EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-CONF-555978

MPI| Runtime Error Detection with
MUST: Advances in Deadlock
Detection

T. Hilbrich, J. Protze, M. Schulz, B. de Supinski,
M. Mueller

May 7, 2012

SC2012
Salt Lake City, UT, United States
November 10, 2012 through November 16, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

MPI Runtime Error Detection with MUST:
Advances in Deadlock Detection

Tobias Hilbrich*, Joachim Protze*, Martin Schulz!, Bronis R. de Supinskif and Matthias S. Miiller*
*Technische Universitit Dresden, ZIH
D-01062 Dresden, Germany
Email: {tobias.hilbrich, joachim.protze, matthias.mueller } @tu-dresden.de
fLawrence Livermore National Laboratory
Livermore, CA 94551
Email: {bronis, schulzm} @IInl.gov

Abstract—The widely used Message Passing Interface (MPI)
is complex and rich. As a result, application developers require
automated tools to avoid and to detect MPI programming errors.
We present the Marmot Umpire Scalable Tool (MUST) that
detects such errors with a significantly increased scalability. We
present improvements to our graph-based deadlock detection
approach for MPI, which cover complex MPI constructs, as
well as future MPI extensions. Further, our enhancements check
complex MPI constructs that no previous graph-based detection
approach handled correctly. Finally, we present optimizations for
the processing of MPI operations that reduce runtime deadlock
detection overheads. Existing approaches could require O(p)
analysis time per MPI operation, for p processes, where our
improvements lead to an O(logp) complexity or better for real
world applications. We present overhead measurements for two
major benchmark suites with up to 1024 cores to demonstrate
our improvements for real world scenarios.

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is a de facto stan-
dard for parallel programming. It provides a comprehensive
API that enables users to efficiently and portably exchange
messages between processes. The standard’s design targets and
enables high performance through low latency communication
and high scalability, but provides few syntactic or semantic
extensions to enforce its correct use.

As a result, MPI applications can exhibit a wide range of
error classes. Simple errors result from invalid arguments such
as an invalid array length specification, while other errors may
involve MPI resources such as communicators or requests,
e.g., the user starts a nonblocking communication that he or
she does not complete before calling MPI_Finalize. Such
errors are often hard to detect, since root-cause and symptoms
are far apart. Further, some MPI usage errors may only occur
for particular interleavings, for some MPI implementations,
or for some systems. Examples for the latter result from
freedoms in the MPI standard that allow, but do not require,
implementations to buffer point-to-point communications or to
make collective calls synchronizing.

Various runtime error detection tools exist that can detect
such errors. They can detect some errors directly on the
application processes as a local correctness check, e.g., the
use of an invalid MPI datatype. Whereas other errors such
as type mismatches in message data or messaging deadlocks

require information about more than one process, and hence
have to be implemented using a non-local approach. Thus,
these runtime tools need to communicate information from the
application processes to a process or thread that runs these
non-local correctness checks, which complicates the design
and scalability of these tools. As a consequence, current tools
are either incomplete in their functionality or scale poorly,
which renders them insufficient for reliably detecting errors in
large scale applications.

In this paper, we present the runtime tool MUST (Marmot
Umpire Scalable Tool, named after its predecessor tools) that
aims at overcoming these shortfalls of current tools and at
providing a scalable solution for efficient MPI error checking
at runtime. MUST detects many classes of MPI correctness
errors and is built on top of a flexible plugin concept, that
allows users to customize the tool to the error classes of
interest, as well as to extend its functionality to cover new
classes of errors. Although, MUST covers various process-
local correctness checks, for this paper we focus on its non-
local checks, primarily deadlock detection. Specifically, we
describe MUST as it can be used to easily and correctly
detect, analyze, and guide the removal of deadlocks in MPI
application.

Fig. 1 sketches correct and incorrect MPI communications.
We use the notation “Recv(from:x)” for an MPI_Recv call
that uses MPI_COMM_WORLD as communicator, x as the
argument specifying the source rank, while the remaining
arguments are removed for sake of simplicity in the example.
Similarly, we use “Send(to:x)” for MPI_Send and “Bar-
rier()” for MPI_Barrier, respectively. Fig. 1(a) shows a
correct communication between two processes, whereas exam-
ples 1(b) and 1(c) are erroneous variations of this example. In
Fig. 1(b) both processes will block in the receive call and wait
for each other to issue a matching send call. This will never
happen, as both processes are blocked (assuming no additional
application threads execute MPI calls). This example will
always deadlock, whereas Fig. 1(c) shows an implementation
dependent deadlock. In MPI, calls to MPI_Send are usually
buffered for small messages, which would allow both tasks
to invoke their send calls and then their receive calls. This
example deadlocks, however, if the send calls are not buffered

Process 0 ‘ Process 1 Process 0 Process 1 Process 0 ‘ Process 1
Send(to:1) Recv(from:0) Recv(from:1) | Recv(from:0) Send(to:1) Send(to:0)
Recv(from:1) | Send(to:0) Send(to:1) Send(to:0) Recv(from:1) | Recv(from:0)

(a) Send-recv communication.

(b) Recv-recv deadlock.

Process 0 (Master)

(c) Send-send deadlock.

| Processes 1 to (size — 1)

Process 0 | Process 1 | Process 2

Send(to:1) | Recv(from:ANY) | Send(to:1)
Recv(from:2)

Barrier() Barrier() Barrier()

(d) Schedule-dependent deadlock.

Fig. 1.

and is incorrect as a result.

