
UCRL-TR-231993

Leveraging Network Structure to
Infer Missing Values in Relational
Data

Brian Gallagher, Tina Eliassi-Rad

June 20, 2007



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



 1

Leveraging Network Structure to Infer Missing Values in Relational Data 
 
 

Brian Gallagher and Tina Eliassi-Rad 
Center for Applied Scientific Computing 

Lawrence Livermore National Laboratory 
Box 808, L-560, Livermore, CA 94551 

{bgallagher, eliassi}@llnl.gov 
 

 
Abstract 

 
Inference techniques for relational data improve 

classification performance by exploiting dependencies 
between attributes of related instances. In particular, a 
great deal of recent attention has been paid to 
collective inference procedures, which make 
simultaneous inferences over attributes of related 
instances. Collective inference has been shown to be 
particularly effective for overcoming substantial 
amounts of missing attribute information. We propose 
a novel approach for inference in relational data, 
which leverages information about the relational 
network structure. We show that when structural 
characteristics are informative, our approach leads to 
consistent, and sometimes dramatic, improvement in 
classification performance regardless of the amount of 
attribute information available. We demonstrate the 
utility of our method on several real-world 
classification tasks. Interestingly, for many of these 
tasks, collective inference does not perform well, 
apparently due to low amounts of relational 
autocorrelation. Understanding data characteristics 
that influence collective inference is a largely 
unexplored area for further study. 
 
1. Introduction 

 
Traditional inference techniques utilize 

dependencies between attributes of a single data 
instance to make predictions. For example, we might 
use the text of book A to infer A's political orientation 
(see Figure 1). Inference techniques for relational data 
improve classification performance by taking 
advantage of the dependencies between attributes of 
related instances. For instance, if we know the political 
orientation of other books purchased by owners of 
book A, this gives us further information about A's 
orientation. In this paper, we explore another potential  

 

 
Figure 1: Co-purchase network of books about U.S. 
politics. Nodes represent books purchased from an 
Internet bookseller. Links indicate that two books 
were purchased by the same consumer. Each book 
in this data set is labeled either 'liberal', 
'conservative', or 'neutral’ [9]. Liberal books appear 
along the left periphery of the graph, conservative 
books along the right periphery, and neutral books 
in the center. 

 
source of information present in relational data: 
namely, the structure of the network formed by the 
relationships between individual data instances. 

The basic problem we address is as follows. We are 
given a network, consisting of attributed nodes and 
links (e.g., book nodes and co-purchase links). For 
some attribute of interest, certain nodes have a known 
value and for other nodes, the value is unknown (e.g., 
a book's political orientation is missing). The goal is to 
infer the unknown values for the attribute of interest. 
We treat this as a supervised learning problem, where 
we use the labeled nodes to train a classifier and then 
apply this classifier to predict the values of the missing 
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attribute values. Missing labels are common in real-
world applications (e.g., due to imperfect text 
extractors or simply unknown information).  

Relational learning approaches generally take 
advantage of dependencies between the class labels (or 
other attributes) of related instances (i.e., relational 
autocorrelation [7]). However, there is another 
potentially rich source of information in the network 
that has been largely overlooked – namely, the 
dependence between attribute values and structural 
characteristics of the graph. It is apparent from Figure 
1 that there are important differences between the 
structural characteristics of the 'neutral' political books 
(in the center of the graph) and those of the 
'conservative' and 'liberal' books (around the periphery 
of the graph). Among these differences: neutral books 
have fewer neighbors, non-neutral books have more 
tightly clustered neighborhoods, and neutral books are 
more central to the network (i.e., without them there is 
no connection between the large liberal cluster and the 
large conservative cluster). We aim to take advantage 
of these differences by explicitly modeling structural 
features of networks in addition to commonly used 
attribute-based features. 

The main contributions of this paper are as follows: 
− We introduce the relational random forest model, 

an extension to random forests that models (1) 
dependencies between attributes of related 
instances and (2) dependencies between 
attributes and graph structure. 

