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Summary 

Structured-illumination microscopy allows widefield fluorescence imaging with 

resolution beyond the classical diffraction limit. Its linear form extends resolution by a 

factor of two, and its nonlinear form by an in-principle infinite factor, the effective 

resolution in practice being determined by noise. In this article, we analyze the noise 

properties and achievable resolution of the method from a frequency-space perspective. 

We develop an analytical theory for a general case of linear or nonlinear fluorescent 

imaging, and verify the analytical calculations with numerical simulation for a special 

case where nonlinearity is produced by photo-switching of fluorescent labels. We 

compare the performance of two alternative implementations, using either two-

dimensional illumination patterns or sequentially rotated one-dimensional patterns. We 

show that one-dimensional patterns are advantageous in the linear case, and that in the 

nonlinear case two-dimensional patterns provide a slight signal-to-noise advantage under 

idealized conditions, but perform worse than one-dimensional patterns in the presence of 

non-switchable fluorescent background.  

 

Introduction  

The diffraction limit to the resolution of the light microscope has been well 

understood for more than a century (Abbe, 1873), and for most of that time has stood 

                                                 
 



 

 

unchallenged. Recently, several techniques have been demonstrated that can go beyond 

this limit. These techniques include near-field scanning (Betzig & Trautman, 1992); dual-

objective-lens methods such as 4-Pi (Hell & Stelzer, 1992) and I
5
M (Gustafsson et al., 

1995); highly nonlinear phenomena such as stimulated emission depletion (Dyba & Hell, 

2002) and other forms of reversible saturable optical transitions (Hell et al., 2003; 

Hofmann et al., 2005); and localization of photoactivated labels (Betzig et al., 2006; Hess 

et al. 2006; Bates et al. 2006).  Structured illumination microscopy (SIM) is one such 

method, which uses patterns of excitation light to encode otherwise unobservable 

information into the observed image. It has been used for resolution enhancement both in 

the axial (Bailey et al., 1994) and the lateral (Heintzmann and Cremer, 1998; Gustafsson 

et al., 2000; Frohn et al., 2000; Heintzmann et al., 2002; Gustafsson, 2005, Chung et al., 

2007) directions.  

The conventional diffraction limit defines a finite range of spatial frequencies that 

can be transmitted through a microscope. The limiting spatial frequency is determined by 

the wavelength of the light and the aperture of the objective lens. Structured illumination 

allows this limit to be extended by an amount equal to the spatial frequency of the 

illumination pattern (Gustafsson et al., 2000; Heintzmann et al., 2002; Gustafsson, 2005). 

Because the spatial frequencies that can be introduced into the illumination pattern are 

limited by diffraction in the same way as the observable frequencies, the lateral resolution 

can at most be increased by about a factor of two. This factor-of-two limit, however, 

applies only to the normal, linear case where the fluorescent emission rate is directly 

proportional to the excitation intensity.  Much larger increases in resolution are possible 

if the object response depends nonlinearly on the illumination intensity (Heintzmann et 

al., 2002; Gustafsson, 2005; Schwentker et al., 2007). If the emission rate per 

fluorophore is a nonlinear function of the illumination intensity, then the pattern of 

molecular emission rate will contain harmonics of the spatial frequencies of the 

illumination pattern, and in particular can contain higher spatial frequencies than can 

exist in any physical far field illumination intensity. Since there is no limit to the spatial 

frequency of the harmonics, there is no hard limit to the available resolution. The highest 

resolution achievable in practice is then limited only by the noise in the observed data.  

Possible nonlinear object response mechanisms include those used or proposed 

for resolution enhancement in point-scanning modes, such as stimulated emission 

depletion (Hell & Wichmann, 1994) and photo-switchable fluorescent molecules (Hell et 

al. 2003; Hell, 2003; Hofmann et al., 2005; Schwentker et al., 2007), as well as other 

phenomena that are ill-suited for point scanning, such as saturation of the excited state 

(Heintzmann et al., 2002; Gustafsson, 2005).  

A one-dimensional (1D) illumination pattern (parallel lines) only extends 

resolution in one direction. To extend resolution in 2D, there is a choice of approaches: 

either the 1D pattern is applied sequentially in a series of angular orientations 

(Gustafsson, 2000; Gustafsson, 2005), or a more complex 2D illumination pattern is used 

(Frohn et al., 2000; Heintzmann, 2003). It is not immediately obvious which choice is 

preferable. 



 

 

The main goal of this paper is to analyze the effect of noise on the resulting 

images in linear and nonlinear SIM of thin planar objects and derive theoretical limit of 

resolution in nonlinear SIM. Towards this goal we calculate the signal-to-noise ratio 

(SNR) as a function of spatial frequency, and compare the performance of 1D and 2D 

illumination patterns. In the end, we confirm the analytical results through computer 

simulations.  

Image formation and reconstruction 

Linear Structured Illumination 

In conventional linear fluorescent microscopy, the local emission density



Em (r )  at 

each point r of an object is proportional to the product of the local intensity of excitation 

light, 



I(r ) , and the local fluorophore concentration, 



S (r )  (i.e. the object structure to be 

determined): 



Em (r )  c
e
I (r ) S (r ) , (1) 

where 



S (r )  is measured in molecules/area, 



Em (r )  and 



I(r )  are measured in 

photons/(area  time), and the emission constant 
e

c  is the product of the fluorophore’s 

absorption cross section and quantum yield. This linear relation holds for conventional 

fluorescent markers at normal excitation intensities that do not saturate the fluorescence. 

The observed image, 



D( r) , is proportional to the convolution of the emission intensity 

with the microscope’s point spread function, 



H (r ) :   



D (r )  c
d
T H  Em (r )  c

e
c

d
T H  I S  (r ) , (2) 

where 



  denotes the convolution operation; 



D (r )  is measured in photons/area; the 

detection efficiency 
d

c  is the product of the microscope’s collection efficiency and the 

detector’s quantum efficiency; T  is the exposure time; and the point spread function is 

normalized to have a unit integral. However, not all spatial frequencies can be transmitted 

by the microscope. The region of frequency space where the optical transfer function 

(OTF), denoted by 



H (k )  and defined as the Fourier transform of 



H (r ) , is non-zero is 

called the “observable region,” or the “OTF support.” The observable region for a 

widefield fluorescence microscope (in two dimensions) is the interior of a circle of radius 



k
o
 2NA 

em
, where 




em

is the fluorescent emission wavelength and NA is the numerical 

aperture of the objective (Goodman, 2005).  

It is impossible to observe directly any information about those spatial 

frequencies of the light emission that lie outside the observable region. However, the 

structure of interest is not the emission 



Em (r )  but the object 



S (r ) , and it is possible to 

observe higher-spatial-frequency components of the object, by rendering them visible in 

the form of low-spatial-frequency moiré fringes with the structured illumination 

technique (Gustafsson, 2000). The mathematical principles of structured-illumination 

microscopy will be outlined in the remainder of this section. 



 

 

Consider an illumination intensity pattern that is sinusoidal in the lateral direction:  

 ) 2cos(1
2

)(
0   rpr

I
I , (3) 

where 



r  ( x , y )  is the position vector, 



p  is the wave vector of the pattern, and   is its 

phase. We can determine which spatial frequencies are observable, by Fourier 

transforming Eqs. (2) and (3) and applying the convolution theorem:  



ˆ D (k )  c
e
c

d
T  ˆ H (k ) ˆ I  ˆ S  (k )  (4) 



ˆ I (k ) 
I

0

2
 (k )  1

2
 (k  p )e

 i
 1

2
 (k  p )e

i

 , (5) 

where )(k  denotes the Dirac delta function, carets (^) indicate the Fourier transforms of 

the corresponding real-space quantities, and 



k  (k
x
, k

y
)  is the reciprocal space coordinate 

vector. Substituting Eq. (5) into Eq. (4), and performing the convolution, we obtain the 

Fourier transform of the observed image: 



ˆ D (k )  c
e
c

d
T

I
0

2

ˆ H (k ) ˆ S (k )  1

2

ˆ S (k  p )e
 i

 1

2

ˆ S (k  p )e
i

  (6) 

The second and third terms in Eq. (6) correspond to information that has been shifted in 

reciprocal space by vectors 



p  and 



 p  respectively.  

The presence of the factor 



ˆ H (k )  in Eq. (6) indicates that the observed image, 



ˆ D (k ) , in reciprocal space can be nonzero only for points within the support of the OTF 



ˆ H . As 



k  ranges over that region, the first term of Eq. (6) contributes the normally 

observable information, but the second and third terms contribute information that 

originates from two other regions of the same shape as the OTF support, but centered at 



 p  and 



p , respectively, shown as light blue circles in Fig. 1a. Part of those regions lie 

outside the OTF support and thus represent normally unobservable high-frequency 

information that has been made visible in the form of low-frequency moiré fringes.   

It is not possible to separate the contributions from the three terms of Eq. (6) 

based on only a single image. However, three observations with different values of 



  

will normally supply three independent versions of Eq. (6), enabling the separation of the 

three contributions.  

By the above process, one can obtain extended-resolution information in one 

direction (Fig. 1a, light blue circles). Nearly isotropic high-resolution information can be 

obtained by repeating the same process for other orientations of the illumination pattern 

(Fig. 1b), or alternatively by using a two-dimensional illumination pattern and shifting it 

in two directions (Fig. 1c). The new information can be used to produce a numerical 

reconstruction with a resolution that exceeds the classical diffraction limit by an 



 

 

amount



p . Thus, to obtain the highest possible resolution, one should use an illumination 

pattern with the highest possible spatial frequency. Unfortunately, the illumination 

pattern frequency is subject to the diffraction limit in the same way as the observable 

frequencies are. If the numerical aperture of illumination is the same as that of 

observation, the illumination pattern frequency 



p  cannot exceed 



p
max

 2NA 
illum

 k
0
. 

The new resolution limit is then 



k
0
 p

max
 2 k

0
. Hence, by using linear structured 

illumination we can at most double the resolution of the conventional wide-field 

fluorescence microscope.  

