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Abstract 

 
The validation of the probative value of microbial forensic techniques is a critical aspect 
of research and development that requires careful planning and a sound conceptual 
framework.  This paper outlines a particular approach to the validation of certain types of 
forensic methods that naturally generates statistical measures of the relevance and weight 
of the scientific evidence derived from them.  The suggested approach is based on the 
likelihood ratio interpretation of Federal Rules of Evidence 401 and 402 and allows 
measurement evidence to be to be presented in a format that resembles the forensic “gold 
standard” - human DNA typing.  Examples of specific genetic and chemical and physical 
analysis methods are used to illustrate how this general strategy can be applied.  This 
approach also provides a natural interpretation of the notion of “preliminary validation” 
that has been proposed in the literature. 
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1. Introduction: Technical and Interpretation Error 
The term “microbial forensics” encompasses a set of methods that can be used to help 
investigators identify the provenance of a microbial agent that may have been used in a 
terror or criminal incident.  Microbial forensic methods include genetic characterization 
of the microbe, chemical and physical analysis of the agent, and other techniques.  Recent 
publications have outlined many of the basic tenets and requirements of this field, and 
several government agencies support R&D programs aimed at advancing this nascent 
area of forensic science1-6.  This capability is recognized as a pillar of the U.S. counter-
terrorism and counter proliferation posture7.  However, it is important to recognize that 
Microbial Forensics is being born in an era when forensic science in general is facing 
unprecedented skepticism and new, sometimes daunting, challenges in the courtroom. 
Therefore, it is critical to build a scientifically sound and transparent body of methods 
and knowledge that can withstand scrutiny at both the national and international levels.  
 
In the last two decades, the reliability and relevance of expert testimony in forensic 
science has come under increasing scrutiny8-10.  A recent paper has noted that forensic 
science testing errors and misleading testimony by expert witnesses are significant factors 
associated with wrongful conviction in DNA exoneration cases11.  The 2004 NRC study 
of compositional analysis of bullet lead as a forensic technique is an example of a serious 
challenge to a previously accepted area of forensic science12-15.  Similarly, the scientific 
basis for inferences about the individualizing power of hair, fibers, bitemarks, ballistics, 
and even certain fingerprint evidence has been questioned8-10,16.  A substantial reason for 
the more skeptical attitude towards classical forensic science lies in the widespread legal 
acceptance and utility of human DNA forensics, which has lead to re-examination of a 
number of past criminal cases and the subsequent recognition that inferences based on the 
original non-DNA scientific evidence presented in those cases must have been flawed.  In 
addition, Daubert and related precedents17-19, as well as amendments to the Federal Rules 
of Evidence20 have lead to more critical examination of the grounds for admissibility.   
 
Although the effects of these changes have not yet been felt fully in criminal cases due to 
a tendency for judicial conservatism in rejecting government proffered scientific 
evidence, we can expect that attorneys and judges will become increasingly more 
sophisticated in their understanding of the grounds for challenging the admissibility and 
weight of scientific testimony20.  Under U.S. code, the prosecution of biological terrorism 
falls squarely in the Federal domain21, making the “general acceptance” (Frye) test for 
admissibility that is still used in some state courts of little relevance.  A bio-terrorism trial 
is likely to have a high public profile, so scientific evidence will get full scrutiny by 
defense lawyers in both admissibility and trial phases of the case, making rigorous 
validation procedures that have broad acceptance within the scientific community a de-
facto requirement.  It will be increasingly difficult for an expert witness to proffer 
testimony as to the significance a particular piece of scientific evidence simply based on 
“experience.”  As was learned in the 1998 al-Shifa incident, the scientific evidence used 
to justify a national security policy decision22 may (eventually) have to satisfy similar 
scrutiny in an international forum23.  Thus, it is important that the development of a 
national capability in microbial forensics be underpinned with a sound scientific 
foundation from its start, to prevent this nascent field from being stillborn. 
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Regardless of these considerations, it is clearly important that scientific evidence 
proffered in a forensic setting be presented accurately with regard to weight and 
interpretation.  The term “validation” is often used to refer to the process of accumulating 
data that speaks to the precision and accuracy of a method and the interpretation of its 
results.  A number of forensic science areas have codified guidance for validation, and it 
is often cited as an essential component of the microbial forensics discipline itself4-6.  
However, it is important to understand, but not often appreciated, that there are two 
essentially different categories of error that must be dealt with in any validation process.  
In this paper, we will refer to these as technical and interpretation error. 
 
Technical errors arise when a technique is not performed properly; the equipment is 
faulty, mis-calibrated, or not properly cleaned; or the reagents are impure or degraded, or 
there were opportunities for the original sample to become contaminated.  In practice, the 
probability of this type of error is reduced by standard laboratory quality assurance and 
control measures such as rigorous and documented adherence to detailed SOPs, the use of 
appropriate blanks and spikes, inter-laboratory comparisons, and proficiency testing. 
Laboratory accreditation under ISO or ASCLD standards is another important element of 
technical validation regardless of the method or technique.   
 
However, technical error is often not the critical issue in courtroom challenges to 
scientific evidence. For example, as Imwinkelried24 has pointed out: 
 

“Even if an instrument yields exquisitely precise measurements, 
the witness’s inferences from the measurements may be badly  
flawed.   As Justice Blackmun stressed in Daubert, it is the expert’s 
ultimate inference which ‘must be derived by the scientific method … 
[and] supported by appropriate validation…’”  
    -   

 
Similarly, in its analysis of elemental pattern matching of bullet lead12 the National 
Research Council concluded: 
 

“The committee found the analytical technique used is suitable and  
reliable for use in court, as long as FBI examiners apply it uniformly 
as recommended.  […]  However, for legal proceedings, the probative 
value of these findings and how the probative value is conveyed to 
a jury remains a critical issue.” 

 
Understanding and reducing errors in the interpretation of scientific evidence proffered in 
forensic settings often represents the most challenging aspect of method validation, and 
clearly demands special attention in light of the potential for intense scrutiny cited above.  
Surprisingly, textbooks and other foundational literature seldom recognize interpretive 
validation as a separable and formalized part of forensic science in general, and it has not 
yet been discussed widely in the context of microbial forensics.  Therefore it is the 
intention of this paper to describe an approach to interpretive validation that can be 
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applied to a wide variety of methods relevant to the microbial forensic discipline. An 
earlier study applied this framework narrowly to the problem of sample matching25. 
 
The concept of interpretive validation is closely connected to the most basic grounds for 
admissibility of evidence in court.  Thus, we begin the discussion by reviewing those 
aspects of the federal rules of evidence that form this basis.  We explicitly adopt the 
interpretation of the relevance criteria in terms of a probability concept, namely the 
likelihood ratio26.  Subsequently we outline a general approach for implementing a 
validation process that leads to measures from which a likelihood ratio can be derived in 
a transparent way.  Following this, the approach is applied to three microbial forensic 
analysis examples: using genetic sequence data to support infection source determination, 
analysis of residual signatures of production, and identification of the origin of microbial 
growth media based on isotopic signatures.   In conclusion we discuss the idea of 
“validation-on-the-fly”, which has been raised previously in the context of microbial 
forensic method development5. 
 
2.  Relevance and admissibility of scientific evidence 
The admissibility of scientific evidence depends on reliability and relevance.  For the 
purposes of this paper, it is particularly important to note that the Federal Rules of 
Evidence27 define relevance in a manner that explicitly invokes a probability concept: 
 

Rule 401:  “Relevant evidence” means evidence having any 
tendency to make the existence of a fact that is of consequence 
to the determination of the action more probable or less probable 
than it would be without the evidence. 

 
Rule 402:  Evidence that is not relevant is not admissible. 

 
In addition to this definition, several other rules speak to the reliability of scientific 
evidence and implicitly raise the issue of validation: 
 

Rule 702:  [Expert testimony is admissible if ]  
(1)The testimony is based on sufficient facts or data, 
(2)The testimony is a product of reliable principles or methods, 
(3)The witness has applied the principles and methods 
 reliably to the facts of the case. 

 
Rule 901:  [There must be foundational evidence] showing that [a 
 scientific] process or system produces an accurate result. 

 
NRC studies of forensic science issues have consistently advocated a likelihood ratio 
interpretation of relevance12,28.  In this explicitly probabilistic framework, the amount of 
support that a piece of scientific evidence lends to a hypothesis in question is quantifiable 
in terms of the probabilities that the evidence would be observed if the hypothesis were 
true or false29,30.  Let H be the hypothesis in question, and E be the evidence.  If we 
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denote the odds that the hypothesis is true in the absence of the evidence by O0(H), then 
the odds that H is true given the evidence is: 
 

    (1)  
 
where P(E|H) is the probability that the evidence would obtain if H were true, and 
P(E|H) is the probability that E would obtain if H were false.   The interpretation of 
equation (1) is that the evidence E strengthens or weakens the odds of H being true via 
the likelihood ratio LR, defined as: 
 

    (2)  
 
The likelihood ratio LR is often referred to as the weight of the evidence, or the probative 
value of the evidence.  The important connection between the rules of evidence and the 
likelihood concept is that when LR(E) > 1 or LR(E) < 1, then E is relevant, whereas 
evidence for which LR(E) ≈ 1 is not relevant or is only weakly relevant. Excellent 
discussions of the use of this framework in forensics are given in several textbooks26,31,32.  
 