− We demonstrate that modeling relational 
dependencies based on network structure can 
dramatically improve classification performance 
when (1) network structure provides information 
not captured by attributes and/or (2) predictive 
attribute values are missing. 

− We observe that collective inference procedures 
do not perform well on a number of our chosen 
classification tasks due to low levels of relational 
autocorrelation. We demonstrate how features of 
these classification tasks account for this low 
autocorrelation and suggest that a large number 
of interesting classification tasks on relational 
data may suffer from low autocorrelation due to 
a combination of class skew and link density. 

The remainder of this paper is organized as follows. 
Section 2 describes our approach. Sections 3, 4, and 5, 
respectively, present related work, our experimental 
study, and detailed discussion. We conclude the paper 
in Section 6. 
 

2. The Relational Random Forest 
 

In order to demonstrate the utility of structural 
graph characteristics, we need a model that can 
incorporate both attribute-based and structural 
information. For this purpose, we introduce the 
relational random forest (RRF) model. The RRF 
consists of two components: (1) a relational feature 
constructor and (2) a standard random forest model [1] 
for learning and inference. The purpose of feature 
construction is to produce a set of features that capture 
the various dependencies preset in relational data. In 
particular, we want to be able to capture dependencies 
of the class label on local and relational attributes and 
on network structure. Once we construct relational 
features from our data set, we pass these feature 
vectors to a standard random forest model for learning 
and inference. We chose random forests as a way to 
combine information from attribute-based and 
structural features because of their ability to make 
sense of large numbers of features, irrelevant features, 
multiple correlated features, and so on. 

The following sections describe our approach to 
relational feature construction and the random forest 
model in more detail. We also describe the approach to 
collective inference we use for the RRF model. 
 
2.1. Relational Feature Construction 
 

The relational random forest model constructs a 
variety of features based on both the attribute and 
structural information available in the network. We 
define a feature to be a function of the network 
observables (i.e., known attribute values and network 
structure). Figure 2 presents a simple taxonomy of 
relational features. At the top level, we separate 
features into attribute-based and structural. 

 

 
Figure 2: Taxonomy of features in relational data 

 
Attribute-based features are further divided into: (1) 

local features, which are intrinsic attributes of a node 
or a link (e.g., Person.name) and (2) relational features, 
which are calculated by applying aggregation functions 
to the set of attribute values of neighboring nodes or 
links (e.g., mode(NeighborPersons.title)). We use 
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mode, count, and proportion to aggregate values of 
categorical attributes and mean, min, and max to 
aggregate values of numerical attributes. Aggregations 
over node attributes are applied both to unique nodes 
as well as weighted by the number of links to each 
node. In addition, each aggregation is applied to 
incoming links only, outgoing links only, and all links. 

Structural features are divided into: (1) neighbor-
based features that provide information about the 
structure of the immediate neighborhood (e.g., 
neighborCount(Person)), and (2) graph-based features, 
which leverage information on the structure of a more 
extended neighborhood, which may even include the 
entire network (e.g., betweenness(Person)). 

For neighbor-based structural features, we use the 
number of neighboring nodes and number of incident 
links. Note that in multigraphs, these two values are 
different. For graph-based structural features, we use 
betweenness centrality (which identifies nodes/links 
that occur along many paths) and clustering coefficient 
(which measures neighborhood strength in terms of 
how connected nodes in a neighborhood are to one 
another). We formally define betweenness centrality 
and clustering coefficient next. For more details, we 
encourage the reader to see [16]. 

Betweenness centrality can be defined for nodes or 
links. For node betweenness, we compute the 
following function: 

 
where gi(s; t) is the number of shortest paths from 
node s to node t that pass through node i. Nst is the total 
number of geodesic paths from s to t. V is the set of 
nodes in the network and N is the total number of 
nodes (i.e., N = |V|).  A node with high betweenness 
has great influence over what information flows in the 
network. 

Clustering coefficient for a node i is defined as 

 
where ki is the number of neighbors of node i and Ei is 
the number of edges between the ki nodes. Within 
social networks, the clustering coefficient captures the 
common belief that a friend of a friend is also a friend.  
 