Fig. 1(d) presents a potential deadlock that only manifests
itself in some runs. The Recv(from:ANY) call of process 1 uses
a so called wildcard source (MPI_ANY_SOURCE in MPI) that
allows the receive operation to match a message from any
process. If this call receives the message from process 0, the
second receive of process 1 can receive the message from
process 2. All three processes can then complete the Barrier
call and continue their execution. Alternatively, if the first
receive of process 1 receives the message from process 2, then
the second receive of process 1 cannot complete, as process 2
does not send another message before it issues the Barrier
call. Since process 1 cannot issue the Barrier until process 2
sends the message, both processes block indefinitely. These
wildcard receives, as well as other MPI constructs, can lead
to interleaving dependent MPI deadlocks, which only occur
in some application runs. MPI deadlock detection tools must
pay particular attention to handle these constructs correctly.

We follow a graph-based approach that uses the AND@OR
model [2] to represent wait-for dependencies of active MPI
calls. This model simplifies the AND-OR model, which can
model wait-for conditions of the most general type. Our
approach uses a graph analysis in the AND@&OR model to
recognize and visualize deadlocks. We present a generalization
to this model, as well as improvements in its application for
runtime error detection tools.

Specifically, our contributions include:

o Generalization of the AND@GOR model to handle the full
range of MPI usage scenarios previously only covered by
the more complex AND-OR model,;

o Optimizations in runtime deadlock detection that analyze
most MPI operations with O(logp) complexity for p
processes;

« Extension to detect deadlocks that involve nonblocking
wildcard receives robustly in complex applications; and

o A comprehensive application study that highlights the
benefits of our optimizations.

We structure the rest of this paper as follows: Section II
presents related work and compares our graph-based approach;
Afterwards, we introduce the AND®OR model and detail our
runtime error detection tool MUST (Section III); We present
our generalization of the AND@®OR model in Section IV
and highlight the architectural and operational changes to the
existing deadlock detection approach that support a far more

for (i = 0; 7 < size; i + +)
Recv(from:ANY)

Send(to:0)

(e) Master-slave communication.

MPI communication examples.

)
N—
ob
—~ | &

—
s | 2| =
=T
N
= |2 9
=~ < ‘f
o S)
= < Q
15| 3
54 %) A
Timeout Yes | No | Run
ISP Yes | Yes | Yes
DAMPI Yes | No | Yes
AND®OR | Yes | Yes | Run
Fig. 2. Runtime approach comparison.

efficient analysis of MPI operations in Section V; Section VI
presents the challenges and technology that surround the
handling of nonblocking wildcard receives; We demonstrate
the results of our improvements with two benchmark suites in
Section VII.

II. RELATED WORK

Our work is closely related to MPI runtime error detection
tools such as ISP [3], MPI-Check [4], MPICH extension [5],
Marmot [6], and Umpire [7]. Fig. 2 compares these approaches
for the deadlock examples from Fig. 1, where we assume that
the MPI implementation buffers the Send call in 1(c), i.e., the
example runs without producing a deadlock.

The MPICH extension ignores deadlocks and focuses on
other correctness checks, whereas Marmot and MPI-Check
both implement a timeout-based MPI deadlock detection. The
timeout approach detects the recv-recv deadlock (1(b)), but
will not detect the send-send deadlock (1(c)), and the schedule-
dependent deadlock (1(d)) only if the error manifests (denoted
by Run). Further, a timeout approach can lead to false positives
and, further, does not provide a graphical representation for the
source of the deadlock.

ISP investigates all alternative interleavings of send/recv
pairs in an MPI application to verify deadlock freedom for
nondeterministic MPI programs. As a result, ISP analyses both
execution paths of the schedule-dependent deadlock example

and always detects this error. ISP uses a centralized scheduler
to play through all interleavings by re-executing the applica-
tion multiple times, and terminates after investigating all pos-
sible interleavings. Although this provides the best coverage,
several communication patterns can produce an exponential
number of different interleavings. Fig. 1(e) presents such an
example in which ISP will not be able to validate all of the
example’s possible interleavings, even for a few tasks. Thus,
even though ISP provides good coverage, the applicability of
the tool can be limited.

The DAMPI [8] approach uses a distributed detection of
alternative interlavings to overcome the limitations of ISP.
To explore different interleavings, DAMPI rewrites MPI calls
based on an existing enumeration of explorations to cover.
This effectively removes ISP’s centralized scheduler. For each
interleaving, DAMPI executes the application and detects
deadlocks with a timeout. In summary, this approach can both
detect the recv-recv and the schedule-dependent deadlock, but
DAMPI will not catch the send-send deadlock, due to the
timeout-based deadlock detection. Also DAMPI may give false
positives and lacks a visualization of deadlocks as a result.

Umpire uses the AND@OR model with a graph-based dead-
lock detection that can detect both the recv-recv and the send-
send deadlock. The approach will only detect the schedule-
dependent deadlock if the error manifests. This approach can’t
lead to false positives and provides a graphical representation
of the source of the deadlock. We build on this model and add
support for MPI scenarios that the Umpire deadlock conditions
do not cover and implement several significant optimizations
to that approach. Further, this approach could be used to
replace the timeout approach in DAMPI to overcome the
drawbacks of timeout-based deadlock detection.

Finally, our generalization of the AND@®OR model [2]
extends work on the AND-OR graph-theoretic deadlock
model [9], [10], [11]. Visualizations of the AND-OR model,
where processes may specify a Boolean equation as their
wait-for condition, are difficult to visualize, while our work
demonstrates that the AND@®OR model is equivalent and
supports intuitive visualization. Our transformation of the
AND-OR model suits the limited AND-OR semantics of MPI
but might lead to many additional nodes for other uses of
AND-OR dependencies. Thus, its efficacy for general deadlock
scenarios (i.e., beyond MPI) remains an open question.

