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Abstract

Recent studies have shown that operating system (OS)
interference, popularly called OS noise can be a significant
problem as we scale to a large number of processors.
One solution for mitigating noise is to turn off certain OS
services on the machine. However, this is typically infeasible
because full-scale OS services may be required for some
applications. Furthermore, it is not a choice that an end
user can make. Thus, we need an application-level solution.
Building upon previous work that demonstrated the utility
of within-node light-weight load balancing, we discuss the
technique of weighted micro-scheduling and provide insights
based on experimentation for two different machines with
very different noise signatures. Through careful enumeration
of the search space of scheduler parameters, we allow
our weighted micro-scheduler to be dynamic, adaptive and
tunable for a specific application running on a specific
architecture. By doing this, we show how we can enable
running scientific applications efficiently on a very large
number of processors, even in the presence of noise.

1. Introduction

The emergence of multi-core clusters has brought great
promise to attaining better performance, but has also in-
troduced several challenges. One challenge is getting good
performance from a multi-core node without requiring a
large amount of effort by the application programmer. This
is a top priority for running applications on clusters with
nodes consisting of many cores.

There is also the broader issue of performance consistency
that arises for large-scale machines, which affects overall
performance. Recent studies have shown that inconsistent
performance on one node, most notably attributed to OS
interference or noise during computation, is amplified as
we scale to a larger number of nodes [1]–[3]. In particular,
for applications that involve several successive iterative time
steps with collective communication in between, localized
performance perturbations seen on one multi-core node can
be amplified across a large-scale cluster. This is because dur-
ing every time step, some processor is likely to experience
a noise event delaying all other processors at the collective

operation. Such noise amplification hinders scalability of an
application to hundreds of thousands of nodes.

Petrini et al. [1] raised the importance of the issue of
system noise through an in-depth study of the ASCI Q clus-
ter. Their study shows the impact of localized perturbations
through several performance tests that bring to light the
impact of cascading effects of noise amplification that accu-
mulate over several iterations of an application. There have
been follow-up studies on the impact of system noise on
several well-optimized applications, indicating the tension
and separation between OS services and application-specific
tuning done for an architecture [4]. Some research projects
such as FastOS have tried to develop light-weight operating
systems, which minimize localized system interference on
a compute node. Other solutions involve co-scheduling all
OS daemons simultaneously on all nodes, in an effort to
obtain more predictable performance. Finally, a recent study
done on the Cray XT5 machine at the Oak Ridge National
Laboratory shows that removing work from the most noisy
core of a node gives more predictable performance and
allows for achieving better application scalability [5].

Stripping away system services to solve the noise prob-
lem can, in some cases, degrade application performance.
Considering the case of a regular mesh computation, op-
erating system activity such as memory management may
actually provide performance benefits which the application
programmer may not otherwise be able to tune for. However,
if an OS service is turned off, the programmer may then
have to manually implement and tune the corresponding
functionality. The programmer’s manual optimization may
succeed for one particular machine, but if a new platform
(specifically, a new OS) is released, the programmer would
have to rewrite the code so that it is tuned for this new
operating system.

We suggest an alternative solution. Our solution involves
no modifications to the OS or to the underlying runtime.
We argue that a “higher-level” solution is needed to deal
with the problem of system-induced load imbalance. Our
specific strategy is to identify computation in the application
that can be broken down into fine-grained tasks, and then
dynamically schedule these fine-grained tasks through the
use of a queue shared across cores of a node. Yet, as soon
as we argue this, there are several obstacles that we must
address before we can claim this to be an acceptable solution



that programmers can make use of. First, dynamic schedul-
ing can destroy properties of locality that may have been
well-established in the original data parallel, i.e. statically
scheduled algorithm. Second, the overhead of pulling a task
from the queue can also cause dynamic scheduling to be
worse than static scheduling. The overhead often comes from
having to lock the task queue, to pull a task from it and
update the queue appropriately.

The cost of coherence cache misses incurred by a load
balancing technique, due to the arbitrary movement of data
from one core to another, is also of significant concern. The
cost of a coherence miss varies significantly from machine to
machine, and is often dependent on the memory hierarchy
of the machine. A single universal scheduler is often not
adequate for many scientific applications that are being used
today. To employ an effective scheduling strategy requires
tuning for a given architecture and operating system, in
a search space that has various discontinuities and is not
completely well-defined. For these reasons, much classic
literature on fundamental computations on dense matrices,
such as LU or QR factorization, or structured grid com-
putations, has avoided the dynamic scheduling of kernels.
Conventional wisdom tells one to use static scheduling and
domain decomposition techniques to get optimal perfor-
mance for such codes.