2.2. Random Forest Models 
 

The random forest model was introduced by 
Breiman in 2001 [1]. A random forest consists of a 
collection of decision trees, each of which is trained on 
a random subset of the training examples using a 
randomly selected subset of the available features. 
Inference is performed independently by each tree and 

the votes are combined to obtain a final probability of 
each class. 

Random forests have been shown to perform well 
in practice on a variety of learning tasks. They can sort 
through a large number of features extremely well. 
They are also computationally efficient and easily 
parallelizable. 
 
2.3. Collective Inference 

 
Collective inference (a.k.a. collective classification) 

works by simultaneously inferring the values of a set 
of related labels (e.g., the political orientation of a set 
of books linked by co-purchases). The inference 
process can be viewed as a message passing algorithm, 
where each round consists of a set of messages being 
passed between a node and its neighbors. There are 
different procedures for performing collective 
inference. The most popular include iterative 
classification, mean-field relaxation labeling, loopy 
belief propagation, and Gibbs sampling. Sen and 
Getoor [20] and Macskassy and Provost [12] both 
provide empirical studies of these methods. 

Like other conditional models for attribute 
prediction in relational data, the RRF can use 
collective inference to exploit long range dependencies 
between attributes of related instances. For this study, 
the RRF implements collective inference using the 
iterative classification algorithm. See section 4.5 for 
the specifics of the algorithm. 
 
3. Related work 

 
In recent years, there has been a great deal of work 

on models for learning and inference in relational data 
[6, 10, 11, 14, 15]. Many use some sort of feature 
construction to incorporate attribute-based relational 
information. However, to our knowledge, no previous 
approach uses structural information from the extended 
neighborhood for attribute prediction. Table 1 
summarizes the common attribute-based features used 
by existing models. 

Note that most of these models use only a single 
aggregation function at a time. Relational Probability 
Trees (RPTs) [14] use several features concurrently. 
However, they construct only binary features. RPTs 
also use neighbor-based structural features 
(specifically, a node’s degree), but they do not use 
graph-based structural features such as betweenness or 
clustering coefficient. The relational random forest 
allows for the simultaneous use of multiple types of 
features: attribute-based, structural, temporal, etc. 
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Table 1: A list of functions used in existing models 
to aggregate attribute-based relational features. 
The abbreviations refer to the following. PRM: 
Probabilistic Relational Models [6]; RPT: Relational 
Probability Trees [14]; RBC: Relational Bayesian 
Classifiers [15]; LB: Link-Based Classifiers [10]; 
RN: Relational Neighbor Classifiers [11]. 

 Existing Models 
 PRM RPT RBC LB RN 

Mode      
Mean      
Min      
Max      

Count      
Prop†      
Rand†      

 
Whereas we use structural network characteristics 

directly as features for classification, Rattigan et al. 
[18] use network structure to decide which nodes to 
label in an active learning setting. Their use of network 
structure is complimentary to ours. It may be possible 
to gain additional benefit from a combination of the 
two approaches. In addition, we may be able to take 
advantage of their faster, approximate calculations of 
network measures like betweenness. 

Singh et al. [21] use descriptive attributes and 
structural properties to prune a network down to its 
‘most informative’ affiliations and relationships for the 
task of attribute prediction.  

Perlich and Provost [17] provide a nice hierarchy 
for aggregation of values of attributes of related 
instances. However, they do not consider structural 
features. 

There are many recent papers on collective 
inference [2, 8, 12, 13, 19, 20]. In this group, Sen and 
Getoor [20] provide a nice empirical study of the 
various procedures for collective inference. Macskassy 
& Provost [12] provide a nice case-study of previous 
work in learning attributes of networked data. 
 
4. Experimental Evaluation 

 
This section describes our experiments on a variety 

of tasks. These include a comparison between RRF 
and other models for relational classification, an 
assessment of how much attribute-based features, 
structural features, and their combination contribute to 
the overall classification performance, and finally a 
study of the effects of collective inference on our tasks. 

 

                                                           
† Prop is short for proportion. Rand denotes stochastic mode. 