III. MUST AND THE AND@®OR MODEL

In order to be valuable to the end user, we require a
deadlock detection that provides no false positives and enables
a comprehensive understanding of the source of the deadlock.
Such a solution must also be applicable to all MPI appli-
cations with an acceptable overhead. Experience with ISP’s
exploration of all alternative interleavings shows that such
a thorough analysis can be impractical at scale. Thus, we
restrict our approach to only consider deadlocks that manifest
themselves in a given run. As a result, we use the AND®OR
model [2] that enables a graph-based deadlock detection,
to implement a runtime deadlock detection approach in the

Marmot Umpire Scalable Tool (MUST), which extends and
scales the functionality of its predecessors: Marmot [6] and
Umpire [7].

A. Runtime Deadlock Detection with MUST

We attach the MUST library to all application processes
to intercept their MPI calls at runtime. The tool then checks
their correctness either directly on the application processes, or
within additional tool nodes of a tree based overlay network.
The tree network allows scalable data aggregation and can run
distributed or centralized correctness checks. For the purpose
of deadlock detection, we currently use a centralized deadlock
detector that runs the graph-based deadlock detection on the
root of the tree network. Each application process forwards
information about communication calls to the centralized
deadlock detector that analyzes all communication calls.

The detector tracks the state of collective operations, as
well as queues for outstanding point-to-point communications.
With that, MUST can evaluate whether a certain MPI call can
complete or whether the call waits for another communication
call, e.g., a point-to-point communication that matches the call.
We use this information to capture all wait-for dependencies
between the processes. We represent these wait-for conditions
as a graph and use a graph analysis to determine whether a
deadlock exists at a certain execution step of the application.

B. The AND®OR Model

MUST’s detector evaluates each MPI operation to determine
whether that operation can complete, or whether it waits for
one or multiple processes to invoke required MPI operations.
In the simplest case, an MPI process waits for exactly one
other process, e.g., a blocked MPI_Ssend call that has no
matching receive. More complex dependencies can arise from
MPI usage, e.g., a process issues an MPI_Barrier call and
waits for all processes in the communicator that have not
yet issued a matching call. A different behavior holds for
processes that issue an MPI_Recv call with the wildcard
source, MPI_ANY_SOURCE. The process that issues the call
waits for all processes in the communicator until any one
of them issues a matching send. In summary, MPI processes
can wait either for all or for any one process in a subset of
MPI_COMM_WORLD.

We use the terms AND semantics for processes that wait for
all processes of a process-set and the term OR semantics for
processes that wait for any process of a process-set. Deadlock
criteria exist for both the AND semantics (a cycle) and the OR
semantics (a knot, i.e., A set of nodes X where each node has
X as descendant set). MPI usage can mix both semantic types
and hence we need a more general model. The most general
deadlock model, the AND-OR model, which allows arbitrary
combinations of AND or OR conditions, is sufficiently general
but more so than necessary. This model’s generality makes
analysis harder and graphical visualizations impractical. We
therefore use the AND®OR model, which limits each node in
the graph to either exclusively use AND or OR semantic arcs.
Its wait-for graph (WFG) [2] uses the following definition:

0: MPI_Recv @

(a) WFG for Fig. 1(b).

0: MPI_Send II 2: MPI_Barrier

(b) WFG for Fig. 1(d)

(¢) WFG for wildcard receive DL.

Fig. 3. AND®OR WFG examples.
Process 0 | Process 1 | Process2 | Process 3
Irecv(comm:A, from:ANY, &reqs[0]) | Recv(from:2) | Recv(from:0) | Recv(from:2)

Irecv(comm:B, from:ANY, &reqs[1])
Waitall(2, reqs)

Fig. 4. AND-OR semantics in MPI (Communicator A contains tasks 0, 1, and 2, communicator B contains tasks 0, 2, and 3).

Definition 1 (AND®OR WFG): A tuple (V, Eanp, Eor)
forms an AND@OR WFG if (V, Eanp U Eor) is a directed
graph and the following restriction holds:

e {veV|Fx eV : (v,2) € Eanp} N

{veV|Fz eV : (v,x) € Eor} =0

We represent each process with a node in V' and use arcs of
two different types to model wait-for dependencies between
the processes that we associate with the nodes. The WFG
allows each node to use either arcs of the AND semantics
(arcs in Eanp) or the OR semantics (arcs in Eor). Fig. 3(a)
shows the WFG for the deadlock from Fig. 1(b). This graph
only uses the AND semantic that we illustrate with solid arcs.
Fig. 3(b) shows the WFG for the deadlock from Fig. 1(d)
for the interleaving that leads to deadlock. We assume that
process 0 is blocked in the MPI_Send call, as MUST treats
standard mode sends as unbuffered. Finally Fig. 3(c) shows a
WFG with the OR semantics, for which we use dashed arcs.
The graph represents the wait-for conditions of a variation of
example 1(b), where process 0 uses a wildcard source instead.

We use the OR-knot [2] as a deadlock criterion for
AND@OR WEFGs: A set of nodes X where each node can
reach all nodes in X and for which no node has an outgoing
arc of the OR semantics that leads to a node that is not in X.
MUST implements a graph search to detect and visualize this
criterion. This allows us to distinguish the root of a deadlock
from other processes that are waiting for deadlocked processes.

In the following sections we address and provide new
solutions for three fundamental limits in the application of
the AND&OR model for runtime deadlock detection:

e Some MPI constructs that are too general for the
ANDSGOR model;

o Overhead in analyzing the wait-for dependencies of MPI
calls; and

o Complexities in wildcard receive handling.