However, a preceding study that we did shows that
through careful tuning to keep the cost of dynamic schedul-
ing low while trying to minimize small-scale load im-
balances within a node, we can achieve more predictable
performance within a multi-core processor; this ultimately
allows for better scalability as we run on a larger number
of nodes [6]. The amount of dynamic scheduling we allow
is proportional to the duration of the characteristic system
noise of a machine. To keep the costs of scheduling low, we
use relatively simple information in the task data structures
which identify the thread on which a task ran on in a
previous time step of the application. We refer to this light-
weight application-level load balancing as micro-scheduling.

As discussed in our previous work, we use a simple load
balancer that uses dynamic scheduling to assign work to
processing elements when they are ready, but this is taken
one step further to make every effort to reduce overheads of
the scheduler, in particular to reduce performance penalties
due to coherence cache misses. Our initial work shows that
the performance improvement of an application is relatively
unnoticeable when running on a small number of nodes of
a cluster, but becomes much more dramatic as we scale the
application to a large number of nodes [6].

In this work, our key contribution is an augmentation of
our reactive, queue-based micro-scheduling approach with a
form of pro-active load-balancing1. Pro-active load balancers

1. Pro-active load balancing adjusts load before the application time step
begins, while reactive load balancing adjusts load during the time step.

can assign work to each core in proportion to its availability
w.r.t. OS services running on it. We refer to this augmented
load balancing strategy as weighted micro-scheduling. We
show the benefits, over our original solution, for aiding noise
mitigation by:

1) discussing an implementation of this technique that is
portable and efficient for regular computations.

2) validating our implementation’s efficiency by compar-
ing it against industry standard scheduling such as
OpenMP guided scheduling.

3) showing how we can tune our scheduler using a
weighted factoring approach [7] that assigns less work
to slower cores and more work to faster ones.

2. Architectures considered

The two architectures we consider are ORNL’s Cray XT5
machine (Jaguar) and TACC’s SUN constellation cluster
(Ranger). An in-depth performance comparison of the two
supercomputers is presented in [8]. Each node of Jaguar con-
sists of twelve cores, 16 GB of memory and generates a peak
flop rate of 124.8 Gflop/s. The nodes run a specific version
of the SuSE Linux operating system that has been optimized
by Cray. While Cray has not released the operating system
software as open-source, they claim to have tuned the kernel
to remove unnecessary OS services from compute nodes.

Each node of Ranger consists of sixteen cores, with a
peak flop rate of 147.2 Gflop/s per node. The frequency of
each core on Ranger is 2.3 GHz and allows for four floating
point operations per clock period. All cores within a node
share 32 GB of memory. In this case, the operating system
used is the Linux kernel (release 2.2) from kernel.org and
is open-source.

A characterization of system noise for the two systems,
Jaguar and Ranger was done through the use of a sequential
computation run for several thousand iterations on each core.
This represents the fixed work quantum (FWQ) method of
recording noise. The timings for the sequential computation
for each iteration on each core of the machine were recorded.
Figure 1 shows the minimum and maximum execution times
for the work quantum on 100 nodes or 1200 cores of Jaguar.
For most cores, the maximum time spent in execution is
several times the best execution period (14–15 µs). We can
also see the impact of two specific daemons of 100 µs and
200 µs durations respectively.

Figure 2 shows a similar plot of the minimum and
maximum execution times for 100 nodes or 1600 cores
of Ranger. In this case, the maximum execution times are
random for different cores, although, the spread is denser
in the 17–100 µs region. In order to get a better idea
of the distribution, the execution times for the sequential
computation for all cores across all iterations were placed
into 5 µs bins and histograms were plotted for the two
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Figure 1. System noise plotted against all ranks for a 100 node run on Jaguar
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Figure 2. System noise plotted against all ranks for a 100 node run on Ranger

machines (Figure 3). The labels on the x-axis are bin-
numbers, so a label “60” corresponds to a bin representing
execution time between 300–305 µs (also note that the scale
on the y-axis is logarithmic). For Jaguar (left), there are four
distinct peaks, last three of which possibly correspond to
specific daemons that have a high frequency. The Ranger
plot (right) shows a spread from 15–200 µs and then a
smaller distribution around 300 µs.