 

Nonlinear Structured Illumination 

Dramatically greater increases in resolution are possible if the fluorophore 

emission rate can be made to depend nonlinearly on the illumination intensity 

(Heintzmann et al., 2002; Gustafsson, 2005; Schwentker et al., 2007): 



Em (r )  F I(r ) S (r )  G (r )S (r ) , (7) 

where the function  IF  describes the nonlinear response of the fluorophore emission to 

the illumination intensity, and 



G (r )  F I (r )  is the local emission rate per molecule. In 

general, the nonlinearity 



F  can be expanded in a power series: 



G (r )  F I (r )   a
0
 a

1
I (r )  a

2
I

2
(r )  a

3
I

3
(r )   (8) 

If the illumination pattern 



I(r )  is sinusoidal with a spatial frequency 



p  [Eq. (3)], 

the quadratic and higher powers in Eq. (8) will cause 



G (r ) to contain harmonics at 

multiples of 



p : 



G (r )  b
0
 2b

1
cos( 2p  r   )  2b

2
cos( 4 p  r  2 )  2b

3
cos( 6p  r  3 )   , (9) 

 

where the coefficients 
m

b  can be calculated from Eqs. (3) and (8) for any given 

nonlinearity 



F . When the phase  of the illumination pattern is equal to zero, the 
m

b  are 

equal to the coefficients of the cosine Fourier series of the (periodic and even) function 



G . If the nonlinearity 



F  is non-polynomial, both the power series (8) and the Fourier 

series (9) will contain an infinite number of terms. 

The Fourier transform of the emission rate pattern [Eq. (9)] is 



ˆ G (k )  b
0
 (k )  b

m
 (k  mp )e

 im 
  (k  mp )e

im 

 
m 1



  b
m
 (k  mp )e

 im 

m  



 , (10) 

where, for simplicity of notation, the coefficients have been defined also for negative m 

by 



b
 m

 b
m . The reciprocal-space image becomes [using Eqs. (10) and (4) modified by 

Eq. (7)]: 



 

 



ˆ D (k )  c
d
T  ˆ H (k ) ˆ G  ˆ S  (k )  c

d
T  ˆ H (k ) b

m

ˆ S (k  mp )e
 im 

m  



 . (11) 

 

The image intensity 



ˆ D (k )  is thus a weighted sum of information contributions from an 

infinite number of spatial frequencies 



(k  m p ) . If the observations were noiseless, Eq. 

(11) predicts that we could obtain infinite resolution. In reality, only a finite number of 

terms in Eq. (11) rise above the experimental noise. Hence this sum can be truncated to a 

finite number of terms, 



m  N , where N is the index of the last significant term in the 

sum.  

Given that there are only (2N+1) significant terms, we can separate the 

contributions of (2N+1) different information components 



ˆ S (k  Np ), , ˆ S (k  p ), ˆ S (k ),  



ˆ S (k  p ), , ˆ S (k  Np )  by collecting )12( N  images with different values 




j
of the 

phase of the illumination pattern, and solving a system of linear equations that have the 

form of Eq. (11) except that the sum ranges only from -N to N. A natural choice for the 

phases 




j
 is a set of equidistant values on the interval ]2,0[  : 

 




j
 j

2

2 N  1
 ,  



j  0, ,2 N  . (12) 

With equidistant phases, the linear system Eq. (11) becomes very simple: the sum 

on the right hand side is the discrete Fourier transform of the sequence 



b
 N

ˆ S (k  Np ), ,b
1

ˆ S (k  p ), b
0

ˆ S (k ), b
1

ˆ S (k  p ), ,b
N

ˆ S (k  Np ) . Note that this Fourier 

transform is performed along the index j of the phase value , not along any physical 

dimension. We can therefore separate the different information components of the 

observed object through an inverse discrete Fourier transform of the 12 N images: 



b
m

ˆ H (k ) ˆ S (k  m p ) 
1

c
d
T  2 N  1 

e
imj  0

j  N

N

 ˆ D 
j
(k )  , (13) 

 

where 




0
 2 /( 2 N  1) , and 



ˆ D 
j
 is the image observed when illuminating with the 

pattern phase 
0

 j
j
 . We define the concise notation for the separated information 

components: 



ˆ R 
m

(k  mp )  b
m

ˆ H (k ) ˆ S (k  mp ) ,     NNm ,,  (14) 

 

for later use.  

Using one-dimensional illumination patterns, as discussed so far, allows us to 

obtain high resolution in only one direction, that of the pattern wave vector 



p  (Fig. 1a). 

As in the case of linear SIM, effectively isotropic high resolution can be obtained by 

rotating the illumination pattern to a series of orientations and repeating the 

reconstruction process (Fig. 1d). 



 

 

 The goal is to determine the object information )(ˆ kS , the Fourier transform of 

the object fluorophore density, at each point k  of reciprocal space. Ignoring noise for the 

moment, Eq. (14) yields one estimate 



ˆ S 
m

(k )  of 



ˆ S (k )  for each m and each pattern 

orientation: 

 



ˆ S 
m

(k ) 
ˆ R 

m
(k )

b
m

ˆ H (k  mp )
 . (15) 

Each such estimate is valid in the circular region 



k  mp  k
0
of reciprocal space where 



ˆ H (k  mp )  0  (Fig 1a). Many of these regions overlap so that there is more than one 

estimate of 



ˆ D (k )  at the same point 



k  (Fig. 1d). The noise-optimal way to combine 

independent measurements of the same unknown is through a weighted average, in which 

each measurement is given a weight inversely proportional to its noise variance 

(Papoulis, 1991). One may also reduce the redundancy of the measurements, and the 

number of exposures, by setting up an extended system of equations for separating the 

components (Heintzmann, 2003). 

We show in the next section that the noise variance of 



ˆ R 
m

(k )  is independent of 

both 



k  and m. The noise variance of 



ˆ S 
m

(k )  is therefore inversely proportional to 



b
m

ˆ H (k  mp )
2

 (because a constant factor 



c  multiplying a stochastic variable changes the 

variance by a factor 



c
2

), and the noise-optimal weighted average becomes 



ˆ S 
optimal _ average

(k ) 

ˆ R 
m

(k )

b
m

ˆ H (k  mp )









bm

ˆ H (k  mp )
2



b
m

ˆ H (k  mp )
2




b
*

m
ˆ H 

*
(k  mp ) ˆ R 

m
(k )

b
m

ˆ H (k  mp )
2


, (16) 

where the sums are taken over all pattern orientations as well as over the index m. 

The weighted average in Eq. (16), a direct linear inverse filter without 

regularization, is highly unstable in regions where its denominator approaches zero. To 

regularize the estimate, Eq. (16) can be turned into a generalized Wiener filter (Goodman, 

2005) by introducing a Wiener parameter 




2  in the denominator (Gustafsson, 2000, 

2005): 



ˆ S 
r
(k ) 

b
*

m
ˆ H 

*
(k  mp ) ˆ R 

m
(k )

b
m

ˆ H (k  mp )
2

 
2


, (17) 

 where 



ˆ S 
r
(k ) is the regularized estimate of the object information



ˆ S (k ) . An estimate of the 

object in real space can be obtained by an inverse Fourier transform of



ˆ S 
r
. 



 

 

The number of orientations of the 1D illumination pattern is usually chosen to 

balance the coverage of the observable region against the total sample exposure.  With 

more orientations, the overlap between adjacent information components near the edge of 

the enlarged observable region (Fig. 1d) will be stronger. A weak overlap will mean a 

small value of the denominator of Eq. (16) in the overlap regions, which leads to a low 

signal-to-noise level there as described in the Noise section.  One natural choice would be 

to make the smallest azimuthal overlaps, those between information components with 

maximal values of 



m  and consecutive orientations, equal to the radial overlaps between 

information components with consecutive values of m. This would make the number of 

illumination pattern orientations, 
dir

N , approximately equal to 



N . We instead use 



N
dir

 2 N  1 , which makes the total number of exposures for a given attempted 

resolution equal in both methods using rotated 1D patterns and 2D patterns. 

An alternative to using rotated 1D patterns is to use a 2D illumination pattern 

(Heintzmann, 2003). We discuss the possible illumination patterns in Appendix A. In this 

paper, we will use a cross-polarized 4-beam pattern which we believe to be optimal 

choice for achieving high and nearly isotropic resolution.  

Four beams, symmetrically arranged, can be thought of as two beam pairs, one 

pair in the x and one in the y direction (Fig. 2g). One beam pair by itself would produce a 

1D sinusoidal illumination pattern exactly as happens in the 1D case. In order for that 

interference pattern to have true intensity zeros, its two beams must be s-polarized (Fig. 

2a). With both pairs s-polarized (Fig. 2g), they will not interfere with each other, since 

their electric fields in the object will be orthogonal. Each pair will therefore produce an 

independent 1D sinusoidal pattern, as in Eq .(3), and the total pattern will be the 

incoherent sum of these two orthogonal 1D patterns: 



I ( x , y ) 
I

0

2
2  cos( 2px  

x
)  cos( 2py  

y
)      (18) 

 

Here 
x

  and 
y

  are the phases of the pattern in the two orthogonal lateral directions (Fig. 

2i), and we have assumed that the x and y patterns have the same spatial frequency



p . 

The parameter 



I
0
is defined as the maximum intensity for each 1D pattern, in analogy 

with Eq. (3); the maximum intensity of the 2D pattern is 



2 I
0
 compared to 



I
0
 for the 1D 

pattern [Eq. (3)].  

The same analysis as was described for the 1D case results in the following 

expression for the observed image in reciprocal space: 



ˆ D (k
x
, k

y
)  c

d
T  ˆ H (k

x
, k

y
) b

mn
e

i m x  n y 

n

 ˆ S (k
x
 mp , k

y
 np )

m

  (19) 

 

With a 2D pattern, we can obtain high-resolution information in all directions by using 

only translations (phase shifts) of the illumination pattern without any need for rotation. 

As in the 1D case, we only need to consider a finite number of terms in Eq. (19), with 



n  N  and 



m  N . To separate the 



(2N  1)
2  information components, we must acquire 



 

 



(2N  1)
2  images, for all combinations of the phases 




x
 and 




y
, each ranging from 0 to 



2  in (2N+1) steps. The reconstruction process for 2D illumination patterns is otherwise 

nearly identical to that for 1D patterns, and yields the following expression for the 

regularized object information estimate: 
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where 
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and 



D
jl
 is the image observed when illuminating with the pattern phases 




x
 j

0
 and 




y
 l

0
. 

