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Cerenkov microwave sources use a dielectric-lined waveguide to reduce the velocity of

the electromagnetic wave and provide efficient energy transfer between the wave and

the driving electron beam. Tapering the permittivity of the dielectric to maintain

synchronism between the beam and the wave as the beam loses energy can increase

the efficiency of these devices. Here we consider such a structure driven by an elec-

tron beam with a harmonic density perturbation. Particle-In-Cell (PIC) simulations

and a macro-particle model based on the slowly varying envelope approximation are

first used to examine an un-tapered baseline case. PIC simulations of the source with

linear tapers over the entire amplifier length as well as over only a section of the am-

plifier where the beam executes synchrotron oscillations are examined. The efficiency

for the baseline un-tapered source is 18%, while efficiencies up to approximately 48%

are found using a taper in dielectric permittivity. Results of the best performing

cases are presented. Detailed examination of longitudinal phase space, particle en-

ergy distributions, evolution of longitudinal wavenumber, and phase dynamics are

presented from the PIC simulations.
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I. INTRODUCTION

When electrons travel through a region with velocities exceeding the local phase velocity

of light, electromagnetic energy will be released in the form of Cerenkov radiation. The

possibility of using this process for generating microwave radiation was first proposed by

Ginsburg1 in 1947. However, the Cerenkov mechanism by itself is a relatively inefficient

source of microwave energy due to its continuous spectrum and unfavorable scaling of emitted

power with frequency. To overcome these limitations, Cerenkov microwave sources use a

combination of electron beam bunching and resonant structures which serve to generate

coherent radiation concentrated at discrete wavelengths.2,3 These basic features can give

rise to devices with different physical configurations and modes of operation. One common

configuration is a dielectric-lined waveguide, a structure which supports TM modes whose

axial phase velocity is slowed by the presence of the dielectric. When an electron beam

is traveling through the structure at a velocity somewhat larger than one of these modes,

synchronism will occur between the beam’s slow space charge wave and the TM mode,

supporting the Cerenkov interaction. These modes provide an axial electric field, causing

the beam to bunch at the resonant frequency and the radiation to become coherent. Because

the TM modes are maximum near the dielectric-vacuum interface, the interaction can be

enhanced by placing most of the beam current near that interface. This generally requires

that the beam be guided by a strong axial magnetic field. For Cerenkov sources of this type,

the beam energy is typically between several hundred keV and 1 MeV. In this energy range,

the beam is sufficiently relativistic that significant amounts of beam energy can be extracted

before its velocity reduces to a point where it is no longer synchronous with the TM mode,

but not so relativistic as to prevent the bunching required for coherent emission.

The nature of the radiation generated from such a system depends on how the system is

excited, and on the details of the beam bunching process. One class of mechanisms produce

gain as described above by allowing the TM mode to drive a beam density modulation. When

a continuous electron beam is transported through the structure, the Cerenkov instability

will allow bunching and gain at a frequency defined by the beam-mode synchronism. The

system will therefore amplify microwave signals at that frequency which are present as noise

or are deliberately introduced into the structure.4–6 The picture is more complicated when

the beam initially contains density perturbations such as the steep rise in current at the
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head of a pulsed beam.7 These perturbations excite the structure’s TM modes over a range

of frequencies, not just the design operating frequency. This drives the formation of a

short-pulse wave packet. Because the group velocity of these modes is slower than their

phase velocity, this wave packet will slip backwards in the beam frame, continually sampling

”fresh” regions of the beam from which power can be extracted.

A different type of interaction occurs if the injected beam consists of bunches that

are much shorter than the operating wavelength, as would be the case when driven by

a photoinjector.8 If the bunches are injected into a structure without a pre-existing mi-

crowave field, superradiant emission will occur without gain.9 If a pre-existing microwave

field is present, its longitudinal electric field can be used to accelerate or decelerate the

pre-bunched beam.10–13 In this operating mode, the system resembles a conventional RF

accelerator.

Cerenkov sources are highly flexible sources of microwave energy. They can be tuned over

a wide frequency band, exhibit relatively high efficiency, and can operate at high power.14

Their principle disadvantage is the potential for beam-driven charging of the dielectric and

subsequent dielectric failure.15

When the Cerenkov source is operated as an amplifier, a TM mode grows as it extracts

energy from the beam. Because the beam is not highly relativistic, its velocity decreases.

This, in turn shifts the synchronous condition or operating point away from the design

frequency, leading to saturation at that frequency. If the dielectric loading were then changed

to reduce the phase velocity of the mode and to shift the synchronous point back to the

design frequency, the amplification process could continue, and additional energy would be

extracted from the beam and put into the mode at that frequency. This process is known as

tapering the dielectric.16 Ideally, the waveguide parameters would be continuously modified,

so that the synchronous point would continue to stay at the desired operating frequency as

the beam energy decreases.