IV. AND®OR GENERALIZATION

In isolation, all blocked MPI processes use either the AND
or the OR semantics. However, combinations of different wait-
for scenarios can lead to scenarios in which this property no
longer holds. The example in Fig. 4 shows such a case using
an MPI_Waitall call and two user-defined communicators.

The user defined communicator A contains processes 0, 1,
and 2, whereas communicator B contains processes 0, 2,
and 3. In the example, process 0 blocks until both non-
blocking wildcard communication requests are completed,
which leads to the following situation: Process 0 waits for
both requests to complete (AND semantics), which in turn
wait for one process out of a set of processes (OR semantics).
Thus, this example uses the AND and the OR semantics for
a single process, which the AND@®OR model cannot handle.
Further, particular constructs in MPI can also lead to such
cases, including the call MPI_Sendrecv, multi-threaded
MPI applications, and nonblocking collectives [12] as they
will appear in MPI-3.

A. Transformation

The AND®OR WEFG lacks the necessary generality to
handle scenarios as in Fig. 4 directly. We could use the
AND-OR model for these cases but would lose our graphical
deadlock criterion. Thus, we provide a novel transformation
for wait-for dependencies of the AND-OR model that adds
additional WFG nodes to translate them into the AND@®OR
model. Intuitively, we add additional nodes that separate the
wait-for conditions of nodes that both use the AND and the OR
semantic such that in the resulting wait-for graph each process
(or node) only uses one of the two semantics. With that we
demonstrate the generality of the AND@®OR model compared
to the AND-OR model, while our model still provides the
benefits of intuitive visualization for common MPI usage.

In general deadlock theory, wait-for dependencies link
processes to resources. In MPI, however, processes wait for
messages that only processes can generate. Therefore, we
simplify our notation and formulate each wait-for dependency
as from a process to a process, without loss of generality. Thus,
we define AND-OR wait-for dependencies as follows:

Definition 2 (AND-OR wait-for dependency): For a pro-
cess set, V, and the associated set of valid wait-for depen-
dencies, A, each wait-for dependency w € A equals one of
the following:

e vwithveV

. (w1 A\ w2> with wy,ws € A

. (w1 V ’LUQ) with wy,wy € A

({UaR}a{(U;R)}7®) :ReV

R= (R1 /\Rg)

t(z, R1) Ut(y, Ry) U
: & = concat(a,v)

{v, z, 9}, {(v,2), (v, 9)},0)

t(v,R) = y = concat(,v)
R=(RiVR
t(z, R1) Ut(y, Rs) U (Fr » 2))
. X = concat(a,v
({v, 2,010, {(v,2), (v,9)}) ’
y = concat(5,v)
Fig. 5. Translation of AND-OR dependencies to AND@OR dependencies.

Informally, the set A equals the set of all Boolean equations
that use processes in V' as atoms. Each process v can specify
a wait-for dependency R € A, which we denote with a tuple
(v, R). We do not require each process to have a wait-for de-
pendency. We translate a set of general wait-for dependencies,
(v1, R1), (v2, R2), ...y (Un, Ry,), into the AND@GOR model as
follows:

n

U t(vi, Ry)

1=0

translate(((vy, R1), (v2, R2), ..., (vn, Ry))) =

Fig. 5 shows the function ¢ that we use to translate the
wait-for dependency of each process individually. We de-
fine the union of AND&OR WFGs (V!, Exyp, Ebg) and
(V2 EXnp, Edg) as (V' UV, Exnp U Ejxp, Egr U Edg)-
This union returns an AND@OR WEFG if and only if each
node in V! U V2 either uses arcs of the AND type or arcs
of the OR type. The union operator combines the intermediate
results that function ¢ returns into a final AND@®OR WFG. The
function ¢ matches the recursive Definition 2 of the AND-OR
wait-for dependencies and translates the wait-for dependency
of a node v with a recursive scheme:

ReV: (a direct dependency) t adds the nodes v (the
depending node) and R, to the set of nodes
in the WFG and adds an AND semantic arc
from v to R;

t introduces two additional nodes to the
WFG, one prefixed with “a” and one pre-
fixed with “B3”; This case returns a WFG
that results from the union operation applied
to three WFGs: the WFGs obtained with
recursive calls to t(x, Ry), which translates
the wait-for dependency R; applied to the
first additional node, and to ¢(y, Rs), which
translates Ry applied to the second addi-
tional node; and the WFG that contains the
node v and the two additional nodes x and
y along with two AND arcs from node v to
x and y;

Like the previous case, but the arcs from v
to x and y have the OR semantic.

R = (Rl A\ Rg):

R = (R1 V RQ):

We assume that both the “«” and the “/3” symbol are not
used in any node in the process set, V. Thus, ¢ either adds
arcs of the AND semantic or arcs of the OR semantic in each
construction step. As ¢ creates a valid AND®OR WFG in each
step, while each recursive call to ¢ uses a different symbol for
the first argument (the depending node), we conclude that ¢
returns an AND@®OR WEFG.

B. Example

If we consider the example from Fig. 4, then process 0 waits
for both non-blocking receives to complete. The first receive
waits for processes 0, 1, or 2, whereas the second waits for
processes 0, 2, or 3. This corresponds to the AND-OR wait-
for dependency: (((0V 1)V 2)A(2V (3V0)). The remaining
three processes are blocked in receive calls where processes 1
and 3 waits for process 2, while process 2 waits for process 0.