In the next sections, we use analytical derivations and computer simulation to 

analyze and compare the signal-to-noise properties of one- and two-dimensional 

illumination patterns. 

 

Noise 

In the previous section, the observed image was treated as a continuous function. 

Actual electronic recording of wide-field microscopy images is typically done with a 

pixelated detector, such as a CCD camera. The expected number of photons recorded in 

pixel number s is 



D
s
 D (r )dr

pixel s

  A
pix

D (r
s
)  (22) 

where 



A
pix

 is the area of one pixel, and 



r
s  is the position of pixel s, both referred 

to object space. Conveniently the integration over a pixel (with a given pixel form factor) 

near the sampling coordinates can also be interpreted as a convolution of the continuous 

function with the form factor kernel prior to being sampled at delta-shaped positions. 

This convolution translates to a multiplication in Fourier space. As the ideal (noise free) 

signal is band limited, this extra multiplication in Fourier space can be interpreted as a 

simple multiplicative change of the optical transfer function. If sampled at or above 

Nyquist frequency the kernel will have its first zero at or above twice the limit of the 

discrete Fourier transform. The modification to the OTF is thus minor and not altering the 

support, but may introduce a slight deviation from circular symmetry and therefore 

should be included in reconstruction algorithms, if theoretically determined PSFs/OTFs 



 

 

are used. Thus the results derived for continuous frequency-space quantities in the 

previous sections can therefore be applied directly to the discrete quantities and we will 

retain the continuous-variable notation 



ˆ f (k )  for clarity.The measured image is not 

perfect, but is degraded by noise originating in the camera electronics (readout noise) and 

in inherent statistical variations in the photon counts (shot noise). Whereas readout noise 

has a variance that is independent of the measured intensity, the shot noise follows a 

Poisson distribution with variance equal to the expected number of detected photons in 

that pixel. We can write the number of photons recorded in the noisy image as: 



D 
s
 D

s
 

s
 

s
 (23) 

 

where 




s
 is the shot noise and 




s
 the readout noise in pixel 



s , and 



D
s
 is the ideal, 

noiseless observation described by Eqs. (2) and (22). 

Next, we calculate how noise propagates into the reconstruction (the object 

estimate) from the noise in the observed images. Because we have defined the image in 

units of detected photons, the variance of the shot noise in each pixel is simply equal to 

the expected image value in the same pixel: 



Var (
s
)  D

s
 (24) 

 

In reciprocal space, the variance of the shot noise 



ˆ (k )  at a given point 



k  (defined to be 

]))([()(
*

  EVar , where ‘*’ denotes complex conjugation) can be calculated 

by explicitly writing out the definition of 



ˆ   as the discrete Fourier transform of 



 : 



Var ( ˆ (k ))  Var e
2  ik  rs

s
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
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2  ik  rs
2

Var 
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s

  D
s

s

  Q  (25) 

 

where 



Q  is the total expected number of detected photons in the entire image, and we 

have used the facts that the shot noise is independent from pixel to pixel, that variance is 

additive in sums of independent variables, and that constant factors in front of stochastic 

variables enter into the variance of those variables as squared magnitudes.  

Eq. (25) is a remarkably simple result: the shot noise variance of the Fourier 

transform of each raw data image has the same value at every point, and is equal to the 

total expected number of detected photons in the whole image.  

The frequency-space variance due to readout noise can be found similarly: 



Var ( ˆ (k ))  Var e
2  ik  rs

s

s










 Var 

s 
s

  N
pix


ro

2
 (26) 

 

where 



N
pix

 is the number of pixels, and 




ro  is the root-mean-square readout noise, in 

photon units, of each pixel. 



 

 

The image reconstruction process (Eqs. (13), (14), (17), and (20)) is linear, so the 

effect of the noise on the estimated object will also be linear. Applying Eqs. (13) and (14) 

to the noisy image data 



D  yields a noisy version of the separated information 

components 



ˆ R 
m

: 



ˆ R 
m

(k )  ˆ R 
m

(k )  
m

(k ) , (27) 

with the noise term 
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 , (28) 

where 



ˆ 
j
(k )  and 



ˆ 
j
(k )  are the Fourier transforms of the noise parts of the j

th
 raw data 

image. 

 In the presence of noise, the object estimate for 1D illumination patterns [Eq. 

(17)] becomes: 
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r
(k ) 

b
*

m
ˆ H 

*
(k  m p ) ˆ R 

m
(k )  

m
(k ) 

b
m

ˆ H (k  m p )
2

 
2


 ˆ S 

r
(k ) 

b
*

m
ˆ H 

*
(k  m p )

m
(k )

b
m
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2


,   (29) 

where the sums are taken over orientations as well as over the index 



m .  

The noise variance of )(k
m

  is easily calculated from Eqs. (28), (25), and (26):  
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 (30) 

for all m . Thus, all the separated image components 



ˆ R 
m

 have the same noise variance. In 

Eq. (30), 



Q
j
 is the total expected number of detected photons in the j

th
 raw data image, 

and 



Q
avg

 is the expected average number of detected photons per image [specifically, 

averaged over the sequence of (2N+1) raw data images for one orientation]. 

For 2D illumination patterns, the noisy estimate of the object is found in a similar 

way [see Eq. (20)]: 
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where 
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is the noise in the 2D separated information components, and 



ˆ 
jl

( k
x
, k

y
)  and 



ˆ 
jl

( k
x
, k

y
)  

are the Fourier transforms of the noise parts of the raw observed image labeled (j,l). 

The argument used to derive Eq. (25) is valid for any raw data image, and thus 

applies to the 2D as well as the 1D case: 

 
jl

s

sjlyxjl
QDkkVar   )(),(ˆ r , (33) 

where 



Q
jl
 is the total expected number of detected photons in image (j,l). The variance of 

the noise in the separated information components is then 
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where 



Q
2 Davg

 is the average expected number of detected photons per image over the 2D 

sequence of (2N+1)
2
 two-dimensionally phase-shifted raw images. 

The photon averages 



Q
avg

 and 



Q
2 Davg

 are related in a simple way to the parameter 



b
0
, which is defined as the zero-frequency term in the Fourier expansion of the emission 

rate pattern 



G (r )  [Eq. (9)], or, in other words, as the average emission rate per molecule. 

To see this relation, first note that the average image over the phase-shift series is equal 

to )( 
0

rRTc
d

, by the real-space equivalent of Eqs. (13) and (14) for m=0. Then note that 

the sum of the photon counts across the image is equal to the zero-frequency value of the 

discrete Fourier transform of that image. Thus 



Q
avg

 is equal to )(ˆ 
0

0RTc
d

, which, by Eq. 

(14), is equal to )(ˆ)(ˆ 
0

00 SHbTc
d

, which in turn equals )(ˆ 
0

0SbTc
d

 since the optical 

transfer function 



ˆ H (k )  is normalized such that 



ˆ H ( 0 )  1 . The quantity 



ˆ S (0)  has a simple 

interpretation: it represents the total number of fluorophore molecules in the field of 

view. The expression )(ˆ 
0

0SbTcQ
davg

  is unsurprising; it simply states that the expected 

number of photons detected in the image (



Q
avg

) equals the product of the number of 

molecules present [



ˆ S ( 0 )], the average emission rate per molecule (



b
0 ), the exposure time 

(T ), and the detection efficiency (
d

c ). Similarly for 2D patterns, 

)(ˆ )0,0(ˆ 
00002

0SbTcRTcQ
ddDavg

 . Substituting these values into Eqs. (30) and (34) 

yields 
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where we have suppressed the index m, since 



Var 
m   is independent of m. 

From Eqs. (29) and (31) it follows that the variance of the noise in the estimated 

object in reciprocal space is given by: 
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where sums are taken over all the terms involved in the reconstruction of the full image in 

Eqs. (17) and (20): in the 1D case the terms from all the pattern orientations as well as all 

values of the index m are included, and in the 2D case the sums run over all indices (m,n). 

In practice, the regularized object estimate, Eqs. (17) and (20), may be multiplied 

by an apodization function before being transformed back to real space, to soften the hard 

edge of the enlarged observable region, which could otherwise lead to ringing artifacts in 

the reconstruction. Such apodization has no effect on the signal-to-noise ratio at any 

given point 



k  of reciprocal space, because signal and noise at that point would be 

multiplied by the same number. For the same reason, the signal-to-noise ratio in 

reciprocal space is also independent of the Wiener constant 




2 . For purposes of signal-

to-noise calculations in reciprocal space we can therefore set 




2 =0. The noise in the 

reconstructed object estimate [Eq. (36)] then simplifies to 
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for 1D pattern and similarly for the 2D pattern. Substituting Eq. (35) into Eq. (37) and 

taking the square root, we obtain the standard deviation of the noise: 
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where the sum is again taken over the full 2D array of information components in the 2D 

case, and over both phase shifts and pattern orientations in the 1D case. 

The two parts of Eq. (38) differ only (apart from the purely notational distinction 

between 



b
0
 and 



b
00

) in that the factor 



2N  1   is replaced by 



2 N  1 
2

 in the 2D case. In 

each case, the factor represents the number of images involved in a single Fourier-based 

separation operation. We can formulate the result in Eq. (38) as a single expression that 

covers both the 1D and 2D cases above (as well as other alternative 2D methods to be 

discussed in the Linear structured illumination imaging section) by defining 



N
ph

 to be 

the number of phase shifts (and thus raw data images) involved in a single Fourier-based 

separation and 



N
dir

 to be the number of repeats, such as at different pattern orientations, 

of that separation; and adopting the notation 



b
0
 for the zero order coefficient in 2D as 

well as 1D methods. For example, in the 1D case above 



N
ph
 N

dir
 2 N  1, whereas in 

the 2D case 
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2
 and 



N
dir

 1 . If we let 
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Experimentally, readout noise can be largely eliminated by using electron 

multiplication CCD cameras (albeit at the cost of doubling the shot noise variance 

(Robbins & Hadwen, 2003), which here can be modeled by decreasing the value of the 

detection efficiency 
d

c  by half). If readout noise can be neglected, Eq. (39) can be 

simplified to 



SNR (k )  




ˆ S (k )

ˆ S (0 )

c
d
T
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b
u

ˆ H (k  p
u
)

2

u 1

N ph N dir



N
dir

b
0

. (40) 

where 



T
tot

 N
dir

N
ph

T  denotes the total exposure time for the entire data set. In the rest of 

this article, we will assume that readout noise has been eliminated, and thus use Eq. (40). 