As a matter of terminology, when the likelihood ratio is larger than 1, the evidence is said 
to support the hypothesis.  As a matter of convention, when LR(E) > 10 the support is 
strong, while LR(E) values of order 1 are said to weakly support the hypothesis.  When 
LR(E) < 1 the evidence does not support the hypothesis in question.  It is very important 
to note that LR(E) > 1 does not mean that the evidence makes the hypothesis in question 
more likely than not.  This only occurs if LR(E)•O0(H) > 1.  For many hypotheses it is 
difficult to estimate the prior odds O0(H), and it is not possible to make this statement on 
the basis of the scientific evidence being presented.   
 
In the next section we will suggest experimental designs for validating the interpretation 
of microbial forensic evidence that are explicitly constructed to permit the estimation of a 
likelihood ratio.  A key element of this approach involves defining the relevant 
”population” that is associated with the type of sample being analyzed, and determining 
how to acquire a “representative” sampling of this population.  This approach allows one 
to present evidence based on measurements in a statistical format that resembles the 
forensic “gold standard” - human DNA comparisons (although not always with the 
extremely large likelihood ratios encountered in human DNA forensics!)  Thus, a 
scientist may testify that his measurement of a certain value of some metric for a sample 
provides a particular level of support to the hypothesis in question, rather than stating that 
his values are “consistent with” the hypothesis, or worse, that his results make it “likely 
that the hypothesis is true.”  While there is debate about the best format in which to 
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present the statistical weight of DNA evidence in the courtroom33,34, the general 
acceptance of likelihood ratio arguments in this instance strongly argue for adoption of 
analogous methods for other types of evidence. In many respects, the most important 
aspect of this approach is the change it represents in the language used to present forensic 
science evidence.   
 
We note that this point of view has not yet been widely implemented for other types of 
forensic analytical methods applied to trace evidence and, in fact, some authors are 
explicitly skeptical about the general practicality of any attempt to attach explicit 
statistical weight to the results of such methods35,36.  For example, Houck35 has 
(correctly) stated, “Any statistical interpretation of a trace evidence finding would have to 
be based on a thorough knowledge of the population under study.”   However, he goes on 
to argue that for a particular branch of trace evidence analysis – fiber analysis – the 
population is so complex and dynamic that it is not practically possible to determine 
probabilities.  While it may be the case that it is difficult or costly to sample large and 
complex populations, nonetheless there is no other way to achieve a measure of the 
weight that can be assigned to this kind of evidence.   Moreover, there is movement 
towards this approach to interpretive validation in several other fields where scientific 
findings are used to support critical decisions, most notably in the validation of medical 
diagnostics37-40.  In this paper we freely take advantage of results and ideas that have been 
developed in the medical diagnostics arena.   
 
The reader should note that the treatment below makes extensive use of the statistical 
construct known as the “receiver-operator characteristic”, or ROC curve, and some 
elementary Bayesian statistical formulae.  No tutorial is provided in this report, but those 
not acquainted with the basic principles of ROC curve construction and interpretation 
may wish to consult reference 40.   
 
3.  A general scheme for characterizing and validating microbial forensic methods 
Many of the analytical methods that have been used, or are under development, for 
microbial forensics fall into one of three major classes.   The first class of methods is 
concerned with comparing two samples (either a questioned sample and a reference 
sample, or two questioned samples) to establish that they are related in some way.   For 
instance, the genetic sequences of two viral isolates may be compared to decide if they 
could be derived from a common source or if one could have been transmitted from one 
person to another.  Another example is the comparison of elemental profiles or isotopic 
fingerprints to establish that two agent samples originate from the same batch of material, 
or were made by the same process.  In a previous paper we outlined a framework for 
characterizing and validating sample matching using elemental composition data25.  
 
A second large class of analytical procedures aims to establish that a certain material (e.g. 
agar, detergent, or a solvent) was used in the manufacture of the agent, or that a certain 
process condition was used in the manufacture of the agent (e.g. growth on a solid 
medium, or lyophilization.)   
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The third class of techniques is concerned with parameter estimation.  Examples of this 
might be methods to establish that the agent was made within a certain timeframe relative 
to the time it was released, or to establish that a sample was washed a certain number of 
times during processing.   
 
Hypothesis testing 
For the first two classes, the purpose of the assay or analysis is to find support for a 
particular hypothesis, such as “the HIV virus that infected person A came directly from 
source B”, “these two samples originated from the same batch of agent” or “this sample 
was made by growth on agar plates”.  Each hypothesis specific to a questioned sample is 
an example of a general relationship that may exist between two samples or between a 
sample and the set of possible production methods.  For instance, pairs of viral isolates 
that are related by direct transmission from one person to another, or pairs of samples 
drawn from the same batch of material, or samples that were grown on agar.  We will 
refer to the hypothesis describing this general relationship as H, and its opposite (isolates 
that are not related by direct transmission, were not drawn from the same batch or were 
not grown on agar) as H.  A general paradigm for evaluating and validating an assay 
that is formulated as a hypothesis test has five steps: 
 
Define the sample “population”, This is the set of all samples relevant to the hypothesis, 
e.g. “all HIV viral isolates in the U.S.” , or “samples made by all the growth and 
preparation methods that could be used to generate the bioagent in question and all of the 
potential sources for starting materials and additives”.  Clearly the population relevant to 
testing a hypothesis H must contain both H and H samples.  Note that the population can 
be real (HIV isolates) or virtual (production methods.) 
 
Define the signature,  i.e. the set of molecular, chemical, or physical characteristics that 
provide the basis for decision (H or H). 
 
Define an objective metric for decision,  i.e. a scalar quantity defined in terms of the 
signature that is used to decide H or H.  The objectivity of the metric is not strictly 
necessary, but if subjective criteria for decision are used, then the validation procedure 
strictly applies only to the operator making the subjective decision, not the method in 
general.  
 
Characterize the population,  e.g. collect the viral genetic sequence information, or the 
chemical or physical signature data on a set of bioagent samples generated by a 
representative sampling of the population.  Sampling must include both H and H 
exemplars. In the case of a virtual population like the set of all production methods, the 
act of drawing representative samples is actually choosing recipes and making samples 
according to those recipes. 
 
Evaluate the receiver - operating characteristic (ROC)  This involves determining the 
distributions of the values of the scalar metric for the two subpopulations corresponding 
to H and H, and plotting the parametric relationship between the true and false positive 
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rates determined by the  value of the scalar metric. The slope of the ROC curve at any 
point is the likelihood ratio for H at the corresponding value of the metric. 
 
In general, the definition of the relevant “population”, and the requirement of sampling 
from that population in a “representative” or unbiased way is a critical part of the 
experimental design.  Some specific examples of the considerations that apply to specific 
types of analyses will be provided in the next section.  The ROC curve is a standard 
method for displaying the statistical predictive power of any hypothesis testing method 
that depends on the magnitude of a measured quantity, and is described in many books 
and publications37-47.  It can be used in a transparent way to generate the likelihood ratio 
that associates any particular value of the metric observed in a questioned sample with 
the probability that H is true.  The application of ROC curves in other areas of forensic 
science has been discussed in a number of papers47-61

, and the reader is encouraged to 
review this literature if unfamiliar with the method.   
 
In the context of this scheme “validation” becomes an iterative process where the 
relevant population can be independently re-sampled and tested, and the ROC from this 
experiment is compared to the previous one.  If the results are significantly different, then 
at least one of the samplings was not representative of the true population, and hence that 
at least one of the curves is not a valid way to determine the weight that the measurement 
lends to the truth of H.  The independence of the re-sampling and measurement process 
can be assured in various ways, including adherence to randomized selection protocols, 
use of multiple independent laboratories, blind testing, etc. The ROC formulation allows 
the data sets from both experiments to be combined to form a new ROC, and the process 
can be repeated until additional re-sampling does not generate significantly different 
results.   
 
Parameter estimation (calibration) 
The evaluation and validation of a parameter estimation procedure involves a slightly 
more complicated, but similar algorithm.  In this case we are trying to collect a set of data 
that will allow us to determine the likelihood that a certain parameter of a questioned 
sample lies within a certain range, based on a measurement (or measurements) of some 
other property.  The steps in the validation procedure are: 
 
Define the signature,  i.e. the  set of chemical, molecular or physical characteristics that 
provide the basis for estimating the parameter range.  
 
Define an objective metric for estimating the parameter,  i.e. a scalar quantity (defined by 
the signature) that is correlated with the value of the parameter to be estimated.  
 
Define the sample “population”, i.e. some complete, well-defined set of samples, or of 
possible sample origins and histories that might affect the “calibration curve” that relates 
the metric value to the value of the parameter in question.  (As in the case of hypothesis 
testing, the population could be real or virtual.)  The value of the parameter of each 
member of the population used for validation must be known.  
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Characterize the population,  i.e. choose bioagent samples in an unbiased way from the 
complete population of interest (each of which has a known value of the parameter) and 
determine the value of the metric for each one.    
 
Evaluate the calibration curve,  i.e. construct the scatter plot that shows the dependence 
of the metric on the value of the parameter.   
 
