
UCRL-TR-231993

Leveraging Network Structure to
Infer Missing Values in Relational
Data

Brian Gallagher, Tina Eliassi-Rad

June 20, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

 1

Leveraging Network Structure to Infer Missing Values in Relational Data

Brian Gallagher and Tina Eliassi-Rad
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Box 808, L-560, Livermore, CA 94551

{bgallagher, eliassi}@llnl.gov

Abstract

Inference techniques for relational data improve

classification performance by exploiting dependencies
between attributes of related instances. In particular, a
great deal of recent attention has been paid to
collective inference procedures, which make
simultaneous inferences over attributes of related
instances. Collective inference has been shown to be
particularly effective for overcoming substantial
amounts of missing attribute information. We propose
a novel approach for inference in relational data,
which leverages information about the relational
network structure. We show that when structural
characteristics are informative, our approach leads to
consistent, and sometimes dramatic, improvement in
classification performance regardless of the amount of
attribute information available. We demonstrate the
utility of our method on several real-world
classification tasks. Interestingly, for many of these
tasks, collective inference does not perform well,
apparently due to low amounts of relational
autocorrelation. Understanding data characteristics
that influence collective inference is a largely
unexplored area for further study.

1. Introduction

Traditional inference techniques utilize

dependencies between attributes of a single data
instance to make predictions. For example, we might
use the text of book A to infer A's political orientation
(see Figure 1). Inference techniques for relational data
improve classification performance by taking
advantage of the dependencies between attributes of
related instances. For instance, if we know the political
orientation of other books purchased by owners of
book A, this gives us further information about A's
orientation. In this paper, we explore another potential

Figure 1: Co-purchase network of books about U.S.
politics. Nodes represent books purchased from an
Internet bookseller. Links indicate that two books
were purchased by the same consumer. Each book
in this data set is labeled either 'liberal',
'conservative', or 'neutral’ [9]. Liberal books appear
along the left periphery of the graph, conservative
books along the right periphery, and neutral books
in the center.

source of information present in relational data:
namely, the structure of the network formed by the
relationships between individual data instances.

The basic problem we address is as follows. We are
given a network, consisting of attributed nodes and
links (e.g., book nodes and co-purchase links). For
some attribute of interest, certain nodes have a known
value and for other nodes, the value is unknown (e.g.,
a book's political orientation is missing). The goal is to
infer the unknown values for the attribute of interest.
We treat this as a supervised learning problem, where
we use the labeled nodes to train a classifier and then
apply this classifier to predict the values of the missing

 2

attribute values. Missing labels are common in real-
world applications (e.g., due to imperfect text
extractors or simply unknown information).

Relational learning approaches generally take
advantage of dependencies between the class labels (or
other attributes) of related instances (i.e., relational
autocorrelation [7]). However, there is another
potentially rich source of information in the network
that has been largely overlooked – namely, the
dependence between attribute values and structural
characteristics of the graph. It is apparent from Figure
1 that there are important differences between the
structural characteristics of the 'neutral' political books
(in the center of the graph) and those of the
'conservative' and 'liberal' books (around the periphery
of the graph). Among these differences: neutral books
have fewer neighbors, non-neutral books have more
tightly clustered neighborhoods, and neutral books are
more central to the network (i.e., without them there is
no connection between the large liberal cluster and the
large conservative cluster). We aim to take advantage
of these differences by explicitly modeling structural
features of networks in addition to commonly used
attribute-based features.

The main contributions of this paper are as follows:
− We introduce the relational random forest model,

an extension to random forests that models (1)
dependencies between attributes of related
instances and (2) dependencies between
attributes and graph structure.

− We demonstrate that modeling relational
dependencies based on network structure can
dramatically improve classification performance
when (1) network structure provides information
not captured by attributes and/or (2) predictive
attribute values are missing.

− We observe that collective inference procedures
do not perform well on a number of our chosen
classification tasks due to low levels of relational
autocorrelation. We demonstrate how features of
these classification tasks account for this low
autocorrelation and suggest that a large number
of interesting classification tasks on relational
data may suffer from low autocorrelation due to
a combination of class skew and link density.

The remainder of this paper is organized as follows.
Section 2 describes our approach. Sections 3, 4, and 5,
respectively, present related work, our experimental
study, and detailed discussion. We conclude the paper
in Section 6.

