

A Variational Method for
Interpolation Between Zone
Centers in 2-D Geometry

E. D. Brooks III and A. Szoke

May 1, 2013

LLNL-TR-636155

!
"#$%&'#()*!
This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

+,$-#%)$!./'/)()0/!
This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.!

A Variational Method for

Interpolation Between Zone Centers

in 2-D Geometry
∗

Eugene D. Brooks III and Abraham Szőke
Lawrence Livermore National Laboratory
P.O. Box 808, Livermore, CA 94550, USA

May 1, 2013

Abstract

Radiation-hydrodynamics codes are often based on a zone cen-
tered discretization strategy for the hydrodynamics, while transport
requires a higher order interpolated treatment of the material state
variable to produce a correct solution in optically thick media. In
this paper, we use a variational method to generalize a previously
developed 1-D interpolation method to 2-D geometries. While our in-
terpolation method was developed to handle the gradient source term
for thermal photons in the Difference Formulation, it may also be use-
ful for the generation of an accurate zone centered discretization for
diffusion methods. We provide a detailed description of the 2-D in-
terpolation method and how it relates to the 1-D method that was
developed earlier. We also discuss how this interpolation strategy can
be extended to 3-D, but do not work through the details.

∗This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

1 Introduction

Accurate radiation transport was made practically feasible, using a single
method for both optically thick and thin media, by the Symbolic Implicit
Monte Carlo (SIMC) method in the Difference Formulation [1]. As an ex-
ample, in 1-D slab geometry a Marshak wave was found to propagate at the
correct speed even when individual zones are 100 optical depths thick with
a method that also preserves accuracy in the free streaming limit.

When a zone centered discretization of the material state variable1 is con-
stant within each zone, excess energy flow results from the discontinuity at
the interface between zones. This problem arises because the source associ-
ated with the gradient of the material state variable is concentrated at the
zone interface and does not incur absorption losses. We removed this excess
energy flow in 1-D using a source interpolation method.

In this paper, we address the question of extending our source interpola-
tion method to higher dimensions. In 1-D slab geometry, our interpolation
method derives its fidelity from demanding the continuity of both the mate-
rial state variable and the diffusion flux across the interface between zones.
It will be recognized as a straightforward discretization of the diffusion equa-
tion starting with zone centered values. We generalize the 1-D interpolation
method to 2-D by reinterpreting the 1-D interpolation as the equilibrium
solution of the diffusion equation given the zone centered values as boundary
conditions. Using this re-interpretation, we use the variational method to
produce an interpolation that satisfies the same requirement in 2-D.

In 1-D, the interpolation across half-zones is a straight line which has
zero divergence. As the diffusion flux is matched on the left and right sides
of zone interfaces there is zero divergence at interfaces between zones. Any
divergence of the diffusion flux occurs at zone centers where it is properly
associated with heating or cooling of the zone. In 2-D, an N sided zone is
divided into N four-sided polygons that we refer to as corners. Optimized
Stone-Adams basis functions are used to represent the material state variable
within each corner, providing zero divergence on its perimeter.

1The material state variable for the Difference Formulation of transport is Φ = aT 4,
where T is the material temperature and a is the radiation constant.

2

!"# !$# !%#
&'()#"# &'()#$#

*"# *$#

!1"

!2"

!+#

!,#

!-#

*.#

!.#
&'()#.#

!3"

Figure 1: Interpolation between zone centers in 1-D slab geometry.

2 The 1-D Interpolation

Our interpolation of the gradient source term in the Difference Formula-
tion remedied the excess energy flow between zones that is produced by a
discretization of the material state variable that is constant in each zone.
This excess energy flow causes thermal energy to propagate through opti-
cally thick media at faster than physical rates. We work through the details
of this interpolation in 1-D in what follows so that it can be referred to in
our discussion of the 2-D interpolation.

In Figure 1, we show the interpolation for a three zone problem in slab
geometry. The original discretization, constant in a zone, is shown in red
with zone center values labeled Φ1, Φ2, and Φ3. We denote Φ = aT 4, where
T is the common temperature of the material and the reference field for the
radiation, with a being the radiation constant. We want to construct an
interpolation between these zone center values. Each zone may have its own
diffusion coefficient, D1, D2, and D3. It is the discontinuity at the interface
between the zones that causes excess energy flow if the zones are optically
thick. The interpolation, when it is properly done, resolves this problem.

3

2.1 The interpolation between two zone centers

The interpolation for an interior region between zone centers, shown with the
solid green line in Figure 1, is produced by demanding that both Φ and the
diffusion flux, F = −D∇Φ where D is the diffusion coefficient, is matched
at the interface between each pair of zones.

Referring to Figure 1, we want to establish the value of Φi such that

2D2(Φ2 − Φi)

x3 − x2
=

2D1(Φi − Φ1)

x2 − x1
. (1)

This interpolation has a change in slope at the interface between zones if the
diffusion coefficients of the zones, D1 and D2, are not equal. This will be
recognized as the usual interior discretization of the diffusion equation that
establishes the energy flow between two zones during a time step. The same
template is used for the interface between zones 2 and 3, leading to a change
in slope at the center of zone 2, shown in the figure. The difference in flux
here is associated with heating or cooling the zone.

Preparing our path forward for 2-D, it is useful to consider the variational
approach [2] that arrives at the same interpolation of Eq. 1. In this case we
want an approximate solution of the time independent diffusion equation
between the two zone centers, using the zone center values as boundary
conditions.

