
LLNL-TR-545691

Reliable High Performance Peta-
and Exa-Scale Computing

G. Bronevetsky

April 5, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Reliable High Performance Peta- and Exa-Scale Computing
Greg Bronevetsky

I. ABSTRACT

As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected

both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1 .6

million core Sequoia system) as well as the wide variety of software and hardware components that a typical

system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular

faults somewhere in the system or to account for all possible cross -component interactions. The resulting faults

and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results . As

supercomputers continue to approach Exascale performance and full system reliability becomes prohibitively

expensive, we will require novel techniques to bridge the gap between the lower reliability provided by hardware

systems and users’ unchanging need for consistent performance and reliable results.

Previous research on HPC system reliability has developed various techniques for tolerating and detecting various

types of faults. However, these techniques have seen very l imited real applicability because of our poor

understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or

performance degradations. Prior work on such techniques has had very limited practical utility because it has

generally focused on analyzing the behavior of entire software/hardware systems both during normal operation

and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse

behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the

many different system stacks and applications used in practice, this work has had little real-world impact. My

project addresses this problem by developing a modular methodology to analyze the behavior of applications and

systems during both normal and faulty operation. By synthesizing models of individual components into a whole-

system behavior models my work is making it possible to automatically understand the behavior of arbitrary real -

world systems to enable them to tolerate a wide range of system faults.

My project is following a multi -pronged research strategy. Section II discusses my work on modeling the behavior

of existing applications and systems. Section II.A discusses resilience in the face of soft faults and Section II.B looks

at techniques to tolerate performance faults. Finally Section III presents an alternative approach that studies how a

system should be designed from the ground up to make resil ience natural and easy.

II. MODELING APPLICATION AND SYSTEM BEHAVIOR

A. SOFT FAULTS

As the feature sizes and voltages of electronic components grow smaller and the numbers of such components

grow larger, soft faults are becoming a serious threat to application correctness. Even as today’s systems

experience soft faults on a regular basis (a 104k node BlueGene/L system suffers from 1 uncorrected soft fault

every 8 hours (1)), tomorrow’s systems will grow even less reliable (2) (3).

1. MODELING ERROR PROPA GATION

Traditional approaches for analyzing application vulnerability to soft faults use fault injection to determine how

faults in individual applications components affect application performance and the correctness of its results.

However, the complexity of real -world applications means that a given fault injection experiment must consist of

thousands of application runs to cover all major failure modes. This is expensive for sequential applications and

completely infeasible for large-scale parallel applications. In collaboration with Lide Duan, Sui Chen and Lu Peng

from Louisiana State University I am developing modular techniques to analyze how soft faults affect applications.

My approach divides applications

into major routines and studies

the error properties of each.

Errors are injected into each

routine and its outputs are

checked for errors to measure the

routine’s error vulnerability.

Further, errors are injected into

operation inputs and the outputs

are checked to measure how

much the routine amplifies or dampens errors in inputs. Figure 1 shows the vulnerability of the outputs of the

Matrix-Matrix Multiplication and SVD Factorization routines in the GNU Scientific Library. The data shows the

fraction of entries in the output matrixes that have an error of a given magnitude from 1e-14 to .75 (if the correct

value is and the error magnitude is , the erroneous value is). We are working to combine error

vulnerability models of individual routines in numeric libraries to predict the error vulnerability of applications that

use them.

2. ALGORITHMIC RESILIENCE

Because soft faults affect the application state in subtle ways, the resulting corruptions of application results are

often extremely difficult to detect. Replication can be used to detect faults by executing the application twice and

comparing the results of the replicas. Correction is possible if more than two replicas are used. Although

replication works for arbitrary applications, it can be expensive both in power and performance because it doubles

or triples the amount of computation performed by the application. It is thus necessary to develop techniques to

provide resil ience to soft faults at a lower overhead, making it practical for HPC applications.