Given a completely noise-free machine and an application
that has no load imbalance, static scheduling and proper
domain decomposition techniques would be most effective.

Owing to the load imbalance induced by the operating
system, it is clear that some level of dynamic scheduling
can be beneficial. Several previous studies (dating back more
than 30 years) have shown dynamic scheduling to be ben-
eficial for machines that have unpredictable behavior. Yet,
the above characterization of the inherent noise on a system
suggests that traditional dynamic scheduling techniques are
not sufficient for applications whose performance depends
heavily on the architecture.

Each characteristic of the noise pattern of a particular
platform suggests a particular feature of a dynamic sched-
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Figure 3. Histograms for the execution time of a sequential computation performed to record noise events on Jaguar
and Ranger. The labels on the x-axis are bin-numbers.

uler. The above characterization confirms the benefits of the
solution proposed in [6]. When a platform has several differ-
ent noise events of different lengths, a dynamic scheduling
strategy with an assortment of task granularities can be used.
If there are only a few different noise events with relatively
similar durations, we can tune the task granularity. If the
frequency of a noise event is so high that there are multiple
noise events within an iteration, we can tune the ratio of
dynamic to static scheduling.

In order for a scheduling strategy to be effective, it is
crucial to take the constant cost of obtaining a task from
a queue into account. As described in [9], using multiple
queues can reduce synchronization overheads. The number
of queues used depends on the synchronization overhead on
an architecture. The use of multiple queues is one of the key
features of work-stealing in Cilk.

3. Load balancing techniques

Locality-sensitive scheduling aims to schedule work on
cores that executed this work in a previous time step. This
optimization aims to improve temporal locality, and has
been shown to provide benefits in [6]. The strictness of
locality constraints depends on the cost of a cache miss.
For applications with many iterative steps, locality-sensitive
scheduling can reduce the impact of cache misses.

Our basic scheduler [6] uses a queue to assign chunks of
work to cores. Each queue is implemented as an array of
pointers to data structures we refer to as tasklets. A tasklet
is a fine-grained piece of computation which keeps track of
its movement across cores of a node. A queue can consist of
an assortment of tasklets of different lengths. These tasklets
are dynamically scheduled across cores of a node, but are
aware of their movement across cores of a node.

In this work, we improve our technique by augmenting the
statically scheduled stage of the computation with weighted
scheduling. Our previous work assumed that a noise event

was equally likely to abduct any core of a node, and that
a dynamic scheduler could, in theory, handle noise events
of any duration and any frequency. Yet, short-duration, high
frequency events are fine-grained enough that the application
quantization of tasklets limits the ability to distribute the
noise across cores evenly. Our previous work did not handle
short-duration, high-frequency noise events specially.

We address the case when a core is continuously impacted
by short-duration, high-frequency noise events. We observe
that a core effectively becomes “slow” when there are
many such OS daemons that are bound to that particular
core and must be frequently time-sliced with the actual
computation. Due to the many different system services that
are running on that core, we observe that the core may have
a higher chance of performance degradation during a time
step. Finally, only a subset of cores tend to have several OS
daemons running on them, while the remaining are relatively
unoccupied with such system services [10]. If we know that
some cores are always slower than others (all of the time),
we can employ a strategy to offload some work from the
slow cores, and move that work onto faster cores.

Putting both techniques together, we use a prescriptive
load balancing technique in the first stage of the computa-
tion to mitigate system noise, followed by a reactive load
balancing technique in the second stage of the computation.
This strategy tries to reduce the amount of work done on
those cores that are heavily occupied by the OS services.

Using weighted scheduling, we obtain performance gains
when we are able to correctly (or nearly correctly) predict
which processors likely remain slow throughout the duration
of the application time step. This allows all processors on the
node to start their work at the same time in the subsequent
dynamic scheduling stage. If we know this information
before an application time step begins, we can reduce the
chance that the slow core(s) impacts the collective iteration
time across all cores. This can be done by using a form of
measurement-based load balancing as in Charm++ [11].