In order to get this, we vary Φi in order to minimize the integral of the
diffusion coefficient times the square of the gradient of Φ over the two half
zones. This integral is

D1
(x2 − x1)

2

�
2(Φi − Φ1)

x2 − x1

�2

+D2
(x3 − x2)

2

�
2(Φ2 − Φi)

x3 − x2

�2

. (2)

The minimum, varying Φi, is obtained by demanding that the derivative of
Eq. 2 with respect to Φi is zero. Taking the derivative, setting it to zero and
simplifying, we end up with

2D2(Φ2 − Φi)

x3 − x2
=

2D1(Φi − Φ1)

x2 − x1
. (3)

For 1-D, this variational approach delivers the exact solution. This amounts
to a textbook demonstration of the variational method for the solution of
the diffusion equation, the 2-D extension of which is neither simple, nor as
exact. Without the guidance of the 1-D case we would not know where to
start in 2-D.

4

2.2 Handling boundary conditions in 1-D

In a boundary zone we extrapolate across a half zone to a problem boundary,
maintaining the slope that was established by the interior interpolation. Ex-
amples of this are shown in Figure 1 by the dashed green lines to the value at
the left problem boundary, giving Φl, and to the value at the right problem
boundary, giving Φr.

These zero curvature extrapolations to the problem boundaries may be
constrained by the boundary conditions. If the boundary is reflecting, the
slope approaching the boundary must be zero. Constraints on the zero cur-
vature extrapolation can also arise when the boundary condition represents
an incident black body. An extrapolation is not allowed to produce a discon-
tinuity with respect to an external boundary condition that would oppose
the direction of energy flow that otherwise occurs with the original constant-
in-a-zone discretization.

As this curious handling of the extrapolation to the boundary is unusual,
we cite an example to clarify the situation. Suppose the boundary condition
on the left hand side for Figure 1 is an incident black body corresponding
to ΦLB with Φl > ΦLB > Φ1. In this case the zero curvature extrapolation
from the interior would produce a surface temperature that is hotter than
the blackbody source, and the associated source term (at the surface) would
cool the zone instead of heating it. To prevent this we limit the extrapolated
value to ΦLB.

One might also limit the extrapolation to a Milne boundary condition. A
detailed discussion of boundary conditions for transport, and suitable bound-
ary conditions for diffusion approximation for transport, is beyond the scope
of this report.

3 The 2-D Interpolation

In order to create the 2-D interpolation, we must generalize the concept
of 1-D half-zones to 2-D and we would like to do this in a manner that
reproduces the 1-D treatment described above when the 2-D problem has
the appropriate symmetry. We satisfy this requirement by using “corners”,
four-sided sub-divisions of an N-sided zone. The notion of corners is not new,
these were used by Burton [3] and Adams [4], for different purposes.

We show this construction in Figure 2 for a pentagonal zone, to illustrate

5

Figure 2: Division of a pentagonal zone into five four-sided corners. The original
zone is shown in red. The division is accomplished by picking a center for the
zone, shown in green, and connecting it to the mid-points of the edges of the zone,
shown in blue.

the fact that our interpolation strategy is not restricted to four-sided zones
on a logically rectangular mesh. The original pentagonal zone is shown in
red with the nodes of the mesh shown as red dots. The location of the
zone center is chosen somewhat arbitrarily, but must result in positive area
corners, and is shown as the interior green dot. The mid-points of the sides of
the original zone are marked with blue dots. The pentagonal zone is divided
into five four-sided corners by the blue lines drawn from the zone center to
the mid-points on the sides.

The mesh constructed from the corners of the zones comprising the orig-
inal mesh is referred to as the corner mesh in what follows. The nodes of the
corner mesh are the original nodes of the problem mesh, augmented by the
zone centers and zone edge mid-points.

3.1 Using optimized Stone-Adams basis functions in a

corner

We now need to represent our interpolation in a corner, given the values of Φ
on the nodes of the corner mesh and assuming that these values interpolate
linearly along the edges of the corner mesh. We use an optimized form [5] of
the Stone-Adams basis functions [6] for this purpose. In this construction one
selects a center for the corner, again somewhat arbitrarily, and the corner
is then divided into four triangles by drawing lines from the center of the

6

Figure 3: Subdivision of a corner into triangles. The red and blue color coding
correspond to those of Figure 2 above. A center for the corner is selected, shown
with the grey dot, and the corner is subdivided into triangles by connecting its
nodes to the center, shown with the grey lines.

corner to the nodes2 of the corner. This construction is shown in Figure 3.
There are four Stone-Adams basis functions in the corner, each having

the value 1 at the i’th node of the corner, αi at the center, and zero at the
other nodes. The values of Φ in the interior of the triangles vary linearly,
determined by the values at the center and the nodes. The value of αi for each
basis function is chosen to optimize the basis function as a representation for
solutions of the Laplace equation, this being appropriate given the fact that
the diffusion coefficient is constant in a corner. The value at the center of
the corner is given by

Φc =
�

i

αi Φi , (4)

where Φi is the value at node i of the corner and the αi, having the property

�

i

αi = 1 , (5)

depend on the locations of the nodes [5]. The benefit of the optimization is
zero divergence around the perimeter of a corner, a desired property given our
goal of representing solutions of the diffusion equation with our interpolation.

2We will refer to the vertices of polygons as nodes because the polygons are always
buried in a mesh. The terms edges and sides are also used interchangeably, depending on
the context, and refer to the same thing.