Although result checkers that execute in asymptotically less time than the ori ginal algorithm are not possible in

general, such checker can be designed for specific algorithms. Since significant amounts of time spent by HPC

applications is actually spent in general -purpose libraries I am working on techniques to detect and correct errors

that occur in such libraries by leveragi ng their algorithmic properties. My specific focus is on sparse linear algebra.

Linear algebra constitutes a key class of algorithms that is used widely in scientific applications. These algorithms

can be checked via the use of linear error correcting codes (4). Consider the case of matrix-matrix multiplication AB

→ C, where A, B and C are matrixes. This computation can be checked by multiplying both sides by a check vector

and checking if the resulting vectors are close to each other: () . An error is declared i f the differenc e

is too large. Computeational errors can be corrected if the multiplication from the left as above is augmented with

another multiplication from the right: () A(By) ?= Cy or if the vectors and are replaced with the

generator matrix of a linear error correcting code. This check is both effective and efficient: the () matrix-

matrix multiplication algorithm is checked via constant number of () matrix-vector multiplications.

Although very effective for dense linear algebra, this technique works poorly for sparse linear algebra, a domain

that is becoming increasingly important for adaptive simulations. This is because in sparse matrixes both the

matrix-matrix multiplication and matrix-vector multiplication have the same complexity: (). In collaboration

with Joseph Sloan and Rakesh Kumar from the University of Ill inois Urbana-Champaign I am researching

Figure 1: Fraction of Entries in Operation Outputs with Errors of a Given Magnitude

algorithmic resilience techniques that specifically target the unique challenges of sparse linear algebra libraries to

improve the resil ience of the scientific applications that rely on it.

Our current work focuses on checking sparse matrix-vector multiplication, the backbone operation of sparse linear

algebra. The state of the art is to check the operation , where A is a matrix and x and y are vectors, by

multiplying both sides by a checker vector and compari ng the results: () (). If ⃗ (vector of all 1s),

as is common in dense linear algebra literature, performance is poor, averaging 30% overhead across a broad

range of matrixes from the University of Florida Sparse Matrix Collection (5). Our work thus focuses on developing

alternate vectors that balance performance and accuracy. We have developed several “sparse” techniques (6):

 Approximate Random – Random fraction of ’s entries are set to 1 and remaining entries are 0.

 Approximate Clustering – Cluster ’s columns by their sums; random assignment of 1s in c is biased to ensure

each cluster gets the same number of 1s.

 Identity conditioning – Set to minimize | ⃗ |, which reduces detection error due to complex matrixes A.

 Null conditioning – Set in or near the null -space of A (⃗), which

reduces detection error due to complex vectors x.

Since each technique works best in different contexts we use a Decision Tree

to choose the best algorithm for a given matrix. Figure 2 shows that our

approach is both more efficient and more accurate than the traditional check.

The F-score is an accuracy metric that balances the rates of (i) faults that were

correctly detected and (i i) fault alarms that correspond to real faults. Although

the traditional check achieves F-Score of ≥ 0.9 on just 14% of matrixes, our

algorithm meets this target for 72% and 88% if the detection algorithm is

chosen perfectly by an oracle. Further, while the traditional algorithm has 33%

average (26% median) overhead on the matrixes for which it achieves F-Score

≥ 0.9, both our algorithm and the oracle feature 16% average (12% median)

overhead on the 72%/88% of matrixes on which each provides high accuracy.

B. PERFORMANCE FAULTS

The large number of software and hardware components in HPC systems can result in complex interactions that

significantly reduce performance. For instance, if a given chip is far away from the rack’s fans, a normal computi ng

load may cause it to overheat. If the chipset or OS respond by throttling its performance, the entire parallel

application will slow down because it is stalled on data from the throttled chip. Effects l ike this can be very difficult

to identify and resolve because they span many different components and depend on very specific combinations

of events. A key portion of my work is to develop techniques to automatically analyze the behavior of systems and

applications to detect, localize and tolerate such performance faults.

Most prior work in this area focuses on building models of individual systems of interest (e.g. Hadoop (7) or PVFS

(8)) or workloads in a datacenter (9). While theoretically interesting, it does not offer a way forward to model

arbitrary applications and systems. First, research on individual systems relies on human knowledge their design.