Normally, an analyst would fit the calibration curve to some appropriate function, which 
would then be used to map values of the metric determined for a questioned sample onto 
predicted values of the parameter for that sample.  The analyst’s testimony might then 
consist of an estimate of the parameter and some measurement of its uncertainty.  While 
this approach is reasonable in many circumstances, the connection between the 
uncertainty of the parameter and how strongly the measurement “evidence” supports the 
hypothesis that the parameter lies in that range (i.e. within the stated uncertainty) is not 
transparent.  Therefore, we suggest a slightly different approach to parameter estimation, 
whereby the calibration curve can be used to directly generate likelihood ratios associated 
with the hypothesis that a questioned sample has a parameter (e.g. age, number of 
washings, etc.) that falls into a certain range, given the measured value of the metric.  
This method of constructing likelihood ratios from calibration data is outlined in 
Appendix 1.   
 
As in the case of the ROC curve, validation of a calibration curve consists of 
independently re-sampling the “population” and comparing that new calibration curve 
with the earlier one.  Again, the two calibration sets can be combined to form a 
calibration curve that is more representative of the complete population than either 
separate curve, and the process may be iterated to generate a more and more accurate 
representation of the total population.   
 
Some general considerations 
Understanding the relevant “population”, choosing a sampling strategy, and determining 
an appropriate size for the sample set, are key questions that arise in executing the 
processes outlined above.  Because these elements differ markedly among different types 
of analyses it is easier to illustrate them with particular examples, as will be done in the 
next section.  However, three important general observations can be made:  First, as a 
prelude to any validation exercise it is necessary to consider all the possible factors that 
could affect the relationship between the measured value of the metric and the hypothesis 
or parameter in question but can’t be controlled, or might not be known about a 
questioned sample.  For example: 
 
• The exact method of growth and production of an agent 
 
• The exact source of materials used in the production process 
 
• The temperature and humidity conditions under which an agent might be stored prior 

to dissemination 
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• The immune system condition (e.g. correlated with general health, age, treatment 
history) of a patient that a reference isolate was drawn from  

 
• The exact passage history experienced by an isolate compared to some reference 

isolate 
 
For a method to be applicable to a questioned sample for which these factors are not 
known, the set of samples used for validation must reflect a random selection from a 
population in which these factors are allowed to vary over their naturally occurring 
ranges.  Thus the estimation of the likelihood ratio takes into account the probability of 
the various conditions that might have existed, but cannot be known with certainty about 
the questioned sample.  On the other hand, if these factors happen to be known in a 
particular case, then, the ROC or calibration curve that is used could be one that is 
determined for the particular sub-population in which this factor was controlled.   
 

 
Figure 1.  Plot of the number of H and H samples required to achieve an AUC precision 
of 5% when AUC ≈ 0.9.   
 
Second, while validation usually requires a significant number of samples, this number 
need not be unreasonably large to obtain accurate results.  Standard formulae for 
estimating sample size effects on the precision of ROC curves have been published42.  
One common way to characterize sample size effects is to look at the precision with 
which the area under a ROC curve (usually referred to as the AUC) depends on the 
number of H and H samples.  Figure 1 shows the number of samples required to achieve 
a precision of 5% for a ROC curve with an AUC of 0.9 (which would correspond to a test 
with a relatively high diagnostic capability.)  Note that the total number of samples 
required exhibits a minimum.  To achieve the specified precision around 45 samples are 
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needed, with about 15 H0 and 30 H0 samples.  Thus, reasonable precision is possible 
with a fairly modest number of samples.   
 
The third consideration touches on the difference between real and virtual “populations”.  
For the forensic analysis of manufactured materials such as fibers and drugs, samples can 
be drawn from a real population.  Biological agents are clearly not manufactured 
continuously in quantity, so sampling the “population” of manufacturing processes 
necessarily involves simulating the diversity in manufacturing methods by using different 
recipes and laboratories.  This explicitly connects the validation process with intelligence 
about terrorist and state program knowledge and practice.  Biological agent 
manufacturing information that a terrorist might use can come from many sources.  This 
includes material derived from a wide variety of open sources such as recipes provided 
by underground cookbooks and internet sites, relevant knowledge from the open 
scientific literature, and inadvertent leaks of sensitive (but often inaccurate) information 
that are published in the news media.  In the rare instance U.S. intelligence efforts may 
uncover information about the technical knowledge possessed by particular terrorist 
groups or state BW programs.   Thus, even with the virtual population of manufacturing 
processes, validation will require periodic updating, and always leaves open the question 
of whether there may be unknown sub-populations that have not been sampled.   
 
4.  Applying the strategy to forensic assays – examples from the literature   
This section discusses validation strategies for several analysis methods that could have 
utility in microbial forensic investigations.  Because the field is relatively new, many 
methods are still in the exploratory stage of development, and the examples we have 
chosen are taken from the open literature such as it exists.  At the risk of causing 
confusion, we have adopted the convention of denoting particular hypotheses by a capital 
letter with the subscript 0.  This uniformly allows the symbol for a hypothesis to be 
distinguished from other variables whose most natural notation uses the same capital 
letter.  For example, S0 is the hypothesis that a victim was infected from the source S.  
Traditionally the subscript 0 has denoted the “null hypothesis” in statistical literature, but 
has no such interpretation here. 
 
Viral transmission – HIV and HCV 
One of the oldest methods of microbial forensics is the use of comparative genetic 
sequence data to establish a possible source of infection. Within the last two decades, a 
number of forensic/epidemiological investigations involving Human Immunodeficiency 
Virus (HIV) or Hepatitis C Virus (HCV) have been discussed in the literature62-76.  
Inferences about the likelihood of viral transmission events essentially rely on measures 
of genetic similarity between isolates taken from a victim and a putative source.  Because 
isolates of RNA viruses from infected humans typically consist of a broad distribution of 
genetic sequences, there is never an exact “match”, strictly speaking, between the 
sequence data obtained from any two samples (even when they originate from the same 
person, if the isolates are obtained at different times.)  In this sense, testing the hypothesis 
of transmission by means of genetic similarity is very similar to using elemental profiles 
for sample matching, as discussed in reference 25.   
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Suppose we define T0 to be the hypothesis that two isolates are related by direct 
transmission between a source and an infected person.  T0 is the hypothesis that they 
are not related by direct transmission - hence either there are additional hosts in the 
transmission chain between the putative source and the infected victim, or both the victim 
and putative source were infected from some other (possibly common) source.  Note that 
T0 does not necessarily specify a direction of transmission, although the context provided 
in particular cases often provides the presumptive direction.  The relationship between 
the direct transmission hypothesis T0 and the attribution of infection to a particular source 
is explored in Appendix 2, but is not essential to our discussion.  
 
With respect to T0, the probative weight of the observation that two isolates are separated 
by a certain genetic distance Δ is expressed by the likelihood ratio LRt(Δ):   
 

O(T0|Δ) = LRt(Δ)• O(T0)     (3) 
 

where 
 LRt(Δ) = P(Δ|T0)/P(Δ|T0)     (4) 

 
The genetic distance metric Δ that maps the genetic differences between two sequences 
onto a scalar quantity can be defined in various ways77-81, and is functionally analogous 
to the metric defined by the difference between elemental profiles discussed in reference 
25.  It is important to note that genetic distance metrics are used in several common 
phylogenetic tree construction methods, and may be derived from others where the scalar 
metric is related to branch length.  Thus, in a broad sense, phylogenetic expressions of 
relatedness that are often used in forensic source attribution are based on fundamental 
principles similar to (3) and (4).   
 
The procedure for generating a ROC curve to estimate LRt(Δ) would involve sampling 
sequences that were derived from a collection of isolates which contained some known 
transmission-related pairs.  Databases for both HIV and HCV often contain annotation 
that includes known epidemiological relationships that can be used to select T0 and T0 
sequences82,83.  An approximate representation of such a ROC curve is shown in Figure 2, 
which was constructed from measures of genetic distance (expressed simply as % of sites 
exhibiting substitutions) between transmission related and non-related pairs of HIV 
isolates reported in the literature62,84,85.  However, this data set is far from ideal because 
in many cases only averages and/or ranges were reported, rather than precise values for 
individual clones.  In addition, several different gene regions were used to determine the 
distance values.  However, Figure 2 serves to illustrate several features of the ROC 
representation of this type of data.   
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Figure 2.  A notional ROC curve derived from available literature data on genetic distances between 
transmission and non-transmission related samples.  Blue dots: ROC data; Dashed curve: smooth 
interpolation of the ROC data; Black squares: Genetic distance values (%).  
 
For example, the ROC data displayed in Figure 2 exhibits the typical “stair-step” form 
due to the sparse number of data points.  Therefore, an interpolating curve has been 
added to aid discussion of the qualitative relationship between genetic distance and the 
likelihood ratio LRt(Δ) defined in equation (1).  For values of Δ < 6% the slope of the 
ROC curve (which gives the value of LR) is clearly much greater than 1.  Hence, a Δ in 
this range provides strong support for the hypothesis of transmission.   In the region 6% < 
Δ < 10%, the slope of the ROC curve is greater than 1, but not by a large factor.  Hence a 
Δ value in this range provides weak support for T0.   Values of Δ greater than 10% 
provide no support for T0.  It is of some interest to note the clarity of this representation 
of the data in contrast to the way that genetic distance data was used to support the 
transmission hypotheses in an early forensic case that generated some controversy in the 
literature 62,86. 
 