4.1 Data Sets 
 

We present results on three real-world data sets: 
political book purchases [9], Enron emails [3], and 
Reality Mining cell phone calls [4].  

The political books data set consists of 105 books 
labeled as liberal, conservative, or neutral. Links 
between books indicate that both books were 
purchased by the same customer. There are 441 co-
purchase links in this data set. Our task is to identify 
the neutral books (Pr(neutral) ≈ 0.12). 

From the Enron data set, we use a subset containing 
all data collected during a 32 day period, from 
6/8/2001 to 7/10/2001. This subset consists of 
approximately 9K people nodes and 57K email links. 
We explore two prediction tasks in this data set. The 
first is to identify executives among Enron employees 
(Pr(exec) ≈ 0.015). For this task, we use the subset of 
nodes for which we have ground truth, which yields 
1.6K nodes and 6.5K links.  

The second task is to identify Enron employees. For 
this task, we use a continuous subgraph of the 32-day 
temporal email network described in the previous 
paragraph, consisting of 1K nodes and 14K links 
(Pr(enron) ≈ 0.76). This subgraph was obtained by 
starting from a random node in the graph and 
expanding out in a breadth-first fashion until 1000 
nodes had been touched. The final subgraph includes 
all nodes and links touched during the breadth-first 
search. Note that people who do not work at Enron get 
pulled into the graph by sending email to or receiving 
email from an Enron employee. 

For the Reality Mining data set, we also use a 
continuous subgraph, again obtained via breadth-first 
sampling. This subgraph consists of approximately 1K 
people nodes and 32K phone call links. Our task in the 
Reality Mining data is to identify which of the people 
in the phone call network are study participants 
(Pr(study) ≈ 0.084). 

Table 2 shows a number of statistics on our various 
prediction tasks: relational autocorrelation [7] (which 
is a measure of correlation between the class labels of 
neighboring instances) and Pearson's correlation 
coefficient between class label and (a) proportion of 
neighbors of positive class, (b) betweenness, (c) 
clustering coefficient, (d) number of incident links, and 
(e) number of neighboring nodes. 

 



 5

Table 2: Statistics on prediction tasks 

 Political 
Books 

Enron 
Execs 

Enron 
Empl. 

Reality 
Study 

Relational 
autocorrelation 0.166 0.222 0.023 -0.856 

Correlation with class label 

Prop. neighbors 
w/ positive class  -0.414 -0.029 0.037 -0.878 

Betweenness 0.093 -0.105 0.130 0.216 
Clustering 

Coefficient -0.002 0.013 0.137 0.025 

# incident links -0.176 -0.065 0.150 0.414 
# neighbor nodes -0.176 -0.079 0.251 0.447 

 
4.2 Methodology 

 
For all results presented here, the basic 

experimental setup is the same. In all cases, classifiers 
have access to the entire data graph during both 
training and testing. However, not all nodes in the 
graph are labeled. We vary the proportion of labeled 
nodes from 10% to 90%. Classifiers are trained on all 
labeled nodes and evaluated on all unlabeled nodes. 

Our methodology is essentially the same as the one 
used by Macskassy and Provost [12] for their study of 
within-network classification, except that we ensure 
that each instance in the data set is given equal weight 
in the overall evaluation. For each proportion labeled, 
we run 20 trials. For each trial and proportion labeled, 
we choose a class-stratified random sample containing 
(1.0 – proportion labeled)% of the total instances as the 
test set and the remaining instances become the 
training set. Note that for proportion labeled less than 
0.9 (or greater than 10 trials), this means that a single 
instance will necessarily appear in multiple test sets. 
As Macskassy and Provost note, the test sets cannot be 
made to be independent because of this overlap. 
However, we carefully choose the test sets so as to 
ensure that each instance in our data set occurs in the 
same number of test sets over the course of 10 trials. 
This ensures that each instance carries the same weight 
in the overall evaluation regardless of the proportion 
labeled. Labels are kept on the training instances and 
removed from the test instances. We use identical 
train/test splits for each classifier. 
 