Weighted scheduling works well because it offloads work
proportionally to the speed of a processor. Its advantage
over dynamic scheduling arises from the fact that it involves
no dequeue overheads for locking and unlocking the work
queue. Weighted scheduling tries to enforce that the slow
core’s static section will not be the cause of time step
slowdown. If it was the cause of the time step slowdown,
the static section will essentially “protrude out”. In this
case, there is no way for the other cores to “steal” the
work from the static section. However, weighted scheduling
does also have its shortcomings. Noise events may not
necessarily be restricted to one, or a subset, of the cores
on a node. Thus, the predetermined weighted factoring will
serve little purpose. In addition, weighted scheduling does
not handle low-frequency, long-duration noise events. These
low-frequency, long-duration noise events that can happen
on any core are seen on both Jaguar and Ranger, and thus
should not be ignored.

The set of cores that are slow varies for different plat-
forms. Even for a particular platform, the set of cores that are
slow can change over the course of days or weeks. To handle
both of these issues, we run an initial loop with a square-
root computation to gather the speeds of each core before the
application begins. We also allow for adjustment of weights
during runtime, to handle the case when the speeds of the
cores change during execution of the program.

Also, for the dynamic stage, we make use of a more
systematic auto-tuning methodology to find the best sched-
uler parameters. The tuned parameters include the average
tasklet granularity and tasklet granularity distributions. Our
automated tuning is done in the form of a shell script that
runs before execution of the program. In the future, we hope
to make our auto-tuning more sophisticated.

4. Results

To assess the effectiveness of the proposed techniques, we
use a three-dimensional five-point stencil computation that
is described in [6]. The computation and its domain decom-
position for the MPI only (no pthreads) implementation is
shown in Figure 4. A one-dimensional slab decomposition
of the data array is done and a slab is assigned to each
MPI task. In the hybrid MPI+pthreads implementation, each
thread is assigned a portion of the slab as shown in Figure 5.
Each compute thread corresponds to a core of a node of
the cluster. Each MPI process corresponds to a node of a
cluster. We make note that there are ways to optimize the
process/thread aspect ratio, but we use the simplest one here,
as we see that tuning in this search space does not give a
large performance difference for our particular stencil code.2

2. This optimization is under a category of static auto-tuning strategies,
and is out of the scope of this study (at least for what want to investigate for
the time being). However, we do believe we can integrate such auto-tuning
techniques into our scheduler tuning.
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Figure 4. MPI domain decomposition used for the 3D
Stencil code.
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Figure 5. Hybrid MPI+pthreads domain decomposition
with static and dynamic micro-scheduling used for the
3D Stencil code

Figure 6 shows the MPI+pthreads implementation that
uses weighted scheduling in the first stage of the compu-
tation. Here, w denotes the weight of the work assigned to
a particular thread. We run the 3D stencil computation for
1000 iterations, and use a problem size of 64× 32× 64 for
each core, regardless of the machine we test on. By ensuring
that we consider a dense matrix with regular computation,
we can more easily isolate the problem of noise for different
machines. Below, we show how each of the two schedulers
perform with respect to the baseline static scheduling. We
also show a comparison to commercial schedulers, such
as OpenMP guided scheduling [12] and the TBB affinity
scheduler [13]. Through careful tuning of the parameters
shown in Figure 6 in our experimentation, we can obtain
significant performance benefits for the stencil application.

We now proceed to the discussion of the performance of
weighted scheduling, micro-scheduling, and our combina-
tion of the two schedulers. Figures 7 and 8 show the per-
formance of the stencil computation described above, using
the various schedulers on Jaguar and Ranger respectively.
On Jaguar, we ran the stencil code on up to 1024 nodes and
Ranger, we ran on up to 512 nodes.
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Figure 6. Hybrid MPI+pthreads domain decomposi-
tion used with weighted static and dynamic micro-
scheduling for the 3D Stencil code. The dynamic ratio
is denoted by r.

4.1. Weighted Scheduling

Running on 512 nodes of Jaguar, weighted scheduling
gives a benefit of 6% over the baseline static scheduling
(Figure 7). This is somewhat better than the performance
gain that micro-scheduling gives us. Since OS noise typically
affects a subset of the cores on a node [8], weighted
scheduling is primarily beneficial at the beginning of the
computation. By offloading work from the noisy cores of
Jaguar, we have provided a solution that is better than micro-
scheduling in the sense that it avoids dequeue overheads that
the non-noisy cores would otherwise have to suffer.