 

 

The first factor in Eq. (40) describes a property of the object itself; it expresses the 

unsurprising fact that a structure of given strength [i.e. with a given 



ˆ S (k ) ] is harder to 

detect if the environment is crowded or contains background (i.e. contains a large total 

amount 



ˆ S (0)  of fluorophore). The second factor simply states that the photon statistics 

are improved by detecting light more efficiently, and by exposing longer (assuming that 

the object tolerates it). The 



k -dependence of the third factor in Eq. (40) can be thought of 

as an “effective transfer function” that describes the relative signal-to-noise properties of 

different points of reciprocal space. 

The factor 



N
dir

 in the denominator of the third factor might at first glance seem to 

imply that, for a given total exposure time 
c

T , the 1D approach degrades signal-to-noise 

ratio by a factor 



1 N
dir

. That conclusion would be false, however, because the 

coefficients 



b
u
 that also occur in this factor are quite different for 2D than for 1D 

patterns, as we shall see in the section on switchable labels, and in some situations more 

than compensate for the factor 



1 N
dir

. It is also instructive to consider how the 

rotationally RMS-averaged SNR depends on 



N
dir

 (assuming for simplicity that the factor 



ˆ S (k )  is independent of angle). During rotational averaging, the sum 
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b
u

ˆ H (k  p
u
)

2

  

accumulates 



N
dir

 contributions from the 



N
dir

 pattern orientations and thus becomes 

proportional to 



N
dir

; this factor cancels the factor 



N
dir

 in the denominator. The 

rotationally RMS-averaged SNR is thus independent of the number of pattern 

orientations in the 1D mode. Perfect isotropy could in principle be achieved without noise 

penalty by letting 



N
dir

  , under our assumption that readout noise can be neglected. 

The linear reconstruction method described in this article produces the least-squares 

estimate of the fluorophore density in the object given the assumption of equal variance 

over space in the data (i.e. a lot of out-of-focus light). Therefore, the results for the 

signal-to-noise ratio in the object reconstruction applies equally to any other 

reconstruction method (e.g. iterative) that computes the unconstrained least-squares 

estimate with equal weights. However, it should be noted, that iterative (e.g. maximum 

likelihood based) approaches considering the Poisson statistics of photon noise and the 

spatially varying variance may achieve better reconstruction results with enhanced signal 

to noise ratios. 

 

Nonlinear imaging with photo-switchable fluorescent labels 

A promising method for achieving non-linear response in fluorescent imaging is 

to use reversibly photo-switchable fluorescent labels (Hell, 2003; Hofman et al., 2005). 

Examples of such labels include chemical fluorophores such as diarylethenes (Irie, 2002) 

and spirobenzopyrans (Sakata et al., 2005); switchable proteins of the GFP (Lukyanov et 

al., 2000, Ando et al., 2004) and phytochrome (Tu & Lagarias, 2005) families; and 

cyanine-dye pairs (Bates et al., 2005). Each such label (typically consisting of a single 

molecule or molecule pair) has two states – the “on” state in which the label fluoresces 

when illuminated at the excitation wavelength
ex

 , and the “off” state in which the label 



 

 

does not fluoresce. Labels can be switched from the on to the off state by illumination 

with light of wavelength
off

 , and switched back from the off to the on state by 

illumination at wavelength




on

. For most practical labels, 




ex

 equals either 




on

 or 




off

 (or, 

more precisely, the spectrum for fluorescence excitation is similar or identical to the 

activation spectrum for one direction of photo-switching). We will assume three separate 

wavelengths here, and in a later section discuss issues that arise if 




ex

 equals 




on

 or 




off

. 

An ideal switching process may be modeled in the following way. Consider an 

object with density 



S r   of switchable fluorescent labels, which have all been switched to 

the on state initially. Next, the object is illuminated with off light with an intensity pattern 



I
off
r  for a time interval T . Immediately afterward, the remaining density of on labels 

is: 

)()(
)(

rr
r

SeS
offoff Ic

on



 , (41) 

where the parameter
off

c  is the product of the off exposure time T  and the off-photo-

switching cross section. If this sample is now observed under spatially uniform excitation 

light with intensity 



I
ex

, the emission from the object will be 



Em (r )  c
e
I

ex
S

on
(r )  c

e
I

ex
e
 c off I off ( r )

S (r )   F I
off

(r ) S (r )  (42) 

By comparing Eqs. (7) and (42) we see that the switching can play the role of the 

nonlinear fluorescent response discussed in previous sections. 

In the above description, nonlinearity was created by saturating the on to off 

transition; alternatively the off to on transition could be used in the same way, but that 

choice generally leads to a higher total on population, and thereby to higher noise. We 

will therefore use the on to off transition in this article. 

For the specific case of a sinusoidal pattern of off light [Eq. (3)], one can derive 

closed form approximate expressions for the fraction of the labels that will remain in the 

on state, and for the coefficients 



b
m . These expressions are valid when the off light 

intensity is strong enough that labels remain in the on state only in small neighborhoods 

around the zeros of the off light intensity pattern )( xI
off

. This is the relevant regime for 

high-resolution imaging, which makes it clear that the pattern must have clean intensity 

zeros to be useable, as was mentioned earlier. In this regime, we can approximate the off 

light intensity, in a neighborhood around each intensity zero, by taking the first term in 

the power series expansion of )( xI
off

 around that point: 



I
off

( x ) 
I

0

2
1  cos 2px      I

0

2px   
2

4
  (43) 

for x near the point where 



2px    0 . In that neighborhood, therefore, the local 

emission rate



G ( x )  (see Eq. (8)) can be well approximated by a Gaussian: 
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,  for 



  2px     , (44) 

where we have defined the ”saturation level” 



  c
off

I
0
, which measures the factor by 

which the photo-driven onoff transition of the fluorophore has been saturated at the 

peak intensity points of the illumination pattern. Because the illumination pattern is 

periodic with period 1/p, we can extend this approximation to the full space by repeating 

expression (44) periodically: 
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Figure 3 illustrates the good agreement between the exact and approximate expressions 

for 



G ( x ) , even for a moderate saturation level of 



  10 . In the regime of moderate to 

high 



 , the pattern 



G ( x )  of emission rate per fluorophore consists of a series of parallel 

Gaussian stripes (Fig. 4c). From Eq. (45), the full width at half maximum of these stripes 

is: 

FWHM=



2 ln( 2)

p 
, (46) 

which can be much smaller than the diffraction limit if 



  1 .  

The advantage of the approximate expression for the emission rate, Eq. (45), is 

that there is a simple explicit expression for its Fourier transform: 



ˆ G (k )  c
e
I

ex

e


m
2





 (k  mp )e
 im 
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

  (47) 

 

By comparing Eq. (47) with Eq. (10) we recognize that 





2
m

exe

m
e

Ic
b



 , (48) 

 

a closed form expression for the strength of the m
th

 Fourier component of the emission 

rate pattern under 1D illumination. 

A similar derivation for 2D illumination patterns gives: 
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Thus the values of the coefficients 



b
m

 and 



b
mn

 follow Gaussian profiles, in one and two 

dimensions, for both 1D and 2D illumination patterns. For fair comparison, we have 

taken the parameter 



 , and therefore 



I
0 , to be equal for the 1D and 2D cases, in order that 

the 1D and 2D Gaussians have the same width and thus similar resolution potential. From 

Eqs. (3) and  (18) it follows that the total off light exposure to the specimen will be twice 

as large in the 2D case as in the 1D case, at equal resolution potential. The higher total 

off-light exposure may or may not constitute a serious drawback of the 2D approach, 

depending on to what extent off light contributes to photo-degradation of the particular 

fluorophore used. 

Figure 5 compares the effective OTF, in the sense of Eq. (40), for 1D and 2D 

illumination using switchable labels. Each effective OTF consists of a number of copies 

of the conventional OTF 



ˆ H , each located at a position 



p
u
 (compare Fig. 1, d and e) and 

scaled by a coefficient 



b
u
, and combined in the overlaps by Eq. (40). The origin peak of 

each 



ˆ H  copy is easily recognized in the figure. The overall shape of the effective OTF 

for 2D illumination patterns (Fig. 5b) is defined by the Gaussian profile of the 

coefficients 



b
mn

. In the 1D case, even though the coefficients 



b
m

 for each orientation 

follow the same Gaussian profile as in the 2D case, the heavy overlap of many 

information components from neighboring pattern orientations (Fig. 1c) increases the 

values of the effective OTF strongly at the lowest spatial frequencies (Fig. 5a). At most 

spatial frequencies the two methods differ only slightly (Fig. 5c).   

In addition to the shot noise of the switchable labels themselves, an observation 

may contain additional noise sources, such as readout noise, or shot noise from 

background light. Background light may be due to autofluorescence, or to a fraction of 

the labels that do not respond to the off light. Some switchable fluorophores inherently 

possess such a permanent-on state in which they can get trapped (Lukyanov et al., 2002). 

We include this effect by assuming that a fraction  of the fluorophore labels are non-

switchable (or permanent-on). The local emission rate Eq. (42) can then be modeled as: 
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rrrr
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offoff
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. (50) 

 

where 



Em
ideal

(r )  is the fluorescent emission that the object would produce if all the 

fluorophores were switchable (i.e 



  0 ). 

In reciprocal space, Eq. (50) becomes: 

)(ˆ )(ˆ )1()(ˆ )(ˆ)1()(ˆ kkkkkk SIcmSbSIcmEmE
exe

m

mexeideal
   , (51) 

using Eqs. (7) and (10). Here the 



 ˆ S (k )  term effectively contributes to the m=0 term of 

the sum. Thus, the effect of a fraction 



  of permanent-on fluorophore labels is to increase 

the strength of the zero-order (conventional resolution) information component from 



b
0  

to 
exe

Icb 
0

)1( , and to decrease the strengths of all other components by a factor 



(1   ) . If 



  is known and remains constant in time, we can correct for it in the 

reconstruction process by rescaling the Fourier weights 
m

b  in the above manner. 