Given the large numbers of individual systems and applications and their combinations, this methodology cannot

model general systems. Conversely, research on large-scale behavior of many applications must deal with very

complex behavior, which results in models that have limited util ity.

In contrast, my approach looks at systems and applications at a very fine grain, such as individual loops or function

calls. At this granularity software behavior is fairly simple and can be described using a few metrics such as cache

miss rates and number of instructions per cycle. By combining very accurate models of all components it will be

Figure 2: Overhead of Traditional and

Our Sparse Checks

possible to automatically and precisely model the behavior of entire systems. My research has touched on three

aspects of this problem: detection and localization of faults, characterization of the type of fault that is occurring

and fine-grained measurement of application behavior.

1. FAULT DETECTION AND CHARACTERIZATION

In collaboration with Ignacio Laguna and Saurabh Bagchi from Purdue University and Bronis R. de Supinski from

LLNL I have developed a technique to detect bugs and system faults HPC applications by observing the effect of

these phenomena on application behavior (10; 11). Our approach, called “Automata-Based Debugging for

Dissimilar Parallel Tasks” (AutomaDeD) divides

application execution into individual code

regions separated MPI calls. For each such

region we record metrics such as execution

time and performance counters. Since each

code region runs multiple times during a single

application execution AutomaDeD builds a

probability distribution of the observed values,

as i l lustrated in Figure 3.

After the model is trained on representative application runs it is

applied to production runs. The elapsed time and performance

counters observed while a code region executes are compared to the

probability distribution of these values collected during training. If

the probability of a given observation is low, it is declared to be an

error and sent to the developer or system administrator for further

review. Our experiments show that this approach can accurately

detect faults and localize the fault time and location (process and

code region. Figure 4 i llustrates this by showing the degree to which

one execution of the NAS BT benchmark deviates from normal

behavior when another application is executed concurrently (models

a bug in the MVAPICH-0.9.9 task launcher). It shows that while the

interfering application is executed BT’s behavior is significantly

abnormal (high deviation scores) and returns to normal behavior (low

deviation scores) when the interfering application terminates.

The fault location and time provided by AutomaDeD can be used to detect the problem and help focus developers or

automated tools on its most significant effects. Since multiple faults may have

the same causes or may afflict the system in the same way it, AutomaDeD has

been enhanced to provide even more useful informat ion by collecting similar

faults together. AutomaDeD does this by asking the administrator for examples

of what each given fau lt type looks like. A fault type is described in terms of a

set of sample runs of a g iven applicat ion that are believed to be affected by the

fault. Further, the administrator provides a set of non-faulty sample runs.

AutomaDeD then builds a classifier based on the execution time and

performance counter observations taken for each code region during the

different runs. When a production run of the application is affected by a fault

the trained classifier then determines which fau lt type is occurring. This guides

administrators and automated tools more precisely to the fault’s root cause.

Figure 3: Building a Probability Distribution from Observations

Figure 4: Deviation from Normal Behavior

Figure 5: Accuracy of Classifying Faults

While this simple approach has intuitive appeal, in the context o f system faults it works very poorly. As Figure 5

shows, traditional statistical classification algorithms are used only 40% of the fault classifications are correct

(Precision) and just 10% of the real fau lts are classified

correctly (Recall). This is because system faults have a

very irregular effect on the application behavior. Figure 6

shows that during faults only a small fraction of events

(code regions executions) are abnormal (points with a h igh

“Abnormality Value”). This is because the influence of a

system fault depends strongly on how the OS schedules

the application and the faulty software and on the resource

needs of application code regions (e.g. code with few memory accesses is not affected by memory performance

faults). We solved this by developing a novel feature extractor that trains the fault classifiers using only the highly

abnormal observations. This technique, which identifies structure in observations without supervision, is correct in

85% of its predictions (Precision) and real faults are correctly classified 78% of the time (Recall), as Figure 5 shows.