A better approximation to this ROC curve would clearly be constructed by accessing 
actual individual clonal sequence data from a large population of HIV isolates that 
contains both known direct-transmission pairs and non-direct transmission-related 
sequences.  Clearly the same segment of the genome should be used to create the ROC 
plot since different regions evolve at different rates.  Ideally the entire genome could be 
used, but the primary effect of using a smaller portion would simply be to re-scale the % 
axis (assuming % difference is used as the genetic distance metric) in accordance with the 
evolutionary rate of that segment.  It would be interesting to compare ROC plots created 
by using different genomic segments to see if there are differences based on insensitivity 
to selection pressure or other factors that can influence the relationship between the 
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distance metric and the hypothesis of direct transmission (see below).  The effect of using 
metrics defined in different ways should also be explored.   
 
Strictly speaking, the relevant “population” against which such an assay must be 
validated consists of all HIV sequences that presently exist within the human host 
population, plus those in isolates that have been archived in various laboratories around 
the world but not yet sequenced, and all archival sequence data contained in databases.  
An important consideration for sampling from this population is the accuracy with which 
the subpopulation of transmission related pairs has been identified.  There are several 
additional considerations that could affect the relationship between T0 and Δ: 
 
• The length of time between the putative transmission event and the acquisition of 

clinical samples  
 
• Whether one or both pairs of T0 related hosts was treated with antiviral therapy 
 
• Differences in the general health or immune system condition among T0 related hosts.  
 
Clearly any sampling of isolates or archived sequence data must be examined to ensure 
that significant biases related to these factors are not obviously present.  While there is no 
reason to suppose that the geographical location of the subpopulation might itself 
introduce bias, a geographically diverse validation set might help meliorate unknown 
biases introduced by the above factors.  Conversely, in certain cases it may be that 
particular sub-populations (e.g., isolates from persons treated with antiviral drugs) may 
be the most relevant, and generating the ROC curve using only these sequences produces 
the most accurate representation of the likelihoods.   
 
Note that the ROC curve approach provides an alternative to the use of phylogenetic 
arguments in the forensic setting75.  It should be noted that while phylogenetic trees have 
been declared admissible87, they are only allowed as evidence that the genetic sequences 
are “closely related”.  Typically the trees used in court cases are constructed by taking a 
convenient sampling of HIV sequences that are geographically local to the crime88.  It is 
clear that the prosecution argument, even if not explicitly stated, is that such a tree 
demonstrates that the victim’s sequence is closer to that of the putative source than to 
other possible sources, and hence increases the likelihood that the victim and putative 
source isolates are related by transmission.  The difficulty with this argument is that 
phylogenetic “closeness” as expressed by tree topology is not per se strongly supportive 
of the hypothesis of transmission.  It is only the genetic distance measure associated with 
the branching that is relevant to this question.  This caveat is reinforced by one of the 
case studies discussed in an excellent review of HIV forensics by Learn and Mullins, 
where phylogenetic construction led to an incorrect inference of transmission that was not 
supported by the calculated genetic distance value89.   
 
Determination of growth method: heme analysis 
The determination of manufacturing method is an important general problem in microbial 
forensic analysis90.  The “population” of possible growth and processing methods is 
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represented by a unit process matrix, shown schematically in Figure 3.  Here each end-to-
end process is broken down into unit process steps such as growth, separation of the 
microbe from the growth medium, washing, drying, milling, and combining with 
additives.  For preparation of a toxin such as ricin, a similar matrix can be constructed 
with columns defined by the unit process steps appropriate to the particular toxin.  For 
each unit process, there are a number of options, including the “null” option in which that 
particular unit process is not carried out.  (Note that “null” is not an option for the growth 
step because we are assuming that at least a small amount of bulk agent is made prior to 
dispersal.)  Any particular end-to-end production process, as represented by the shaded 
cells in Figure 3, draws from these possible unit process options.  It should be noted that 
each unit process step may actually represent a rather complex combination of subunits, 
and that different laboratories might implement a particular unit process in a slightly 
different way, or use materials from different sources, adding another layer of potential 
variation to any end-to-end process.  Even when the same nominal process is repeated in 
a given laboratory, some variation among the chemical and physical properties of the 
each batch of agent might be expected.   
 
An analysis that purports to show that a particular unit process step was used in the agent 
preparation process is clearly a hypothesis test, and the approach to validation outlined in 
section 3 can be applied.  The “population” that one samples to generate a ROC curve is 
(conceptually) all of the processes represented by the unit process matrix.  At first glance 
this might seem like a daunting, if not impossible task, given the large number of 
potential methods for growing and processing spores.  However, methods of production 
are not a-priori equally probable.  Because many of the end-to-end processes are not 
commonly used, the process of random sampling from this matrix can be weighted by 
knowledge of preferences that exist among practitioners.  This knowledge can be drawn 
from the existing literature as well as from consultation with experts.  A detailed example 
of this weighted sampling process was provided in reference 25.   
 

Growth Separation Washing Drying Milling Additives 

 ∅ ∅ ∅ ∅ ∅ 

G1 S1 W1 D1 M1 A1 

G2 S2 W2 D2 M2 A2 

G3 S3 W3 D3 M3 A3 
• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

Figure 3.  The unit process matrix for biological agent preparation. ∅ represents the case 
where that unit process is not carried out.  Violet shaded cells represent a particular 
choice of unit processes that make up an end-to-end production method. 
 
To account for variations in the execution of particular process steps, it is preferable to 
have samples made by different laboratories working independently as well as samples 
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drawn from different batches of material made by the same process.  Thus, a set of 
samples that provides the best representation of “process space” will include laboratory, 
process and batch variations.  Partial factorial sampling designs can be used to reduce the 
number of samples to reasonable values.  It also may be possible to use expert judgment 
to delimit the set of samples if it is clear that certain changes in medium composition or 
post-growth processing ought to be irrelevant.  (For example, changes in separation 
method, e.g. centrifugation vs. filtration, may not affect the isotopic content of the agent.) 
However, since it is always possible that some new scientific findings may later change 
this assessment, or new process variations may come to light, it is necessary to review the 
validation panel periodically.  
 
One example of an analysis that has been proposed to determine a growth method is a 
recently published paper on the determination of heme content in Bacillus samples91. The 
intention of heme analysis is to find evidence that a bacterial agent (such as anthrax) used 
in a terrorist or criminal act was grown on blood agar plates, which might be indicative of 
the resources or training that were available to the perpetrator.  This approach is based on 
the observation that harvesting Bacillus from agar plates usually entrains some residual 
solid medium within the agent.  Propagation on blood agar plates is not a very common 
method for growing bulk samples of Bacillus anthracis, but is normally used for 
diagnostic purposes.  A very crude estimate of the a priori probability that a perpetrator 
might choose to produce a sample this way can be obtained from a survey of the open 
literature where 7 out of 78 papers (9%) cite this method90.  No papers cite growth in 
liquid media containing blood. On this basis the odds of a sample having been grown this 
way, in the absence of any other information, might be estimated as around 1 in 10.  
Thus, analysis for residual heme can be used to provide support to the hypothesis that the 
samples were grown on a blood-containing agar medium.  The data presented in 
reference 91 provide a case for the plausible utility of this analysis, but no extensive 
validation has yet been attempted.  (One unfortunate result was that irradiation of the 
sample to inactivate the micro-organism, which is necessary before it can be analyzed in 
a laboratory that is not able to handle live pathogens, appears to degrade the heme 
signature.  However, other means of deactivation are potentially applicable.)   
 
In the proposed analytical method, heme is extracted from bulk spore samples and the 
extracted material is analyzed by Matrix Assisted Laser Desorption/Ionization (MALDI) 
mass spectrometry91.  The metric that is correlated with the presence of heme is the peak 
height or area of a mass spectral peak observed at the mass value of heme.  A fitted 
calibration curve based on samples spiked with heme was used to relate this metric to a 
heme concentration.  The authors estimate a “limit of detection” (LOD) that corresponds 
to approximately 0.12 nanograms of heme per milligram of spores, and a “limit of 
quantification” approximately twice this value.  Table 1 of this reference summarizes the 
results for 7 un-irradiated samples that were grown using different methods, 3 on blood 
agar plates and 4 on other media.  All three blood agar grown samples gave positive 
detections, presumably meaning signals greater than or equal to the “limit of detection”, 
while the 4 non-agar samples gave negative detections.  For the samples with positive 
detections, estimates for heme content in ng/mg were also provided.   
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Strictly speaking, in the absence of values of the metric for both the positive and negative 
samples, it is not possible to construct a ROC curve.  However, presuming that none of 
the negative detection samples had values above the “limit of detection”, and since the 
estimates for the lowest concentration in a positive sample was at least 2 times larger than 
the LOD, this data implies a perfect ROC curve.  However, with only 7 points, this 
almost certainly is the result of under-sampling.  Note that the confidence intervals for 
the true and false detection probabilities calculated for this data set are quite large92, as 
shown in Table 1.  
 