Tapering in Cerenkov sources can be accomplished in two general ways. The first is to

change the mode phase velocity in the structure by gradually changing the fraction of the

structure filled with dielectric. The simplest way of doing this is by gradually changing

the dielectric thickness. This was considered by Gore, Asgekar, and Sen,17 who performed

numerical studies of a 2.05 MeV sheet beam propagating above a conductive plane having a

dielectric film coating designed to operate at 350 GHz. They used a dielectric layer thickness
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which was initially constant until the point at which beam energy loss was first seen in un-

tapered cases, and then decreased the thickness with a quadratic or cubic dependence on

distance. By doing this, they were able to increase the extraction efficiency by over a factor

of two. They did not find that tapering affected the requirements on beam energy spread.

The impact of variations in the thickness of a dielectric-lined waveguide Cerenkov source was

also considered by van der Slot, de la Fuente, and Boller.18 They were primarily concerned

that an unwanted, random variation in dielectric liner thickness would randomly detune the

system from the synchronous operating condition. However, their mathematical approach

also enabled them to study the impact of a linear taper in dielectric thickness, applied to

the case of a Cerenkov source designed for operation at 50 GHz, using a 100 keV, 800 mA

beam. They found that such a linear taper increased the power extraction from the beam,

with stronger tapers providing better extraction rates, limited only by the point at which

the constant radius beam was intercepted by the dielectric liner. The volume occupied by

the dielectric can also be varied by keeping its thickness constant, while machining grooves

into the dielectric, effectively ”derating” the dielectric’s permittivity by introducing vacuum

inclusions. Tapering can be accomplished by adjusting the width or depth of these grooves.

This approach was investigated by Shiozawa’s group at Osaka University.19,20 They simulated

a parallel plate waveguide with a grooved dielectric sheet applied to the inside of one of

the conductors, and propagated an ion-neutralized electron beam (energies 443 keV and

533 keV) between the dielectric sheet and the opposite conductor. Dielectric and waveguide

properties were chosen for Cerenkov radiation at 134 GHz or 126 GHz, and to suppress the

Smith-Purcell instability.21 Electromagnetic wave scattering from the grooves was neglected.

Their simulation was divided into steps, with the groove width or depth reduced iteratively

to track the reduction of beam energy and to maintain the synchronous condition at the

operating frequency. By optimizing the dielectric, their device efficiency was increased from

15% to 35%. The limitation on this approach occurs when the groove width or depth is

reduced to zero, at which point the grooved dielectric sheet becomes a smooth sheet.

The second approach to tapering Cerenkov sources is to change the mode phase veloc-

ity by gradually changing the dielectric constant. This has been investigated by several

researchers. Schächter and Nation12,13 considered the case of an 850 keV electron beam

propagating at the center of a dielectric-lined cylindrical waveguide designed to produce

radiation at 8.75 GHz. With a pre-bunched beam, they considered two types of tapers, one
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using a linear dependence of permittivity with position, and the other using a taper which

ensured the mode phase velocity tracked the average beam velocity to maintain synchronism

at the design frequency. When operated as an accelerator, the latter tapering accelerated

the beam to an energy twice that with the linear taper, while virtually no acceleration was

seen for a uniform dielectric without tapering. They also considered an un-bunched beam,

and optimal linear tapering increased the device efficiency from 5% to 30%. Tapering of

the permittivity in planar Cerenkov sources was considered by Gore, Asgekar, and Sen,17

who found it gave results comparable to tapering the dielectric thickness. Shiozawa and

Yoshitake22 also performed numerical studies of varying the permittivity using a parallel

plate waveguide, slab dielectric, and ion-neutralized sheet beam system, similar to that used

for the grooved dielectric studies. However, they used a Kerr-like dielectric with properties

chosen to ”automatically” adjust the dielectric constant in response to the growth of the TM

mode, enabling them to approximately double the peak extracted beam energy. Hirata and

Shiozawa14 improved the performance of this system using conventional dielectrics, while

using a more nuanced optimization method. Rather than increasing the dielectric constant

to reduce the phase velocity, they increased or decreased the dielectric constant to keep this

phase velocity and average beam velocity identical as the beam energy was extracted. This

enabled them to continue extracting beam energy even beyond the point at which the system

normally saturates and synchrotron oscillations begin, and to achieve an energy extraction

rate approximately four times higher than for an un-tapered dielectric.

Notice that tapering in Cerenkov sources is conceptually similar to tapering in conven-

tional fast-wave free-electron lasers (FELs), in which an undulator’s properties are varied

along its length, generally to maintain the FEL resonance condition as the beam loses en-

ergy to the laser field.23 However, in both FELs and Cerenkov sources, the general rule that

one should taper to maintain the resonant or synchronous condition may not optimize the

overall system. Instead, attention must be paid to the nuances of electron motion in phase

space, and to the details of the full system being optimized. In some cases, tapering in FELs

does not improve system performance, as shown at the Jefferson Lab IR Demo FEL.24 In

other cases an inverse taper — where the undulator properties are adjusted to increase the

resonant energy while the beam energy decreases, thereby moving the system away from

resonance — actually provides optimal system performance.25 And even where maintaining

the resonant or synchronous condition is required to optimize system performance, opti-
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mized tapers in both FELs23 and Cerenkov sources14 may require an undulator magnetic

field strength (for FELs) or permittivity (for Cerenkov sources) which has an oscillatory

component rather than a smooth monotonic variation.