2. The Relational Random Forest

In order to demonstrate the utility of structural
graph characteristics, we need a model that can
incorporate both attribute-based and structural
information. For this purpose, we introduce the
relational random forest (RRF) model. The RRF
consists of two components: (1) a relational feature
constructor and (2) a standard random forest model [1]
for learning and inference. The purpose of feature
construction is to produce a set of features that capture
the various dependencies preset in relational data. In
particular, we want to be able to capture dependencies
of the class label on local and relational attributes and
on network structure. Once we construct relational
features from our data set, we pass these feature
vectors to a standard random forest model for learning
and inference. We chose random forests as a way to
combine information from attribute-based and
structural features because of their ability to make
sense of large numbers of features, irrelevant features,
multiple correlated features, and so on.

The following sections describe our approach to
relational feature construction and the random forest
model in more detail. We also describe the approach to
collective inference we use for the RRF model.

2.1. Relational Feature Construction

The relational random forest model constructs a
variety of features based on both the attribute and
structural information available in the network. We
define a feature to be a function of the network
observables (i.e., known attribute values and network
structure). Figure 2 presents a simple taxonomy of
relational features. At the top level, we separate
features into attribute-based and structural.

Figure 2: Taxonomy of features in relational data

Attribute-based features are further divided into: (1)

local features, which are intrinsic attributes of a node
or a link (e.g., Person.name) and (2) relational features,
which are calculated by applying aggregation functions
to the set of attribute values of neighboring nodes or
links (e.g., mode(NeighborPersons.title)). We use

Attribute-based Structural

Features

Relational Neighbor-
based

Graph-
based

Local

 3

mode, count, and proportion to aggregate values of
categorical attributes and mean, min, and max to
aggregate values of numerical attributes. Aggregations
over node attributes are applied both to unique nodes
as well as weighted by the number of links to each
node. In addition, each aggregation is applied to
incoming links only, outgoing links only, and all links.

Structural features are divided into: (1) neighbor-
based features that provide information about the
structure of the immediate neighborhood (e.g.,
neighborCount(Person)), and (2) graph-based features,
which leverage information on the structure of a more
extended neighborhood, which may even include the
entire network (e.g., betweenness(Person)).

For neighbor-based structural features, we use the
number of neighboring nodes and number of incident
links. Note that in multigraphs, these two values are
different. For graph-based structural features, we use
betweenness centrality (which identifies nodes/links
that occur along many paths) and clustering coefficient
(which measures neighborhood strength in terms of
how connected nodes in a neighborhood are to one
another). We formally define betweenness centrality
and clustering coefficient next. For more details, we
encourage the reader to see [16].

Betweenness centrality can be defined for nodes or
links. For node betweenness, we compute the
following function:

where gi(s; t) is the number of shortest paths from
node s to node t that pass through node i. Nst is the total
number of geodesic paths from s to t. V is the set of
nodes in the network and N is the total number of
nodes (i.e., N = |V|). A node with high betweenness
has great influence over what information flows in the
network.

Clustering coefficient for a node i is defined as

where ki is the number of neighbors of node i and Ei is
the number of edges between the ki nodes. Within
social networks, the clustering coefficient captures the
common belief that a friend of a friend is also a friend.

2.2. Random Forest Models

The random forest model was introduced by
Breiman in 2001 [1]. A random forest consists of a
collection of decision trees, each of which is trained on
a random subset of the training examples using a
randomly selected subset of the available features.
Inference is performed independently by each tree and

the votes are combined to obtain a final probability of
each class.

Random forests have been shown to perform well
in practice on a variety of learning tasks. They can sort
through a large number of features extremely well.
They are also computationally efficient and easily
parallelizable.

2.3. Collective Inference

Collective inference (a.k.a. collective classification)

works by simultaneously inferring the values of a set
of related labels (e.g., the political orientation of a set
of books linked by co-purchases). The inference
process can be viewed as a message passing algorithm,
where each round consists of a set of messages being
passed between a node and its neighbors. There are
different procedures for performing collective
inference. The most popular include iterative
classification, mean-field relaxation labeling, loopy
belief propagation, and Gibbs sampling. Sen and
Getoor [20] and Macskassy and Provost [12] both
provide empirical studies of these methods.

Like other conditional models for attribute
prediction in relational data, the RRF can use
collective inference to exploit long range dependencies
between attributes of related instances. For this study,
the RRF implements collective inference using the
iterative classification algorithm. See section 4.5 for
the specifics of the algorithm.