2. DIFFRACTIVE PROFILIN G

To create fine-grained models of application and system behavior it is necessary to measure it very precisely. For

instance, the counters that measure energy use on the Intel Sandybridge architecture are only updated at a 1

millisecond granularity and other measurement tools are even coarser (12). Since most function calls and loops are

significantly shorter than this, it is not possible to directly measure their energy use. Statistical profiling overcomes

this by inferring the average number of events during a very small code region from many coarse measurements.

Figure 7 illustrates this approach. Observation code is executed periodically at a coarse granularity using periodic

interrupts (one interrupt for many code regions). To measure each code region's execution time, the observation

code examines the Program Counter (PC) at the time of the observation to identify the currently executing code

region. It then builds a histogram of code region

observation counts. Each region’s estimated

average execution time is computed by

multiplying the application's overall execution

time by

. This estimate

converges to the true average as the number of

observations increases. Statistical profiling has also been extended to counter-based metrics other than time.

Unfortunately, statistical profiling requires a large number of samples to produce an accurate estimate (13), which

can be expensive for coarse-grained measurements such as energy counters or for very-fine grained code regions

such individual basic blocks. I am collaborating with Marc Casas -Guix from LLNL to improve the convergenc e speed

of statistical profiling via a technique called Diffractive Profil ing. This technique explicitly tracks the code regions

executed between adjacent observation points,

recording the number of times each region

executed. The number of events between adjacent

observations is modeled as the sum of events in

each code region. Thus, if represents the

number of events that occur during code region , and is the number of events between observations and

 , the number of events that occur during the first measurement period in Figure 7 is . Taken

together these observations induce the linear system in Figure 8. As the number of observation increases the

system’s solution converges to the average number of events in each code region. Figure 9 shows that this is more

accurate than traditional statistical profiling. Across three different applications and observation periods ranging

Figure 6: Abnormality of Events During a Fault

Figure 7: Illustration of Statistical and Diffractive Profiling

⬚ ⬚ ⬚
⬚ ⬚ ⬚

⬚ ⬚ ⬚

⬚ ⬚ ⬚

⬚ ⬚ ⬚
⬚ ⬚ ⬚

⬚
⬚

⋮

𝑥

⋮
𝑥9

⋮

𝑒
𝑒
𝑒
⋮

 Figure 8: Linear System Solved in Diffractive Profiling

from 1μs to 100ms, the error of diffractive profiling is orders of magnitude smaller. Intuitively, this is because

statistical profiling is equivalent to the solution of the linear system where only the last code region between two

observations is known. This corresponds to the system where each row contains a 1 in the column of the last

observation, rather than an accurate count of all code

regions, which is significantly less accurate.

We are currently using diffractive profil ing to measure

the energy use of small code regions. Further, we are

extending it to infer additional metrics about code

regions that are not possible with statistical profiling,

such as the standard deviation of the event counts.

Finally, to explore the dependence of the number of

events in each code region on the application’s

execution history we are also extending diffractive

profiling to infer the exact number of events during

every execution of each code region.

III. MODEL GUIDED SYSTEM MANAGEMENT

My work focuses on enabling systems and applications to productively operate in the face of faults. While it is

critically important to address the resilience needs of legacy applications, it is also important to develop new ways

to design systems and applications so that they are inherently flexible and resilient. To achieve this goal it is

necessary to (i) dynamically schedule application components to computing resources and to (ii) make optimal

scheduling decisions by predicting their outcomes before they are made. This is difficult for traditional applications

and systems for two reasons. First, they are typically organized around some fixed work management policy that

assigns work without considering the connections between the algorithm’s current needs or the capabilities of the

currently available resources. Second, even if they are designed to be flexible, it is difficult to productively exploit

this flexibil ity because the outcomes of various scheduling decisions are difficult to predict in practice.