7

3.2 Using the 1-D ansatz to interpolate to mid-points

of zone edges

At this point we have described the geometric construction used to convert
the problem mesh to a corner mesh, with values of Φ being defined everywhere
by the basis functions if we know them at all the nodes of the corner mesh.
At the moment we know the values of Φ only at the nodes of the corner mesh
associated with the center of each original zone. To produce values for the
other nodes of the corner mesh, we have to interpolate (or extrapolate) in a
similar way as we did in our 1-D example. We will use a bootstrap process
that starts with the mid-points along the interior zone edges.

In Figure 4 we show such a situation. Two four-sided zones sharing an
interior edge, labeled zone 1 and zone 2, are shown with the zone edges and
associated nodes of the problem mesh in red. The zones are divided into
corners by selecting zone centers and connecting the mid-points of the zone
edges to the centers. At this point we interpolate the value at the mid-point
of the interior edge from N1 to N2, shown with the blue dot. We find a
value here by conserving the normal component of the energy flow across the
zone edge at this point. We are only interested in the flux in the vicinity
of the mid-point along the zone edge, but it is sufficient to consider the two
triangles contained by the dashed orange lines, assuming that the values of
Φ at N1 and N2 are the same as that at the mid-point.

The value at the mid-point of the zone edge that satisfies our desired
conditions can be found in closed form given the locations of C1, C2, N1,
N2; the zone center values of Φ that are associated with C1 and C2; and
the diffusion coefficient for the zones, D1 and D2. This value is given by the
expression

C2ΦD2(C1y(N1x −N2x) +N1y(N2x − C1x) +N2y(C1x −N1x))
+ C1ΦD1(N1y(C2x −N2x) + C2y(N2x −N1x) +N2y(N1x − C2x))

D1(C2y(N2x −N1x) + C2x(N1y −N2y) +N1xN2y −N1yN2x)
+D2(C1y(N1x −N2x) + C1x(N2y −N1y) +N1yN2x −N1xN2y)

, (6)

where the subscript x refers to the x component of a location, the subscript
y refers to the y component, and the subscript Φ refers to the value of Φ
there. The Mathematica [7] code used to compute the expression is shown
in Appendix A. Using this template, we find the value of Φ at the mid-point
of all interior zone edges.

8

!"#$%&%!"#$%'%

(&%('%

)&%

)'%

Figure 4: The geometric construction used to interpolate the value of Φ at the
mid-points of interior zone edges. The zone edges and nodes are shown in red.
The zone centers are shown in green. Most of the mid-points of the zone edges
are shown in black, but the interior one in question is shown in blue. There is a
change in direction possible for the blue line as it crosses the zone edge due to the
irregular geometry. The triangles delimited by the dashed orange lines are used to
bootstrap the value at the edge mid-point shown with the blue dot.

3.3 Using the variational solution for interior nodes

When the values of Φ are known at the mid-points of interior zone edges we
find that the interior nodes of the problem mesh, the values of Φ for which
are as yet undetermined, are surrounded by known values. This is illustrated
in Figure 5 where we have labeled the interior node of the problem mesh
by N. Let us concentrate on the “dual zone” with its perimeter shown in
blue. This dual zone is composed of the four zone corners that touch node N
of the problem mesh. Assuming a linear interpolation along a line segment
connecting two nodes with known values of Φ, we realize that the value of Φ
is now known at all points on the perimeter of the dual zone containing the
node labeled N, providing a Dirichlet boundary condition.

We now further divide each corner comprising the dual zone into 4 trian-
gles using the gray dashed lines. We use the optimized Stone-Adams basis
functions to represent Φ everywhere in each corner, given a trial value for Φ
at the node labeled N, and thereby everywhere in the dual zone. The Stone-
Adams basis functions provide for linear interpolation between the nodes,
agreeing with the boundary condition for the dual zone.

At this point the variational method is used to obtain the value for Φ at
the node labeled N. Labeling the zones by their zone centers, CNE, CNW,
CSE and CSE; the diffusion coefficients for each zone (not shown) are simi-

9

!"

#!"

#$"

#%"
#&"

'$&"

'!&"

'$%"

'!%"

!%"
!&"

!!"

!$"

(!&"
(!%"

($&" ($%"

Figure 5: The template used to find the value of Φ at an interior node of the
problem mesh.

larly denoted DNE, DNW, DSE and DSE. The value of Φ at the node labeled
N is obtained by minimizing the integral of the square of the gradient of Φ
times the diffusion coefficient over the dual zone. The gradient is a constant,
as a function of space, in each triangle, so the integral is a sum over the 16
triangles. The minimum, varying the value of Φ at the node labeled N, is
obtained taking the derivative of the integral with respect to the value of Φ
at the node labeled N and demanding that it be zero, similarly to the 1-D
example we discussed earlier. This tedious calculation is carried out using
the Mathematica code shown in Appendix B. The expressions involved are
too complicated to usefully display here and the C code to calculate Φ at
node N in the template is generated automatically using Mathematica. The
template is applied to establish the value of Φ at every interior node of the
problem mesh.

3.4 Handling boundary conditions in 2-D

We have calculated so far the values of Φ for all interior nodes of the corner
mesh. We now need to find Φ for the nodes on the problem boundaries. The
situation for the extrapolation to a problem boundary is more complicated

10

for 2-D than it was for 1-D. A relatively simple nine zone (three by three)
problem mesh is shown in Figure 6. The nodes of the problem mesh are
indicated with red symbols, with the edges of zones being the straight red
lines that connect them. Zone centers are indicated by the green dots, and
the zones are divided into corners by the lines connecting the zone centers
to the mid-points of the zone edges. These lines are blue where the method
of Section 3.2 was used to establish the value of Φ at the mid-point of a
zone edge, and define the perimeter of the dual zones where the method of
Section 3.3 was used to establish the value of Φ at the enclosed interior node
of the problem mesh, shown as a red dot.

