurable
productivity and quality improvements.” In that study, Motorola found that in the first year of using
Klocwork they experienced a two-fold reduction in the number of defects found during system test.

The University of Colorado’s Laboratory for Atmosphere and Space Physics (LASP) conducts research in
Atmospheric science, space physics, solar influences, and planetary science. Due to reliability
requirements, LASP began routine analysis of the GOES-R software with the Klocwork tool set. Don
Woodraska, Professional Research Assistant in the Data Systems group, has indicated that Klocwork
found Array Bounds Overflow type defects that were critical to the software for that project. Their case
study indicated that by using Klocwork they were able to improve the reliability of the code and the
productivity and development skills of their developers.

 LLNL-TR-587361 / 3

Introduction and description of the 4 NEAMS codes
Four codes were chosen to run through the Klocwork static analyzer; HDF5, MOAB, AMP and VisIt.
Three codes, HDF5, MOAB, and VisIt are open source. AMP is divided into an export controlled piece and
a piece that is not export controlled. The non-export controlled portion was analyzed with Klocwork.

According to the HDF Group web site: “The HDF5 technology suite is designed to organize, store,
discover, access, analyze, share, and preserve diverse, complex data in continuously evolving
heterogeneous computing and storage environments. HDF5 supports all types of data stored digitally,
regardless of origin or size. Petabytes of remote sensing data collected by satellites, terabytes of
computational results from nuclear testing models, and megabytes of high-resolution MRI brain scans
are stored in HDF5 files, together with metadata necessary for efficient data sharing, processing,
visualization, and archiving.” HDF5 is a C I/O library used by most of the other codes on the NEAMS
project.

The Mesh-Oriented datABase (MOAB) is a software component developed at Argonne National
Laboratory for representing and evaluating mesh data. It includes support for parallel mesh reading,
writing, and communication. Also included are other important mesh-based capabilities: mesh-to-mesh
solution transfer, fast ray tracing, and interfaces to key services such as parallel partitioning, mesh
visualization, and geometric modeling. A maximal configuration of MOAB makes use of several third
party libraries including HDF5, NetCDF, CGM, VTK, Zoltan, ParMETIS and Chaco. Our configuration tested
HDF5 and NetCDF. The functional interface to MOAB is simple yet powerful, allowing the representation
of many types of metadata commonly found on the mesh. MOAB also is optimized for efficiency in
space and time. MOAB is written in C++ though it also supports interface bindings for Fortran and C.

Advanced Multi-Physics (AMP) is a general purpose computational environment developed at Oak Ridge
National Laboratory. It includes implementations of coupled diffusion, mechanics, and fluid dynamics
that allow the user to build a multi-physics application code from existing diffusion and mechanics
operators. It also allows for the extension with user-defined material models and new physics
operators. AMP makes use of the following third party libraries: BLAS, BOOST, HDF5, HYPRE, LAPACK,
LibMesh, MATPRO, PETSC, Silo, SUNDIALS, Trilinos, and VisIt for visualization. AMP is used in the
simulation of Nuclear Reactors. AMP is also written in C++.

VisIt is an open source, interactive, parallel visualization and graphical analysis tool for viewing scientific
data on Unix and PC platforms. Users can quickly generate visualizations from their data, animate them
through time, manipulate them, and save the resulting images for presentations. VisIt contains a rich set
of visualization features so that a user can view their data in a variety of ways. It can be used to visualize
scalar and vector fields defined on two- and three-dimensional (2D and 3D) structured and unstructured
meshes. VisIt was designed to handle very large data set sizes in the terascale range and yet can also
handle small data sets in the kilobyte range. VisIt makes use of a large number of third party libraries
including MPI, VTK, Qt, Python, HDF5, Silo, as well as a large number of optional I/O libraries. Because
VisIt is an order of magnitude larger code base than the other codes we tested, the configuration of VisIt
we tested was simplified to expedite progress in performing static analysis.

 LLNL-TR-587361 / 4

Static Analysis Approach
Since all but one of the codes is developed by other organizations outside of Lawrence Livermore
National Laboratory, we set up a Klocwork server on our outwardly facing (Green) network. The
Klocwork administrator coordinated with the code teams to obtain the requirements for doing a native
build using standard compilers such as gcc and g++. In most cases this required downloading, and
compiling many third party libraries. Once the native build was working the Klocwork administrator ran
the analysis and reviewed the results. Accounts were given to the code team members and a brief
tutorial was conducted over the phone.