To overcome these difficulties a programming model must make it easy for developers to

 Divide their overall algorithm into individual tasks

 Identify the state of each task and the information exchanged between tasks

 Describe each task’s input data in a way that can be easily analyzed by a modeling algorithm

Given an application written in this fashion it becomes possible for a runtime system to adaptively schedule its

tasks on available computing resources. Further, because task interactions and inputs are explicitly specified, it is

significantly easier to make intelligent scheduling decisions by using statistical models to predict how each task will

behave in a given execution scenario.

To explore the design of such programming models and systems I am designing a prototype system called

“Minions”. To an application developer a Minions application is a sequential recursive program where function

calls are discrete units of computation. Each function’s arguments are specified as strings and it may operate only

on its own local state. Functions interact with each other via calls and returns (returned data may have arbitrary

structure). The Minions runtime then schedules individual tasks (function calls) on available computing resources.

This approach revolutionizes the design of dynamic systems because it naturally makes available key information

about tasks and their relationships . This makes easy to use statistical modeling techniques to predict the behavior

of tasks and make scheduling decisions. For instance, task arguments are strings because such simple data

structures are easily handled by state of the art statistical modeling techniques. Further, the constraints on the

Figure 9: Diffractive Profiling is More Accurate than Statistical

state of Minions tasks are designed to enable concurrent execution of tasks on arbitrary computing resources.

Finally, explicit task boundaries make it easier to measure task performance and behaviors.

The design of Minions is fundamentally different from prior approaches. Previous work attempts to extract from

legacy applications information that is needed to create statistical models . In contrast, this information is available

in Minions directly, with no special effort. Further, because it includes function arguments, creating workload-

sensitive models is natural. In contrast, such models are extremely difficult for prior approaches, which have no

direct way to get a description of the application’s workload. The key advantage of Minions is that while tools that

work with legacy applications must perform very complex analyses schedule and model them, Minions makes

these capabilities natural . This makes it possible to fully explore model -guided applications and system

management techniques in isolation from other concerns, guiding the designs of the next generation of application

and system designs.

Figure 10 illustrates the Minions design, which is partitioned to enable components focused on system modeling,

measurement, runtime optimizations and task scheduling to interact easily and to to combine various component

implementations in a single runtime. Minions will be given a set of tasks (names and arguments known), compute

resources (performance capabilities known) and runtime actions that it can apply to the tasks (e.g. executing a task

on a given architecture or co-locating a set of tasks on the same core or node). Minions will use the Experiment

Selector module to choose a subset of task/action combinations that are representative of the others. These will

be given high priority to ensure they are executed before the others. For each run it will select one or more

measurements to be made of the task’s behavior and resource needs . These will range from simple metrics such as

CPU util ization to complex inferences that may require multiple task executions (e.g. statistical sampling).

Figure 10: Workflow of Model-Guided Work Management

The resulting set of tasks, with their associated priorities and measurements will be provided to the Scheduler,

which will assign them to available compute resources. As tasks complete, their measurements will be fed back to

the runtime and used to build (i) Models that associate task arguments to their behavioral properties and (ii)

Models that map task properties to the productivity (e.g. execution time, energy use, cost) of a given runtime

action on the task. By predicting the outcomes of various runtime actions on tasks in the queue, these models will

enable the scheduler to intell igently choose tasks and runtime actions to maximize system productivity.

The ultimate vision of this work is to develop a system that provides highly efficient, adaptable and resilient

performance to real -world HPC applications. By demonstrating the benefits of a model-guided dynamic system and

application design, I hope to influence the design of other programming models and runtime systems to brin g the

benefits of this approach to the entire HPC application community.

IV. SUMMARY

The growing power of HPC systems comes at the price of increasingly lower reliability and higher system

complexity. To continue DoE leadership in HPC into the Peta - and Exa-scale eras we must make systems resilient to

these phenomena. My work is developing a detailed understanding of the effects of faults on real HPC systems,

and enabling the design of application and systems that can tolerate them. My ultimate goal is to help create a

new generation of highly-productive and cost-efficient HPC systems to enable novel DOE science applications.

V. BIBLIOGRAPHY

1. Extending Stability Beyond CPU Millennium: a Micronscale Atomistic Simulation of Kelvin-Helmholtz Instability. J.
N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd and J. A. Gunnels. 2007. ACM/IEEE Supercomputing
Conference.