Previous studies of tapering in Cerenkov sources primarily used a combination of linear

theory and macro-particle models. While both these models allow investigation of the small

signal regime and the macro-particle model extends this into saturation, neither provides

access to the nuances of electron motion in phase space during the beam-wave interaction,

which are required for a fuller understanding and optimization of the interaction. Such

granularity can only be provided by PIC codes.

In this paper, we consider linear permittivity tapers over the entire interaction region, as

well as linear tapers starting where saturation would begin in the absence of tapering. This

work builds on previous studies of an un-tapered device7 operating near 8 GHz. In that

work, a radially profiled beam was studied, while in the present case an annular beam near

the dielectric vacuum interface was used. The baseline case is analyzed using linear theory, a

2-D Particle-In-Cell (PIC) simulation, and a macro-particle model; the purpose of the macro-

particle model is to bridge the gap between the linear theory and PIC simulations. Linear

tapers over the entire interaction length increase efficiency, but not optimally due to detuning

at the front end of the taper and failure to adequately track beam momentum through

synchrotron oscillations. Some improvement is found using a taper only near saturation by

improved tracking of beam momentum, and systematic study of linear tapers over various

sections of the interaction length is developed using 2-D PIC simulations.

II. BASELINE CASE: UN-TAPERED SOURCE

A. Linear Theory

Figure 1 shows the configuration for the Cerenkov source, consisting of a perfectly con-

ducting cylindrical waveguide of radius R0 having a dielectric liner with inner radius Rd

located immediately inside the waveguide. An annular electron beam of uniform number

density is located between radii Rb1 and Rb2. The beam has axial velocity v0 = βc, is as-

sumed to be cold, and is guided by a large axial magnetic field so that the beam motion is

longitudinal and cyclotron instabilities are unimportant. For the baseline case we assume
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FIG. 1. Configuration of the Cerenkov source.

ε(z) = ε is constant. Assuming a harmonic solution of the form ei(kzz−ωt), the defining

equations for the axial electric field for TM0n modes are given by
[
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]

Ez(r) = 0, 0 ≤ r ≤ Rb1, (1)
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(

r
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)

−Q2

]

Ez(r) = 0, Rb1 ≤ r ≤ Rb2, (2)

[
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dr
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r
d

dr

)

− κ2

]

Ez(r) = 0, Rb2 ≤ r ≤ Rd, (3)

[

1

r

d

dr

(

r
d

dr

)

+ κ2
ε

]

Ez(r) = 0, Rd ≤ r ≤ R0, (4)

where

κ2 = k2
z −

ω2

c2
, (5)

κ2
ε =

εω2

c2
− k2

z , (6)

Q2 = κ2

(

1 −
ω2

b

Ω2

)

. (7)

The beam resonance term is given by

Ω2 = γ3(ω − kzβc)
2. (8)

Here ω2
b = q2n0/mε0, γ = 1/

√
1 − β2 is the relativistic factor, q is the electron charge, n0 is

the beam number density, m is the electron mass, ε0 is the permittivity of free space, ε is

the relative permittivity of the dielectric sleeve, and c is the speed of light. The solutions to

Eqs. (1)–(4) are given by
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Ez(r) = E1I0(κr), 0 ≤ r ≤ Rb1, (9)

Ez(r) = E2I0(Qr) + E3K0(Qr), Rb1 ≤ r ≤ Rb2, (10)

Ez(r) = E4I0(κr) + E5K0(κr), Rb2 ≤ r ≤ Rd, (11)

Ez(r) = E6J0(κεr) + E7Y0(κεr), Rd ≤ r ≤ R0. (12)

Since we are considering only TM modes and there is no transverse beam motion due to the

large axial magnetic field, the radial electric field for the vacuum and dielectric regions can

be determined from

Er =
ikzc

2

ω2 − k2
zc

2

dEz

dr
, 0 ≤ r ≤ Rd (13)

Er =
ikzc

2

εω2 − k2
zc

2

dEz

dr
, Rd ≤ r ≤ R0 (14)

using the appropriate expression for the axial electric field in each of the four regions.