For every defect Klocwork finds, it maintains an associated “State” and “Status”. The State is not
modifiable by a user but is instead set by the tool and includes the following values: New, Existing, and
Fixed. The first time a defect is found during an analysis, its state is set to “New”. On subsequent
analyses, the state is either “Existing” if a fix has not been put in the code or “Fixed” if it has. In this way
we are able to keep track of which defects have been fixed as well as filter out existing and newly
introduced defects.

Bill Oliver, the Klocwork administrator, and Tammy Dalghren, both of Lawrence Livermore National
Laboratory ASQ Group performed a review of the results and modified the status of the defects to help
identify as many false positives as reasonably possible and to indicate which defects required a closer
look. This process is known as defect triage. Triage is accomplished via a web based interface.
Developers on the code teams that were given accounts can log in remotely and use the same web
interface to see and triage results themselves similarly. With the exception of Mark Baird of the AMP
team, none of the developers from the other code teams took an opportunity to use the web interface
to review and/or triage defects. Due to resource constraints, LLNL personnel triaged only the highest
priority defects.

Another application in the Klocwork tool set allows a developer to create a local project and synchronize
analysis results to the Klocwork server. Developers can then fix defects in their own local checkout,
quickly run a static analysis and determine if the defect was fixed (and that new defects were not
introduced in the process). However, this application is available only to developers who have accounts
on LLNL’s yellow network. Since code team members outside the lab do not have accounts on the
machine they cannot take advantage of this local tool.

For AMP, one of the AMP developers, Mark Baird, was given the responsibility to start putting fixes in
the code, test the code and prepare a code release to be given to the Klocwork administrator. The
Klocwork administrator then reran the analysis and verified that the defects were fixed.

For MOAB, HDF5 and VisIt Mark Miller, the NEAMS ECT TAL, already had permission to check out each of
the codes and to also check fixed code back in to the repository. For MOAB, HDF5, and VisIt, Mark used
the local, desktop client to fix the defects on a local, private checkout as described above. He assisted
each of the code teams by putting in fixes for selected defects, running each code’s test suite to confirm
he had not introduced any test failures and checked his changes back into a branch. Each code team
then reviewed Mark’s changes on this branch and then merged the changes back into their mainline

 LLNL-TR-587361 / 5

(trunk) development. Once Mark’s changes were merged to the trunk, the Klocwork Administrator
checked out a fresh copy and reran the analysis to confirm the defects were reported as fixed.

The MOAB code required the installation of multiple libraries. Fortunately MOAB includes a shell script
to help build and install MOAB and its required libraries. This script required minor modifications to get
it to build on the machine where Klocwork is installed. Once the initial build and analysis was complete
a script was created by the Klocwork administrator and scheduled to run once a week, automatically via
a cron job.

For the AMP code there were a number of issues that had to be overcome when building the large
number of libraries. Fortunately the AMP team assigned their main build engineer, Mark Baird, to assist
in working out the issues. Even so this turned out to be quite time consuming and took several weeks of
iterations with the AMP build engineer to complete. In addition, Klocwork was crashing when analyzing
AMP. This turned out to be a bug with Klocwork. What made resolving this Klocwork bug particularly
difficult was that we could not simply give the AMP code to Klocwork developers due to export control
constraints. We addressed this by winning approval from Oak Ridge to allow one of Klocwork’s sales
engineers who is an American Citizen to view the code and receive debug files. He was able to recreate
the problem and Klocwork developers were able to provide a patch that resolved the bug and allowed
us to complete static analysis of AMP.

VisIt is developed at Lawrence Livermore National Laboratory with other developers outside the lab
contributing. The VisIt analysis was moved to the swordfish server in order to allow developers from
outside the lab to view the results. The checkout of VisIt and build with Klocwork was very straight
forward. The Klocwork build was automated and also runs once per week. Any new defects discovered
are automatically emailed to the team for immediate resolution. In this way, the VisIt team prevents
new defects from entering the code. Nonetheless, there is also a backlog of defects VisIt developers plan
to address as time and resources permit.