2. ITRS. International Technology Roadmap for Semiconductors. 2010.

3. Peter Kkogge, editor & study lead. Exascale Computing Study: Technology Challenges in Achieving Exascale
Systems. s.l. : DARPA IPTO, 2008.

4. Algorithm-Based Fault Terance for Matrix Operations. Abraham, Kuang-Hua Huang and J.A. 6, 1984, IEEE
Transactions on Computers, Vol. 33.

5. University of Florida Sparse Matrix Collection. Davis, Timothy A. 1994, NA Digest, Vol. 92.

6. Algorithmic Approaches to Low Overhead Fault. Joseph Sloan, Rakesh Kumar and Greg Bronevetsky. 2012.
International Conference on Dependable Systems and Networks (DSN).

7. Large-Scale System Problem Detection by Mining Console Logs. Wei Xu, Ling Huang, Armando Fox, David
Patterson, and Michael Jordan. 2009. ACM Symposium on Operating Systems Principles (SOSP).

8. Black-Box Diagnosis in Parallel File Systems. Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi and Priya Narasimhan.
2010. USENIX Conference on File and Storage Technologies (FAST).

9. Analysis of Application Heartbeats: Learning Structural and Temporal Features in Time Series Data for
Identification of Performance Problems. Reed, Emma S. Buneci and Daniel A. 2008. ACM/IEEE Supercomputing
Conference.

10. AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks. Greg Bronevetsky, Ignacio Laguna,
Saurabh Bagchi and Bronis R. de Supinski. 2010. International Conference on Dependable Systems and Networks
(DSN).

11. Automatic Fault Characterization via Abnormality-Enhanced Classification. Greg Bronevetsky, Ignacio Laguna,
Saurabh Bagchi and Bronis R. de Supinski. 2012. International Conference on Dependable Systems and Networks
(DSN).

12. Accurate Energy Attribution and Accounting for Multi-core Systems. Sebi Ryffel, Thanos Stathopoulos, Dustin
McIntire, William J Kaiser and Lothar Thiele. 2009. USENIX.

13. Towards a Methodology for Deliberate Sample-Based Statistical Performance Analysis. Hollingsworth, Geoffrey
Stoker and Jeffrey K. 2011. Workshop on High-Level Parallel Programming Models and Supportive Environments.

Impact and Champions Milestones/Dates/Status

Novel Ideas

PI: Greg Bronevetsky, LLNL

10/04/2011

Failures and performance degradations

significantly reduce the productivity of HPC

systems by reducing confidence in simulation

results and increasing the time and cost to

producing each scientific result. This project will

enable applications to operate productively on

complex, unreliable HPC systems by modeling the

behavior of application components during

normal and faulty operation and identifying their

reliability needs. Further, it will develop novel

algorithms to improve application resilience.

As the size and complexity of HPC systems grows they

become less reliable and perform more erratically. We are

developing a modular methodology to analyze effect of

faults on applications and improve application resilience:

• Resilience for numerical libraries

• Modular error propagation analysis

• Detection, localization and characterization of

performance faults

• Very fine-grain performance analysis

• Model-guided system management

IMD Reliable High Performance Peta- and
Exa-Scale Computing

Sched

uled

Actual

Detection and localization of performance faults 11/10 11/10

Characterization of performance faults 5/11 5/11

Soft fault detection in linear algebra libraries 12/11 12/11

Model-guided system prototype 3/12 3/12

Fault detection and characterization in generic

applications

9/12

Generic framework for hybrid algorithmic- and

resilience-based fault tolerance

5/13

Resilient model-guided system deployment 5/14

Reliable High Performance Peta- and Exa-Scale Computing
Greg Bronevetsky

Supercomputers are growing increasingly complex, as reflected both in the exponentially increasing numbers of

hardware components (LLNL is currently install ing the 1.6 mill ion core Sequoia system) as well as the variety of

software and hardware in a typical system. At this scale component failures and degenerate cross -component

interactions become a regular occurrence. The resulting faults and instability cause HPC applications to cr ash,

perform sub-optimally or even produce erroneous results. Since full system reliability will become prohibitively

expensive for Exascale systems, we will require novel techniques to bridge the gap between the lower reliability

provided by hardware systems and users’ unchanging need for consistent performance and reliable results.