 

 

However, the permanent-on fraction will affect the signal-to-noise ratio in two ways: it 

will decrease the signal at all extended-resolution spatial frequencies by a modest factor 



(1   ) , and, more importantly, it will increase the noise at all frequencies by effectively 

increasing the coefficient 



b
0
 which determines the noise level [Eq. (40)]. Because the 

fraction 
exe

Icb
0

 of the switchable fluorophores that are left in the on state after exposure 

to the off light pattern is typically small, even a small fraction 



  of permanent-on 

fluorophores can have a large impact on 



b
0
. The relative increase in noise can be 

particularly severe in the case of 2D patterns (Fig. 5d), for which the fraction of on-state 

fluorophores is even smaller than in the 1D case (Fig. 4d). 

The comparison in Fig. 5 was done at one particular saturation level, 



  20 . To 

judge how the relative performance of 1D and 2D patterns depends on the saturation 

level, we consider the noise in the highest reconstructed spatial frequencies. This 

comparison is simple to do analytically, because there is no overlap between 

reconstructed components at the highest resolution (Fig. 1d,e), so that the sums in Eq. 

(40) reduce to a single term. From Eqs. (48) and (49), the average emitted photon count 

for the 1D illumination pattern is 



b
0

b
00
   times greater than for 2D pattern, and the 

same ratio holds for 



b
N

/ b
0 N

. Using Eq. (40), the ratio of the SNR at the highest resolution 

of the reconstructed image between 2D and 1D patterns is then 
44

00001D2D
12)/(   NNbbNbbSNRSNR

dirdirNN
, assuming again 

that the same total number 



(2N  1)
2  of images is used in both cases.  

To see how this ratio behaves with increasing saturation level, we must first 

establish how the truncation point N scales with the saturation level 



 . The number of 

Fourier components 



b
m

 that must be taken into account is determined by the acceptable 

level of relative truncation error 



 . The Gaussian envelope that describes the 



b
m

 values 

has the form 



exp m
2
 , implying that a particular relative truncation error will occur 

for a particular ratio 



m
2
 . As 



  increases, the truncation point 



m  N  will thus be 

chosen so that N scales as 



 . The SNR ratio 



2 N  1 4  at the highest spatial 

frequencies will therefore be essentially independent of the saturation level 



 , as both the 

numerator and the denominator scale as 



4  for 



  1 . For the saturation level  



  20  

and N=7 used above, this ratio is approximately 1.37. There is thus no dramatic 

difference between the noise performance of 1D and 2D patterns at the highest spatial 

frequencies at any saturation level. By a similar argument, one can show that the relative 

performance of 1D and 2D patterns is independent of saturation level also at intermediate 

frequencies (in the absence of permanently fluorescent background). In the case of 

idealized switchable labels, the 2D method has a slight advantage at high frequencies (as 

indicated by the factor of 1.37 quoted above), whereas at lower spatial frequencies the 

1D patterns will provide a higher SNR because of the overlap between the information 

components coming from multiple orientations of the illumination pattern (Fig. 5c). As 

was mentioned in the discussion after Eq. (51), the performance of the 2D method is 

more sensitive than the 1D method to background. If even a few percent of the 

fluorophores are in a permanent-on state, or a comparable amount of non-switchable 



 

 

autofluorescence, background light, or camera readout noise is present, the 1D method 

becomes superior at all frequencies (Fig. 5d). 

 

Numerical results 

To verify the analytical expressions derived in the previous section, we have 

performed numerical experiments, using phantom objects consisting of a random 

collection of straight rods (Fig. 6a, d). Results of the above analytical calculations were 

compared to direct simulations of the microscopy process. To illustrate how the noise in 

the reconstructed image depends on the total observed photon count, we used two 

phantom objects, one consisting of narrow bright rods on a dark background, and the 

other consisting of dark rods on a bright background. Both test objects were set to zero 

near the image boundary to avoid any possibility of edge artifacts that might bias the 

noise analysis. Only shot noise was considered; readout noise was assumed to have been 

eliminated. To represent background, a fraction 



  4%  of the labels were assumed to be 

permanently fluorescent. 

To calculate signal and noise we assumed a labeling density such that each white 

pixel in the bright-background object, and each one-pixel length of rod in the dark-

background object, would emit an average of 140 detectable photons per exposure, if all 

fluorophore labels in that pixel were in the on state. This number was chosen to be 

similar to the number of photons a single fluorescent-protein molecule per pixel could 

emit without bleaching. It was estimated from the best-characterized fluorescent protein, 

EGFP. Measurements have shown that it takes about 174s to bleach EGFP by 50%, with 

an illumination intensity that yields an initial emission rate of 1000 photons/s/molecule 

(Shaner et al., 2005). That photostability result corresponds to each molecule emitting an 

average of 000,240)2ln(/1000174   photons before bleaching, if the decay is 

approximated as single-exponential.  We account for the several signal-reduction factors:  

acceptance solid angle of the objective lens of (0.33), detector quantum efficiency (0.9), a 

factor to avoid complete photo-bleaching  (0.5) and losses in lenses and filters (0.9).  This 

leaves 32,000 observable photons. Divided over 225 images (see below), this yields 

about 140 detectable photons per molecule per image. Since each molecular label will be 

turned off in the majority of images, the total number of photons it emits per data set will 

actually be much lower than the above numbers. The above calculations should be 

considered as order-of-magnitude estimates, since the photo degradation properties of 

real photo-switchable molecules are not yet well characterized and are likely to be 

complicated. We chose these light levels for our simulations with the intent that the 

resulting performance estimates should be conservative for real samples.  

The simulations and numerical calculations used an analytical widefield OTF for 

a diffraction-limited optical microscope in the scalar, paraxial approximation (Born & 

Wolf, 2002): 

  /))(2sin()(2)( kkk bbOTF  ,    where 



b(k )  cos
1

k k
0 ,  (52) 



 

 

and 



k
o
 2NA 

em
 is the radius of the normally observable region of reciprocal space. 

This expression was picked because the particulars of the OTF are unimportant for the 

general questions we want to address. 

 The numerical simulations were performed on a grid of 256x256 pixels. The 

frequency-space pixel size was set equal to 1/10 of the conventional resolution limit, 



k
0
. 

According to the Nyquist theorem, the highest spatial frequency encodable by the data  

was 12.8 times 



k
0
.  In experimental practice, the raw data would be sampled closer to the 

conventional Nyquist limit, because excessive oversampling decreases field of view for a 

detector with a fixed number of pixels, and increases the readout noise. The density of 

pixels would then be increased during data processing to accommodate the increased 

resolution. Our choice to use constant, small pixel spacing throughout the computations 

was based on convenience; the small raw-data pixel size has no deleterious effect because 

the simulation does not include readout noise. In terms of physical distance, our pixel size 

would be [1/(2k0)]/12.8 8.1 nm for an NA 1.2 objective observing at 




em

=500 nm. With 

this pixel size, our assumption of a single label per one-pixel length of rod is well within 

the range of experimentally achieved GFP labeling densities on fibrous cellular structures 

(Faire et al., 1999), and is several orders of magnitude below the ultimate packing limit 

set by the size of GFP molecules (Patterson et al., 2007). 

The saturation parameter



  was varied between 10 and 30. To illustrate the 

practical meaning of these values we note that for 



  10 , approximately 18% of the 

fluorescent labels remain in the on state for 1D illumination pattern, and 3.4% for a 2D 

pattern. For 



  30 , the corresponding fractions are 10.4% and 1.1%. The truncation 

value N  was selected such that the strength 



b
N 1

 of the first discarded term was less than 

5% of the constant term 



b
0
. 

Noiseless observed images were calculated from the phantom objects and the 

applied illumination patterns by using Eqs. (2), (3), (18), and (42), and noisy observed 

images were formed from the ideal ones by applying a Poisson distribution. During the 

reconstruction, we used Eqs. (13) and (14), and their 2D equivalent Eq. (21), to separate 

the raw data into the information components 



ˆ R 
m
(k  mp ) . These components were then 

translated to their correct positions in reciprocal space, reassembled using Eqs. (17) and 

(20), apodized with a triangular window function, and finally inverse Fourier transformed 

back to real space to obtain a high resolution reconstruction of the object (Fig. 7). We set 

the cutoff frequency of the apodization function to 90% of the theoretical resolution limit 



Np  k
0
, to account for the non-circular shape of the support of the effective OTF 

(compare Fig. 1d,e). Because the reciprocal-space translation vectors 



mp  did not in 

general correspond to integral pixels in the discrete data arrays, the translations were 

performed by multiplying by the corresponding harmonic wave 



e
2  im p  r  in real space. 

In order to avoid introducing an additional adjustable parameter, we used no 

Wiener regularization [i.e., we set 




2
 0  in Eqs. (17) and (20)], and instead relied 

entirely on the apodization to suppress the divergent noise levels at the edge of the 



 

 

extended observable region. This choice only affects the visual appearance of the final 

image and does not affect our analysis of resolution and signal-to-noise ratio. 

The 1D pattern was rotated to a sequence of different orientations, as described in 

the theory section. The number of orientations was chosen to be equal to the number of 

translations (phase shifts) for each direction (i.e., 



N
dir

 N
ph
 2 N  1). The 2D pattern 

was instead translated in two orthogonal directions through an 



(2 N  1)  (2N  1)  array 

of positions. The total exposure of off light in each image was taken to be twice as large 

in the 2D case as in the 1D case, to produce the same resolution potential [see the 

discussion after Eq. (49)]. The 2D exposure pattern is essentially two mutually incoherent 

copies of the 1D pattern, one oriented in the x and one in the y direction, hence the 

doubled exposure. The total number of images was the same for the 1D and 2D cases. 

It is immediately apparent from the simulation results (Fig. 7) that the dark-

background object can be reconstructed with better signal-to-noise ratio than the bright-

background object. More detailed comparisons require a quantitative measure. We define 



SNR ( k )  to be the rotationally averaged SNR in the estimated object (averaged over the 

annular band of spatial frequencies 



k  whose magnitude 



k  lies between k  and 



k  k  for 

a small increment 



k ), or more precisely the root-mean-square (RMS) signal divided by 

the RMS noise: 



SNR (k ) 

ˆ S (k )
2

k k  k   k



ˆ S (k )  ˆ S 
r
(k )

2

k k  k  k



 (53) 

where 



ˆ S 
r
(k ) is the value of the Fourier transform of the reconstructed object estimate at 

the point (pixel) 



k , 



ˆ S (k )  is the value of the Fourier transform of the corresponding 

noiseless object estimate, and the sums are taken over all the pixels of the discrete 

frequency-space data. We used this definition to compare the noise performance for 

different parameters and methods of illumination, and to compare numerical and 

analytical results.  