3. Related work

In recent years, there has been a great deal of work

on models for learning and inference in relational data
[6, 10, 11, 14, 15]. Many use some sort of feature
construction to incorporate attribute-based relational
information. However, to our knowledge, no previous
approach uses structural information from the extended
neighborhood for attribute prediction. Table 1
summarizes the common attribute-based features used
by existing models.

Note that most of these models use only a single
aggregation function at a time. Relational Probability
Trees (RPTs) [14] use several features concurrently.
However, they construct only binary features. RPTs
also use neighbor-based structural features
(specifically, a node’s degree), but they do not use
graph-based structural features such as betweenness or
clustering coefficient. The relational random forest
allows for the simultaneous use of multiple types of
features: attribute-based, structural, temporal, etc.

 4

Table 1: A list of functions used in existing models
to aggregate attribute-based relational features.
The abbreviations refer to the following. PRM:
Probabilistic Relational Models [6]; RPT: Relational
Probability Trees [14]; RBC: Relational Bayesian
Classifiers [15]; LB: Link-Based Classifiers [10];
RN: Relational Neighbor Classifiers [11].

 Existing Models
 PRM RPT RBC LB RN

Mode
Mean
Min
Max

Count
Prop†
Rand†

Whereas we use structural network characteristics

directly as features for classification, Rattigan et al.
[18] use network structure to decide which nodes to
label in an active learning setting. Their use of network
structure is complimentary to ours. It may be possible
to gain additional benefit from a combination of the
two approaches. In addition, we may be able to take
advantage of their faster, approximate calculations of
network measures like betweenness.

Singh et al. [21] use descriptive attributes and
structural properties to prune a network down to its
‘most informative’ affiliations and relationships for the
task of attribute prediction.

Perlich and Provost [17] provide a nice hierarchy
for aggregation of values of attributes of related
instances. However, they do not consider structural
features.

There are many recent papers on collective
inference [2, 8, 12, 13, 19, 20]. In this group, Sen and
Getoor [20] provide a nice empirical study of the
various procedures for collective inference. Macskassy
& Provost [12] provide a nice case-study of previous
work in learning attributes of networked data.

4. Experimental Evaluation

This section describes our experiments on a variety

of tasks. These include a comparison between RRF
and other models for relational classification, an
assessment of how much attribute-based features,
structural features, and their combination contribute to
the overall classification performance, and finally a
study of the effects of collective inference on our tasks.

† Prop is short for proportion. Rand denotes stochastic mode.

4.1 Data Sets

We present results on three real-world data sets:
political book purchases [9], Enron emails [3], and
Reality Mining cell phone calls [4].

The political books data set consists of 105 books
labeled as liberal, conservative, or neutral. Links
between books indicate that both books were
purchased by the same customer. There are 441 co-
purchase links in this data set. Our task is to identify
the neutral books (Pr(neutral) ≈ 0.12).

From the Enron data set, we use a subset containing
all data collected during a 32 day period, from
6/8/2001 to 7/10/2001. This subset consists of
approximately 9K people nodes and 57K email links.
We explore two prediction tasks in this data set. The
first is to identify executives among Enron employees
(Pr(exec) ≈ 0.015). For this task, we use the subset of
nodes for which we have ground truth, which yields
1.6K nodes and 6.5K links.

The second task is to identify Enron employees. For
this task, we use a continuous subgraph of the 32-day
temporal email network described in the previous
paragraph, consisting of 1K nodes and 14K links
(Pr(enron) ≈ 0.76). This subgraph was obtained by
starting from a random node in the graph and
expanding out in a breadth-first fashion until 1000
nodes had been touched. The final subgraph includes
all nodes and links touched during the breadth-first
search. Note that people who do not work at Enron get
pulled into the graph by sending email to or receiving
email from an Enron employee.

For the Reality Mining data set, we also use a
continuous subgraph, again obtained via breadth-first
sampling. This subgraph consists of approximately 1K
people nodes and 32K phone call links. Our task in the
Reality Mining data is to identify which of the people
in the phone call network are study participants
(Pr(study) ≈ 0.084).

Table 2 shows a number of statistics on our various
prediction tasks: relational autocorrelation [7] (which
is a measure of correlation between the class labels of
neighboring instances) and Pearson's correlation
coefficient between class label and (a) proportion of
neighbors of positive class, (b) betweenness, (c)
clustering coefficient, (d) number of incident links, and
(e) number of neighboring nodes.

 5

Table 2: Statistics on prediction tasks

 Political
Books

Enron
Execs

Enron
Empl.