There are several reasons to believe that the distribution of apparent heme concentrations 
among samples produced by a more extensive sampling from the population of potential 
growth and processing methods would be wider than is implied by this small sample set, 
providing both false positive and false negative detections distributed around the nominal 
“limit of detection.”  Clearly different harvesting techniques might change the quantity of 
agar-derived heme present in the spore preparation.  Different washing protocols might 
reduce heme content.  Since heme containing enzymes are a component of many bacteria, 
including B. anthracis, there is probably some natural background level in spore 
preparations, and this might be detectable in certain samples93-97.  Finally, complex 
medium components may contain molecules that have the same mass spectral signature 
as heme, which could raise the false positive detection rate.  A summary of possible 
sources of false positive and negative detections, and the characteristics of a proper set of 
samples for validation is provided in Table 2. 
 
Table 1.  Calculated 95% confidence intervals for conditional detection probabilities for 
heme analysis data from reference 91. 

 
B0 

(Sample grown on 
blood agar) 

B0 
(Sample not grown 

on blood agar) 
 

Positive test result 
( Ch ≥ LOD) 

P(+|B0) ≥ 0.47 
 

(3/3 samples) 

P(+|B0) ≤ 0.45 
 

(0/4 samples) 
N(+) = 3 

Negative test result 
(Ch < LOD) 

P(-|B0) < 0.53 
 

(0/3 samples 

P(-|B0) ≥ 0.55 
 

(4/4 samples) 
N(-) = 4 

 N(B0) = 3 N(B0) = 4 NT = 7 
 
 
Table 2 raises two additional issues that are relevant to the concept of validation, but are 
not included directly in the framework we have outlined in this report.  Note first that, 
strictly speaking, the analysis under discussion does not directly answer the question 
“Was the agent grown on blood agar medium?”  The interpretation that a large value of 
the metric (i.e. an apparently large concentration of heme in an agent sample) supports 
the hypothesis of blood agar growth could be false, for example, if heme were 
deliberately added to the agent after it had been grown in, liquid culture. (The perpetrator 
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might do this to mis-direct investigators.)  To rigorously validate such an interpretation, it 
would be necessary to have some independent method of analysis that could exclude the 
possibility of post-growth addition of some material that contains heme.  Likewise, the 
mass of heme is not unique, so that if a different molecule with the same mass were 
present (either naturally or as the result of deliberate addition) it could lead to a false 
inference of support.  Clearly, by itself the analysis under discussion can only support the 
hypothesis of agar growth under the assumption that heme is what is being detected, and 
that there is no mis-direction.  By the same token, a low value of the metric could be due 
to the perpetrator having used, e.g., an unusually rigorous washing process designed to 
remove heme, so that the inference of weak support for blood agar growth is false. 
(According to reference 91 there is some indication that washing is not very effective in 
removing heme due to its hydrophobic nature.  However, certain washing protocols are 
more likely to remove heme than others.)  In effect, the validation process assumes that 
such unusual processes are rare, and thus have little effect on the likelihood ratio.  An 
independent analytical method that can generate support for the hypothesis that this rare 
step was used is required to test this assumption.  A more extensive discussion of the 
issue of washing is presented in Appendix 3.    
 
Table 2.  Potential errors and validation elements for the heme analysis example. 

Type of error Nature of potential error Validation element 

False negative 
 

(Non-detection of heme when 
agent was grown on blood agar) 

Post-growth harvesting method 
does not entrain agar 

Independent variation in 
harvesting technique among 

laboratories  

Post-growth processing removes 
heme 

Inclusion of relevant processes in 
the validation panel 

False positive 
 

(Detection of heme but sample 
not grown on blood agar) 

Heme added post-growth Method to distinguish post-
growth addition 

Different molecule present, 
misidentified as heme 

Second, independent 
method/metric  

Heme present in other growth 
medium  

Wide variation in growth media 
used in validation panel 

Heme generated from bacterial 
metabolism or some process step 

Wide variation in processes used 
in validation panel 

 
 
Microbial forensic utility of isotopic signatures   
Isotopic measurements have been used in several areas of forensics, including 
determination of the geographical origin of cocaine and heroin, and the authentication of 
other imported agricultural products98.  The success of using isotopic ratios to identify 
geographical origin of agricultural products has encouraged the investigation of these 
methods for microbial forensics99-103.  Of course, a typical bacterial culture incorporates 
medium components from many sources, so the direct determination of origin, if 
possible, would be considerably more complicated than for agricultural products like 
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cocaine or heroin.  Nonetheless, at least three types of forensic utility related to microbial 
forensics have been suggested in the literature: 
 
• Sample matching25 
 
• Analysis of the provenance of medium components101-103 
 
• Use of Hydrogen and Oxygen isotopes for geolocation99,100 
 
In the case of sample matching, the isotopic “fingerprints” of two samples are compared 
to determine if the samples are likely to have originated from the same batch of material 
or were grown using the same growth medium components.  The framework for 
validating this kind of analysis is similar, mutatis mutandis, to the one previously 
developed for elemental “fingerprints”, so the reader is referred to that discussion for 
insight into this application.   However, the remaining two applications are discussed in 
this section.  
 
Certain bacterial growth medium components are, in effect, agricultural products, so 
inferences about provenance based on their isotopic composition are plausible.  This 
clearly applies to cases where the growth medium components themselves are available 
for analysis.  In an extensive study, Kreuzer-Martin, et. al. showed that the isotopic 
composition of growth medium components exhibit strong correlations with their 
origin102. This extensive collection of results provides an excellent opportunity to 
illustrate the interpretation of such data in the ROC curve/likelihood format.  Particularly 
good examples are the 13C/12C and 15N/14N signatures of peptone samples that originate 
from meat proteins or casein.  The following analysis utilizes the data that is displayed in 
Figure 2 of reference 102, kindly provided by the author.   
 
Let C0 is the hypothesis that the peptone medium is derived from casein, while C0 is the 
hypothesis that it is not.  Assuming that peptones are only derived from casein or meat, 
and no other sources are possible, C0 is equivalent to M0, the hypothesis that the peptone 
is derived from meat.   Figures 4 and 5 show the ROC curves derived from the δ13C and 
δ15N values obtained by Kreuzer-Martin on a variety of peptone samples.  Clearly the 
measurement of a δ13C value below -22%0 is strong support for a casein origin of the 
peptone, while values greater than -18%0 argue for M0.  
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Figure 4.  ROC curve generated from δ13C data from peptones of casein and non-casein 
origin (data from reference 102.)  Blue dots: ROC curve; Black squares: δ13C values. The 
dashed curve is an interpolation of the ROC data. 
 
The ROC curve for the δ15N data has much weaker inferential value since the ROC is 
much closer to the slope = 1 line that indicates no-better-than-chance discriminating 
power.  Nonetheless, finding that the δ15N is less than 6 adds to the strength of the 
hypothesis that the medium is derived from casein, while values greater than 6 support a 
non-casein origin. The likelihood ratio derived from combining the data in Figures 4 and 
5 (slopes of the ROC curves) is simply the product of the likelihood ratio from each.  
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Figure 5.  ROC curve generated from δ15N data from peptones of casein and non-casein 
origin (data from reference 102.)  Blue dots: ROC curve; Black squares: δ15N values. The 
dashed curve is an interpolation of the ROC data. 
 
A potentially powerful application that has been suggested in the literature is the use of 
hydrogen and oxygen isotopes to narrow the geographic origin of a bioagent sample99,100.  
This suggestion is based, in part, on the observation that the hydrogen and oxygen isotope 
ratios in Bacillus are correlated with those of the water they are grown in.  To the degree 
that water used to reconstitute dry culture medium components and wash harvested agent 
is likely to be local in origin, and that hydrogen and oxygen isotope ratios in water have 
strong geographic correlations, this approach is clearly plausible.  However, extensive 
validation of the approach has not yet been undertaken.   
 
From the discussion in references 99 and 100 we can infer a basic algorithm for using the 
hydrogen and/or oxygen isotopes to bound the geographical origin of the water used to 
manufacture an agent.   
 
(1) From a sample of the questioned agent, measure the 2H/1H and 18O/16O ratios and 
determine δ2H and δ18O.   
 
(2) Construct a set of calibration data that relate δ2H and δ18O in samples of the agent to 
δ2H and δ18O in the water used to grow and process it.  
 
(3) Use the calibration data set to estimate the range of possible values of δ2H and δ18O 
for the water used to grow and process the agent.  
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(4) Finally, from the ranges of possible values of δ2H and δ18O of the water, identify the 
geographic contour band(s) that contain water sources that lie within these ranges.   
 
The second and third steps in this procedure, which involve the concept of calibration 
described in Appendix 1, require careful consideration.  In most cases, the precise method 
by which the agent was produced will not be known.  Sources of hydrogen and oxygen 
other than water can influence the isotopic ratios in microbes, as illustrated schematically 
in Figure 6.  While these additional O and H sources may have small contributions, they 
constitute a major source of uncertainty in the final values of δ2H and δ18O of the agent.    
 

 
Figure 6.  Different components of a typical bacterial growth medium that might 
contribute hydrogen and oxygen to the bacterial composition.   
 