Boundary conditions for the axial electric field and the radial electric displacement are

then applied at the waveguide wall, the vacuum-beam interfaces, and the vacuum-dielectric

interface to determine the dispersion relation, given by

det [D(kz , ω)] = 0. (15)

where the elements of the matrix D are defined in the Appendix. Without the presence

of the beam, the dispersion relation defined in Eq. (15) reduces to the familiar dispersion

relation
κε

εκ

I1(κRd)

I0(κRd)
+
J0(κεR0)Y1(κεRd) − J1(κεRd)Y0(κεR0)

J0(κεRd)Y0(κεR0) − J0(κεR0)Y0(κεRd)
= 0. (16)

B. Macro-Particle Model

Unlike the linear theory discussed above, a macro-particle model of the Cerenkov source

can be used to provide information about the saturation of the instability and the transi-

tion from the linear to the saturated regime. An extensive examination of this particular

geometry6,7 was previously analyzed using such a model. The electromagnetic field in the

waveguide is expressed in terms of the normal modes of the system without the presence of
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the electron beam, in this case the TM01 mode. The axial electric field component can be

written as

Ez = E(z)I0(κr) cos Ψ(z), 0 ≤ r ≤ Rd, (17)

Ez = E(z) [aJ0(κεr) + bY0(κεr)] cos Ψ(z), Rd ≤ r ≤ R0, (18)

where

Ψ(z) =
∫ z

0
kz(z

′)dz′ − ωt, (19)

and the local field amplitudes and local wave numbers are assumed to be slowly varying

functions of z,
∣

∣

∣

∣

∣

1
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∣

∣

∣

∣

∣

� kz and

∣

∣

∣

∣

∣

1

kz

∂kz

∂z

∣

∣

∣

∣

∣

� kz. (20)

The constant a and b are determined from the boundary conditions and are given by

a =
(

π

2

)

κεRd

[(

κε

εκ

)

I1(κRd)Y0(κεRd) − I0(κRd)Y1(κεRd)
]

, (21)

and

b = −
(

π

2

)

κεRd

[(

κε

εκ

)

I1(κRd)J0(κεRd) − I0(κRd)J1(κεRd)
]

. (22)

Following the procedure previously shown,6,7 it is possible to write the following equations

describing the evolution of the amplitude and phase of the electromagnetic wave in terms of

the beam current:

2kz
dE

dz
=

2µ0c
2κ2

πAR2
d

∫ 2π

ω

0
dt
∫ Rd

0
rJzI0(κr) cos Ψdr, (23)

(

ω2

c2
− κ2 − k2

z

)

E =
2µ0c

2κ2

πAR2
d

∫ 2π

ω

0
dt
∫ Rd

0
rJzI0(κr) sin Ψdr, (24)

where the constant A is given by

A =
(

ε− 1

ε

)(

I2
1(κRd) −

εk2
z0

κ2
ε

I2
0(κRd) +

2

κRd

εω2

c2κ2
ε

I0(κRd)I1(κRd)
)

+ε
R2

0

R2
d

κ2

κ2
ε

[aJ1(κεR0) + bY1(κεR0)]
2, (25)

the variation in axial wavenumber is represented in terms of a relative phase ψ(z)

kz(z) = kz0 +
dψ

dz
, (26)
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and kz0 is the initial wavenumber determined from the cold dispersion relation. The macro-

scopic current is found by summing over the individual trajectories of an ensemble of indi-

vidual macro particles,

Jz(z, τpq) = −enb(rq)
2πv0

Nτ

Nτ
∑

p=1

δ(τ − τpq(z)), (27)

where τ = ωt, Nτ is the number of macro particles distributed over 2π in phase, and Nr

is the number of macro particles in radius. Here the indices p and q refer to the macro

particle’s position in radius or phase respectively. The relativistic dynamical equations can

be written for the (pq)th macro particle as

dτpq

dz
=

ω

cβpq
=

k0

βpq
, (28)

and
dβpq

dz
= −

e

mc2

[

(1 − βpq)
3/2

βpq

]

E(z)J0(κrq) cos
(

kz0z +
dψ

dz
z − τpq

)

. (29)

Equations (23)–(29) constitute 2NrNτ +2 differential equations (NrNτ equations for particle

phase, NrNτ equations for particle velocity, and 2 equations for the wave amplitude and

phase) which can be solved numerically.

C. Numerical Results for Baseline Case

For numerical calculations of the baseline case we assume a waveguide with: R0 = 2 cm,

Rd = 1.5 cm, and ε = 4. Figure 2 shows the cold dispersion relation from Eq. (16) for the

TM01 mode, along with the beam mode for an electron beam with a nominal injection

energy of 340 keV; their intersection indicates an operating frequency of 8.12 GHz. The full

dispersion relation allows for solutions with complex kz when driven by an electron beam.

Figure 3 shows the solution of Eq. (15) for the system when driven by a 340 keV, 50 A

annular electron beam with Rb1 = 1.25 cm and Rb2 = 1.45 cm. A maximum spatial growth

rate, Γ = −Im(kz) = 8.52 m−1, occurs at 8.12 GHz, with Re(kz) = 217.6 m−1.