Reality
Study

Relational
autocorrelation 0.166 0.222 0.023 -0.856

Correlation with class label

Prop. neighbors
w/ positive class -0.414 -0.029 0.037 -0.878

Betweenness 0.093 -0.105 0.130 0.216
Clustering

Coefficient -0.002 0.013 0.137 0.025

incident links -0.176 -0.065 0.150 0.414
neighbor nodes -0.176 -0.079 0.251 0.447

4.2 Methodology

For all results presented here, the basic

experimental setup is the same. In all cases, classifiers
have access to the entire data graph during both
training and testing. However, not all nodes in the
graph are labeled. We vary the proportion of labeled
nodes from 10% to 90%. Classifiers are trained on all
labeled nodes and evaluated on all unlabeled nodes.

Our methodology is essentially the same as the one
used by Macskassy and Provost [12] for their study of
within-network classification, except that we ensure
that each instance in the data set is given equal weight
in the overall evaluation. For each proportion labeled,
we run 20 trials. For each trial and proportion labeled,
we choose a class-stratified random sample containing
(1.0 – proportion labeled)% of the total instances as the
test set and the remaining instances become the
training set. Note that for proportion labeled less than
0.9 (or greater than 10 trials), this means that a single
instance will necessarily appear in multiple test sets.
As Macskassy and Provost note, the test sets cannot be
made to be independent because of this overlap.
However, we carefully choose the test sets so as to
ensure that each instance in our data set occurs in the
same number of test sets over the course of 10 trials.
This ensures that each instance carries the same weight
in the overall evaluation regardless of the proportion
labeled. Labels are kept on the training instances and
removed from the test instances. We use identical
train/test splits for each classifier.

4.3 Comparison with Existing Models for
Relational Classification

We compare the RRF model with a number of

existing models for relational classification: Weighted-
Vote Relational Neighbor classifier (wvRN) [11, 12],
Nework-Only Link-Based classifier (nLB) [10, 12],
Relational Bayesian Classifier (RBC) [15], and

Relational Probability Tree (RPT) [14]. We use the
Proximity implementation1 of the RBC and RPT and
our own implementation of the wvRN and nLB
classifiers based their descriptions. For the relational
random forest (RRF) model, we use the R
implementation2 of the random forest model. We use
the default parameters for the R random forest
(including a forest of 500 trees). We do not use
collective inference in this set of experiments (see
Section 4.3 for collective inference results).

The results of this experiment are summarized in
figure 3. We use the area under the Receiver Operating
Characteristic (ROC) curve (AUC) to compare the
results. We chose AUC because most of our tasks have
a class-skew problem and, therefore, all methods
achieve close to default accuracy. Figure 6 shows the
p-values from paired t-tests.

Figure 3 shows that the RRF model performs as
well as, and often much better than, the other models.
This effect is more pronounced as the proportion of
known labels decreases. The one exception is that
wvRN outperforms RRF with only 10% of data labeled
on the political book task. This likely results from a
lack of training examples due to the small size of this
data set (train set size ≈ 10 at 10% labeled). Note that
wvRN is not affected by the amount of training data,
since it is not a learning method. See section 5 for
more on this.

4.4 Modeling Attributes and Structure

Figure 4 shows the classification performance of RRFs
with (1) attribute-based features only, (2) structural
features only, and (3) the combination of both. The
goal here is to tease out the contributions of each
feature type. Again we do not use collective inference
in this set of experiments. Figure 6 shows the p-values
from paired t-tests.

There are several things to note regarding figure 4.
First, we see that, at high levels of labeled data, the
relative performance of attribute-based and structural
features on their own varies across tasks, but the two
are generally comparable in their predictive power.
However, as the proportion of unknown labels
increases, the predictive power of the structural
features remains relatively consistent, while the power
of the attribute-based features declines dramatically.
Over all levels of labeling, the combination of
attribute-based and structural features generally results
in increases in performance over either on its own.

 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C
RRF
nLB
RBC
RPT
wvRN

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

RRF
nLB
RBC
RPT
wvRN

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

RRF
nLB
RBC
RPT
wvRN

(a) Is person X in Reality Mining study? (b) Is book X a neural political book?

(c) Is person X an Enron employee? (d) Is person X an Enron executive?

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

RRF
nLB
RBC
RPT
wvRN

Figure 3: Baseline comparison of RRF to other models for relational classification

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

attr
struct
attr+struct

(a) Is person X in Reality Mining study?

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

attr
struct
attr+struct

(b) Is book X a neural political book?