The extrapolation to the exterior nodes on the problem boundary shown
in Figure 6 as red pentagons is straightforward. The zone edge from the
interior node of the problem mesh, shown as a red dot, through the mid-point,
shown as a blue dot, to the node on the problem boundary is a straight line.
An extrapolation along this line, using the previously determined values at
the mid-point and interior node, provides a value for the node on the problem
boundary.

Extrapolation along the path from an interior mid-point of a zone edge,
shown as a blue dot, through a zone center, shown as a green dot, to an
exterior mid-point, shown as a blue box, is not so straightforward because
the path is not a straight line. An example is shown by the path marked MI,
C and ME on the left side of Figure 6. To handle the change in direction
we use the template shown in Figure 7. The mid-point of the exterior edge
is labeled ME, the zone center labeled C, and the mid-point of the interior
zone edge is labeled MI. We also assume that the zone edges with mid-points
labeled MU and MD are interior zone edges, so we know the values of Φ at
points C, MI, MU and MD. For the purpose of clarifying our extrapolation,
we have added the dashed blue lines that produce four triangles which touch
the zone center. The gradient of Φ is known for the two triangles on the
right hand side in Figure 7, assuming a plane that passes through the points.
Two values for Φ for the exterior node ME are produced by demanding the
continuity of the gradient across the line from C to MU, and the continuity of
the gradient across the line from MD to C. We take the average of these two
values to produce the value used for the node ME. This template is used to
produce a value of Φ for all boundary nodes of the corner mesh that are not
problem corners, or adjacent to problem corners, marked by red and green
squares in Figure 6.

The value of Φ at the nodes of the corner mesh adjacent to the problem

11

!"#$#!%#

!&#

!'# !'#

$# !%#!"#

Figure 6: A simple mesh including boundary nodes. The problem mesh is shown
in red. The red lines connecting red symbols are the edges of zones, with the green
dots marking the zone centers. The interior dual zones, surrounding interior nodes
of the problem mesh, are shown in blue. The boundary nodes of the corner mesh
have different symbols and colors, indicating the method used to determine Φ as
described in the text. The application of the full template of Figure 7 is shown on
the left side of the mesh. The application of half of the template is shown at the
lower right.

corners, marked by green squares in Figure 6, is obtained by applying half of
the template shown in Figure 7 because of the unknown value on the other
side of the problem corner. One of several examples is shown at the lower
right of Figure 6. Finally, the value of Φ at the problem corners, marked by
red squares, is obtained by extrapolating along each edge to the corner and
averaging the result.

We would like to point out that one can do better with the extrapolations
to boundary edges than we have implemented, by following the principle of
minimizing curvature (the component of the change in slope perpendicular
to the edge) more rigorously. Instead of averaging two planar extrapolations,
referring to Figure 7, we can vary the value of Φ at point ME to minimize the
length weighted curvature along the line segments from MD to C and C to

12

!"

#$"

#%"#&"

#'"

Figure 7: Template for extrapolation through a zone center to a mid-point on a
problem boundary. ME labels the exterior mid-point, while MI labels the interior
one. The values of Φ at C, MD, MI and MU are known.

MU. Similarly, the values of Φ at the exterior corners of the problem mesh,
shown with red squares in Figure 6, along with the values at the adjacent
mid-points of the exterior zone edges that end at the corner, shown with green
squares, can be solved for simultaneously, again by minimizing curvature on
the appropriate line segments.

As was the case for 1-D, these extrapolations can be limited by the bound-
ary conditions for the problem. If the boundary is a symmetry boundary or is
reflecting, the extrapolation is constrained to have zero slope as it approaches
the boundary. If the boundary condition for the problem has a value for
Φ, representing an incident black body source (not to be confused with a
Dirichlet boundary condition), the extrapolation is limited to the value at
the boundary if an overshoot (or undershoot) produced by the extrapolation,
relative to the boundary condition, would generate heat flow that opposes
that which would occur for a constant in a zone discretization for Φ.

13

4 Generalizing to 3-D

Although we have not worked out the generalization of this interpolation
method to 3-D, we would like to point out that the bootstrap strategy that
we have employed for 2-D, first using a 1-D like method to get the values
of Φ at the mid-points of the interior zone edges, then using a variational
method for the rest, has an analog in 3-D. One uses a 1-D like method to
get the values at the centers of zone faces, then the 2-D variational method
to get values at the mid-points of zone edges, and finally a 3-D variational
method to get the values at the nodes of the problem mesh. This would be a
very tedious, but straightforward, undertaking that is left as an exercise for
the reader.

5 Discussion

We have described the 2-D extension of a previously developed 1-D interpo-
lation between zone centers that has been developed for the gradient source
term of the Difference Formulation of transport. Our interpolation method
is a bootstrap approach where an interpolation similar to the previous 1-D
method is used to find the values at mid-points of interior zone edges, and
then a variational method is used to find the values at interior nodes of the
problem mesh. Values on the problem boundary are established with extrap-
olations that attempt to minimize curvature, subject to constraints imposed
by the problem boundary conditions.

The method takes advantage of an optimized form of the Stone-Adams
piecewise linear basis functions. The optimization provides for zero diver-
gence on the perimeter of a corner while providing a constant gradient in
each of four triangles that a corner is divided into. The constant gradi-
ent provides easy sampling of the gradient source term associated with the
Difference Formulation. The description of the 2-D implementation of the
Difference Formulation and its effectiveness in solving transport problems
involving both optically thin and thick media will be described in a separate
report.