4.3 Comparison with Existing Models for 
Relational Classification 

 
We compare the RRF model with a number of 

existing models for relational classification: Weighted-
Vote Relational Neighbor classifier (wvRN) [11, 12], 
Nework-Only Link-Based classifier (nLB) [10, 12], 
Relational Bayesian Classifier (RBC) [15], and 

Relational Probability Tree (RPT) [14]. We use the 
Proximity implementation1 of the RBC and RPT and 
our own implementation of the wvRN and nLB 
classifiers based their descriptions. For the relational 
random forest (RRF) model, we use the R 
implementation2 of the random forest model. We use 
the default parameters for the R random forest 
(including a forest of 500 trees). We do not use 
collective inference in this set of experiments (see 
Section 4.3 for collective inference results). 

The results of this experiment are summarized in 
figure 3. We use the area under the Receiver Operating 
Characteristic (ROC) curve (AUC) to compare the 
results. We chose AUC because most of our tasks have 
a class-skew problem and, therefore, all methods 
achieve close to default accuracy. Figure 6 shows the 
p-values from paired t-tests. 

Figure 3 shows that the RRF model performs as 
well as, and often much better than, the other models. 
This effect is more pronounced as the proportion of 
known labels decreases. The one exception is that 
wvRN outperforms RRF with only 10% of data labeled 
on the political book task. This likely results from a 
lack of training examples due to the small size of this 
data set (train set size ≈ 10 at 10% labeled). Note that 
wvRN is not affected by the amount of training data, 
since it is not a learning method. See section 5 for 
more on this. 
 
4.4 Modeling Attributes and Structure 
 
Figure 4 shows the classification performance of RRFs 
with (1) attribute-based features only, (2) structural 
features only, and (3) the combination of both. The 
goal here is to tease out the contributions of each 
feature type. Again we do not use collective inference 
in this set of experiments. Figure 6 shows the p-values 
from paired t-tests. 

There are several things to note regarding figure 4. 
First, we see that, at high levels of labeled data, the 
relative performance of attribute-based and structural 
features on their own varies across tasks, but the two 
are generally comparable in their predictive power. 
However, as the proportion of unknown labels 
increases, the predictive power of the structural 
features remains relatively consistent, while the power 
of the attribute-based features declines dramatically. 
Over all levels of labeling, the combination of 
attribute-based and structural features generally results 
in increases in performance over either on its own. 
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Figure 3: Baseline comparison of RRF to other models for relational classification 
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Figure 4: Contributions of attributes, structure, and their combination on classification performance 
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Figure 5: Effects of collective inference 

 
 Proportion of Data Labeled
Political books task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0.036 0.011 0.002 0.085 0.123
attr+struct > wvRN  0.478 0.156 0.103 0.123
wvRN > attr+struct 0.001   
attr+struct > RBC 0 0 0.012 0.381 0.233
attr+struct > RPT 0.291 0 0 0 0.001
struct > attr 0.04 0.013 0 0.039 0.528
attr+struct > attr 0.011 0 0.014 0.008 0.107
attr+struct > attrStruct 0.439 0.707 0.997 0.72 0.567
struct > attr+struct 0.283 0.462 0.007 0.587 0.775
attr+CI > attr 0.336 0.882 0.997 0.996 0.348
attr+struct+CI > attr+struct 0.549 0.654 0.985 0.996 0.661
attr > attr+CI 0.664 0.118 0.003 0.004 0.652
attr+struct > attr+struct+CI 0.451 0.346 0.015 0.004 0.339
attr+struct > attr+CI 0.122 0 0 0 0.13
attr+CI > attr+struct 0.878 1 1 1 0.87

 

 Proportion of Data Labeled
Enron executive task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0 0 0 0 0
attr+struct > wvRN 0 0 0 0 0
attr+struct > RBC 0 0 0 0 0.041
attr+struct > RPT 0 0.001 0.031 0.024 0.083
attr > struct 1 0.987 0.694 0.183 0.049
struct > attr 0 0.013 0.306 0.817 0.951
attr+struct > attr 0 0 0.001 0.038 0.323
attr+struct > struct 0.186 0 0.002 0.001 0.007
attr+CI > attr 0.392 0.295 0.061 0.655 0.673
attr+struct+CI > attr+struct 0.946 0.37 0.905 0.371 0.433
attr > attr+CI 0.608 0.705 0.939 0.345 0.327
attr+struct > attr+struct+CI 0.054 0.63 0.095 0.629 0.567
attr+struct > attr+CI 0 0 0.003 0.03 0.319
attr+CI > attr+struct 1 1 0.997 0.97 0.681