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C attr
struct
attr+struct

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

attr
struct
attr+struct

(c) Is person X an Enron employee? (d) Is person X an Enron executive?
Figure 4: Contributions of attributes, structure, and their combination on classification performance

 7

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

attr
attr+CI
attr+struct
attr+struct+CI

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

attr
att+CI
attr+struct
attr+struct+CI

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

attr
attr+CI
attr+struct
attr+struct+CI

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C

attr
attr+CI
attr+struct
attr+struct+CI

(a) Is person X in Reality Mining study? (b) Is book X a neural political book?

(c) Is person X an Enron employee? (d) Is person X an Enron executive?
Figure 5: Effects of collective inference

 Proportion of Data Labeled
Political books task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0.036 0.011 0.002 0.085 0.123
attr+struct > wvRN 0.478 0.156 0.103 0.123
wvRN > attr+struct 0.001
attr+struct > RBC 0 0 0.012 0.381 0.233
attr+struct > RPT 0.291 0 0 0 0.001
struct > attr 0.04 0.013 0 0.039 0.528
attr+struct > attr 0.011 0 0.014 0.008 0.107
attr+struct > attrStruct 0.439 0.707 0.997 0.72 0.567
struct > attr+struct 0.283 0.462 0.007 0.587 0.775
attr+CI > attr 0.336 0.882 0.997 0.996 0.348
attr+struct+CI > attr+struct 0.549 0.654 0.985 0.996 0.661
attr > attr+CI 0.664 0.118 0.003 0.004 0.652
attr+struct > attr+struct+CI 0.451 0.346 0.015 0.004 0.339
attr+struct > attr+CI 0.122 0 0 0 0.13
attr+CI > attr+struct 0.878 1 1 1 0.87

 Proportion of Data Labeled
Enron executive task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0 0 0 0 0
attr+struct > wvRN 0 0 0 0 0
attr+struct > RBC 0 0 0 0 0.041
attr+struct > RPT 0 0.001 0.031 0.024 0.083
attr > struct 1 0.987 0.694 0.183 0.049
struct > attr 0 0.013 0.306 0.817 0.951
attr+struct > attr 0 0 0.001 0.038 0.323
attr+struct > struct 0.186 0 0.002 0.001 0.007
attr+CI > attr 0.392 0.295 0.061 0.655 0.673
attr+struct+CI > attr+struct 0.946 0.37 0.905 0.371 0.433
attr > attr+CI 0.608 0.705 0.939 0.345 0.327
attr+struct > attr+struct+CI 0.054 0.63 0.095 0.629 0.567
attr+struct > attr+CI 0 0 0.003 0.03 0.319
attr+CI > attr+struct 1 1 0.997 0.97 0.681

Proportion of Data Labeled
Reality Mining task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0 0 0 0 0.007
attr+struct > wvRN 0 0 0 0 0
attr+struct > RBC 0 0 0 0.005 0.098
attr+struct > RPT 0 0.004 0.004 0.056 0.046
attr > struct 1 0.998 0.817 0.17 0.005
struct > attr 0 0.002 0.183 0.83 0.995
attr+struct > attr 0 0 0.001 0.008 0.136
attr+struct > struct 0.018 0 0 0 0
attr+CI > attr 0 0 0.001 0.039 0.127
attr+struct+CI > attr+struct 0.001 0.606 0.731 0.961 0.108
attr > attr+CI 1 1 0.999 0.961 0.873
attr+struct > attr+struct+CI 0.999 0.394 0.269 0.039 0.892
attr+struct > attr+CI 0.992 0.003 0.008 0.072 0.147
attr+CI > attr+struct 0.008 0.997 0.992 0.928 0.853

Proportion of Data Labeled
Enron employee task 0.1 0.3 0.5 0.7 0.9
attr+struct > nLB 0 0 0 0 0
attr+struct > wvRN 0 0 0 0 0
attr+struct > RBC 0 0 0 0 0
attr+struct > RPT 0 0 0 0 0
struct > attr 0 0 0 0.002 0.435
attr+struct > attr 0 0 0 0 0.001
attr+struct > struct 0.009 0.026 0.001 0 0.052
attr+CI > attr 0.016 0.528 0.777 0.816 0.464
attr+struct+CI > attr+struct 0.888 0.946 0.969 0.999 0.981
attr > attr+CI 0.984 0.472 0.223 0.184 0.536
attr+struct > attr+struct+CI 0.112 0.054 0.031 0.001 0.019
attr+struct > attr+CI 0 0 0 0.003 0.057
attr+CI > attr+struct 1 1 1 0.997 0.943

Figure 6: p-values from paired t-tests. Statistically significant differences (p-values ≤ 0.05) appear in bold.