The macro-particle model and PIC simulations are required to determine the performance

of the amplifier near nonlinear saturation. The geometry shown in Fig. 1 was simulated

with OOPIC26 in r-z geometry with mesh cell sizes of ∆r = ∆z = 0.5 mm and a time step

of ∆t = 1.0 ps. The overall axial length of the simulation was 1.5 meters, giving 1.2 × 105

mesh cells with a maximum of ∼ 8 × 105 macro particles. Figure 4 shows the injected current
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FIG. 4. OOPIC current pulse showing the temporal isolation of the beam head and harmonic

density perturbation.

pulse, which contains a 10% sinusoidal density perturbation at 8.12 GHz to serve as the seed

signal. To prevent coherent spontaneous emission (CSE)7 associated with the beam head,

the current is slowly ramped up to the baseline value of 50 A over a period of 5 ns, and the

seed signal is turned on 3 ns later. This method also provides a degree of space and time

isolation of the transient and steady state signals. Numerical simulations for the Cerenkov

source were also solved using the macro-particle model for the TM01 mode for our set of

parameters using Nr = 4 and Nτ = 128. The particles entering the amplifier were uniformly

distributed in phase, and the initial axial electric field on axis was set to 25 kV/m, to be

consistent with the PIC simulations.

Figure 5 shows results for Ez(z), along the waveguide axis from OOPIC simulations

along with the envelope of Ez(z) from the macro-particle model. The spatial growth rates

are determined to be 8.04 m−1 and 8.39 m−1 for the OOPIC and macro-particle model

respectively, compared with the linear theory prediction of 8.52 m−1. The mode structure

for the axial electric field at z = 0.3 m found by OOPIC is in excellent agreement with

that calculated from the linear theory as shown in Fig. 6. Figure 7 shows the evolution
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of the microwave power and average beam energy from the OOPIC simulations and the

macro-particle model. OOPIC and the macro-particle model show saturation occurring at

z = 0.55 m at powers of 3.2 MW and 3.04 MW, and with a corresponding average beam

energy at saturation of 275 keV and 279 keV, respectively. These values correspond to

efficiencies of 18.8% and 17.9% for the OOPIC and macro-particle simulations respectively.

Figure 8 shows the longitudinal phase space of the beam found in OOPIC, clearly showing the

beam starting to execute synchrotron oscillations near z = 0.55 m. Maximum beam energy

loss occurs at the same location with the beam regaining a maximum amount of energy at

z = 0.76 m, where the microwave output power is at a minimum. Energy distributions for

the beam at several locations along the amplifier were also extracted from the PIC data

and are shown in Fig. 9. Prior to saturation the particle energies are distributed around

the 340 keV injection energy with a mean value of 325 keV. As the wave starts to saturate

at z = 0.55 m the particles become trapped at approximately 250 keV with a mean value

of 275 keV. The mean energy is somewhat larger than the trapped energy due to the high

energy tail in the distribution located above 250 keV. At z = 0.76 m the wave has given

energy back to the particles with the bulk of the particles distributed near 350 keV with a

mean value of 326 keV. Note that the energy spread, or longitudinal emittance, has been

increased by this process. The dynamics of the energy exchange between the wave and

the particles are shown more clearly in Fig. 10, which shows the axial electric field, beam

current, and axial wave number, along z. The bunch locations are indicated by the fiducial

markers on the axial electric field plot. The bunch starts in a decelerating phase of the

wave for z < 0.55 m; between z = 0.55 m and z = 0.76 m the bunch is in an accelerating

phase of the wave where the wave energy is decreasing. After z = 0.76 m the bunch again

enters a decelerating phase of the wave and the microwave power starts to increase again.

The instantaneous wave amplitude and phase were determined by evaluating the Hilbert

transform of the axial electric field, Ez(z; t0) with t0 sufficiently large that the steady state

regime has been established. The axial wave number associated with the interaction is fairly

constant with a value of 218 m−1 throughout the course of the interaction length.
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FIG. 8. Longitudinal phase space showing onset of beam trapping and synchrotron oscillations.
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FIG. 9. Evolution of energy distribution. The bin sizes in energy are 1 keV. The thickness of the

beam slice for sampled particles in the energy distribution was 2π/kz(z0) centered at z0.
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III. TAPERED SOURCE

A. Overview

Properly tapering the dispersion properties of the slow wave structure along the length of

the amplifier allows the phase velocity of the mode to better track the electron beam velocity

as the beam gives up energy to the electromagnetic wave. This is illustrated conceptually in

Fig. 11, which shows cold dispersion curves for several values of dielectric permittivity and

several beam energies chosen to maintain synchronism at the operating frequency for our

geometry. The objective is to choose the variation of dielectric permittivity with distance

along the amplifier in such a way that the power in the electromagnetic wave is maximized.