 

Proportion of Data Labeled
Reality Mining task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0 0 0 0 0.007
attr+struct > wvRN 0 0 0 0 0
attr+struct > RBC 0 0 0 0.005 0.098
attr+struct > RPT 0 0.004 0.004 0.056 0.046
attr > struct 1 0.998 0.817 0.17 0.005
struct > attr 0 0.002 0.183 0.83 0.995
attr+struct > attr 0 0 0.001 0.008 0.136
attr+struct > struct 0.018 0 0 0 0
attr+CI > attr 0 0 0.001 0.039 0.127
attr+struct+CI > attr+struct 0.001 0.606 0.731 0.961 0.108
attr > attr+CI 1 1 0.999 0.961 0.873
attr+struct > attr+struct+CI 0.999 0.394 0.269 0.039 0.892
attr+struct > attr+CI 0.992 0.003 0.008 0.072 0.147
attr+CI > attr+struct 0.008 0.997 0.992 0.928 0.853

 

Proportion of Data Labeled
Enron employee task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0 0 0 0 0
attr+struct > wvRN 0 0 0 0 0
attr+struct > RBC 0 0 0 0 0
attr+struct > RPT 0 0 0 0 0
struct > attr 0 0 0 0.002 0.435
attr+struct > attr 0 0 0 0 0.001
attr+struct > struct 0.009 0.026 0.001 0 0.052
attr+CI > attr 0.016 0.528 0.777 0.816 0.464
attr+struct+CI > attr+struct 0.888 0.946 0.969 0.999 0.981
attr > attr+CI 0.984 0.472 0.223 0.184 0.536
attr+struct > attr+struct+CI 0.112 0.054 0.031 0.001 0.019
attr+struct > attr+CI 0 0 0 0.003 0.057
attr+CI > attr+struct 1 1 1 0.997 0.943

 

Figure 6: p-values from paired t-tests. Statistically significant differences (p-values ≤ 0.05) appear in bold. 
 



 8

4.5 Effects of Collective Inference 
 
To perform collective inference, we use the iterative 

classification algorithm described by Macskassy and 
Provost [12] and cap the number iterations at 10. The 
algorithm converges and terminates in fewer than 10 
iterations for about 93% to 100% of trials, depending 
on the experiment. The situations where the algorithm 
has not converged after 10 iterations typically involve 
a small number of labels (≤5) changing on each of the 
last few iterations. Macskassy and Provost [12] and 
Sen and Getoor [20] both report similar observations 
regarding the convergence speed of iterative 
classification. We also tried Gibbs sampling [5] with 
up to 2000 iterations, which yielded comparable 
results. We ultimately chose iterative classification 
because (1) it is simple, (2) it has been shown to have 
consistently good performance on a variety of 
collective classification tasks, and (3) it converges 
more quickly than other approaches. 

Figure 5 depicts the effects of collective inference 
on the classification performance (1) with attribute-
based features, (2) with attribute-based features and 
collective inference, (3) with attribute-based and 
structural features, and (4) with attribute-based and 
structural features plus collective inference. As before, 
Figure 6 shows the p-values from paired t-tests. 

Figure 5 shows that the benefit of incorporating 
structural information on these tasks is generally much 
greater than the benefit of using collective inference. 
Collective inference provides a significant benefit for 
all levels of known labels < 90% on the Reality Mining 
task and at 10% labeled on the Enron employee task. 
However, in all other cases, the use of collective 
inference provides no significant benefit and, in some 
cases, significantly hurts performance. The use of 
structural features provides a significant benefit on all 
tasks for all levels of known labels < 90%. On the 
Enron employee identification task, structural features 
significantly improve performance across the range of 
labeled data proportions. 
 