Fig. 6(a) shows the result of applying the translate function
to this example. We use solid arcs to illustrate arcs of the AND
semantic and use dashed arcs for those of the OR semantic.
The graph shows that the translate function first introduces the
additional nodes a0 and S0 for process 0. The transformation
uses a0 to represent ((0 Vv 1) Vv 2) of the wait-for condition
of process 0 and /30 to represent ((2 V 3) V 0) respectively.
The WFG uses unnecessary intermediate nodes, e.g., aa0 and
Ba0, which can be avoided with more elaborate transformation
functions. Extensions of translate in MUST handle conjunc-
tions and disjunctions of arbitrary order (Fig. 6(b)). Also we
remove intermediate nodes that have exactly one incoming
and one outgoing arc (Fig. 6(c)). Finally, our implementation
in MUST replaces the additional node symbols of ¢ with
more meaningful labels. Thus, MUST provides the WFG
in Fig. 6(d) for the example in Fig. 4. This more intuitive
representation highlights that the MPI_Waitall call uses
two requests, both resulting from calls to MPI_Irecv. We
use a different node shape—a parallelogram—to indicate that
the two additional nodes represent complex MPI call semantics
instead of processes.

C. Deadlock Criterion

Finally, if translate returns a WFG with a deadlock, we can
use the OR-knot [2] as a graphical deadlock criterion. Fig. 6(d)
shows an example: the nodes that are filled in gray form an
OR-knot. Each node in this set can reach all other nodes in
the set, while no node has an outgoing OR arc that leads to
a node not in the set. Note that further OR-knots exists in
this example, the first includes all nodes, whereas the second
contains processes 0, 2, and 3, as well as the MPI_TIrecv
node for “request[1]”.

Even if users of MUST are not interested in the details of
the AND@®OR model, we can provide them a simpler output:
A list of processes that form a deadlock. Even further, this
list includes our intermediate nodes, so we will not only point
users to a certain process that issues an MPI_Waitall call,
but also to the request(s) that are important.

Deadlocks in the AND-OR model relate to deadlocks
in the constructed AND®OR WFG. If translate returns an

(c) Extension of Fig. 6(b) that removes
unnecessary intermediate nodes.

P
p2 ~
4
4
) MPI_Irecv

0: MPI_Waitall

\
\ MPI_lrecv
\
\
N - 4

(b) Result of translate extended to ternary (or higher order)
Boolean operators.

Request[0]

i
«

Request[1]

(d) MUST output.

Fig. 6. AND®OR WEFGs for the Example of Fig. 4.

AND®OR WFG with an OR-knot, for each node x that was
added by ¢ and that an OR-knot includes, the following holds:
If = was added by processing a wait-for condition of a process
v, then this criterion also includes v itself, since any path that
leads to x from another process must pass through v. Further,
none of the intermediate nodes can form a cycle (or even
an OR-knot) without using arcs of any node that represents
a process. Thus, a process is deadlocked if the node that
represents this process is part of an OR-knot. However, some
of the additional nodes that are derived from a process v may
not be part of an OR-knot, as Fig. 6(d) illustrates.

V. OPTIMIZED DEADLOCK ANALYSIS

Our generalization of the AND@®OR model allows us to
model wait-for dependencies caused by any call in the current
and upcoming MPI standard. However, this capability alone

is insufficient. MUST also has to optimize the processing of
MPI operations in order to reduce overhead and interference.

Runtime deadlock detectors intercept MPI calls and inter-
pret them based on the MPI standard to determine which
MPI calls are blocked at a certain step of the application run.
We need that information to compute the WFG, which we
analyze to detect any deadlocks. Current approaches run this
analysis on a central process or thread [7], [3]. For our long-
term goal of deadlock detection that will scale to 10,000 or
more processes, we must make the following processing steps
scalable:

« Point-to-point matching;

¢ Collective matching;

o Wait-state analysis; and

o Graph-based deadlock detection.

The remainder of this section details optimizations of these
steps that we implement in MUST.

A. Runtime Detection Costs

Graph-based deadlock detection has a complexity of O(p?)
for p processes [2] and, thus, forms the most expensive
processing step. However, MPI semantics allows a deadlock
detector to analyze the MPI calls pessimistically: The detector
does not need to analyze any MPI call of a process that is
currently blocked in a preceding MPI call. Thus, even if a
deadlock exists, the detector can process further MPI calls of
other processes. As a result, we do not need to run the graph-
based deadlock detection when we analyze an MPI event. We
invoke the deadlock detection only if we suspect the presence
of a deadlock:

« If the detector receives no additional MPI events within
a configurable timeframe;

« If only some processes send MPI events; or

e When all processes notify the detector of a call to
MPI_Finalize.

Thus, we infrequently invoke the graph-based search, where
a single search for about 10,000 processes completes within
seconds. As a result, the major overhead for our runtime
deadlock detection results from the other three processing
steps rather than from the graph-based deadlock detection.

As the detector must intercept and analyze more MPI calls at
scale, the overhead for point-to-point and collective matching
increases. We will eventually need distributed approaches to
cope with the increased workload [13] in these steps. MUST
still uses centralized components, but based on a drastically
improved wait-state analysis. In Umpire [2], the detector tracks
the WFG at all times. Consider calls such as wildcard receives
or collective calls that introduce O(p) arcs to the WFG for p
processes ((p— 1)/2 arcs on average for collective calls and p
arcs on average for wildcard receives). With this approach the
overhead to update the WFG for a single operation increases
linear with scale. Also, most applications increase their num-
ber of communication calls linear with scale. If both effects
scale linear, the total overhead for runtime deadlock detection
becomes O(p?). Even if we would distribute runtime deadlock
detection with O(p), our overhead would still scale linearly,
which would render a distributed approach impractical. Thus,
we investigate the analysis time per MPI operation closely to
provide a foundation for a distributed implementation.