While simple in concept, this is more complicated in practice due to the dependence of the

growth rate, modal structure,and dispersion properties on the dielectric permittivity and the

changing beam energy. Figures 12 and 13 show plots of the variation of maximum growth

rate and wave number with beam energy at the 8.12 GHz operating frequency for several
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FIG. 11. TM01 dispersion curves for several values of dielectric permittivity and the associated

synchronous beam modes for 8.12 GHz.
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values of dielectric permittivity respectively as calculated from Eq. (15). Also evident from

Fig. 13 is that at lower beam energies, kz increases since the mode’s phase speed, ω/kz

is decreasing, and therefore, κ =
√

k2
z − (ω/c)2 will increase changing the modal structure

within the beam region. To further complicate matters, Figs. 11–13 assume a mono-energetic

beam, while the results of Fig. 9 show that the beam energy spread is significant, end evolves

as the beam interacts with the wave.

In the next sections of this paper we will examine linear tapers to determine their effec-

tiveness in enhancing the output power of the Cerenkov source. Figure 14 shows the two

linear tapers under consideration in this paper. In the first, denoted as the ”long” taper,

the dielectric constant is varied linearly over the entire length of the source. The defining

equations for ε(z) for the ”long” taper are given by

ε(z) = εi +
dε

dz
z, (30)

where
dε

dz
=
εf − εi
L

, (31)

In the second taper, denoted as the ”short” taper, the dielectric constant remains at εi for

z ≤ Li, and εf for Z ≥ Lf . In the taper region, Li ≤ z ≤ Lf , ε(z) is given by

ε(z) = εi +
dε

dz
(z − Li), Li ≤ z ≤ Lf , (32)

where
dε

dz
=

εf − εi
Lf − Li

. (33)
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B. Linear Tapers Along the Entire Interaction Region (”Long” taper)

First, we consider linear tapers extending across the entire L = 1.5 m interaction region

from the point of beam injection to the end of the simulation volume. The initial value of

dielectric constant at z = 0 is εi = 4, corresponding to the baseline case, and simulations are

run for final values of dielectric constant, (εf), ranging from 3 to 7. The tapered dielectric

was simulated in OOPIC using discrete annular disks of dielectric material 1.5 cm (30∆z)

thick along the length of the amplifier. Figure 15 summarizes the results of the ”long”

taper simulations, showing the maximum power output at the first and second synchrotron

oscillation peaks as a function of taper. Figure 16 shows the evolution of the microwave power

and average beam energy for the best performing taper (εf = 5.8) compared with the un-

tapered amplifier. The power at saturation for the tapered amplifier is 6.8 MW with a beam

energy at saturation of approximately 198 keV. This corresponds to an amplifier efficiency

of approximately 40% compared to an efficiency of 18.8% for the un-tapered amplifier. The

longitudinal phase space for εf = 5.8 is shown in Fig. 17. Saturation is delayed to about

z = 0.6 m allowing continued growth of the wave before the onset of synchrotron oscillations.

Note the more complicated structure seen after z = 0.65 m in this figure compared to the

un-tapered data shown in Fig. 8, indicating the trapping of additioanl particles near 350 keV

not seen in the un-tapered case. Fig. 18 shows that at saturation the particles are distributed

near 110 keV compared to 250 keV for the un-tapered source. Again, the presence of a high

energy tail in the energy distribution skews the mean energy upward to about 198 keV, but

the overall energy spread is similar in the tapered and un-tapered cases. At approximately

z = 0.76 m the beam again starts to give energy to the wave. However, the peak output

power at the second synchrotron oscillation peak is substantially lower than the first peak

due to detuning of the instability, since the beam and wave are falling out of synchronism

due to the changing dielectric constant in the taper. Figure 19 shows the relative phasing

of the wave and the bunch, again with the bunch starting in a decelerating phase of the

wave until approximately z = 0.6 m where it slips into an accelerating phase and starts to

regain energy at the expense of the electromagnetic wave. It remains in the accelerating

phase until approximately z = 0.76 m where the bunch again slips into a decelerating phase

and the microwave field again starts to increase. By comparison with the un-tapered case

shown in Fig. 10, the taper causes the bunch to stay in a decelerating phase for longer, and
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to be more quickly brought out of the accelerating phase once it enters it. The axial wave

number, kz is increasing along the amplifier due to the tapering of the dielectric constant.

The increasing value of kz along the amplifier allows the bunch to remain in an accelerating

phase of the wave for a longer distance allowing for a larger microwave output power. An

increase in the strength of the taper near saturation to decrease the phase velocity of the

wave further to match the mean bunch velocity as the bunch enters synchrotron oscillations

would potentially allow for improved energy extraction. In addition, tapering near the

amplifier input does not significantly allow for improved performance, and may in fact

degrade operation, due to premature detuning of the instability, when there is little change

in mean beam energy. More will be discussed about this in the next section.

−1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

dε/dz (m−1)

P
ow

er
(M

W
)

 

 

εf

Peak 1
Peak 2

3 4 5 6 7

FIG. 15. Power output at first and second synchrotron oscillation peak for a Cerenkov amplifier

with a linear taper extending over the entire interaction length.
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FIG. 16. TM01 power and beam energy loss comparing the ”long” taper and un-tapered amplifiers.
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FIG. 17. Longitudinal phase space showing onset of beam trapping and synchrotron oscillations.
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FIG. 18. Evolution of energy distribution. The bin sizes in energy are 1 keV. The thickness of the

beam slice for sampled particles in the energy distribution was 2π/kz(z0) centered at z0.
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C. Linear Tapers Along a Section of the Interaction Region(”Short” taper)

As seen in the previous section there is little benefit to starting the taper too close to

the beginning of the amplifier due to potential detuning of the instability. We next consider

a taper only in the region where the beam is close to saturation in the un-tapered source.