5. Discussion 
 

On the Reality Mining task, RPT’s performance is 
close to RRF (although RRF performs significantly 
better, except at 70% labeled). This is likely due to the 
high correlation of the class with the neighbor-based 
features (see Table 2). Recall that the RPT uses the 
number of neighbors as a feature. Here, the graph-
based structural features appear to be less important.  

The performance of wvRN on the Reality Mining 
task is extremely poor because of the negative 
autocorrelation is this data set (Table 2). Note that 
wvRN is not a learning technique. It assumes that there 
is positive relational autocorrelation and it cannot take 
advantage of other patterns of dependence between 
attributes of related instances. In particular, the wvRN 
model just looks at the proportion of neighbors that 
have each class and uses these proportions as the 
probabilities it returns. So, if 9/10 of the neighbors are 
in the Reality Mining study and 1/10 are not in the 
study, wvRN returns Pr(study) = 0.9 and Pr(~study) = 
0.1. However, for this particular task, since there is 
actually negative autocorrelation between the class 
labels, having a large number of in-study neighbors 
actually indicates that you are NOT in the study. The 
nLB model also uses the proportion of neighbors of 
each class as features. However, since it learns from 
the training data (using a logistic regression model) 
and does not just assume that the autocorrelation is 
positive, it is able to figure out the correct (in this case, 
inverse) relationship between neighboring class labels. 

It is also interesting to note the cause of the 
negative autocorrelation in the Reality Mining task. 
The network here is of phone calls made and received 
by participants in a study who are essentially all co-
workers (faculty, staff, and students at MIT). It makes 
sense that co-workers do not generally call each other 
on their cell phones since they have many other means 
of communication available (e.g., email, work phone, 
face-to-face meetings). Therefore, people in the study 
generally communicate with people outside of the 
study. In addition, the calls between people outside of 
the study are not recorded. Hence, there is very strong 
negative autocorrelation. This situation is in contrast 
with the Enron email data set, where Enron employees 
use email to communicate with people both inside and 
outside of the company. However, Enron employees 
will tend to communicate more with other Enron 
employees than with non-employees. So, in this case, 
we have positive relational autocorrelation (see Table 
2), although the correlation is very weak because non-
employees communicate exclusively with employees 
due to the way the data is collected. 

With the exception of the political book task, we 
see very little performance degradation as the 
proportion of labeled nodes decreases in the classifiers 
that incorporate structural information. Note that 
varying the proportion of labeled data has two effects: 
(1) it determines the number of instances available 
during training and (2) it determines the amount of 
information available from neighboring instances 
during inference. The quality of structural information 
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is not affected by (2), but if the amount of training data 
available is very small (as in the political book data), 
we will not have enough examples to learn the correct 
structural dependencies. 

The generally mediocre performance of collective 
inference in this study is likely due to low amounts of 
relational autocorrelation in all but the Reality Mining 
task (see Table 2). Our observation that the 
performance of collective inference tails off as 
autocorrelation decreases is consistent with the 
findings of other studies on collective inference (e.g., 
[8]). This effect is probably exacerbated in the political 
book data due to the small amount of labeled data 
available for both learning and inference. 

Note that the tasks we consider all have a large 
imbalance in the relative frequencies of their classes. 
There are many examples of important real-world 
prediction tasks like this, where one class is extremely 
rare (e.g., detecting rare events, fraud, etc). We 
hypothesize that the class skew present in our tasks 
may account for the low levels of autocorrelation we 
observe. The intuition here is that if in a data set 95% 
of the instances belong to class A and 5% to class B, 
the B's are going to have a lot harder time finding other 
B's to link to. 