 The numerical results for the signal-to-noise ratio (SNR) are in excellent 

agreement with the analytical predictions given by Eq. (40), confirming the correctness of 

our analysis (Fig. 8). The SNR curves, especially that for the 1D illumination case, show 

an oscillatory behavior that reflects the rugged landscape of the effective OTF (see Fig. 

5): during rotational averaging, some frequency bands contain “peaks,” while other bands 

sample mostly “valleys” of the effective OTF. As expected, structured illumination with a 

1D pattern yields higher SNR at low spatial frequencies, but comparable or slightly lower 

SNR than the 2D pattern at the highest frequencies. (The slight difference compared to 

Fig. 5d in the relative high-frequency performance of 1D and 2D patterns is due to Fig. 

5d being a single line profile, whereas Fig. 8 is a rotational average.) Reconstructed 

images of the test object with bright background have substantially lower SNR than those 

of the dark-background test object, because the bright background increases the noise 



 

 

variance at all spatial frequencies in proportion to the increased total number of observed 

photons, but contributes to the signal only at the smallest spatial frequencies. The 

maximum resolution at a given SNR for the bright-background object is only about two-

thirds of the value for the dark-background object. In all cases, the SNR diminishes 

rapidly as k  increases. At low levels of permanently fluorescent background, either 

method can achieve a signal-to-noise ratio above unity out to a resolution of about 6 

times higher than that of a conventional microscope, even at the low assumed signal level 

of 140 detected photons from a fully-on 8-nm pixel. Higher labeling density or greater 

photostability would enable even higher resolution. 

The dependence of the signal-to-noise ratio on the saturation factor 



  is indicated 

in Fig. 9, for particular spatial frequencies. The precise values of the signal-to-noise ratio 

depend somewhat on the choice of spatial frequency, because of the oscillations apparent 

in Fig. 8, but the general trends are consistent. The calculation makes the important 

assumptions that the photo-stability is unaffected by the saturation level (which could be 

dramatically incorrect for some systems), so that the exposure and emission parameters 

can be kept constant as 



  is varied. The permanent-on fraction is similarly assumed 

constant, which may be false if there is a light-induced transition to a permanent-on state, 

as for asCP (Lukyanov et al., 2000). Under these assumptions, we expect the SNR to 

initially increase with the saturation factor, to reach a maximum at some optimal 

saturation level, and to decline beyond that. The initial SNR increase is due to the 

decreasing width of the stripes (or spots, in the 2D case) of remaining fluorescence after 

the illumination with off light [Eq. (46)]. However, as the areas of remaining fluorescence 

decreases further in size, the decreasing amount of emitted signal light eventually leads to 

a leveling off and decrease in the SNR at high saturation levels. The value of this optimal 

saturation level increases with the spatial frequency and decreases with the amount of 

permanent-on background. In Fig. 9a, the peak of the SNR curve is apparent for the cases 

of 4% and 10% permanent-on fraction at 3 times the conventional resolution with the 2D 

pattern; for other parameters the peak occurs at saturation factor values beyond the range 

plotted.  

It was seen from Fig. 5 that in the absence of permanently fluorescent 

background, the 2D illumination method has better SNR at high and moderate spatial 

frequencies than the 1D illumination, but that a permanent-on fraction of as little as 4% 

renders the 2D method slightly inferior to the 1D scheme at all spatial frequencies. The 

same trend is supported by our numerical results (Figs. 9 and 7c,d). The relative 

disadvantage of 2D patterns in the presence of permanent-on background increases with 

the saturation level (i.e. with the attempted resolution) (Fig. 9).  

The crossover value for the permanent-on fraction, at which the SNR of the 1D 

illumination method begins to outperform that of the 2D method even at high spatial 

frequencies, is very low, around 2% for a saturation level of 20 (Fig. 10). (This value 

should only be taken as guidance, because the oscillatory nature of the SNR function 

(Fig. 8) makes the exact crossover value depend slightly on the particular spatial 

frequency at which the comparison is made). Figure 10 also confirms our earlier 

observation that for all methods, objects with bright background yield much lower SNR 

than objects where the only fluorescent emission comes from the structure of interest. 



 

 

The 2D method’s very low tolerance of permanently fluorescent background 

stems from the fact that only a very small fraction of the switchable fluorophores are left 

in the on state to fluoresce (Fig. 4d); any background therefore rapidly overwhelms the 

small signal.  

 

Discussion 

In this article, the fluorescent labeling of the object has been treated as a 

continuous density of fluorophore that is continuously switchable. This continuity 

assumption is valid when there are many labels per resolved area, so that the random 

switching and bleaching of individual labels averages out. In the extreme resolution 

regime, the number of labels per resolved area may be small. Addressing this regime 

accurately would involve modeling the object as a collection of individual labels, and 

taking into account the stochastic switching response and randomly timed photo 

bleaching of each label during acquisition, as well as the interaction of the polarization 

properties of the light with the vector direction of each label’s absorption dipole(s). Such 

a discrete-molecule model is outside the scope of this article. 

We have used an idealized model of switchable labels that has stable on and off 

states and separate on, off, and excitation wavelengths, and therefore can be prepared 

with off light and observed at leisure afterwards. Some real photo-switchable molecules 

such as asCP [also known as asulCP or asFP595 (Chudakov et al., 2003)] undergo 

thermal relaxation from one state to the other, and have an excitation spectrum that is 

similar to the on switching spectrum. The similarity of the spectra means that the act of 

observation will cause some molecules to turn back on. The degree of on-switching 

caused by an exposure that is sufficiently intense to produce an acceptable number of 

detected photons will depend on the density of fluorophores and the ratio of fluorescence 

quantum yield to photo-switching quantum yield. If that degree is small, on the order of a 

few percent, it will lead to a background similar to that produced when a fraction of the 

molecules are in a permanent-on state. If, on the other hand, the degree of switching on is 

large, on the order of 100%, our model of switching first and exposing later breaks down. 

Instead, one would be forced to illuminate with the off pattern as well as with excitation 

light during the observation itself.  

For other switchable labels such as Dronpa (Ando et al., 2004) and Cy-dye pairs 

(Bates et al., 2005), the excitation wavelength is instead coincident with the off 

wavelength. In that situation, there is no undesired on-switching. The result of the 

identity of off- and excitation wavelengths is instead that the fluorescence is being turned 

off during observation. If the number of photons that can be detected before the 

fluorophores have been turned off is insufficient, it may be necessary to repeat the cycle 

of on and off light exposure and observation more than once for each phase (and 

orientation) of the illumination pattern, either as separate images or while integrating the 

exposures onto a single image. Whether such repeated observation is a problem will 

depend on whether on/off cycling contributes to photo-degradation of the 

photoswitchable compound in question. 



 

 

For labels that emit very few photons per on/off cycle, such as some recently 

developed variants of Dronpa (Ando et al., 2007; Stiel et al., 2007), even the repeated-

observation approach may be unworkable. For microscopy with such labels it may be 

necessary to illuminate with both on and off light simultaneously, which would cause the 

labels to cycle rapidly between their on and off states. 

Thus both types of two-wavelength labels can require simultaneous illumination 

with on and off light. Such double illumination, which has been used in recent 

publications (Hofman et al., 2005; Schwentker et al., 2007), has the undesirable property 

that the relationship between illumination intensity and emission rate becomes a rational 

function: 

 



Em (r ) 
I

on
(r )

on

I
on

(r )
on
 I

off
(r )

off

 ,  (54) 

(where 




on

 and 




off

 are the cross sections for on and off-switching), due to competitive 

equilibrium between on- and off-switching, rather than the exponential relationship of 

Eq. (41). Because the rational function decays more slowly than the exponential one at 

high 



I
off

, it leads to a significant fraction of the labels being left in the on state between 

the desired peaks (Fig. 11a). The effect on noise is similar to that of having a fraction of 

labels in a permanent-on state, or other forms of background: an increased average 

emission rate (higher coefficient 



b
0
), which decreases the signal-to-noise ratio by 

lowering the ratios 



b
u

b
0

 in Eq. (40). As with other types of background, the 

deterioration is more severe for 2D than for 1D patterns. The effect is illustrated in Fig. 

11b for a 2D illumination pattern, comparing the exponential relationship of Eq. (42) for 

a maximum saturation factor 



  20 , with the rational relationship of Eq. (54) for a 

maximum 



I
off

I
on

 ratio of 20. With these parameters, both functions have similar 

behavior near the peaks. The rational relationship produces significantly lower SNR in 

this example, except at the lowest spatial frequencies. 

Even though this article has discussed signal and noise in the context of two-dimensional 

imaging of flat specimens, the same theoretical framework can be directly applied to 

three-dimensional forms of SIM (Gustafsson et al., 2000; Frohn et al., 2001, Gustafsson 

et al., 2008, Shao et al., 2008), with obvious modifications for using 3D pattern wave 

vectors, or separate OTFs for different information orders, if needed. 

Any fair comparison of different methods requires knowledge of their 

performance-limiting factors; for example, bleaching-limited methods should be 

compared under conditions that cause equal amounts of photobleaching, etc. Nonlinear 

SIM is likely to be limited by photodegradation, but it is not a priori obvious which 

processes will dominate the rate of photodegradation of a particular fluorophore. In the 

case of switchable labels, there could be separate photo-destruction cross sections of 

labels in their on and off states for illumination by excitation light, on light, or off light, 

and the relative importance among these could vary depending on the type of molecules 

and on mounting conditions (such as oxygen concentration). The appropriate form of 



 

 

performance comparison, including which parameters to keep constant, will therefore 

depend on the specifics of a particular system. In this article we have attempted 

generality, but have by necessity made some assumptions: that excitation light is 

damaging to both on and off labels (we therefore made comparisons at equal total 

exposure to excitation light, regardless what fraction of labels are in the on state), and 

that further exposure of off labels to the off light wavelength is not critical (we therefore 

made comparisons at similar resolution potential, even though it required larger exposure 

to off light with 2D than with 1D patterns). The main point of this article, therefore, is not 

its detailed results but rather to present a general framework that can be used to analyze 

and optimize the performance of specific forms of linear or nonlinear SIM, once the 

limiting factors for those specific cases are known. 