In addition to its use in computing the gradient source term in the Dif-
ference Formulation, we speculate that our interpolation might be used to
produce an optimized zone centered discretization of the diffusion equation.
This might be accomplished by solving for the flux between zones as a func-

14

tion of unknown zone centered values.

Appendix A

Mathematica code used to produce the “1-D like” solution at the mid-point
of a zone edge between two zone centers.

AppendTo[$Echo, "stdout"]

Off[General::spell]

Off[General::spell1]

SetOptions[$Output,PageWidth->174]

(* Find the value interpolated to the interior zone edge from two

zone centers, assuming linear treatment within a zone and conserving

the perpendicular component of the diffusion flux across the zone edge.

A plane is constructed by assuming the same value of z (phi) along

the zone edge is constant, assigning this unknown value to nodes N1

and N2. *)

(* Given three points, (X1,Y1,Z3), (X2,Y2,Z3), (X3,Y3,Z3);

the equation of a plane is AA x + BB y + CC z + DD = 0 . *)

AA[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = Y1(Z2 - Z3) + Y2(Z3 - Z1) + Y3(Z1 - Z2)

BB[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = Z1(X2 - X3) + Z2(X3 - X1) + Z3(X1 - X2)

CC[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = X1(Y2 - Y3) + X2(Y3 - Y1) + X3(Y1 - Y2)

DD[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = -X1(Y2 Z3 - Y3 Z2) -X2(Y3 Z1 - Y1 Z3) -X3(Y1 Z2 - Y2 Z1)

(* Z = Expand[(AA x + BB y + DD)/(-CC)] *)

(* The components of the gradient of Z(x,y). *)

dZdx[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = -AA[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]/CC[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]

dZdy[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = -BB[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]/CC[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]

(* Our triangle to the right of the edge has the corners N1, C1 and N2 going

around clockwise. N1 and N2 are the coordinates of the nodes while C1 is the

coordinate of the zone center. The triangle to the left of the edge is given

by N2, C2 and N1, again going around clockwise. *)

GradC1x = dZdx[N1x,N1y,p,C1x,C1y,C1p,N2x,N2y,p]

GradC1y = dZdy[N1x,N1y,p,C1x,C1y,C1p,N2x,N2y,p]

GradC2x = dZdx[N2x,N2y,p,C2x,C2y,C2p,N1x,N1y,p]

GradC2y = dZdy[N2x,N2y,p,C2x,C2y,C2p,N1x,N1y,p]

(* Construct the normal to the zone edge. We

ignore the normalization because we are ultimately

only interested in the continuity of the

perpendicular component of the gradient. *)

Nx = - (N2y - N1y)

Ny = (N2x - N1x)

(* Finally, the normal component of the flux is preserved. *)

15

right = D1 (GradC1x Nx + GradC1y Ny)

left = D2 (GradC2x Nx + GradC2y Ny)

sol = Solve[right - left == 0, p]

s = FullSimplify[Part[Part[Part[sol,1],1],2]]

(* CForm is used to produce the expression used in the code. *)

CForm[s] >> "bluedots.h"

(* Mathematica does not always simplify fully.

Some manipulation of the variable names solves the problem. *)

numerator = Part[s,2]

numerator = Expand[numerator]

numerator = Collect[numerator, {D1 C1p,D2 C2p}]

numerator = Simplify[numerator]

numerator = ReplaceAll[numerator,{N2y -> aN2y}]

numerator = Simplify[numerator]

numerator = ReplaceAll[numerator,{aN2y -> N2y}]

denominator = 1/Part[s,1]

denominator = Expand[denominator]

denominator = Collect[denominator, {D1,D2}]

denominator = Simplify[denominator]

denominator = ReplaceAll[denominator,{N1x -> aN1x}]

denominator = Simplify[denominator]

denominator = ReplaceAll[denominator,{aN1x -> N1x}]

(* The expression for phi appearing in the paper is: *)

numerator / denominator

Exit

Appendix B

Mathematica code to produce the variational solution for the node of the
problem mesh in the center of a dual zone. The resulting expression for the
derivative is separated into 16 terms linear in Φ and 16 constant terms. The
C code for the expressions is included in the Difference Formulation transport
package to add up the terms linear in Φ, and the constant ones, separately,
and then perform the divide to produce the value of Φ for the node.

AppendTo[$Echo, "stdout"]

Off[General::spell]

Off[General::spell1]

SetOptions[$Output,PageWidth->174]

(* Interpolate to the node between four zone centers,

given values at the zone centers and the midpoints of

the zone edges. Each corner of a zone (a sub-quad defined

by zone centers, nodes, and midpoints of zone edges) is

16

treated with a piecewise linear basis function using four

triangles and a center that is the average of the locations

of its corners. *)

(* Signed Area of a triangle given by three points in the (x,y) plane.

The area is positive if the ordering of the points is counter clockwise.