Running on 512 nodes of Ranger, weighted scheduling
gives almost no performance benefit over the baseline static
scheduling (Figure 8). There is a smaller benefit of weighted
scheduling on Ranger due to the fact that noise can oc-
cur on any core of a node, rather than being restricted
to a subset of cores. Note that unlike micro-scheduling,
weighted scheduling incurs no dequeue overheads. Weighted
scheduling will only incur idle time due to measurements
that may mispredict weights, or because of low-frequency
noise events that affect only a few time steps. Because our
scheduler is conservative, the performance loss of trying to
use weighted scheduling on Ranger is very low.

4.2. Micro-scheduling

To assess the effectiveness of tuned micro-scheduling, we
use an automated tuning to search for the best parameters
for the dynamic scheduler on each architecture. Micro-
scheduling provides for the most performance benefit on
Ranger, with 12% performance improvement on 512 nodes.
This is likely due to the fact that any core on a Ranger node
can get perturbed by a noise event, not a specific subset
of the cores. Because the noise interruptions occur over a
range of short and long durations, rather than over a fixed
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Figure 8. Performance of the stencil computation on
Ranger for various scheduling techniques.

duration, the task granularity cannot be determined ahead of
time. By using variable-sized tasks, we are able to handle
these variable-length noise events. It should be noted that
the use of variable-sized tasks resembles guided scheduling,
as implemented in OpenMP.

On Jaguar, the tuned micro-scheduling strategy is less
effective. The reason is that the noise events happen on only
some subsets of cores. These noise events are also probably
of higher frequency. While using variable sized tasks can
help address the issue of variable duration noise events, we
believe that our strategy of using variable-sized tasklets does
not help as much due to the fact that our implementation
is likely not tuned carefully. With further tuning of the
tasklet length distribution in the queue (effectively, finding
the right “assortment” of tasklet lengths), micro-scheduling
can provide for better performance on Jaguar. However, this
will require more investigation, and we leave this as future
work for now.



4.3. Weighted micro-scheduling

As the preceding sections show, noise that occurs sporad-
ically on any cores of a node can be mitigated by micro-
scheduling, and noise that is restricted to run on a subset of
nodes is well-mitigated by weighted scheduling. However,
in practice, production HPC clusters may not have a clear
distinction between the case of noise being focused on a
subset of the cores versus the case where noise occurs
sporadically on any core of a node [10].

For example, noise events on a production HPC cluster
may be more likely (rather than restricted) to occur on one
core than the other. Thus, using either of the schedulers
in isolation does not necessarily provide for significant
performance gains. To what extent can we combine these
two different schedulers to get the best of both worlds?
We now discuss the results obtained when we combine the
weighted scheduler and micro-scheduler.

On Jaguar, we observe that noise happens on some cores
more than others. Specifically, cores 0, 6, and 9 are slowest.
This is 3 out of the 12 cores that could potentially finish
late and cause a slowdown. By using weighted micro-
scheduling on 512 nodes of Jaguar, we get a performance
improvement of 12% over the baseline static scheduling.
This is significantly better than the performance we get with
using the weighted scheduler (7%) or the micro-scheduler
(9%). In this case, the knowledge that these cores are noisy
allows us to reduce the time for each time step. In addition,
dynamic scheduling handles low-frequency, small duration
noise events occurring on any core.

On 512 nodes of Ranger, weighted micro-scheduling
offers a performance improvement of 16.6%, which is a
slight improvement over the 14.1% improvement we get with
just micro-scheduling. All cores are almost equally noisy,
though core 0 has slightly more noise than other cores.
Weighted scheduling (offloading work from core 0) does
help to mitigate high-frequency, short duration noise on core
0. However, the benefit of weighted scheduling is still not
significant; the benefits obtained through micro-scheduling
still dominate in the results for Ranger.

A key observation we make here is that while weighted
scheduling is not very successful on Ranger, our combined
weighted micro-scheduler also does not hinder performance,
compared to the corresponding results for the weighted
scheduler or micro-scheduler. Thus, our solution of com-
bining weighted and micro-scheduling is portable; when we
do not have “slow” cores on a node, the weighted scheduling
portion of the combined weighted micro-scheduler does not
induce unnecessary overhead. Further, our scheduler will be
able to handle static and dynamic variations that are likely
to arise in future architectures due to semiconductor process
variation, cache error correction, etc.