Conclusions 

We have presented a theoretical framework for analyzing methods of extended-

resolution optical microscopy using linear or nonlinear structured illumination. We have 

applied the general analysis to linear SIM, and to the specific form of nonlinear SIM that 

is based on photo-switchable fluorescent labels. The effects of photon shot noise on the 

reconstructed image have been derived analytically and confirmed through simulation.  

For linear SIM, the method using sequential 1D illumination patterns provides 

slightly higher SNR performance and more isotropic resolution (when used with 3 

pattern orientations) than methods based on 2D patterns.  

For nonlinear SIM with switchable labels in the absence of background, the 2D 

method performs slightly better at high spatial frequencies, whereas the 1D pattern is 

superior at low spatial frequencies. The 2D scheme deteriorates much more rapidly than 

the 1D method in the presence of background, however, including background produced 

when a fraction of the fluorophores are permanently fluorescent. A given amount of 

resolution extension also requires twice as much exposure to off light for the 2D as for the 

1D method; this may be a significant disadvantage of the 2D method for molecules where 

off light contributes to photo-degradation. 

In calculations and simulations for a dark-background object, emitting at light 

levels consistent with single GFP-like switchable molecules per 8x8 nm area, both 1D 

and 2D methods achieved a signal-to-noise ratio of unity out to a resolution of six times 

the diffraction limit, corresponding to about 33 nm, even when 4% of the fluorescent 

labels were assumed to be unswitchable. 
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Appendix A.  Illumination Patterns for Nonlinear Imaging 

Several types of patterns can be generated by superposing several beams of light. 

The 1D sinusoidal pattern in Eq. (3) could be produced by interference between two 

mutually coherent, collimated beams of uniform and equal intensity. To produce the 

perfect contrast and true intensity zeros described by Eq. (3), the two beams must be s-

polarized relative to each other (Fig. 2a). To produce 2D patterns, one would use more 

than two interfering beams.  However, the use of a large number of beams increases the 

number of images quadratically without any concomitant increase in resolution. Since it 

is generally undesirable to increase the number of required exposures, only small 

numbers of interfering beams are interesting. Usable patterns can be produced with three 

or four beams. 

Three beams, symmetrically arranged and azimuthally polarized (Fig. 2d) produce 

a hexagonal intensity pattern with clean zeros (Fig. 2f). However, the three-beam pattern 

has two disadvantages relative to the four-beam pattern. First, its frequency-space unit 

cell is smaller (by a factor 



3 3 8  0.65 ) and therefore it requires a larger number of 

information components to cover a given area of frequency space (i.e., a larger number of 

raw data images at a given resolution).  Second, its zeros are less sharp (data not shown), 

thus requiring a higher order of nonlinearity to reach a given resolution. 

Additional possible 2D patterns, which provide more isotropic coverage in linear 

SIM, will be discussed in the context of linear imaging in Appendix B. 

 

Appendix B. Linear structured illumination imaging 

We can use analytical results for SNR in nonlinear SIM for analyzing and 

selecting optimal illumination patterns in linear SIM. The only complications are that the 

choice of the candidate 2D pattern is less clear than in the nonlinear case. Some candidate 

patterns are best suited for different phase shift sequences than the rectangular raster scan 

described above. 

To evaluate candidate 2D patterns, we will first compare the corresponding 

observable regions, in particular the maximum and minimum resolution extension factors 

in different directions, and then compare their signal-to-noise properties. The values of 



 

 

these and other parameters are summarized in Table 1. In order to generate simple, easily 

interpretable numerical values, we here assume that the emission wavelengths are equal, 

that the beams traverse the pupil at its edge. For comparison, the resolution extension 

factor for the 1D pattern applied in three orientations has a maximum value of 2 (in the 

pattern directions), and a minimum of 



3  1.73  (in the directions furthest removed from 

any pattern direction), as is clear from the geometry of Fig. 1b. 

The main 2D pattern that has been discussed above in the nonlinear case is 

formed by four illumination beams, linearly polarized in two orthogonal pairs (Fig. 2g). 

The light intensity of this pattern has 5 frequency components (Fig. 2h), and in the linear 

case gives access to five information components arranged in a cross (Fig. 1c). A 

drawback of this pattern is that the resolution is extended much less in the diagonal 

directions than in the x and y directions, extending resolution by a factor of 



2  1.41 , 

rather than 2 (Fig. 1c). The performance in practice can be even more anisotropic, as the 

extended-resolution information in the diagonal directions is contributed only by 

peripheral parts of the OTF, which may be quite weak for real-world objective lenses. In 

fact, implementations of this pattern have explicitly traded off resolution in favor of 

improved isotropy by using less-than-maximal values of the pattern wave vector 



p  

(Frohn et al., 2000). 

It is therefore attractive to consider alternative 2D patterns that yield more 

isotropic coverage of frequency space. One alternative is the 3-beam, azimuthally 

polarized arrangement that has already been mentioned (Fig. 2d). Its main drawback is 

that, because the beam positions in the pupil are not diametrically opposite each other, its 

largest resolution extension factor is only 



1  3 2  1.87 , compared to the maximal 

resolution extension factor of 2 that the 1D and 4-beam-2D arrangements provide (in 

their best directions). The 3-beam pattern’s smallest resolution extension factor, however, 

in the direction of the concave “bays” of its observable region, is 



(3  13 ) / 4  1.65 , 

larger than the 4-beam cross-polarized arrangement’s smallest resolution extension factor 

of 1.41. 

One way to alleviate the anisotropy of the 4-beam arrangement is to choose 

different polarization states for the beams, such as circular polarization, to make all four 

beams interfere pairwise. Doing so generates a square array of nine frequency 

components in the light intensity (Fig. 2j,k), corresponding to a similar array of nine 

information components (not shown). The additional components increase the diagonal 

resolution extension factor to 



1  1 2  1.71 , while increasing the required number of 

images from 5 to 9. The actual minimum resolution factor, 



3  7  2  1 .68 , occurs at 

a different angle, 57.1°. 

The 2D method described in the image formation section separates a rectangular 

array of information components by using a rectangular array of phase shifts followed by 

a 2D Fourier transform. Some candidate patterns, however, such as those in Fig. 2e and h, 

produce sets of intensity components (and thus information components) that are not 

arranged in a rectangular (or rhombic) array. In principle, this is not a problem, since any 



 

 

random set of 



N
ph

 2D phase shifts is likely to produce 



N
ph

 independent equations, and 

thus allow separation of 



N
ph

 information components. An arbitrary set of phase shifts, 

however, often yields an ill-conditioned system of equations, which leads to high and 

uneven noise levels in the separated components. Fourier-transform-based schemes are 

well-conditioned and produce equal noise levels in all components. They have the 

additional nice property that their illumination pattern sequences (with equally-spaced 

phases from 0  to n2 ) sums to uniform illumination, which means that the total photo-

bleaching of the object after one pattern orientation (in the 1D method) or one complete 

data set (in 2D) is uniform. Illumination sequences that do not sum to uniform intensity 

risk bleaching patterns into the specimen, which could interfere with later observations. 

One way to keep the attractive aspects of Fourier-based separation in cases like those in 

Fig. 2e and h is to add fictitious dummy components to fill out a rectangular or rhombic 

array, and to use the larger set of phase shifts appropriate for that extended array. For 

example, the 5 components in Fig. 2h could be separated by using a 3x3 array of phase 

shifts appropriate for the 9 components of Fig. 2k; and the 7 components of Fig. 2e could 

be extended to a 3x3 rhombic array by adding dummy components at the far left and right 

on the horizontal axis, and could be separated with a 3x3 array of phase shifts. The 

dummy components could possibly serve a diagnostic function, as they should contain 

only noise after a perfect separation. This dummy-component approach has the obvious 

drawback that it increases the number of raw data images required. 

In some cases, including those in Fig. 2e and h, there is an alternative solution, 

which maintains the Fourier-transform form of the separation while not increasing the 

number of exposures (or increasing it less than the approach described above), and is still 

compatible with being generated by rigid-body shifting of a diffraction mask. This idea is 

to find an oblique direction vector 



v  along which the intensity components are equally 

spaced. For example, the five components in Fig. 2h are equally spaced along the 

direction 



v  (2,1) , and the seven components in Fig. 2e are equally spaced along the 

direction 



v  5 3 ,1 . In other words, the scalar products of the vector 



v  with the list of 

positions of the intensity components forms an equally-spaced sequence of numbers; the 

spacing can be made unity by suitable normalization of 



v . By shifting the real-space 

pattern in a sequence of equal-sized steps of 



v / N
ph

, the phase shift of component u in 

image j becomes 




u, j

 ju 2 N
ph

, which is exactly the form of the phase that appears in 

a 1D discrete Fourier transform. We can therefore separate the 2D components using a 

1D inverse Fourier transform, as was done in Eq. (13) for 1D components. In this 

approach, phase shifting would involve translating the mask through a large distance 

(several pattern periods) in a single oblique direction, which would use different 

hardware than the 2D scan over a single unit cell that is typically used for 2D patterns. 

So far, we have assumed that the pattern is produced by a physical diffraction 

mask, and phase shifted by moving this mask. That is a very attractive situation in 

practice, though it places constraints on the possible combinations of phase shifts, since 

there are only two or three free parameters (the mask shifts in the x and y, and possibly z, 

directions). If, instead, the hardware allows the phase of each of the illumination beams 

to be controlled independently, it becomes possible to generate a Fourier-type phase 



 

 

sequence for any arbitrary arrangement of beams. The optimal way to apply such phase 

shifts to 



B  beams is to assign to beam number s one of the integers 



w
s
 from an optimal 

Golomb ruler of order 



B , and to acquire 



1  2G
B
 images with the phase of beam s in 

image j set to 




s, j

 jw
s
2 (1  2G

B
) , where 



G
B
 is the length of the Golomb ruler. [A 

Golomb ruler of order n is a set of n integers among which no differences are equal; its 

length is the largest difference, and an optimal Golomb ruler is one with minimal length 

(Schroeder ,1997).] The intensity component that corresponds to interference of beams s 

and t will thereby be phase shifted by 



j ( w
s
 w

t
)2 (1  2G

B
) , where no differences 



w
s
 w

t
 are equal. This set of phase shifts again has the form of a discrete Fourier 

transform, and thus allows separation through a 1D inverse Fourier transform (possibly 

with a few dummy components, if there are gaps in the list of differences). Curiously, for 

example, this approach makes it possible to perform SIM with five beams arranged 

pentagonally in the pupil, even though the corresponding intensity pattern in real space is 

not periodic, but is more akin to a quasi-crystal; the resulting 21 information components 

could be separated using a 1D Fourier transform from 23 phase shifts (the length of the 

optimal Golomb rulers of order 5 being 11). (This pattern would be ill suited for many 

types of nonlinear SIM, however, in that it lacks pure intensity zeros.) 