The area of a triangle is half the cross product that computes the

area of the corresponding parallelogram. *)

AREATRI[x1_,y1_,x2_,y2_,x3_,y3_] = ((x2-x1)(y3-y1)-(y2-y1)(x3-x1))/2

(* Given three points, (X1,Y1,Z3), (X2,Y2,Z3), (X3,Y3,Z3);

the equation of a plane is AA x + BB y + CC z + DD = 0 . *)

AA[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = Y1(Z2 - Z3) + Y2(Z3 - Z1) + Y3(Z1 - Z2)

BB[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = Z1(X2 - X3) + Z2(X3 - X1) + Z3(X1 - X2)

CC[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = X1(Y2 - Y3) + X2(Y3 - Y1) + X3(Y1 - Y2)

DD[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = -X1(Y2 Z3 - Y3 Z2) -X2(Y3 Z1 - Y1 Z3) -X3(Y1 Z2 - Y2 Z1)

(* Z = Expand[(AA x + BB y + DD)/(-CC)]

The components of the gradient of Z(x,y). *)

dZdx[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = -AA[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]/CC[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]

dZdy[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = -BB[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]/CC[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]

(* Integral of the square of the gradient over the triangle. *)

INTGRADSQTRI[X1_,Y1_,Z1_,X2_,Y2_,Z2_,X3_,Y3_,Z3_] = AREATRI[X1,Y1,X2,Y2,X3,Y3]\

* (dZdx[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]^2 + dZdy[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]^2)

term = FullSimplify[ExpandAll[INTGRADSQTRI[X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3]]]

(* We set the location of the center of each corner as the average of the

locations of the nodes. The value of phi at the center of each corner is

given by the sum of the appropriate value of alpha times the value at the

node of the corner. The alpha values are computed in the program using

the results of the paper on optimized piecewise linear basis functions. *)

ASWx = (CSWx+MSx+Nx+MWx)/4

ASWy = (CSWy+MSy+Ny+MWy)/4

ASWz = ASW1 CSWz + ASW2 MSz + ASW3 Nz + ASW4 MWz

ASEx = (MSx+CSEx+MEx+Nx)/4

ASEy = (MSy+CSEy+MEy+Ny)/4

ASEz = ASE1 MSz + ASE2 CSEz + ASE3 MEz + ASE4 Nz

ANEx = (Nx+MEx+CNEx+MNx)/4

ANEy = (Ny+MEy+CNEy+MNy)/4

ANEz = ANE1 Nz + ANE2 MEz + ANE3 CNEz + ANE4 MNz

ANWx = (MWx+Nx+MNx+CNWx)/4

ANWy = (MWy+Ny+MNy+CNWy)/4

ANWz = ANW1 MWz + ANW2 Nz + ANW3 MNz + ANW4 CNWz

Term1 = FullSimplify[ExpandAll[DSW INTGRADSQTRI[CSWx,CSWy,CSWz,MSx,MSy,MSz,ASWx,ASWy,ASWz]]]

dTerm1 = FullSimplify[D[Term1,Nz]]

dTerm1c = FullSimplify[Coefficient[dTerm1,Nz,0]]

dTerm1Nz = FullSimplify[Coefficient[dTerm1,Nz,1]]

CForm[ReplaceAll[dTerm1c,x_^2->pow2[x]]] >> dTerms/dTerm1c

CForm[ReplaceAll[dTerm1Nz,x_^2->pow2[x]]] >> dTerms/dTerm1Nz

If[FullSimplify[Expand[dTerm1 - dTerm1c - Nz * dTerm1Nz]] == 0,1,Exit[]]

17

Term2 = FullSimplify[ExpandAll[DSW INTGRADSQTRI[MSx,MSy,MSz,Nx,Ny,Nz,ASWx,ASWy,ASWz]]]

dTerm2 = FullSimplify[D[Term2,Nz]]

dTerm2c = FullSimplify[Coefficient[dTerm2,Nz,0]]

dTerm2Nz = FullSimplify[Coefficient[dTerm2,Nz,1]]

CForm[ReplaceAll[dTerm2c,x_^2->pow2[x]]] >> dTerms/dTerm2c

CForm[ReplaceAll[dTerm2Nz,x_^2->pow2[x]]] >> dTerms/dTerm2Nz

If[FullSimplify[Expand[dTerm2 - dTerm2c - Nz * dTerm2Nz]] == 0,1,Exit[]]

Term3 = FullSimplify[ExpandAll[DSW INTGRADSQTRI[Nx,Ny,Nz,MWx,MWy,MWz,ASWx,ASWy,ASWz]]]

dTerm3 = FullSimplify[D[Term3,Nz]]

dTerm3c = FullSimplify[Coefficient[dTerm3,Nz,0]]

dTerm3Nz = FullSimplify[Coefficient[dTerm3,Nz,1]]

CForm[ReplaceAll[dTerm3c,x_^2->pow2[x]]] >> dTerms/dTerm3c

CForm[ReplaceAll[dTerm3Nz,x_^2->pow2[x]]] >> dTerms/dTerm3Nz

If[FullSimplify[Expand[dTerm3 - dTerm3c - Nz * dTerm3Nz]] == 0,1,Exit[]]

Term4 = FullSimplify[ExpandAll[DSW INTGRADSQTRI[MWx,MWy,MWz,CSWx,CSWy,CSWz,ASWx,ASWy,ASWz]]]

dTerm4 = FullSimplify[D[Term4,Nz]]

dTerm4c = FullSimplify[Coefficient[dTerm4,Nz,0]]

dTerm4Nz = FullSimplify[Coefficient[dTerm4,Nz,1]]

CForm[ReplaceAll[dTerm4c,x_^2->pow2[x]]] >> dTerms/dTerm4c

CForm[ReplaceAll[dTerm4Nz,x_^2->pow2[x]]] >> dTerms/dTerm4Nz

If[FullSimplify[Expand[dTerm4 - dTerm4c - Nz * dTerm4Nz]] == 0,1,Exit[]]