 Analysis Results

MOAB
Of the 190 open defects in 104,566 lines of code analyzed 19 defects were thought to be False Positives
or about 10%. The defect density for this code is 1.82 defects per thousand lines of code. To date 40 of
those defects have been fixed and verified by another Klocwork analysis. Of the 94 issues triaged and
deemed needed to be fixed, the breakdown of the issue types is shown below:

 LLNL-TR-587361 / 6

 The defect nomenclatures, a brief description of the type of defect and the number found are listed in
the following table.

Nomenclature Description Number Found
MLK.MIGHT Memory Leak Possible 27

CL.FFM.ASSIGN Freeing of freed memory due to
missing assign operator= 26

CL.FFM.COPY Freeing freed memory due to
missing copy constructor 25

SV.TAINTED.LOOP_BOUND Un-validated input used as a
loop boundary 6

SV.FMT_STR.BAD_SCAN_FORMAT Missing width field for format 2

SV.TAINTED.CALL.INDEX_ACCESS Un-validated input used in array
indexing by function call 2

RH.LEAK Resource Leak 2
CL.SELF-ASSIGN Memory leak in assign operator= 2

NPD-GEN.MIGHT
Possible assigned null-pointer

constant value may be
dereferenced

1

INCORRECT.ALLOC_SIZE Incorrect allocation size 1

In addition the Klocwork tool calculates cyclomatic complexity. To obtain measures of cyclomatic
complexity, each function is modeled as a complete graph and then the number of linearly independent
paths through the function (graph) is calculated. Studies have shown that there is a direct correlation
between cyclomatic complexity and the testability and maintainability of the code. A standard target

27
26

25

6

2 2 2 2
1 1

 LLNL-TR-587361 / 7

complexity measure is 20 or less. Within MOAB, 2,849 functions had a cyclomatic complexity of 20 or
less and 212 functions had complexities greater than 20. Below is a breakdown of the files that
contained the highest complexities along with the maximum complexity in that file.

HDF5
Of the 512 open defects in 340,993 lines of code 68 defects were thought to be False Positives or about
13 percent. The defect density for this code is 1.50 defects per thousand lines of code. To date 70
defects have been fixed and verified by another Klocwork analysis. Of the 367 defects issues triaged and
deemed needed to be fixed, the breakdown of the number and type of defect reported is shown below.

109

71

43

58

37

16
11 9 7 6

 LLNL-TR-587361 / 8

The defect nomenclatures, a brief description of the type of defect and the number found are listed in
the following table.

Nomenclature Description Number Found

SV.TAINTED.FMTSTR Un-validated input in format
string 109

MLK.MIGHT Memory Leak Possible 71
UNINIT.STACK.MIGHT 58

NPD.FUNC.MUST Possible null pointer is
dereferenced 43

ABR Buffer Overflow 37

RNPD.DEREF Suspicious dereference of
pointer before null check 16

SV.FMT_STR.BAD_SCAN_FORMAT Missing width field for format 11

ABV.STACK Buffer overflow—local array
index out of bounds 9

SV.TAINTED.ALLOC_SIZE Un-validated input used in
memory allocation 7

RH.LEAK Resource Leak 6

Within HDF5 of the 6,116 functions analyzed 4,396 had a cyclomatic complexity of 20 or less leaving
1,720 methods with a complexity of greater than 20. Information on the most complex methods is
shown below.

 LLNL-TR-587361 / 9

A reason for surprisingly high cyclomatic complexity measures in many of theses cases is that a majority
of these routines are actually part of HDF5’s test suite and not part of the HDF5 library itself. The test
suite involves more complex code because of the wide variety of ways in which it attempt to drive HDF5
and the various means of detecting if a test has failed.

When reviewing fixes to HDF5, lead software engineer for HDF5, Quincy Koziol remarked “Very cool. I
think it's a nice win-win scenario, so I'm really glad to participate. I'm a big proponent of static analysis
tools. They aren't a panacea, but they do help quite a bit.”

AMP
A total of 296 defects have been reported in 103,727 lines of code. Of those defects 90 have yet to be
triaged leaving 206 that have been triaged. The defect density of this code is 1.99 defects per thousand
lines of code. Of the 206 triaged defects, 17 were considered to be False Positives or 8 percent. A total
of 124 have been identified as needing to be fixed and a total of 62 defects have been fixed. The
distribution of the types of defects that have been identified as needing to be fixed is shown below.