5. Further experimentation

In this section, we present the impact of application
parameters on the performance of our scheduling techniques.
We focus on the memory accessed per iteration. In order
to isolate performance efficiency of our scheduler from
the efficiency of the MPI runtime, our experiments are
performed on one node.

5.1. Impact of computation per time step

We vary the length of the time step to identify the impact
of computational noise as we decrease the communication-
to-computation ratio. Figures 9 and 10 show the performance
for different time step lengths. We vary the length of the time
step by changing the number of times the stencil computa-
tion is repeated before doing an update with neighboring
processing elements (i.e. cores).
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As is seen in Figures 9 and 10, our strategies are com-
petitive with and seem to perform better than the standard
OpenMP guided scheduling. We expect to get better perfor-
mance with further tuning of our scheduler’s task granularity,
and through further enhancement of the support for locality.
In addition, we can make our technique more efficient by
using a more precise weighted factoring scheme.

When considering the baseline static scheduling, an ap-
plication with larger time steps seems to suffer less from
system noise. On both machines, the performance gains
using weighted micro-scheduling do not vary significantly
with more computation within the time step. On Jaguar, we
observe that the amount of computation within an applica-
tion time step does not make a significant impact on how
much benefit weighted micro-scheduling offers. A likely
reason that the amount of computation in the application
time step may make a difference for Jaguar is that high-
frequency short-duration noise bound to particular cores has
a relatively larger presence on this machine. Such noise will
persistently affect a core throughout the duration of the time
step. Thus the overall impact of noise on load imbalance
increases linearly with the amount of computation done per
time step.

5.2. Impact of memory accessed per time step

Figures 11 and 12 illustrate the impact of varying the
problem size in this stencil computation on each of the
machines. In the figures, the third cluster of bars from the
left indicates the baseline problem size. As is seen in these
figures, our strategies are again competitive with and seem to
perform better than the standard OpenMP guided scheduling.
By varying the problem size, we are able to test how time
for memory access impacts our strategy. Results on both
Jaguar and Ranger, with a very small problem size suggest
that system noise is clearly a factor in performance. The lack
of benefit for larger problem sizes is likely due to the fact
that performance is already impacted by memory bandwidth
limitation.

6. Discussion

This work builds on previous work that used our schedul-
ing techniques for hybrid MPI+pthread programs. We aim
to build a more acceptable strategy for use at the appli-
cation level. There are two methods behind each of these
techniques: the first is auto-tuning and the second is mea-
surements of performance taken from previous application
time steps.

Offline auto-tuning happens for the dynamic phase, while
online auto-tuning is used for the static region. Auto-tuning
is important because system noise typically does not change
during the execution of the program. For a long running
application, the subset of processing elements that are slower
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Figure 11. Impact of problem size on Jaguar for 3D
Stencil with different load balancing strategies.

 1

 10

 100

16x512x16 32x512x32 64x512x64 128x512x128

A
ve

ra
ge

 it
er

at
io

n 
tim

e 
(s

)

Size of stencil

Impact of problem size (Ranger)

static
µSched

wµSched
OMPguided

Figure 12. Impact of problem size on Ranger for 3D
Stencil with different load balancing strategies.

may change. Furthermore, if there is a large noise event that
spans several iterations, the scheduling techniques will serve
no benefit. In this case, we will need a measurement-based
load balancing technique such as in Charm++ [11] that adap-
tively adjusts to situations where cores are constantly slowed
down by operating system events, even across time steps.
We must move work away from those “slow” processing
elements.

Note that there is no pro-active load measurement in-
volved in our solution of weighted scheduling. An intelligent
load balancer like that in Charm++ uses sophisticated tech-
niques to implement load balancing strategies by collecting
load balancing information from previous iterations [14]–
[16]. The nature of load imbalance we have observed is not
very predictable. However, if we are able to find that there
is a pattern in the noise events, an intelligent measurement-
based technique that uses periodic load balancing may be
advantageous. Further, our technique can be used in conjunc-
tion with Charm++’s measurement-based load balancers.