Term5 = FullSimplify[ExpandAll[DSE INTGRADSQTRI[MSx,MSy,MSz,CSEx,CSEy,CSEz,ASEx,ASEy,ASEz]]]

dTerm5 = FullSimplify[D[Term5,Nz]]

dTerm5c = FullSimplify[Coefficient[dTerm5,Nz,0]]

dTerm5Nz = FullSimplify[Coefficient[dTerm5,Nz,1]]

CForm[ReplaceAll[dTerm5c,x_^2->pow2[x]]] >> dTerms/dTerm5c

CForm[ReplaceAll[dTerm5Nz,x_^2->pow2[x]]] >> dTerms/dTerm5Nz

If[FullSimplify[Expand[dTerm5 - dTerm5c - Nz * dTerm5Nz]] == 0,1,Exit[]]

Term6 = FullSimplify[ExpandAll[DSE INTGRADSQTRI[CSEx,CSEy,CSEz,MEx,MEy,MEz,ASEx,ASEy,ASEz]]]

dTerm6 = FullSimplify[D[Term6,Nz]]

dTerm6c = FullSimplify[Coefficient[dTerm6,Nz,0]]

dTerm6Nz = FullSimplify[Coefficient[dTerm6,Nz,1]]

CForm[ReplaceAll[dTerm6c,x_^2->pow2[x]]] >> dTerms/dTerm6c

CForm[ReplaceAll[dTerm6Nz,x_^2->pow2[x]]] >> dTerms/dTerm6Nz

If[FullSimplify[Expand[dTerm6 - dTerm6c - Nz * dTerm6Nz]] == 0,1,Exit[]]

Term7 = FullSimplify[ExpandAll[DSE INTGRADSQTRI[MEx,MEy,MEz,Nx,Ny,Nz,ASEx,ASEy,ASEz]]]

dTerm7 = FullSimplify[D[Term7,Nz]]

dTerm7c = FullSimplify[Coefficient[dTerm7,Nz,0]]

dTerm7Nz = FullSimplify[Coefficient[dTerm7,Nz,1]]

CForm[ReplaceAll[dTerm7c,x_^2->pow2[x]]] >> dTerms/dTerm7c

CForm[ReplaceAll[dTerm7Nz,x_^2->pow2[x]]] >> dTerms/dTerm7Nz

If[FullSimplify[Expand[dTerm7 - dTerm7c - Nz * dTerm7Nz]] == 0,1,Exit[]]

Term8 = FullSimplify[ExpandAll[DSE INTGRADSQTRI[Nx,Ny,Nz,MSx,MSy,MSz,ASEx,ASEy,ASEz]]]

dTerm8 = FullSimplify[D[Term8,Nz]]

dTerm8c = FullSimplify[Coefficient[dTerm8,Nz,0]]

dTerm8Nz = FullSimplify[Coefficient[dTerm8,Nz,1]]

CForm[ReplaceAll[dTerm8c,x_^2->pow2[x]]] >> dTerms/dTerm8c

CForm[ReplaceAll[dTerm8Nz,x_^2->pow2[x]]] >> dTerms/dTerm8Nz

If[FullSimplify[Expand[dTerm8 - dTerm8c - Nz * dTerm8Nz]] == 0,1,Exit[]]

18

Term9 = FullSimplify[ExpandAll[DNE INTGRADSQTRI[Nx,Ny,Nz,MEx,MEy,MEz,ANEx,ANEy,ANEz]]]

dTerm9 = FullSimplify[D[Term9,Nz]]

dTerm9c = FullSimplify[Coefficient[dTerm9,Nz,0]]

dTerm9Nz = FullSimplify[Coefficient[dTerm9,Nz,1]]

CForm[ReplaceAll[dTerm9c,x_^2->pow2[x]]] >> dTerms/dTerm9c

CForm[ReplaceAll[dTerm9Nz,x_^2->pow2[x]]] >> dTerms/dTerm9Nz

If[FullSimplify[Expand[dTerm9 - dTerm9c - Nz * dTerm9Nz]] == 0,1,Exit[]]

Term10 = FullSimplify[ExpandAll[DNE INTGRADSQTRI[MEx,MEy,MEz,CNEx,CNEy,CNEz,ANEx,ANEy,ANEz]]]

dTerm10 = FullSimplify[D[Term10,Nz]]

dTerm10c = FullSimplify[Coefficient[dTerm10,Nz,0]]

dTerm10Nz = FullSimplify[Coefficient[dTerm10,Nz,1]]

CForm[ReplaceAll[dTerm10c,x_^2->pow2[x]]] >> dTerms/dTerm10c

CForm[ReplaceAll[dTerm10Nz,x_^2->pow2[x]]] >> dTerms/dTerm10Nz

If[FullSimplify[Expand[dTerm10 - dTerm10c - Nz * dTerm10Nz]] == 0,1,Exit[]]

Term11 = FullSimplify[ExpandAll[DNE INTGRADSQTRI[CNEx,CNEy,CNEz,MNx,MNy,MNz,ANEx,ANEy,ANEz]]]

dTerm11 = FullSimplify[D[Term11,Nz]]

dTerm11c = FullSimplify[Coefficient[dTerm11,Nz,0]]

dTerm11Nz = FullSimplify[Coefficient[dTerm11,Nz,1]]

CForm[ReplaceAll[dTerm11c,x_^2->pow2[x]]] >> dTerms/dTerm11c

CForm[ReplaceAll[dTerm11Nz,x_^2->pow2[x]]] >> dTerms/dTerm11Nz

If[FullSimplify[Expand[dTerm11 - dTerm11c - Nz * dTerm11Nz]] == 0,1,Exit[]]