 8

4.5 Effects of Collective Inference

To perform collective inference, we use the iterative

classification algorithm described by Macskassy and
Provost [12] and cap the number iterations at 10. The
algorithm converges and terminates in fewer than 10
iterations for about 93% to 100% of trials, depending
on the experiment. The situations where the algorithm
has not converged after 10 iterations typically involve
a small number of labels (≤5) changing on each of the
last few iterations. Macskassy and Provost [12] and
Sen and Getoor [20] both report similar observations
regarding the convergence speed of iterative
classification. We also tried Gibbs sampling [5] with
up to 2000 iterations, which yielded comparable
results. We ultimately chose iterative classification
because (1) it is simple, (2) it has been shown to have
consistently good performance on a variety of
collective classification tasks, and (3) it converges
more quickly than other approaches.

Figure 5 depicts the effects of collective inference
on the classification performance (1) with attribute-
based features, (2) with attribute-based features and
collective inference, (3) with attribute-based and
structural features, and (4) with attribute-based and
structural features plus collective inference. As before,
Figure 6 shows the p-values from paired t-tests.

Figure 5 shows that the benefit of incorporating
structural information on these tasks is generally much
greater than the benefit of using collective inference.
Collective inference provides a significant benefit for
all levels of known labels < 90% on the Reality Mining
task and at 10% labeled on the Enron employee task.
However, in all other cases, the use of collective
inference provides no significant benefit and, in some
cases, significantly hurts performance. The use of
structural features provides a significant benefit on all
tasks for all levels of known labels < 90%. On the
Enron employee identification task, structural features
significantly improve performance across the range of
labeled data proportions.

5. Discussion

On the Reality Mining task, RPT’s performance is
close to RRF (although RRF performs significantly
better, except at 70% labeled). This is likely due to the
high correlation of the class with the neighbor-based
features (see Table 2). Recall that the RPT uses the
number of neighbors as a feature. Here, the graph-
based structural features appear to be less important.

The performance of wvRN on the Reality Mining
task is extremely poor because of the negative
autocorrelation is this data set (Table 2). Note that
wvRN is not a learning technique. It assumes that there
is positive relational autocorrelation and it cannot take
advantage of other patterns of dependence between
attributes of related instances. In particular, the wvRN
model just looks at the proportion of neighbors that
have each class and uses these proportions as the
probabilities it returns. So, if 9/10 of the neighbors are
in the Reality Mining study and 1/10 are not in the
study, wvRN returns Pr(study) = 0.9 and Pr(~study) =
0.1. However, for this particular task, since there is
actually negative autocorrelation between the class
labels, having a large number of in-study neighbors
actually indicates that you are NOT in the study. The
nLB model also uses the proportion of neighbors of
each class as features. However, since it learns from
the training data (using a logistic regression model)
and does not just assume that the autocorrelation is
positive, it is able to figure out the correct (in this case,
inverse) relationship between neighboring class labels.

It is also interesting to note the cause of the
negative autocorrelation in the Reality Mining task.
The network here is of phone calls made and received
by participants in a study who are essentially all co-
workers (faculty, staff, and students at MIT). It makes
sense that co-workers do not generally call each other
on their cell phones since they have many other means
of communication available (e.g., email, work phone,
face-to-face meetings). Therefore, people in the study
generally communicate with people outside of the
study. In addition, the calls between people outside of
the study are not recorded. Hence, there is very strong
negative autocorrelation. This situation is in contrast
with the Enron email data set, where Enron employees
use email to communicate with people both inside and
outside of the company. However, Enron employees
will tend to communicate more with other Enron
employees than with non-employees. So, in this case,
we have positive relational autocorrelation (see Table
2), although the correlation is very weak because non-
employees communicate exclusively with employees
due to the way the data is collected.

With the exception of the political book task, we
see very little performance degradation as the
proportion of labeled nodes decreases in the classifiers
that incorporate structural information. Note that
varying the proportion of labeled data has two effects:
(1) it determines the number of instances available
during training and (2) it determines the amount of
information available from neighboring instances
during inference. The quality of structural information

 9

is not affected by (2), but if the amount of training data
available is very small (as in the political book data),
we will not have enough examples to learn the correct
structural dependencies.