B. Delayed WFG Construction

MUST overcomes Umpire’s limitation by constructing the
WEFG only on demand, i.e., if MUST invokes a deadlock
detection. Thus, with p processes, the detector analyzes the
wait-for dependencies of up to p operations during a WFG
construction. Each operation may require up to p arcs, thus, the
WFG construction has a complexity of O(p?), which matches
the cost of the actual deadlock detection. For our goal of
runtime deadlock detection with about 10,000 processes this

infrequent overhead stays acceptable. The matching and wait-
state analysis costs of different types of MPI operations in
MUST are:

Send/Receive: O(1) if receives/sends use individ-
ual queues per communicator, send-
receive rank pair, and tag;

O(p) to search all processes for a
matching send call;

O(log k) to check the matching state of
the nonblocking communication that
the request refers to, which we find in
O(log k) for k requests;

O(nlog k) to check the matching state
that is associated with each of the n
request in the completion;

O(1) to check whether all processes
have issued the collective operation.

Wildcard receive:

Single completion:

Multi completion:

Collective operation:

Analyzing send, receive (with specified source), and collec-
tive calls requires O(1), which allows our detector to handle
them with low overhead. The detector can also analyze com-
pletion calls that use a single request efficiently with O(log k).
The challenging calls are wildcard receives, with O(p) com-
plexity and multi-completions (i.e., MPI_Waitall) with
O(nlog k) complexity. Multi-completions require n preceding
calls to a send or receive initiator, completions that com-
plete all requests like MPT_Waitall, lead to an acceptable
complexity of O(logk) per operation in average (n times
O(1) and once O(nlogk)). The calls MPI_Waitsome and
MPI_Waitany can impose a higher cost however, as they
may only complete one or a few requests.

We show in Section VII that the delayed WFG construction
leads to an analysis time that grows with O(logp) or better
for a wide range of applications. This property motivates
future distributed implementations of our runtime deadlock
detection.

VI. WILDCARD RECEIVE HANDLING

Wildcard receives complicate the correctness and efficiency
of runtime deadlock detection. If the detector handles a
wildcard call that has no yet known matching send call, it can
treat the operation as blocked and uses the OR semantic to
model wait-for dependencies. Handling wildcard receives for
which multiple matching send calls are available is much more
complex, though. MUST needs to adapt its matching decisions
to the same decisions that the MPI implementation makes.
Otherwise, the detector would not follow the same interleaving
as the application run, which will lead to an erroneous analysis.
Approaches such as ISP or DAMPI do not suffer from this
property, as they rewrite nondeterministic MPI calls such that
they enforce a known and controlled interleaving, which turns
each execution of the application into a deterministic run.

In order to adapt to nondeterministic choices of
the MPI implementation, we need to monitor the
MPI_Status.MPI_SOURCE field for wildcard receives.
Blocking receive calls provide this information when they
return, whereas for nonblocking receives the wait or test call

Process 0 ‘

Process 1

Process 2

MPI_Send(to:1)

MPI_Irecv(from:ANY, &reqs[0])

MPI_Send(to:1)

MPI_Irecv(from:2, &reqs[1])
MPI_Waitall(2, regs)

MPI_Barrier()
Fig. 7.

MPI_Barrier()

Process 0 \

Process 1 \

MPI_Barrier()

Schedule-dependent MPI deadlock with an unavailable wildcard completion source.

Process 2

Irecv(from:ANY, &req)
/long communication
Wait(req)

Fig. 8.

that completes the communication provides this information.
Although the detector may determine that a nonblocking
receive can match some send, the detector must still wait
until the application completes the receive. The detector
uses this information to choose the same match as the MPI
implementation selected. Thus, the detector must queue all
MPI operations that the application issues until the completion
result arrives. Due to this queuing, existing tools, such as
Umpire [7], can exhibit undesirable behavior in the following
three scenarios:

o A deadlock occurs before or while the application exe-
cutes a completion;

o The application never executes the completion; and

o The detector requires more memory than available to
queue MPI operations.

These scenarios lead to unresponsiveness or incomplete
analyses, which can render the tool incapable of detecting
some deadlocks. We introduce advanced wildcard handling in
MUST that overcomes these limitations. We still pause the
analysis of MPI operations when we wait for the completion
of a nonblocking wildcard receive, but we add two new
analysis modes: probing and deciding. These modes handle the
cases that could lead to tool unresponsiveness or incomplete
analyses.

A. Probing in MUST

We use probing when a timeout invokes deadlock de-
tection while a wildcard receive with at least one known
match was not yet completed. Fig. 7 illustrates a situation
that largely resembles the scenario in Fig. 1(d). If the first
call to MPI_TIrecv from process 1 matches the send of
process 0, the application will complete. Otherwise, this ex-
ample deadlocks with processes 0 and 2 being stuck in the
MPI_Barrier call (assuming that the MPI implementation
buffers the MPI_Send call of process 0) and process 1 in the
MPI_Waitall call. Since the completion call (in this case
MPI_Waitall) hangs, the tool cannot obtain the matching
decision from the MPI implementation. Thus, we must detect
the deadlock without this information.

The probing mode matches each wildcard receive with all
matching send calls, in order to determine if a deadlock exists.
If a specific matching decision leads to deadlock, then we

Isend(to:0, &req)
//long communication
Wait(req)

Isend(to:0, &req)
//long communication
Wait(req)

Late wildcard receive completion.

report the error and abort any further analysis. Otherwise, we
repeat our probing process until we have tested all possible
matches. If no matching decision leads to deadlock then the
detector waits for additional MPI operations.

We give an example for this approach in Fig. 7. Process 2
encounters a wild card receive operation. MUST then tests for
matches both with the send in process 0, which does not lead
to a deadlock, followed by a test with the send in process 2,
which reveals the deadlock.