Term12 = FullSimplify[ExpandAll[DNE INTGRADSQTRI[MNx,MNy,MNz,Nx,Ny,Nz,ANEx,ANEy,ANEz]]]

dTerm12 = FullSimplify[D[Term12,Nz]]

dTerm12c = FullSimplify[Coefficient[dTerm12,Nz,0]]

dTerm12Nz = FullSimplify[Coefficient[dTerm12,Nz,1]]

CForm[ReplaceAll[dTerm12c,x_^2->pow2[x]]] >> dTerms/dTerm12c

CForm[ReplaceAll[dTerm12Nz,x_^2->pow2[x]]] >> dTerms/dTerm12Nz

If[FullSimplify[Expand[dTerm12 - dTerm12c - Nz * dTerm12Nz]] == 0,1,Exit[]]

Term13 = FullSimplify[ExpandAll[DNW INTGRADSQTRI[MWx,MWy,MWz,Nx,Ny,Nz,ANWx,ANWy,ANWz]]]

dTerm13 = FullSimplify[D[Term13,Nz]]

dTerm13c = FullSimplify[Coefficient[dTerm13,Nz,0]]

dTerm13Nz = FullSimplify[Coefficient[dTerm13,Nz,1]]

CForm[ReplaceAll[dTerm13c,x_^2->pow2[x]]] >> dTerms/dTerm13c

CForm[ReplaceAll[dTerm13Nz,x_^2->pow2[x]]] >> dTerms/dTerm13Nz

If[FullSimplify[Expand[dTerm13 - dTerm13c - Nz * dTerm13Nz]] == 0,1,Exit[]]

Term14 = FullSimplify[ExpandAll[DNW INTGRADSQTRI[Nx,Ny,Nz,MNx,MNy,MNz,ANWx,ANWy,ANWz]]]

dTerm14 = FullSimplify[D[Term14,Nz]]

dTerm14c = FullSimplify[Coefficient[dTerm14,Nz,0]]

dTerm14Nz = FullSimplify[Coefficient[dTerm14,Nz,1]]

CForm[ReplaceAll[dTerm14c,x_^2->pow2[x]]] >> dTerms/dTerm14c

CForm[ReplaceAll[dTerm14Nz,x_^2->pow2[x]]] >> dTerms/dTerm14Nz

If[FullSimplify[Expand[dTerm14 - dTerm14c - Nz * dTerm14Nz]] == 0,1,Exit[]]

Term15 = FullSimplify[ExpandAll[DNW INTGRADSQTRI[MNx,MNy,MNz,CNWx,CNWy,CNWz,ANWx,ANWy,ANWz]]]

dTerm15 = FullSimplify[D[Term15,Nz]]

dTerm15c = FullSimplify[Coefficient[dTerm15,Nz,0]]

dTerm15Nz = FullSimplify[Coefficient[dTerm15,Nz,1]]

CForm[ReplaceAll[dTerm15c,x_^2->pow2[x]]] >> dTerms/dTerm15c

CForm[ReplaceAll[dTerm15Nz,x_^2->pow2[x]]] >> dTerms/dTerm15Nz

If[FullSimplify[Expand[dTerm15 - dTerm15c - Nz * dTerm15Nz]] == 0,1,Exit[]]

19

Term16 = FullSimplify[ExpandAll[DNW INTGRADSQTRI[CNWx,CNWy,CNWz,MWx,MWy,MWz,ANWx,ANWy,ANWz]]]

dTerm16 = FullSimplify[D[Term16,Nz]]

dTerm16c = FullSimplify[Coefficient[dTerm16,Nz,0]]

dTerm16Nz = FullSimplify[Coefficient[dTerm16,Nz,1]]

CForm[ReplaceAll[dTerm16c,x_^2->pow2[x]]] >> dTerms/dTerm16c

CForm[ReplaceAll[dTerm16Nz,x_^2->pow2[x]]] >> dTerms/dTerm16Nz

If[FullSimplify[Expand[dTerm16 - dTerm16c - Nz * dTerm16Nz]] == 0,1,Exit[]]

References

[1] T.C. Luu, E.D. Brooks III, and A. Szoke, “Generalized reference fields
and source interpolation for the difference formulation of radiation trans-
port,” J. Comp. Phys. 229 (2010) 1626-1642.

[2] B. A. Finlayson, “Variational Principles for Heat Transfer,” in: Numer-
ical Properties and Methodologies in Heat Transfer, ed. T. M. Shih,
Hemisphere Publishing Corporation, New York, ISBN 0-89116-309-3,
1983, pp 17-31.

[3] D. E. Burton, “Conservation of Energy, Momentum, and Angular Mo-
mentum in Lagrangian Staggered-Grid Hydrodynamics,” Lawrence Liv-
ermore National Laboratory, UCRL-JC-105926 (1991).

[4] M. L. Adams, “A new transport discretization scheme for arbitrary spa-
tial meshes in XY geometry,” Lawrence Livermore National Laboratory,
UCRL-JC-105974 (1991).

[5] E.D. Brooks III and A. Szoke, “Optimal Piecewise Linear Basis Func-
tions in Two Dimensions,” Lawrence Livermore National Laboratory,
LLNL-TR-410412, 2009, https://library-ext.llnl.gov.

[6] H. G. Stone and M. L. Adams, “A Piecewise Linear Finite Element
Basis with Application to Particle Transport,” Transactions of American
Nuclear Society Winter Meeting, Washington, D.C., November 17-21,
2002, Vol. 87, pp. 130-133 (2002).

[7] S. Wolfram, “The Mathematica Book,” 5th ed., Wolfram Media, 2003.

20