The generally mediocre performance of collective
inference in this study is likely due to low amounts of
relational autocorrelation in all but the Reality Mining
task (see Table 2). Our observation that the
performance of collective inference tails off as
autocorrelation decreases is consistent with the
findings of other studies on collective inference (e.g.,
[8]). This effect is probably exacerbated in the political
book data due to the small amount of labeled data
available for both learning and inference.

Note that the tasks we consider all have a large
imbalance in the relative frequencies of their classes.
There are many examples of important real-world
prediction tasks like this, where one class is extremely
rare (e.g., detecting rare events, fraud, etc). We
hypothesize that the class skew present in our tasks
may account for the low levels of autocorrelation we
observe. The intuition here is that if in a data set 95%
of the instances belong to class A and 5% to class B,
the B's are going to have a lot harder time finding other
B's to link to.

To investigate our hypothesis, we ran a set of
experiments where we vary the class skew and observe
the effects on autocorrelation levels. For simplicity, we
focus here on positive autocorrelation. We used both a
uniform 2-D lattice of 1600 (40x40) nodes and the
network from the Enron employee identification task
and varied the percent of positive instances as follows.
We initially labeled all nodes with the negative class.
Then we randomly chose a starting node, labeled it
positive, and spread out from there in a breadth-first
fashion, labeling each node we encountered as positive
until we had labeled the specified proportion of
positive nodes. For each network and proportion of
positive labels, the results were averaged over 10 trials,
each with a different, randomly chosen starting node.
The results are shown in Figure 7.

We see that for both the 2-D lattice and the Enron
graph, the amount of autocorrelation tails off sharply
as the class skew approaches the extremes. The general
downward trend in autocorrelation as the number of
positive instances increases in the Enron graph is due
to the set of negative instances being split from a
single connected subgraph into many smaller
subgraphs, as the positive subgraph increases in size.
In the 2-D lattice, the negative instances remain part of
a single connected subgraph because of the lattice’s
regular structure.

Since the prediction of rare events is a common and
important application, these results suggest that low

autocorrelation in classification problems may be more
common that is generally assumed. Understanding the
data characteristics that influence relational
autocorrelation is an important and largely unexplored
area of study. An in-depth investigation into this area
is beyond the scope of this work. However, we note
that class skew on its own does not explain the amount
of observed autocorrelation in the previous
experiments and offer another explanation here.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

Proportion of Positive
Class Labels

A
ut

oc
or

re
la

tio
n

Enron Employee 2-D Lattice Graph

Figure 7: Relationship between autocorrelation and
class skew

Judging by the differences in autocorrelation
between the 2-D lattice and Enron graph across the
range of positive class proportions, differences in
graph structure apparently contribute to the amount of
autocorrelation observed. We hypothesize that one
source of variation is the link density of the networks,
although the pattern of linkage likely plays a role as
well. One way to measure link density is the average
number of neighbors per node (3.9 for the 2-D lattice
network and 5.0 for the Enron network). All else being
equal, more links per node means more chances for the
less prevalent class to link to the more prevalent class.
Therefore, we hypothesize that denser linkage will lead
to lower autocorrelation. To investigate the
relationship between link density and autocorrelation
we ran the following experiment. We again generated
a network with 1600 nodes, but this time connected in
a straight line instead of a lattice. Then we added
additional links at random in varying numbers to create
varying link densities. We then initialized all nodes to
the negative class and then labeled 50% of the nodes as
positive using breadth-first search as in our previous
experiment. Figure 8 shows how autocorrelation varies
with link density, here measured using average node
degree. Again, each data point is an average over 10
trials.

We see from these results that, at least in a network
with random link structure, there is a strong correlation
between link density and autocorrelation. In addition,

 10

we see that the autocorrelation level may be affected
dramatically by small changes in link density. For
example, in our experiments, an average degree of ~2
corresponds to near perfect autocorrelation (i.e., 0.99),
whereas an average degree of ~5 corresponds to an
autocorrelation level around 0.3.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350

Avg. Link Density (Avg. # of Links Per Node)

A
ut

oc
or

re
la

tio
n

Figure 8: Relationship between autocorrelation and
link density

For this study, we have identified several interesting
tasks for which structural graph characteristics are
predictive of the class label of interest. It remains an
open question how often in practice structural features
are correlated with attributes in the ways we see here.

6. Conclusions

Attribute dependence is an important source of

information for classification in relational data, but
relational autocorrelation is not always present in real-
world tasks. Network structure can provide a great deal
of information whether or not autocorrelation is
present. The combination of attribute-based and
structural features can provide more information than
either on its own. Relational random forests are an
effective way to combine attribute-based and structural
information for the task of attribute prediction.
Structural modeling is a complimentary approach to
collective inference in its strengths since each method
relies on a different kind of dependence.