Additionally, there are potential fractionation effects that depend on details of the culture, 
including the aeration rate and temperature, and post processing steps such as drying.  
Thus, to make the calibration set that is used to relate δ of the microbes to δ of the water, 
it is necessary to sample many possible variants in growth and production process in 
which the water is spiked with 18O and 2H.  The spiking quantities should, of course 
reflect δ values in the ranges that are extant among real water supplies.  While such a data 
set does not yet exist, it is possible to simulate a partial set for illustrative purposes by 
using data provided in reference 99.  In this study spores were grown in five different 
media and four isotopically distinct waters (but were all identically processed,) and a set 
of best-fit straight lines relating the δ2H of the spores to the δ2H value of the water were 
obtained.  The points in the simulated calibration data shown in Figure 7, were generated 
using a two-step process.  First, we generated 100 values of δ2Hwater randomly chosen 
from the range -100%o to +300%o (which encompasses the natural range of δ2H for 
terrestrial water.)  For each value of δ2Hwater  we randomly chose one of the slope 
intercept pairs from among the 5 choices corresponding to the 5 media, and calculated a 
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corresponding value of δ2Hspore. To simulate experimental uncertainty in the data points 
we added a small noise term sampled from a Gaussian distribution with a standard 
deviation of 5%o.  
 

 
Figure 7.  Simulated calibration data for relating the δ2H of a spore sample to the δ2H of 
the water it was grown in.  The blue band is the range of measured δ2Hspores, the violet 
band indicates a range of δ2Hwater values. 
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Figure 8.  Variation of LR as the centroid of the band predicting the range δ2Hwater is 
moved across the calibration set. The width of the band was fixed at 60%o. 
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To illustrate the use of this data, suppose that a questioned sample of agent was analyzed 
and found to have a δ2H value falling into the 95% confidence interval -20 to -40 %o. 
This defines the blue band in Figure 7.  The violet band represents a range of possible 
values for δ2H of the water used in the manufacture of the agent.  The centroid of this 
band was fixed by noting that the likelihood ratio was maximized near this position, 
around 110%o, as shown in Figure 8.  For the calculation of the maximum likelihood 
position, the width of the band was fixed at 60%o.  For the band centered at 100%o the 
dependence of the likelihood ratio on the width is shown in Figure 9.   
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Figure 9.  Dependence of the likelihood ratio on the range of %o. For this calculation, the 
band centroid was placed close to the maximum likelihood position.  
 
Note from Figure 9 that the calibration data does not strongly support the hypothesis that 
the range of possible δ2Hwater values is smaller than 30%o, but provides very strong 
support for a range smaller than 140 %o.  Support for a range of 100%o is roughly twice a 
strong as for a range of 50%o.  If this example were a real case, the values for the centroid 
and range of δ2Hwater could then be used to delineate the geographical areas that might 
have been the source of the water used to manufacture the agent.  
 
Clearly a much larger choice of production processes would have to be sampled to 
provide adequate validation for this method.  Considering the wide variety of growth 
media and washing processes that comprise the matrix of unit processes shown in Figure 
3, it is likely that the calibration data set generated by sampling actual processes would be 
more disperse than that exhibited in Figure 7.  Conversely, if information were available 
to narrow the range of growth and production processes that could have been used to 
generate a questioned sample, then only that sub-set of calibration data would be 
sufficient to perform the analysis.   
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5. Concluding Remarks 
The likelihood ratio paradigm allows us to present evidence in a format that resembles 
forensic human DNA typing.  Table 3 summarizes this analogy for two broad classes of 
microbial forensics evidence.  In this table, the “populations” are sometimes real 
(humans, isolates) and sometimes virtual (passage histories, manufacturing methods) and 
the act of sampling from the relevant population will differ accordingly.  Regardless of 
the particular format chosen to present the results, the process of validation begins by 
questioning the fundamental assumptions of the method under scrutiny, and then seeking 
out the sub-populations of isolates or production conditions that will test the limitations 
of these assumptions.  The validation process establishes the range of conditions for 
which the interpretation of the analytical results is correct – and more importantly, 
identifies those (hopefully rare) conditions when the standard interpretation is not valid.  
The full range of relevant conditions must be represented in the panels of reference 
samples used in the various tests.  
 
Expert review can be used to increase our confidence that the relevant range of conditions 
have been taken into account, or to delimit the range of conditions that must be 
considered.   Expert panels help to answer questions such as 
 
• Has the “population” that we are sampling from been defined correctly and 

completely?   
 
• Are there certain weights that should be used in the sampling process, based on prior 

probabilities that certain subpopulations are more likely to be encountered than 
others? 

 
• Are there exceptional processes or conditions that might represent rare but 

confounding outliers? 
 
Thus the utilization of experts becomes a natural and often essential element of method 
validation, consistent with the Daubert requirement of scientific peer review.  In addition, 
the validation process must be by definition dynamic, subject to periodic review to assess 
the impact of knew scientific knowledge, changes in the type of agent considered, and the 
evolution of production technologies for bacterial agents.  
 
In this context the term “preliminary validation” has been introduced to describe 
validation over a restricted range of conditions that may be necessary for evaluating a 
new technique in the midst of an on-going investigation5.  In terms of the framework 
advocated in this paper, there are two natural interpretations of “preliminary validation.” 
The first is that a relatively small number of samples are used, with concomitant 
increases in the uncertainty with which the probative value of the assay can be stated.  
The second interpretation is that it utilizes only sub-populations of samples that are 
judged to be of the highest relevance to the case at hand.  In this version, “preliminary 
validation” is not intrinsically less rigorous than ordinary validation, as long as the 
inferential power of the method is not extended to cases that clearly involve other sub-
populations.  In fact, “preliminary validation” may require more short-term resources and 
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planning than are usually associated with forensic technique development, because in 
practice, validation is often a slow community-driven process in which work is done 
piecemeal by many individual investigators over many years.  Thus, a more systematic 
and planned approach to the transition from exploratory signature discovery to validation 
may sometimes be necessary to make “preliminary validation” a reality.   
 
Table 3. Analogies between human DNA and microbial forensic evidence. 

 Human DNA Evidence Microbial Genetic 
Evidence 

Chemical and 
Physical Analysis 

Evidence 

Hypothesis 
Source of DNA 

 
S0 = A particular person is 

the source 

Relationship between source and 
attack isolates 

 
S0 = A particular isolate is the 

source 
H0 = A particular passage 

history separates the source and 
attack strain 

Bioagent manufacturing 
method 

 
M0 = A particular 

method was used to 
produce the agent 

Population Human population All possible source isolates & 
passage histories 

All possible production 
methods and sources of 

materials 
Metric Sequence match Sequence differences  Δ  Measurement data  D 

Probative 
Value 

LRmatch = 
P(match|S0)/P(match|S0) 

LRseq = 
P(Δ |H0,S0)/P(Δ |H0,S0) 

LRdata = 
P(D|M0)/P(D|M0) 

 
Finally, we might note that there are other forms of microbial forensic evidence that may 
or may not fit neatly into the validation framework outlined above.  One of these is 
morphology comparisons based on image data obtained using electron (EM), ion (IM), or 
atomic force (AFM) microscopy.  Here one is trying to decide if certain structural 
features of agent particles are indicative of a particular production method or can be used 
to match two samples90.  Modern EM, IM, and AFM  instrumentation produce digitally 
manipulated maps of elemental composition and topography, often using sophisticated 
statistical computations.  There are certain analogies between interpreting such images 
and diagnostic imaging in medicine, such as X-ray, CT, and MRI imaging.  While digital 
imagery itself is generally thought to meet the admissibility requirements of scientific 
testimony104, and medical imaging has long been formulated in terms of ROC curves and 
likelihood ratios44,45, challenges to admissibility can and do arise105.  Thus, the validation 
of EM and IM microbial forensic methods deserve careful study in this regard.   
 
It is generally recognized that scientific evidence must meet two basic criteria for 
admissibility, reliability and relevance.  While this paper emphasizes the latter criterion, 
we do not intend to diminish the importance of the former.  Both of these criteria 
determine critical aspects of the way that analytical methods must be validated to make 
them useful forensic tools.  To establish the reliability of scientific data in judicial 
proceedings it is necessary to demonstrate that adequate quality assurance and control 
steps were followed during the testing procedure.  A considerable literature exists on QA-
QC, including excellent documents generated by several FBI scientific working groups.  
Three relevant documents are the Trace Evidence Recovery Guidelines106 formulated by 
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the Scientific Working Group on Materials Analysis (SWGMAT), the Quality Assurance 
Guidelines for Laboratories Performing Forensic Analysis of Chemical Terrorism 
published by the Scientific Working group on Forensic Analysis of Chemical Terrorism 
(SWGFACT)107,108, and the Quality Assurance Guidelines for Laboratories Performing 
Microbial Forensic Work109, published by the Scientific Working Group on Microbial 
Genetics and Forensics (SWGMGF).  In addition to standards for single laboratory 
validation, inter-laboratory proficiency testing and round-robin exercises are a critical 
part of this process.  In a robust national program, continuous testing through laboratory 
and field exercises would be required to improve the system and provide level-of-
readiness assurance.  
 
Nonetheless, the logical relevance criterion is increasingly recognized to be the more 
salient stumbling block in forensic science.  In this paper we have shown that, when 
logical relevance is interpreted in terms of a likelihood ratio associated with a test or 
analytical result, a common approach to validation is possible for a variety of forensic 
evaluations, and leads naturally to a representation of the data in a form that does not 
overstate its probative value.  In addition to providing the most straightforward and 
objective way to describe the result of an analysis, this methodology also makes it easy to 
compare two methods designed for the same purpose or to combine the results of two 
independent analyses using orthogonal methods.  In the absence of technical errors, 
characterizing a method in this way ought to ensure its acceptability under the Daubert 
standard.   
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Appendix 1.  Likelihood ratios for parameter estimation. 
 