Several synthetic tests of Umpire and MUST require prob-
ing. In particular, certain stress tests require MUST to in-
vestigate multiple hundred interleavings in order to detect
a deadlock. In theory, the number of available interleavings
can be exponential. However, we are not aware of any cases
where only one (or a few) of such an exponential number of
interleavings lead to deadlock.

We suspend the search of possible matches after a config-
urable time period and restart the search with an increased time
period if no additional MPI operations arrive. If the search
space exceeds the space that MUST can cover in a given
amount of time, we might not be able to report a deadlock
(false negative). MUST notifies the user if probing starts and
allows users to complete the wildcard receives in question at
an early time, in order to avoid this rare situation all together.

B. Deciding in MUST

When MUST waits for a wildcard source, the detector
queues all other MPI operations until the source arrives. If
these queues grow too long to fit into memory, we use the
deciding mode. Fig. 8 illustrates such a scenario where a non-
blocking wildcard receive of process 0 has multiple available
matches, while a completion only occurs after a long phase of
additional communication events. MUST will start deciding if
the amount of memory to store these events would exceed the
available main memory. MUST first performs a probing step
to determine if a deadlock exists. If so, we report the error
and abort. Otherwise, we enforce some matching decision to
allow the execution to continue. In the example in Fig. 8§,
MUST might decide to match the receive of process 0 with
the send of process 1. This measure can cause MUST to report
false positives, so we note this behavior in our correctness log
and allow users to issue a completion at an earlier time or to

O16

g 16 N
g s § o032
o
5, § Be4
2 N
s 0128
: N (T \ ~
05 N WV N N256
: v N o @512
. & K S &
. & £ . IS &
'&v /\\'Q,‘) z@'—; '»'@ 0» ’V@o @\7’@
S o s N
N
_6
m
Q
55
s
£4 O16
g o032
o3
E
2, D64
o
-3 B2128
g 1
20 8256
2
2 @512
c
<
(b) Analysis time per MPI operation for SPEC MPI2007.
64 35
=
&
32 5 3 =
c
O16 2 O16
16 ® 2.5
c o032 g o032
3 3 o o 2
o N a
£ N Be4 = [cv:8
2 N =
N =
2 4 A B128 g1 B128
N [
2 N 8256 £ 1 8256
N 2 N/
N N [4] I \' [4]
1 § \ 512 205 Y 512
N N z v/
N N M
0.5 0 .

ft cg is lu mg ep bt sp
(c) Slowdown for NPB.

Fig. 9.

add a missing completion. Applications for which MUST can
report false positives are rare, as their communication pattern
must be dependent on wildcard matching decisions. Note that
approaches such as DAMPI do not support such applications
at all.

VII. APPLICATION RESULTS

We use version 3.3 of the well known NAS Parallel Bench-
marks (NPB) [14] and version 2.0 of SPEC MPI2007 [15]
to evaluate MUST’s improvements in runtime deadlock detec-
tion. We use NPB problem size D and the mref size for SPEC
MPI2007. We run these benchmarks on a Linux-based cluster
with 1,944 nodes of two 6 core Xeon 5660 processors. Each
node has 24 GB of main memory and uses a QDR InfiniBand
interconnect. We use a range of 16 to 512 cores to measure
the behavior of MUST for increased scale and to validate the

ft mg ep bt sp

o

o
&
<

(d) Analysis time per MPI operation for NPB.

MUST overheads and associated analysis time per MPI operation.

improvements of our optimized detector implementation. The
NPB kernels bt and sp require square numbers of processes so
we use 36 instead of 32, 121 instead of 128, and 529 instead
of 512 processes for them. For simplicity, we do not highlight
this difference in our graphs. Further, the kernel 126.lammps
contains a potential send-send deadlock that MUST detects.
In this case we measure MUST’s overheads and analysis time
per MPI operation for all operations that MUST analyzes to
detect the deadlock.

MUST currently offers three operation modes of commu-
nication between the MPI processes and the master: The first
uses synchronous communication, the second uses immediate
asynchronous communication, and the third uses aggregated
asynchronous communication. The synchronous mode only
issues an MPI call on the application processes after the

32

16

N256

Slowdown

@512

01024

|

$ & & ©

Fig. 10. MUST overheads with larger data sets.

centralized detector analyzed the respective event, which
reflects the operation mode of Marmot. The second mode
immediately starts a non-blocking communication to notify
the detector of a new communication event, whereas the
third mode aggregates multiple events into a larger contiguous
buffer for higher bandwidth communication. Umpire uses the
last mode in combination with errorhandlers, signal handlers,
and atexit handlers to guarantee that the centralized detector
can process all important events even if an application process
crashes or hangs. MUST also implements this communication
mechanism, but our crash handling still operates at a prototype
state where we need additional investigation to guarantee that
we catch all bugs on a wide range of platforms. We use the
aggregated communication strategy for our measurements and
provide the other communication strategies for cases where
our crash handling might fail.

Figs. 9(a) and 9(c) show application slowdowns with
MUST; a slowdown of 2 corresponds to a 100% increase in
application run time. The MUST overhead includes the run
time for all the correctness checks that we provide, as well as
run times that MUST’s communication system consumes to
forward MPI call information to the central deadlock detector.
We run local correctness checks such as invalid argument
checks or MPI resource misuse detection directly on the
application processes. An additional MPI process executes the
central detector that checks type matching, verifies collective
operations, and runs our deadlock detection.

We can analyze all kernels except 107.leslie3d and 121.pop2
at 512 processes. MUST can handle most kernels with a slow-
down of about 2 or lower at 128 processes. The particularly
challenging benchmark /21.pop2 invokes an extremely high
number of point-to-point calls (about 50,000 per process per
second at 32 processes already).