Important problems where autocorrelation is low
may be more common than is generally assumed, due
in part to high levels of class skew. Future work
includes the exploration of the effects of network
characteristics on collective inference in real-world
relational data.

Acknowledgments

This work was performed under the auspices of the
U.S. Department of Energy by University of California

Lawrence Livermore National Laboratory under
contract No. W-7405-ENG-48. UCRL-TR-XXXXXX.

Notes

1. Proximity is available at

http://kdl.cs.umass.edu/software/proximity.html.

2. The R implementation of random forest is available at
http://cran.r-project.org/src/contrib/Descriptions/
randomForest.html.

References

[1] L. Breiman, “Random forests,” Machine Learning,
45(1), 2001, pp. 5-32.

[2] S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced
hypertext categorization using hyperlinks,” In Proc. of ACM
SIGMOD Int’l Conf. on Management of Data, 1998, pp. 307-
318.

[3] W.W. Cohen, “Enron email data set,”
http://www.cs.cmu.edu/~enron/.

[4] N. Eagle and A. Pentland, "Reality mining: sensing
complex social systems," Journal of Personal and
Ubiquitous Computing, 10(4), 2006, pp. 255-268.

[5] S. Geman and D. Geman, “Stochastic relaxation, Gibbs
distributions and the Bayesian restoration of images,” IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 6, 1984. pp. 721-741.

[6] L. Getoor, N. Friedman, D. Koller, and B. Taskar,
“Learning probabilistic models of link structure,” Journal of
Machine Learning Research, 3, 2002, pp. 679-707.

[7] D. Jensen and J. Neville, “Linkage and autocorrelation
cause feature selection bias in relational learning,” In Proc.
of the 19th Int’l Conf. on Machine Learning (ICML), 2002,
pp. 259-266.

[8] D. Jensen, J. Neville, and B. Gallagher, “Why collective
inference improves relational classification,” In Proc. of the
10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), 2004, pp. 593-598.

[9] V. Krebs, “Books about U.S. Politics,”
http://www.orgnet.com/, 2004.

[10] Q. Lu and L. Getoor, “Link-based classification,” In
Proc. of the 20th Int’l Conf. on Machine Learning (ICML),
2003, pp. 496-503.

[11] S. Macskassy and F. Provost, “A simple relational
classifier,” In Notes of the 2nd Workshop on Multi-relational
Data Mining at KDD, 2003.

[12] S. Macskassy and F. Provost, “Classification in
networked data: a toolkit and a univariate case study,”
Journal of Machine Learning Research, 2007 (to appear).

 11

[13] J. Neville and D. Jensen, “Dependency networks for
relational data,” In Proc. of the 4th IEEE Int’l Conf. on Data
Mining (ICDM), 2004, pp. 170–177.

[14] J. Neville, D. Jensen, L. Friedland, and M. Hay,
“Learning relational probability trees,” In Proc. of the 9th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), (2003), pp. 625-630.

[15] J. Neville, D. Jensen, and B. Gallagher, “Simple
estimators for relational Bayesian classifiers,” In Proc. of the
3rd IEEE Int’l Conf. on Data Mining (ICDM), 2003, pp.
609-612.

[16] M.E.J. Newman, “The structure and function of
complex networks,” SIAM Review, 45, 2003, pp. 167-256.

[17] C. Perlich and F. Provost, "Aggregation-based feature
invention and relational concept classes." In Proc. of the 9th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), 2003, pp. 167 – 176.

[18] M. Rattigan, M. Maier and D. Jensen, “Exploiting
network structure for active inference in collective
classification,” Technical Report 07-22, University of
Massachusetts, Amherst, MA, 2007.

[19] B. Taskar, P. Abbeel, and D. Koller, “Discriminative
probabilistic models for relational data,” In Proc. of the 18th
Conf. on Uncertainty in AI (UAI), 2002, pp. 485-492.

[20] P. Sen and L. Getoor, “Link-based classification,”
Technical Report CS-TR-4858, University of Maryland,
College Park, MD, February 2007.

[21] L. Singh, L. Getoor, and L. Licamele, “Pruning Social
networks using structural properties and descriptive
attributes,” In Proc. of the 5th IEEE Int’l Conf. on Data
Mining (ICDM), 2005, pp. 773-776 .