 LLNL-TR-587361 / 10

The defect nomenclatures, a brief description of the type of defect and the number found are listed in
the following table.

Nomenclature Description Number Found

UNINIT.CTOR.MIGHT Uninitialized variable in
constructor possible 65

ITER.END.DEREF.MIGHT Dereference of 'end' iterator 14

SV.TAINTED.LOOP_BOUND Un-validated input used as a
loop boundary 10

NPD.FUNC.MUST Possible null pointer is
dereferenced 8

CL.FFM.ASSIGN Freeing freed memory due to
missing assign operator= 7

CL.FFM.COPY Freeing freed memory due to
missing copy constructor 5

UNINIT.HEAP.MIGHT Uninitialized heap use possible 2

SV.TAINTED.ALLOC_SIZE Un-validated input used in
memory allocation 2

NPD.FUNC.MIGHT Possible null pointer may be
dereferenced 2

LOCRET.ARG Function returns address of local
variable 2

Within AMP of the 3,429 functions analyzed 3,309 had a cyclomatic complexity of 20 or less leaving 120
functions with a complexity greater than 20. A listing of the top 15 functions and their complexity
values are shown below.

65

14
10

8 7 5
2 2 2 2

 LLNL-TR-587361 / 11

Mark Baird provided the following feedback regarding the inter-lab collaboration and the usefulness of
performing static analysis.

“The information the AMP (Advanced Multi-Physics) development team received from the Klocwork
static analysis tool through the NEAMS project was a valuable asset from a development
standpoint. The analysis provided to the developers from the Klocwork graphical user interface allowed
the developers to not only view possible coding and memory issues but the surrounding code for easy
determination of purpose and structure of the analyzed code. This allowed the developers to put the
source in proper context. The web based user interface was also easy to learn and presented the
information in an organized manor. The interface also provided a means to track and trend the
development of the source over time, which could allow developers to see what form errors were being
typically generated and develop processed to limit the future introduction of similar errors. Overall we
were happy with the information we gained from Klocwork. In the future I think it would be a great
benefit for everyone involved if a method could be developed early in the process that would allow for
an easier transfer of source code from the developers to the LLNL team. I do want to compliment the
people involved with the Klocwork analysis, they were very professional and very knowledgeable of not
only the interface, but programming in general.”

VisIt
A total of 2,756 defects were reported in 1,195,082 lines of code. However, insufficient triage work has
been conducted to estimate an accurate False Positive rate. Preliminary indications show that the False
Positive rate may be as high as 20% and may be primarily due to Klocwork’s analysis of VTK object
usage. Using 20% as the False Positive rate, there are approximately 2213 real defects. This produces a
defect density of 1.85 defects per thousand lines of code and is consistent with the other codes we
tested. Rather than attempt to triage the rather large number of defects, the team chose to focus on

 LLNL-TR-587361 / 12

only certain classes of defects, memory leaks. As of the latest Klocwork analysis the tool reports that 84
defects have been fixed. The breakdown of the distribution of defect types is shown below.

The defect nomenclatures, a brief description of the type of defect and the number found are listed in
the following table.

Nomenclature Description Number Found
MLK.MUST Memory leak 582

NPD.FUNC.MUST Possible null pointer is
dereferenced 548

UNINIT.STACK.MUST Uninitialized variable 321
MLK.MIGHT Memory leak possible 262

UNINIT.STACK.MIGHT Uninitialized variable possible 237

CL.FFM.ASSIGN Freeing freed memory due to
missing assign operator= 192

CL.FFM.COPY Freeing freed memory due to
missing copy constructor 188

UNINIT.CTOR.MIGHT Uninitialized variable in
constructor possible 150

NPD.FUNC.MIGHT Possible null pointer may be
dereferenced 145

ABR Buffer overflow—array index out
of bounds 131

Of the 29,242 functions that were analyzed 1,259 had cyclomatic complexities greater than 20. A listing
of the top 15 functions and their complexity values are shown below. Several of the functions listed in

582
548

321

262
237

192 188
150 145 131

 LLNL-TR-587361 / 13

the table below are actually part of third party libraries (Glew and Verdict libraries) which are
automatically built-in to VisIt and exist inside of its source code tree. In addition, some of the functions
are the result of code generation techniques which are notorious for generating code with high
cyclomatic complexity.