The scalability limit of NPB problem size D and of the mref
input set for SPEC MPI2007 is at about 512 processes, which
increases MUST’s overhead due to a high communication
to computation ratio. Fig. 10 shows MUST’s overhead for
selected NPB kernels at problem size E and for the [ref input
set for SPEC MPI2007. The chart shows that MUST can
handle applications at 1024 processes.

Figs. 9(b) and 9(d) show the analysis time per MPI operation

of our deadlock detector. As mentioned in Section V, this
metric indicates whether distributed runtime deadlock detec-
tion is feasible or not. If this time increases linear with scale, a
distributed detection would be impractical. For all benchmarks
our optimizations in MUST lead to constant or logarithmic
increases in the analysis time per MPI operation. Only the
benchmark /30.soccorro shows a slight deviation from this
rule. The benchmark completes arrays of MPI requests with
repeated calls to MPI_Waitany, which likely causes this
behavior. As discussed in Section V, this behavior may lead
to a linear complexity.

VIII. CONCLUSIONS

We present MUST, a novel runtime error detection tool for
MPI applications. Key features include type matching, collec-
tive verification, and deadlock detection. We contribute theo-
retic and processing extensions for the AND@OR model based
deadlock detection. With p processes, the existing approach
based on this model required an analysis time of O(p) for
each blocking MPI operation, which makes deadlock detection
prohibitively expensive at scale. We overcome this limitation
and achieve an analysis time of O(logp) per MPI operation
or better for actual applications. We demonstrate this result
for two major benchmark suites for up to 1024 processes.
Additionally, the generalization of our deadlock model allows
us to handle complex wait-for semantics that arise with certain
existing MPI constructs and will become more common with
future MPI extensions such as nonblocking collectives.

Although our current approach can scale to at least 1024
processes for some applications and inputs, future use cases
will need additional advances. Deadlock detection becomes
more challenging as systems scale even further and some
errors may only occur at higher scales. Our work provides a
basis for scalable distributed MPI runtime deadlock detection,
but we will need to develop additional scalable techniques for
point-to-point matching, collective matching, and wait-state
analysis to do so.

ACKNOWLEDGMENTS

Part of this work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
(LLNL-CONF-555978). This work has been supported by
the CRESTA project that has received funding from the
European Community’s Seventh Framework Programme (ICT-
2011.9.13) under Grant Agreement no. 287703.

REFERENCES

[1] Message Passing Interface Forum, “MPI: A Message-Passing In-
terface Standard, Version 2.2, http://www.mpi-forum.org/docs/mpi22-
report.pdf, April 2009.

[2] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Miiller, “A Graph
Based Approach for MPI Deadlock Detection,” in ICS "09: Proceedings
of the 23rd international conference on Supercomputing. New York,
NY, USA: ACM, 2009, pp. 296-305.

[3] S.S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M. Kirby, “ISP:
A Tool for Model Checking MPI Programs,” in 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2008,
pp. 285-286.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

G. R. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou,
“MPI-CHECK: A Tool for Checking Fortran 90 MPI Programs,” Con-
currency and Computation: Practice and Experience, vol. 15, no. 2, pp.
93-100, 2003.

C. Falzone, A. Chan, and E. Lusk, “Collective Error Detection for
MPI Collective Operations,” in In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 12th European PVM/MPI
Users’ Group Meeting. Springer, 2005, pp. 138-147.

B. Krammer and M. S. Miiller, “MPI Application Development with
MARMOT,” in PARCO, ser. John von Neumann Institute for Computing
Series, vol. 33. Central Institute for Applied Mathematics, IJiilich,
Germany, 2005, pp. 893-900.

J. S. Vetter and B. R. de Supinski, “Dynamic Software Testing of
MPI Applications with Umpire,” Supercomputing, ACM/IEEE 2000
Conference, pp. 51-51, 04-10 Nov. 2000.

A. Vo, “Scalable Formal Dynamic Verification of MPI Programs through
Distributed Causality Tracking,” Ph.D. dissertation, University of Utah,
School of Computing, March 2011.

V. C. Barbosa and M. R. F. Benevides, “A Graph-Theoretic Character-
ization of AND-OR Deadlocks,” 1998.

S. Lee, “Fast, Centralized Detection and Resolution of Distributed
Deadlocks in the Generalized Model,” IEEE Trans. Softw. Eng., vol. 30,
no. 9, pp. 561-573, 2004.

H. J. Yoon and D. Y. Lee, “Deadlock-Free Scheduling of Photolithog-
raphy Equipment in Semiconductor Fabrication,” Semiconductor Manu-
facturing, IEEE Transactions on, vol. 17, no. 1, pp. 42-54, Feb. 2004.
T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and Per-
formance Analysis of Non-Blocking Collective Operations for MPIL,” in
Proceedings of the 2007 International Conference on High Performance
Computing, Networking, Storage and Analysis, SCO7. 1EEE Computer
Society/ACM, Nov. 2007.

T. Hilbrich, M. S. Miiller, B. R. de Supinski, M. Schulz, and W. E.
Nagel, “GTI: A Generic Tools Infrastructure for Event Based Tools in
Parallel Systems,” in To appear in IPDPS 2012: Procedings of the 26th
IEEE International Parallel & Distributed Processing Symposium, 2012.
D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon, “NAS Parallel
Benchmark Results,” IEEE Parallel and Distributed Technology, Tech.
Rep., 1992.

“SPEC MPI2007 Benchmark Suite for MPI,”
http://www.spec.org/mpi2007/.