In this case, the relative permittivity remains constant at εi = 4 for z ≤ Li, and ε = εf

for z ≥ Lf . The tapered dielectric was simulated in OOPIC as described in the previous

section, and simulations were run for several values of εf ranging from 5 to 7. In all the

short taper simulations, Li = 0.3 m and Lf = 1.2 m. Figure 20 summarizes the results of

the ”short” taper simulations showing the microwave power output at the first and second

synchrotron oscillation peaks. In this case, the microwave power at the second synchrotron

peak is always larger than at the first, indicating improved energy exchange throughout

the synchrotron oscillations. Figure 21 shows a maximum saturated power of 8.1 MW at

z = 0.82 m for the best performing ”short” taper with εf = 6.25. Here the beam energy

at saturation is approximately 165 keV yielding an amplifier efficiency of 48% compared to

18% for the un-tapered amplifier and 40% for the best performing ”long” taper. Also note

that, compared to the best ”long” taper case shown in Fig. 16, the location of both the

power maxima has been shifted forward, and closer together, in the best ”short” taper case.

The longitudinal phase space shown in Fig. 22 shows a substantially larger population of

trapped electrons as the beam starts to execute synchrotron oscillations near z = 0.58 m.

It is also evident, that when entering the second synchrotron oscillation that the energy of

trapped electrons falls to a value significantly lower than at the first saturation peak. This is

also apparent in the energy distributions shown in Fig. 23 where at the first saturation peak,

the main population of electrons are between energies of approximately 125 keV to 250 keV

at z = 0.58 m and at the second saturation peak at approximately z = 0.82 m the trapped

electron population is between 75 keV and 125 keV. Also, the trapped electron population

is much more ”localized” in energy than in either the un-tapered source, or the source with

the ”long” taper. This is consistent with the behavior shown in Fig. 24 which shows that the

electron bunches remain in a decelerating phase of the wave over a larger cumulative region

of the amplifier. In fact, the electron bunches are only in an accelerating phase of the wave

prior to the second saturation peak for 0.6 m ≤ z ≤ 0.7 m. Also, after the microwave field

reaches a minimum at approximately z = 0.68 m the wave number kz continues to increase
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FIG. 20. Power output at first and second synchrotron oscillation peak for a Cerenkov amplifier

for the ”short” taper.

allowing the phase velocity to decrease maintaining improved synchronism up to the second

saturation peak at z = 0.82 m.
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FIG. 21. TM01 power and beam energy loss comparing the ”short” taper and un-tapered amplifiers.
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FIG. 22. Longitudinal phase space showing onset of beam trapping and synchrotron oscillations.
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FIG. 23. Evolution of energy distribution. The bin sizes in energy are 1 keV. The thickness of the

beam slice for sampled particles in the energy distribution was 2π/kz(z0) centered at z0.
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FIG. 24. Axial electric field, beam bunching showing relative phasing between field and bunches

and evolution of axial wave number, kz.
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IV. CONCLUSION

Using PIC simulations, we have examined the use of linear tapers in dielectric constant to

enhance the efficiency of a Cerenkov microwave source. Two types of tapers were examined:

a linear taper over the entire length of the microwave source, and a short taper located near

the region when the beam starts to execute synchrotron oscillations. The interaction was

investigated using both the electromagnetic wave properties and the details of the beam’s

longitudinal phase space. Hilbert transforms were employed on the electromagnetic wave

field to determine localized amplitude and phase properties to evaluate power and local

wave number kz. Particle binning in position and phase space were used to evaluate the

evolution of energy distributions. Accurate tracking of the electron bunches with respect

to the phase of the electromagnetic wave were used to determine when the bunches were

in either a decelerating (increasing microwave field) or accelerating (decreasing microwave

field) phase of the wave. It was found that the ”long” taper over the entire interaction length

provided a significant improvement in device efficiency. However, due to localized detuning

of the instability, further improvement could be obtained by proper placement of a ”short”

linear taper near the region of saturation. These results suggest, that by significant micro-

management of the dielectric taper properties further improvements in device performance

can be achieved.
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Appendix A: Dispersion Relation

Expressions for the radial electric fields are evaluated using Eqs. (9)–(14) and are given

by

Er(r) = −
ikz

κ
E1I1(κr), 0 ≤ r ≤ Rb1, (A1)

Er(r) = −
ikzQ

κ2
[E2I1(Qr) − E3K1(Qr)] , Rb1 ≤ r ≤ Rb2, (A2)