In his experience using Klocwork for VisIt, Mark Miller writes…

”In most cases, the leaks we found with Klocwork were relatively small and unlikely to have caused any
serious problems in VisIt. However, in a few cases, the memory leaks involved allocations related to
input database mesh size (e.g. were problem sized) which could have easily driven VisIt into an out of
memory (and therefore crash) condition when iterating over a time series. So, fixing these leaks
definitely improves VisIt’s robustness. The speed with which fixes to code could be tested using the
Klocwork desktop client (as well as the reporting of potentially new issues introduced by such fixes) was
impressive and significantly helped productivity in finding and fixing defects. The Klocwork
administrator, Bill Oliver, was instrumental in providing technical support for these activities.”

Summary of Results
In the table below, we summarize the results of static analysis activities on these 4 codes.

Code #Lines #Defects Rate False + #Triaged #Fixed %Complex
MOAB 104566 190 0.182% 19 (10%) 94 40 6.93
HDF5 340993 512 0.150% 68 (13%) 367 70 28.1%
AMP 103727 296 0.199% 17 (8%) 206 62 3.5%
VisIt 1195082 2756 0.185% 20% N/A 84 4.31%

 LLNL-TR-587361 / 14

Conclusions & Recommendations
The defects found by the Klocwork tool set were defects that had previously gone undetected by what-
ever code review and or testing that are currently being done. Defects related to use of uninitialized
variables or uninitialized heap memory could easily cause the code to produce erroneous or results that
vary depending on configuration. Fixing these defects can have the effect of making the code more
robust.

All of the codes had a defect density of between 1 and 2 defects per thousand lines of code. This has
been typical of other RL3 and RL4 HPC codes we have analyzed for other programs.

In MOAB, HDF5 and VisIt a majority of memory leaks were in error-handling portions of the code which
are often difficult to test dynamically. A common source of leaks of this nature have to do with early
returns from functions where all cleanup from temporary allocations is handled at the bottom of the
function only.

For all of the codes analyzed the vast majority of the functions had cyclomatic complexities of 20 or less
and for MOAB and AMP the top complexity values were less than 140. In many cases, higher
complexities are associated with test code. This is to be expected as test code often involves extensive
logic to test a large variety of related but different behaviors all in the same test function harness.

To reduce barriers to entry in the introduction of static analysis on a larger scale in a program like
NEAMS, a probable best practice is to first stand up procedures to eliminate the introduction of new
defects. For example, the first time static analysis was applied to VisIt, there were already more than
one million lines of code in VisIt. Static analysis revealed a large number of defects, too numerous for
existing resources to address immediately. The VisIt team therefore took the approach of addressing
this backlog of pre-existing defects on an as-time-permits basis. However, the Klocwork administrator,
Bill Oliver, set up weekly static analysis to identify any new issues introduced on VisIt’s mainline
development trunk. VisIt developers fix new issues found. In this way, we prevent new defects from
being introduced.

All of the codes analyzed had development teams that were significantly under staffed. Going back and
fixing legacy defects was a matter of prioritization. In the case of MOAB and HDF5 we applied our own
manpower resources, Mark Miller, to assist in that effort. Mark was also involved in fixing VisIt defects
since he is also one of the developers on that code team. The AMP team assigned that task to Mark
Baird who did an excellent job. The advantage of having the Livermore people fix defects stems from
the access setup. Livermore employees actually have login accounts on the Klocwork server whereas
non-Livermore employees only have access to the web interface. Livermore employees can take
advantage of the use of the Klocwork desktop client which allows local checking of analysis results prior
to the next server analysis. This allows for verifying that defects are fixed and more importantly that no
new defects have been introduced in the process. So when that code is committed to the repository
and a new server analysis is completed we have 100% certainty that defects are fixed and no new
defects introduced.

 LLNL-TR-587361 / 15

Based on this advantage it is recommended that in the future Livermore employees actually fix defects
(at least the low hanging fruit) and provide the code team with patches (or wholesale commits to a
special branch set aside for static analysis work) so that the team can just run it through their test suite
and if all is well commit the code to the repository.