Previous resil ience research has developed fault detection and tolerance techniques . However, they have seen

very l imited real use because (i) the effects of complex faults on real systems are poorly understood (e.g. soft

faults or performance degradations) and (i i) it is difficult to implement resil ience for a real system in a modular

fashion. With little idea of what needs protection and few tools to implement whole-system resil ience from

building blocks, developers have little opportunity to make applications resil ient. My work addresses this problem

via a modular methodology for analyzing the behavior of applications and systems during normal and faulty

operation and modular system design techniques that will improve application resil ience and adaptability.

MODELING APPLICATION AND SYSTEM BEHAVIOR

MODELING ERROR PROPA GATION

I am working to model the propagation of errors through applications by dividing them into individual routines and

using fault injection to observe how

their outputs are affected by errors

injected during their execution or

into their inputs. Figure 1 shows the

vulnerability of the outputs of the

Matrix-Matrix Multiplication and

SVD Factorization routines in the

GNU Scientific Library. The data

shows the fraction of entries in the

output matrixes that have an error

of a given magnitude from 1e-14 to .75 (if the correct value is and the error magnitude is , the erroneous value

is). We are working to combine error vulnerability models of individual routines in numeric l ibraries to

predict the error vulnerability of applications that use them.

ALGORITHMIC RESILIEN CE

There has been extensive work on detecting and correcting errors in dense

linear algebra applications via checkers that are asymptotically faster than the

original algorithms. Unfortunately, these techniques are expensive for sparse

linear algebra because in this context their cost is asymptotically the same as

the original algorithm. I am developing error checks for sparse matrix -vector

multiplication , the backbone of sparse linear algebra, by using the

identity () (). The traditional check, which uses ⃗ (vector of

all 1s), has 30% average overhead and frequently misses errors. We have

Figure 2: Fraction of Entries in Operation Outputs with Errors of a Given Magnitude

Figure 1: Overhead of Traditional and

Our Sparse Checks

Figure 3: Workflow of Model-Guided Work Management

combined several techniques for choosing that include sparsely sampling 1s and 0s or that condition to

minimize | ⃗ | or to be near ’s null-space. As Figure 2 shows, by choosing the right technique for each matrix

detection overhead shrinks to just 10%, and 12% if the choice is made using a decision tree. Further, the technique

is much more stable than the traditional check, with consistently high detection accuracy across many error rates.

MODEL GUIDED SYSTEM MANAGEMENT

My work focuses on enabling systems and applications to productively operate in the face of faults. In addition to

addressing resil ience in legacy applications, it is also important to develop new ways to design systems and

applications so that they are inherently flexible and resil ient. To achieve this goal it is necessary to (i) dynamically

schedule application components to computing resources and to (i i) make optimal scheduling decisions by

predicting their outcomes before they are made. Although critical for Exascale, these capabilities are not common

in today’s HPC applications. I am working on a new dynamic system that both demonstrates how to design

applications to be dynamically optimizable and is itself a proxy application that can be used to evalu ate different

modeling, monitoring and optimization approaches. Figure 3 i l lustrates its overall design.

Work is decomposed into many individual tasks, the arguments of which are explicitly identified by the developer .

The developer also identifies one or more runtime configuration decisions that can be made to optimize each

task’s performance (e.g. setting voltage or task co-location). The modeling system uses empirical observations of

task performance under various configurations to predict the optimal configuration of each subsequent task. The

system is organized in a modular fashion into a (i) task-specific statistical model, (i i) a model focused on hardware

behavior, (i i i) an experiment selector that prioritizes the execution of representative combinations of tasks,

configurations and measurements, and (iv) a scheduler that optimizes task execution on available resources.