Er(r) = −
ikz

κ
[E4I1(κr) − E5K1(κr)] , Rb2 ≤ r ≤ Rd, (A3)

Er(r) = −
ikz

κε
[E6J1(κεr) + E7Y1(κεr)] , Rd ≤ r ≤ R0. (A4)

Boundary conditions for the continuity of the axial electric fields at the transverse boundaries

are given by

E1I0(κRb1) = E2I0(QRb1) + E3K0(QRb1) (A5)

E2I0(QRb2) + E3K0(QRb2) = E4I0(κRb2) + E5K0(κRb2) (A6)

E4I0(κRd) + E5K0(κRd) = E6J0(κεRd) + E7Y0(κεRd) (A7)

E6J0(κR0) + E7Y0(κR0) = 0 (A8)

Similarly, boundary conditions for the continuity of radial electric displacement are given by

E1I1(κRb1)) =
Q

κ
[E2I1(QRb1) − E3K1(QRb1)] (A9)

Q

κ
[E2I1(QRb2) − E3K1(QRb2)] = [E4I1(κRb2) −E5K1(κRb2)] (A10)

1

κ
[E4I1(κRd) −E5K1(κRd)] =

ε

κε
[E6J1(κεRd) + E7Y1(κεRd)] (A11)

Eqs. (A5)–(A11) constitute a set of equations defined by

D(kz, ω) · E = 0, (A12)

where E constitutes the various electric field coefficients and where Eq. (A12) has a nontrivial

solution if

det [D(kz , ω)] = 0. (A13)

The matrix elements of D(kz, ω) are given by

D11 =
1

κ
I1(κRb1),
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D12 = −
Q

κ2
I1(QRb1),

D13 =
Q

κ2
K1(QRb1),

D22 =
Q

κ2
I1(QRb2),

D23 = −
Q

κ2
K1(QRb2),

D24 = −
1

κ
I1(κRb2),

D25 =
1

κ2
K1(κRb2),

D34 =
1

κ
I1(κRd),

D35 = −
1

κ
K1(κRd),

D36 = −
ε

κ
J1(κεRd),

D37 = −
ε

κε

Y1(κεRd),

D41 = I0(κRb1),

D42 = −I0(QRb1),

D43 = −K0(QRb1),

D52 = I0(QRb2),

D53 = K0(QRb2),

D54 = −I0(κRb2),

D55 = −K0(κRb2),

D64 = I0(κRd),

D65 = K0(κRd),

D66 = −J0(κεRd),

D67 = −Y0(κεRd),

D76 = J0(κεR0),

D77 = Y0(κεR0),

with all remaining matrix elements being zero. Eq. (A13) is a complicated transcendental

equation in kz and ω which can be solved numerically to determine the dispersion relation

kz = kz(ω). In addition, the values of E1 thru E7 can be determined within a constant from

the null space of Eq. (A12) which is used to evaluate the mode structure.
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13L. Schächter and J. A. Nation, in Proceedings SPIE, Vol. 1407 (1991) p. 44.

14A. Hirata and T. Shiozawa, J. Appl. Phys. 82, 5907 (1997).

15D. Shiffler, J. Luginsland, D. M. French, and J. Watrous, IEEE Trans. Plasma Sci. 38,

1462 (2010).

16While some authors use the term tapering to refer to a gradual reduction in the thickness

of the dielectric liner near its ends in order to minimize reflections, (as in W. Peter and E.

35



Garate, Phys. Rev. A 45, 8833 (1992)), we will exclusively use the term to refer to changes

in the dielectric liner which are used to maintain synchronism as energy is extracted from

the beam.

17B. W. Gore, V. B. Asgekar, and A. Sen, Physica Scripta 53, 62 (1996).

18P. van der Slot, I. de la Fuente, and K. Boller, in Proceeding of the 2004 FEL Conference

(2004) pp. 53–56.

19T. Shiozawa and T. Nishimura, Appl. Phys. Lett. 68, 1443 (1996).

20T. Shiozawa, H. Takahashi, and Y. Kimura, IEEE J. Quant. Electronics 32, 2037 (1996).

21S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).

22T. Shiozawa and T. Yoshitake, IEEE J. Quant. Electronics 31, 539 (1995).

23T. J. Orzechowski, B. R. Anderson, J. C. Clark, W. M. Fawley, A. C. Paul, D. Prosnitz,

E. T. Scharlemann, S. M. Yarema, D. B. Hopkins, A. M. Sessler, and J. S. Wurtele, Phys.

Rev. Lett. 57, 2172 (1986).

24A. Christodoulou, D. Lampiris, K. Polykandriotis, W. B. Colson, P. P. Crooker, S. Benson,

J. Gubeli, and G. R. Neil, Phys. Rev. E 66, 056502 (2002).

25W. B. Colson and R. D. McGinnis, Nucl. Instrum. and Methods A 445, 49 (2000).

26OOPIC is a product of TECH-X, Boulder, Colorado.

36