To investigate our hypothesis, we ran a set of 
experiments where we vary the class skew and observe 
the effects on autocorrelation levels. For simplicity, we 
focus here on positive autocorrelation. We used both a 
uniform 2-D lattice of 1600 (40x40) nodes and the 
network from the Enron employee identification task 
and varied the percent of positive instances as follows. 
We initially labeled all nodes with the negative class. 
Then we randomly chose a starting node, labeled it 
positive, and spread out from there in a breadth-first 
fashion, labeling each node we encountered as positive 
until we had labeled the specified proportion of 
positive nodes. For each network and proportion of 
positive labels, the results were averaged over 10 trials, 
each with a different, randomly chosen starting node. 
The results are shown in Figure 7. 

We see that for both the 2-D lattice and the Enron 
graph, the amount of autocorrelation tails off sharply 
as the class skew approaches the extremes. The general 
downward trend in autocorrelation as the number of 
positive instances increases in the Enron graph is due 
to the set of negative instances being split from a 
single connected subgraph into many smaller 
subgraphs, as the positive subgraph increases in size. 
In the 2-D lattice, the negative instances remain part of 
a single connected subgraph because of the lattice’s 
regular structure. 

Since the prediction of rare events is a common and 
important application, these results suggest that low 

autocorrelation in classification problems may be more 
common that is generally assumed. Understanding the 
data characteristics that influence relational 
autocorrelation is an important and largely unexplored 
area of study. An in-depth investigation into this area 
is beyond the scope of this work. However, we note 
that class skew on its own does not explain the amount 
of observed autocorrelation in the previous 
experiments and offer another explanation here. 
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Figure 7: Relationship between autocorrelation and 
class skew 

Judging by the differences in autocorrelation 
between the 2-D lattice and Enron graph across the 
range of positive class proportions, differences in 
graph structure apparently contribute to the amount of 
autocorrelation observed. We hypothesize that one 
source of variation is the link density of the networks, 
although the pattern of linkage likely plays a role as 
well. One way to measure link density is the average 
number of neighbors per node (3.9 for the 2-D lattice 
network and 5.0 for the Enron network). All else being 
equal, more links per node means more chances for the 
less prevalent class to link to the more prevalent class. 
Therefore, we hypothesize that denser linkage will lead 
to lower autocorrelation. To investigate the 
relationship between link density and autocorrelation 
we ran the following experiment. We again generated 
a network with 1600 nodes, but this time connected in 
a straight line instead of a lattice. Then we added 
additional links at random in varying numbers to create 
varying link densities. We then initialized all nodes to 
the negative class and then labeled 50% of the nodes as 
positive using breadth-first search as in our previous 
experiment. Figure 8 shows how autocorrelation varies 
with link density, here measured using average node 
degree. Again, each data point is an average over 10 
trials. 

We see from these results that, at least in a network 
with random link structure, there is a strong correlation 
between link density and autocorrelation. In addition, 
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we see that the autocorrelation level may be affected 
dramatically by small changes in link density. For 
example, in our experiments, an average degree of ~2 
corresponds to near perfect autocorrelation (i.e., 0.99), 
whereas an average degree of ~5 corresponds to an 
autocorrelation level around 0.3. 
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Figure 8: Relationship between autocorrelation and 
link density 

For this study, we have identified several interesting 
tasks for which structural graph characteristics are 
predictive of the class label of interest. It remains an 
open question how often in practice structural features 
are correlated with attributes in the ways we see here. 

 
6. Conclusions 

 
Attribute dependence is an important source of 

information for classification in relational data, but 
relational autocorrelation is not always present in real-
world tasks. Network structure can provide a great deal 
of information whether or not autocorrelation is 
present. The combination of attribute-based and 
structural features can provide more information than 
either on its own. Relational random forests are an 
effective way to combine attribute-based and structural 
information for the task of attribute prediction. 
Structural modeling is a complimentary approach to 
collective inference in its strengths since each method 
relies on a different kind of dependence. 

Important problems where autocorrelation is low 
may be more common than is generally assumed, due 
in part to high levels of class skew.  Future work 
includes the exploration of the effects of network 
characteristics on collective inference in real-world 
relational data. 
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Notes 
 
1. Proximity is available at 

http://kdl.cs.umass.edu/software/proximity.html. 

2. The R implementation of random forest is available at 
http://cran.r-project.org/src/contrib/Descriptions/ 
randomForest.html. 
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