The signal-to-noise ratio produced by the different illumination patterns can be 

compared by using Eq. (40), but we must first determine the coefficients 
m

b  for each 

pattern. For linear SIM, the response function 



F  is a direct proportionality: IcIF
e

)(  

and 



G (r )  c
e
I (r )  [Eqs. (1) and (7)]. The strengths 

m
b  of the frequency components of the 

emission rate 



G  are therefore proportional to the strengths of the corresponding 

frequency components of the illumination intensity 



I . The factor that limits the available 

signal is photobleaching, as in most fluorescence microscopy. In the case of linear 

fluorescence, the degree of photobleaching can be taken to be proportional to the 

integrated exposure to excitation light. Comparison of different techniques should 

therefore be done under conditions of equal total exposure time, and equal average 

intensity over the image. In our notation, the latter condition is equivalent to equal 



b
0
. 

The relevant quantities, therefore, are the ratios 



b
m

b
0
 for each pattern. The values of 

these ratios for some illumination schemes are displayed next to the corresponding 

intensity components in Fig. 2b, e, h, and k. For the 1D illumination pattern (Fig. 2a–c), 

Eq. (5) immediately implies that 



b
1

b
0
 1 / 2 . Similarly, for 2D illumination with the 

cross-polarized 4-beam pattern [Eq.  (18), Fig. 2g–i], it is clear that 



b
01

b
00
 1 / 4 . With 3-

beam illumination, the strength of the side components is affected by the non-parallel 

polarizations, by a factor of cos(60°)=1/2. In the case of circularly polarized 4-beam 

illumination, there will be a contribution from axially polarized light in the focal plane, 

stemming from the radial polarization components in the pupil plane. This axial 

contribution is 180° out of phase with the laterally polarized pattern, and therefore 

decreases the 



b
m

b
0  ratios. The relative amplitude of the axially oriented field, and hence 

the ratios 



b
m

b
0 , depends on the polar angle 



  at which the beams pass the focal plane; 

the values displayed in Fig. 2 and Table 1 were calculated for 



  60  . Because the 

lateral and axial polarization patterns combine destructively, it could be attractive to 

separate them temporally, by recording two images with linearly polarized illumination, 



 

 

one x- and one y-polarized, in place of the one image with circularly polarized 

illumination that is in effect an average of the two linearly polarized ones. With linearly 

polarized light, the 



b
m

b
0
 ratios for the highest spatial frequency components take the 

values 



b
x
 1 / 4  and 



b
y
 1 /8  for the directions perpendicular and parallel to the 

polarizations, respectively, both an improvement over the 1/16 value for circularly 

polarized light (shown in Fig. 2k) which equals 



(b
x
 b

y
) /2 . The total exposure time 

would be divided among the single-polarization exposures, leading to an effective 



b
m

b
0
 

ratio of 



b
x

2
 b

y

2

  2 , or 0.197. 

To compare the SNR properties of the different 2D linear SI methods, we have 

used two figures of merit: the relative peak SNR at maximum resolution, which compares 

the strengths of the highest-resolution information components (i.e. it compares the SNR 

within those parts of the highest-resolution components that do not overlap any adjacent 

components), and the relative average SNR at maximum resolution, which is proportional 

to the rotationally RMS-averaged SNR, and takes into account the effect of overlaps. It 

follows from Eq. (40) that the peak SNR at maximum resolution is proportional to 



1 N
dir

 and to 



b
m

2

b
0
 b

0
b

m
b

0  b
m

b
0
 for fixed 



b
0
. The average SNR at 

maximum resolution is proportional to the peak SNR times the square root of the number 

of information components that reach maximum resolution (in different directions). The 

values of these figures of merit are tabulated in Table 1 for different illumination modes. 

As the table illustrates, the 1D method compares well with the 2D approaches, providing 

the highest SNR and good isotropy while requiring only a modest number of raw data 

images. 



 

 

 

 

 

Fig. 1.  Enlargement of the observable region by structured illumination microscopy 

(SIM). (a) The set of spatial frequencies that is observable in conventional microscopy 

defines a circular region, shown in dark blue. Additional information that can be 

observed using linear SIM with pattern frequency 



p  is shown as light blue solid circles. 

Dashed red circles denote further spatial frequencies that can be made observable by 

nonlinear SIM. (b–e): Spatial frequencies observable by linear structured illumination 

with a rotating 1D illumination pattern (b), or a 2D pattern (c), and by nonlinear SIM 

with a rotating 1D pattern (d), or a 2D pattern (e). In (a), (d) and (e) only the two lowest 

orders are shown, out of in-principle infinite series of information components. 



 

 

 

      

   

      

   

   

   

   

   

  

   

 

Fig. 2.  Positions (blue dots) and polarizations (red lines) of illumination beams in the 

objective aperture (a,d,g,j), frequency components of the illumination intensity (b,e,h,k), 

and the corresponding intensity pattern (c,f,i,l), for 1D (a–c), 3-beam 2D (d–f), and 4-

beam 2D illumination patterns with crossed linear (g–h) or circular (j–l) polarization. The 

green dashed circle indicates the maximum possible spatial frequency, corresponding to 

maximum resolution extension. Numbers next to the blue dots indicate the relative 

strengths of the frequency components 



 

 

 

 

Fig. 3.  Fraction of the fluorescent labels that remain in the on state after illumination 

with a sinusoidal pattern of off light at a saturation level 



  10 . The solid curve follows 

the exact expression Eq. (42), and the circles the approximate expression Eq. (45). 



 

 

 

 

 

Fig. 4. The off-light illumination intensity pattern used in the 1D case (a), and the 2D 

case (b). The pattern of remaining fluorescent emission rate after illumination with the off 

light pattern for the 1D case (c) and the 2D case (d), at a saturation level 



  of 10. 

Fluorescent labels in the on state remain only near the intensity zeros of the off light 

pattern. At a given attempted resolution (width of the peaks), a much smaller fraction of 

the fluorophores remain on in the 2D case (d) than for 1D patterns (c).  



 

 

 

 

Fig. 5.  Effective OTF (i.e., the dependence of the signal-to-noise ratio on spatial 

frequency for a point object) for nonlinear SIM with switchable labels, for a saturation 

factor 



  20  and a total of 225 images, using sequential 1D illumination patterns (a), or 

a 2D illumination pattern (b). Profiles through the center of the effective OTF for 1D 

illumination (blue line) and 2D illumination (red line) without background (c), and with 

4% permanently fluorescent background (d). (The units on the vertical axes are 

normalized to the SNR at zero spatial frequency of the conventional microscopy that 

would result in the absence of off light.) 



 

 

 

 

Fig. 6. Simulation of linear SIM. Test object with a dark background (a) and bright 

background (d). Simulated images of the test objects as observed by conventional 

microscopy (b, e), and by linear SIM with 1D patterns (c, f). 



 

 

 

 

Fig. 7. Simulation of nonlinear SIM with the same test objects as in Fig. 6. 

Reconstructions of the test objects with dark background (a,b) and bright background 

(c,d), using 1D (a,c) and 2D (b,d) illumination patterns. The simulation used 225 raw 

images, a saturation factor 



  of 20, and a fraction of 4% permanent-on fluorophores. 

Each white 8-nm pixel in the object emitted 140 detectable photons per exposure when 

fully in the on state. 



 

 

 

 

Fig. 8. Rotationally averaged signal-to-noise ratio as a function of spatial frequency. 

Results of numerical simulations are denoted by ‘+’ marks, and analytical results by solid 

lines. The two top lines show the SNR for the test object with a dark background (Fig. 

6a), the two bottom lines show the SNR for the test object with bright background (Fig. 

6d). The blue lines show results for 1D illumination, the red lines for 2D illumination. 

Simulation parameters as in Fig. 7. 



 

 

 

 

Fig. 9. Rotationally averaged signal-to-noise ratio for simulated reconstructions of the 

dark-background test object as a function of the saturation factor 



 , at a spatial frequency 

equal to (a) 3 times the resolution limit of conventional microscopy and (b) 6 times the 

resolution limit. Three values of the permanent on fluorophore fraction were used: 0%, 

4% and 10% (as indicated); other parameters were as in Fig. 7. Blue lines denote 1D and 

red lines 2D illumination patterns.  



 

 

 

 

Fig. 10. Rotationally averaged signal-to-noise ratio as a function of the fraction of 

permanently fluorescent labels, at a spatial frequency equal to 6 times the resolution limit 

of the conventional microscope. Other simulation parameters were as in Fig. 7. Blue lines 

show SNR for the 1D illumination method, red lines for the 2D illumination method. 

Two upper lines represent the dark-background test object (Fig. 6a), the two lower lines 

the bright-background test object (Fig. 6d). 



 

 

 

Figure 10 

Figure 11 
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Fig. 11. Comparison of exponential [Eq. (42)] and rational [Eq. (55)] turn-off functions 

for photo-switchable labels. (a) The fraction of labels that remain in the on state as a 

function of position, under illumination by a sinusoidal off-light pattern with a maximum 

saturation factor 



  of 20 in the exponential case (cyan curve), and a maximum 



I
off

I
on

 of 

20 in the rational case (red curve). (b) The ratio 



b
mn

b
00

 that determines the signal-to-

noise ratio [see Eqs. (39) and (41)] for a 2D pattern with the above parameters, plotted vs. 



m  for 



n  0 . The rational function effectively leaves a background of labels in the on 

state, which raises the overall light level 



b
00

 and thereby decreases the signal-to-noise 

ratio at higher spatial frequencies. Lines are drawn between points only to guide the eye. 

 