Finally, we make a note that performance tuning a sched-
uler for a given operating system is a difficult task. If



applications are sensitive to the operating system that they
are running on, the argument for portable application code
is further justified.

The rapid pace of innovation of computer architectures
is clearly evident, and can change over just a year’s notice.
This requires one to continually re-tune application codes
for these new architectures. Unlike the pace of innovation
for architectures, an operating system can change under-
neath within weeks. Furthermore, operating systems are
programmed by humans. This further adds complications be-
cause humans make mistakes, thereby causing performance
(or correctness) bugs in kernel software.

7. Related work

There are several studies that provide an in-depth analysis
of noise and its impact on large-scale systems [1]–[3], [17],
[18]. Beckman et al. discuss a benchmark for quantification
of noise referred to as the selfish benchmark [19]. This
benchmark has enabled a more accurate and proper study
of noise in several follow-up studies, and has allowed one
to quantify noise on a system in a standardized fashion. A
study of the impact of noise for MPI applications was done
by Hoefler et al. [3]. This showed how noise can have a large
impact for a particularly large number of MPI processes.
This assessment of performance loss is done for several
key scientific applications, and many different experiments
are carried out to understand changes in performance as the
amount of system noise is increased.

Such studies have provided insight on how to mitigate
noise, and several studies show its usage. The study by
Petrini et al. of OS system services on ASCI Q investigates
how to mitigate noise [1]. Noise mitigation is achieved
through system service suppression i.e. the sources of system
noise (in the form of OS daemons) are identified, and
then each non-critical service is stripped away from the
machine. Stripping away OS services was key to enabling
better performance of ASCI Q. They also suggest using co-
scheduling to make existing noise more coordinated. Fur-
thermore, the study discusses several lessons learned from
their studies, particularly the impact that noise mitigation
solutions have on different classes of applications. A paper
on NAMD argues that effects of noise in the communication
sub-system can be mitigated by data-driven execution [20].
Not all applications can use this technique though. For some
applications, overlap of communication and computation
is not possible due to inherent strict dependencies across
application time steps.

The above solutions, particularly those discussed in Petrini
et al., are lower-level and specific to the platform used to
run the application. They not portable and general to enable
applicability to a larger class of machines and a larger
set of applications. As discussed in [6] and [9], a higher-
level solution is necessary to take advantage of the compute

power of emerging clusters of multi-cores. In particular,
the application programmer should have control over how
the application should be implemented, ensuring that noise
has minimal impact. In this work, we particularly suggest
that measurement-based load balancing can be used for
system noise mitigation, and use it to improve a dynamic
scheduling strategy implemented in [6]. Note that in order
for a scheduling strategy to be effective, it is crucial to
take the constant cost of obtaining a task from a queue into
account. As described in [9], using multiple queues can re-
duce synchronization overheads. The number of queues used
depends on the synchronization overhead on an architecture.

8. Conclusion

This work extends upon previous work that used hybrid
static+dynamic scheduling to improve performance of high-
performance scientific codes. The strategy allows processing
elements to start work whenever they are ready. Since each
architecture has different parameters of dequeue overhead
and cache miss penalty, etc., it is important to establish a
more general, portable solution that can tune itself, as well
as adapt to the changes in the operating system behavior
at runtime. A key lesson learned is that there is a plethora
of practical issues that must be resolved when doing this
research. First, the noise signatures for the two machines
we looked at are very different from each other. Second, the
implementation used for the dynamic scheduler may not be
most efficient, and requires more rigorous acceptance tests to
check that it works. Third, weighted scheduling does make
a difference as it can dynamically adjust weights when it is
clear that some processors are slower than others, possibly
because they are affected by high-frequency noise events.
The knowledge of which processing elements are more pre-
occupied with OS events can be used to reduce the chance
that statically scheduled work being executing by some core
will always finish later than that of the other cores. By
finding the right point at which to adjust weights, we can
provide more accurate and effective weighting scheme.

For future work, we plan to further experiment
with measurement-based load balancing, possibly using
Charm++. We hope that periodic load balancing will pro-
vide significant advantages for certain applications and can
further reduce dequeue overheads. We also hope to make
our auto-tuning more sophisticated and make choices such
as the average tasklet granularity and tasklet granularity dis-
tributions automatically. By using more advanced heuristics
for auto-tuning, we will be able to make our solution more
portable for a range of existing and future architectures.
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