This appendix discusses a simple method for constructing likelihood ratios from 
calibration data.  Let R0 be the hypothesis that the parameter ρ associated with a 
questioned sample (for example, the age of the sample) falls into a certain range of 
values.  The parameter of the sample is correlated with the value of some scalar metric 
(i.e. scalar quantity) µ that can be measured on the sample (for example, the 14C 
concentration in the DNA of the agent particles.)  If the measured range of values of µ in 
the questioned sample is m0, we want to know how much the observation of values 
falling into m0 increases the odds that the parameter falls within range R0. That is, we 
want to calculate the likelihood ratio P(m0|R0)/P(m0|R0) where P(m0|R0) is the 
probability that a sample whose parameter ρ falls into range R0 will exhibit a metric 
value µ that falls into range m0,  and P(m0|R0) is the probability that a sample whose 
parameter falls outside R0 will exhibit a metric value that falls into the range m0.  
 
Assume that we have a set of reference samples with known values of the parameter ρ, 
and these were drawn at random from among the complete population of possible types 
of such samples (examples of this are discussed in the main body of the paper.)  For each 
reference sample, the value of the metric µ is measured.  The calibration curve is a plot of 
all pairs of µ,ρ obtained from these samples, covering a total range (mT,RT).  (mT,RT) 
forms the working range of the calibration set.  Such a plot is illustrated in Figure A1.1. 
 

 
Figure A1.1.  Plot of calibration data with color coded regions corresponding to the  
subsets of points in the contingency table A1. Purple: (m0,R0); Green: (m0, R0); Orange: 
(m0, R0); Blue: (m0,R0).  The total working range of the data is (mT,RT).   
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Suppose now that several replicate measurements are made on a questioned sample, and 
fall into a range of values m0.  This range is represented by the green band in Figure A1.  
How much support does this provide to the hypothesis that the parameter we are trying to 
determine falls into the range R0?  The orange band in Figure A1 denotes R0.  These two 
bands divide the set of calibration points into four regions.  The blue region captures 
points that fall outside of both m0 and R0, while the green region captures points that fall 
within m0, but not within R0, etc.    Figure A1.2 is a contingency table denoting the 
correspondence between the colored regions and the number of points captured by each. 
 
Figure A2.  Contingency table corresponding to figure A1. 

 
 
N(m0) is the total number of points falling into the band defined by m0, while N(R0) is 
the total number of points falling into R0.  Similarly N(m0) and N(R0) represent the 
number of points that fall into the complementary regions, respectively.  Clearly: 
 

N(m0) = N(R0, m0) + N(R0, m0)     (A1.1) 
 

N(m0) = N(R0, m0) + N(R0, m0)     (A1.2) 
 
and 
 

N(R0) = N(R0, m0) + N(R0, m0)    (A1.3) 
 

N(R0) = N(R0, m0) + N(R0, m0)     (A1.4) 
 
so that 
 

N(R0) + N(R0) = N(m0) + N(m0) = NT.    (A1.5) 
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Assuming that the points in the calibration set are representative of the population, and 
are distributed uniformly over the total working range RT, the joint probabilities of 
finding a point within a certain colored region are estimated by dividing each entry in the 
contingency table by NT, the total number of points in the calibration set.  For example,  
 

P(R0, m0) = N(R0, m0)/NT     (A1.6) 
 

and  
 

P(R0, m0) = N(R0, m0)/NT ,     (A1.7) 
 

while  
 

P(m0) = N(m0)/NT       (A1.8) 
 

and  
 

P(R0) = N(R0)/NT.       (A1.9) 
 
Finally, the conditional probabilities are formed in the usual way:  
 

P(m0|R0) = P(R0,m0)/P(R0),     (A1.10) 
 

P(m0|R0) = P(R0,m0)/P(R0), etc.     (A1.11) 
 
Thus, the likelihood ratio that relates the measurement of m0 to the range hypothesis R0 
can be determined directly from the distribution of points on the calibration graph.   
 
In figure A1.1, the centroid of the band R0 was deliberately placed so that the purple 
intersection area overlapped with the distribution of data points.  One could imagine 
sliding the centroid of R0 band back and forth along the ρ axis, changing the count 
statistics in the contingency table A1.2. Clearly for a fixed m0 band, there is a maximum 
in the likelihood ratio when the centroid of R0 is near the position shown in the graph, 
because that position simultaneously maximizes the number of points that fall into 
(m0,R0) while minimizing those falling into (m0,R0).  This corresponds to the fact that 
the measurement m0 lends the most support to the R0 whose centroid is given by that 
position.   
 
Once the maximum likelihood centroid for R0 is determined, the width of R0 can be 
varied as well.  Clearly increasing the width of R0 increases the likelihood ratio, but at the 
expense of making the uncertainty in the parameter value larger.  A reasonable 
convention for choosing the width of R0 might be  to fix it at the value that provides a 
given “false alarm probability” P(m0|R0), e.g. 5% or 1%.  Note that since N(m0,R0) and 
N(m0,R0) are both approximately proportional to the width of m0, the likelihood ratio 
does not depend on this value, as long as it is not too large.  Thus, in practical 
calculations from actual sparse data sets, one can choose a width for m0 that is larger than 
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the actual uncertainty in the metric in order to increase the precision of the likelihood 
calculation.   
 

Appendix 2.  Source attribution in disease transmission 
 
In this appendix we consider the relationship between the hypothesis T0, that two isolates 
(actually two viral populations) are related by a direct transmission event, and the 
hypothesis S0, that a certain source S (e.g. another infected person) is the origin of the 
infection.  These two hypotheses are not strictly equivalent because although S0 may be 
true, the disease may have infected the victim via a third (or nth) party route.  Obviously 
the prosecution in a criminal HIV transmission case would like to argue that evidence 
that lends weight to T0 also lends weight to S0.  The reader should note that there is a 
close analogy between the analysis in this appendix and that given appendix 1 of 
reference A.1, which treats the case of sample matching.   
 
To be precise, let  
 
 S0 ≡ the hypothesis that S is the source of the infecting isolate 
 
 T0 ≡ the hypothesis of direct transmission from S 
 
We can define the joint hypotheses: 
 
 S0T0 = S is the source, and infection of the victim was by direct transmission 
 
 S0T0 ≡ S is the source, but infection was through other intermediate parties 
 
 S0T0 ≡ S was not the source, and there was no direct transmission event 
 
The fourth possible hypothesis, S0T0, is automatically false because if S0 is false then so 
is T0 by definition.   
 
Now consider two isolates, one from S and the other from the victim, that are suspected 
to be related by direct transmission.  The odds that S is the source, given the measured 
genetic distance Δ between the isolates is given by the usual equation: 
 

O(S0|Δ) = LRs(Δ)•O(S0)    (A2.1) 
 
where LRs(Δ) = P(Δ|S0)/P(Δ|S0).  We are interested in the relationship between LRs and 
LRt, defined as P(Δ|T0)/P(Δ|T0).   
 
We can expand the conditional probability expressions that appear in the likelihood ratio 
LRs(Δ) in terms of S0 and T0 by using standard chain rule relationships: 
 

P(Δ|S0) = P(T0|S0)•P(Δ|S0T0) + P(T0|S0)•P(Δ|S0T0)   (A2.2) 
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P(Δ|S0) = P(T0|S0)•P(Δ|S0T0) + P(T0|S0)•P(Δ|S0T0)   (A2.3) 
 
Equation (A2.3) can be simplified by noting that by definition P(T0|S0) = 0, thus  
 

P(T0|S0) =1       (A2.4) 
and   
 

P(Δ|S0) = P(Δ|S0T0).     (A2.5) 
 
Equation (A2.4) has the natural interpretation that if S is not the source of the infection, 
then there had to be some other transmission route as well. 
 
Thus, 
 

LRs(Δ) = P(T0|S0)• [P(Δ|S0T0)/P(Δ|S0T0)]  + P(T0|S0)• [P(Δ|S0T0)/P(Δ|S0T0)]   
(A2.6) 

 
The conditional probability functions in equation (A2.6) are defined in Table A2.1.  
Clearly the conditional probabilities P(T0|S0) and P(T0|S0) depend on other evidence that 
might bear on whether direct transmission between S and the victim is likely.  Note that 
because both terms in equation (A2.6) are always ≥ 0,  
 

LRs(Δ) ≥ P(T0|S0)•[P(Δ|S0T0)/P(Δ|S0T0)]   (A2.7) 
 
Note also that  
 

P(Δ|T0) = P(Δ|S0T0)     (A2.8) 
 
And since 
 

P(Δ|T0) = P(Δ|S0T0) + P(Δ|S0T0)    (A2.9) 
 
We have  
 

 P(Δ|T0) ≥ P(Δ|S0T0)     (A2.10) 
 
So that  
 

P(Δ|S0T0)/P(Δ|S0T0) ≥ P(Δ|T0)/P(Δ|T0)   (A2.11) 
 
Thus 
 

LRs(Δ) ≥ P(T0|S0)•LRt(Δ)    (A2.12) 
 
Expression (A2.12) shows how the strength of the evidence for T0 bounds the strength of 
the evidence that S is the source.  Suppose there is a case where there is a clear 
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opportunity for S to have infected the victim and there are no other plausible indirect 
routes for transmission, one could argue that P(T0|S0) ≈ 1.  Hence a value of Δ that 
supports the hypothesis of direct transmission also supports the hypothesis that S is the 
source.  Conversely, if there is evidence for other possible indirect transmission routes 
(e.g. common sexual partners in an HIV transmission case) so that P(T0|S0) < 1, then 
LRt(Δ) must be larger than 1/P(T0|S0) in order to support the hypothesis that S directly 
transmitted the virus to the victim.  
 
Table A2.1.  Definitions of the probability functions contributing to LRs(Δ). 

Function Interpretation Comment 

P(T0|S0) 
Probability of direct transmission from 

S, given that S is the source 

Depends on other evidence showing that S 
had the opportunity to transmit the disease 

to the victim 

P(T0|S0) 
Probability of an indirect transmission 
route from S, given that S is the source 

In the case of HIV, for example, this would 
depend on whether there were mutual sexual 

partners of S and the victim 

P(Δ|S0T0) 

Probability of observing a genetic 
distance Δ between the isolate from S 
and the victim’s isolate, given that S is 

the source and there was direct 
transmission. 

Estimated by sampling pairs of isolates 
known to be related by direct transmission  

P(Δ|S0T0) 

Probability of observing a genetic 
distance Δ between the isolate from S 
and the victim’s isolate, given that S is 
the source, but the transmission is via 

intermediate parties 

Estimated by sampling pairs of isolates 
known to be related by indirect transmission 

via one or more nodes 

P(Δ|S0T0) 
Probability of observing a genetic 

distance Δ between the isolate from S 
and the victim’s isolate, given that S is 

not the source. 

Estimated by sampling pairs of isolates that 
are not directly or indirectly linked by 

transmission 

 
Equation (A2.12) is an important relationship from a practical point of view, because the 
process of validating LRt(Δ) is considerably easier than validating LRs(Δ) directly.  To 
understand this, one must consider the collection of isolates that constitute the population 
from which the conditional probability distributions P(Δ|S0T0), P(Δ|S0T0), and 
P(Δ|S0T0) are estimated.   The set of archived viral isolates (or genetic sequence data) 
available for constructing these distributions can itself be considered (conceptually) a 
sampling of the complete set of viral subpopulations that are defined by the worldwide 
(and historical) transmission network that relates all persons ever infected by the virus.  
In Figure A2.1 we display a small portion of this network, whose nodes represent 
infected persons.  Clearly not all such nodes have been sampled, which implies that in 
many cases we do not know the precise relationship between isolates in an archive.   
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Figure A2.1.  Part of an imaginary viral transmission network.  Open circles are unknown 
nodes in the transmission chain (un-sampled isolates), while filled circles represent 
sampled isolates from known nodes.  Dotted and solid lines represent unknown and 
known transmission events, respectively.  Nodes a-f represent a known cluster of 
epidemiologically related isolates.  Nodes j and k represent a known transmission related 
pair.  Other relationships are assumed to be unknown.   
 
If we define  
 

{S0T0} ≡ the set of all pairs of isolates related by direct transmission,  
 
{S0T0} ≡ the set of all pairs of isolates related by indirect transmission, and 
 
{S0T0}≡ the set of all pairs of isolates that are not related by direct or indirect 
transmission, 

 
then the various pairwise comparisons between the labeled isolates in Figure A2.1 can be 
classified as shown in Table A2.2.  Note that in some cases we know the relation between 
isolates.  For example, in the large cluster of epidemiologically related isolates a-f in 
Figure A2.1, the relation of each pair is known.  Similarly, an archive might also contain 
isolated pairs of isolates like j and k whose relationship is known.  However, other 
isolates (e.g. g,h and i) may not have any known relation to any other, and this generally 
limits their utility in validating LRs(Δ), but not LRt(Δ).   
 
Referring again to Figure A2.1, a real archive will have isolates like (h,j) where there is 
an indirect transmission relationship that is not known.  Similarly the pair (i,j) belong to 
the set of pairs not linked by transmission, but this would not be known.  Hence, when 
arbitrary samples are drawn from such an archive it is not clear how to categorize a pair 
as S0T0 or S0T0, and the presumption is that they are members of the set of unrelated 
isolates, {S0T0} may not be warranted.  Note that 39 of 55 of the pairwise relationships 
in Figure A2.1 are unknown.  Similarly, in a large archive of isolates (or a sequence 
database derived from it) a majority of the relationships among arbitrary pairs will not be 
known.  
 
These considerations imply that only isolates that belong to a known epidemiological 
cluster with a known transmission history can be used to construct separate distribution 
functions P(Δ|S0T0), and P(Δ|S0T0).  On the other hand, since {T0} = {S0T0} ∪ 
{S0T0}, there is less difficulty in constructing P(Δ|T0). It should be noted that this 
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situation is very different from the case of sample matchingA1 where the “archive” is only 
virtual and one can choose the labs, methods and batches from which samples are drawn 
so that their relationships are always known. 
 
Table A2.2.  Classification of islolate pairs corresponding to figure A2.1. 
Nod

e 
a b c d e f g h i j k 

a  S0T
0 

S0
T0 

S0T0 S0T0 S0T0 S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

b   S0T0 S0T0 S0T0 S0T0 S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

c    S0
T0 

S0T0 S0T0 S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

d     S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

e      S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

f Ke
y: 

     S0
T0 

S0
T0 

S0
T0 

S0
T0 

S0
T0 

g   Known S0T0  S0
T0 

S0
T0 

S0
T0 

S0
T0 

h   Known S0T0   S0T0 S0T0 S0T0 
i   Known S0T0    S0

T0 
S0
T0 

j   Unknown S0T0     S0T0 
k   Unknown S0T0      
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Appendix 3.  Washing 
 
A factor that complicates bulk analyses for residual growth medium components and 
similar material signatures is that repeated washing of the harvested agent during post-
growth processing can remove such signatures, producing false negative test results.  In 
example 4c it was assumed that common washing protocols would not very effective at 
removing heme due to its hydrophobic nature.  However, for water-soluble materials 
common washing protocols are more likely to have significant removal rates, and 
uncontrollable variations in the rigor of the washing process as well as the number of 
times it is repeated will have a greater affect on the ROC curve of the assay.  This raises 
the practical problem that assays for residual components of growth media are often 
limited in utility when only very small sample volumes are available for analysis.  It also 
raises a conceptual problem with validating such assays by sampling the unit process 
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matrix because of the “open ended” nature of washing protocols, which in effect, can 
have an unlimited number of repetitions.  
 
Consider an analysis for a particular analyte A that is a signature for growth on a 
particular medium M.  Let A0 be the hypothesis that A is present in the sample and A0 
the hypothesis that it is absent.  We will assume that the analysis for A is based on the 
measurement of some scalar quantity δΑ (e.g. a mass spectral peak height or area 
associated with a molecular fragment characteristic of A.)  For the sake of argument, we 
will assume that A0 is equivalent to M0, the hypothesis that medium M was used.  
 
Referring to the unit process matrix defined in section 4, the wash step effectively divides 
the population of processing methods into sub-populations that are defined by the number 
of times the washing step is repeated.  We will designate the number of repetitions 
associated with each sub-population as Nw.   
 
Given a value of Nw, the conditional probabilities P(δΑ|A0Nw) and P(δΑ|A0Nw) can be 
determined from samples that were grown and processed by different methods drawn 
from the unit process matrix, but always washed the same number of times.  A set of 
ROC curves, each for a different value of Nw could then be constructed.  Clearly one 
would expect that the higher the value of Nw, the less likely it would be to detect large 
values of δΑ  in  a  sample  of  a  given  size, because of systematic removal of A in the 
repetitively washed samples.   
 
However, this information by itself would not generally be useful for analyzing a 
questioned sample unless it were known how many times the sample had been washed.   
It is more likely that the number of wash steps is an unknown.  The composite probability 
P(δΑ|A0), which averages over the number of wash steps, is difficult to construct from the 
individual probabilities P(δΑ|A0Nw) because it requires an unknown weighting factor: 
 

P(δΑ|A0) = Σ P(Nw|M0)• P(δΑ|A0Nw)        
 
where the sum is over each value of Nw.  Clearly the probability P(Nw|M0) that a certain 
number of washes would be used given that the sample was grown on medium M is 
difficult to determine with any precision (although it might be estimated in principle by 
extensive testing among independent laboratories.)   
 
One solution to this problem is to find an independent metric δw that is correlated with 
the number of wash steps.  From the calibration curve of δw vs Nw (see appendix 1,) it 
would be possible to estimate Nw, and hence choose the appropriate ROC curve for the 
agar assay.  One example of a possible metric is the total organic carbon (TOC) content 
in the aqueous extraction medium used to extract A.  A more general solution would be 
to find a metric that is independent of the number of washes.  For example it is plausible 
that the ratio δA/TOC might be relatively independent of the number of washes because 
both δA and TOC are both proportional to the number of washes.  It is also possible that 
some micro-structural feature of the spores or bacteria depends on whether M is used to 
grow it, and would not be modified by washing.   



 46 

 
 


