
LLNL-TR-545691

Reliable High Performance Peta-
and Exa-Scale Computing

G. Bronevetsky

April 5, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Reliable High Performance Peta- and Exa-Scale Computing 
Greg Bronevetsky 

 

I. ABSTRACT 

As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected 

both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1 .6 

million core Sequoia system) as well as the wide variety of software and hardware components that a typical 

system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular 

faults somewhere in the system or to account for all  possible cross -component interactions. The resulting faults 

and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results . As 

supercomputers continue to approach Exascale performance and full  system reliability becomes prohibitively 

expensive, we will  require novel techniques to bridge the gap between the lower reliability provided by hardware 

systems and users’ unchanging need for consistent performance and reliable results. 

Previous research on HPC system reliability has developed various techniques for tolerating and detecting various 

types of faults. However, these techniques have seen very l imited real applicability because of our poor 

understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or 

performance degradations. Prior work on such techniques has had very limited practical utility because it has 

generally focused on analyzing the behavior of entire software/hardware systems both during normal operation 

and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse 

behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the 

many different system stacks and applications used in practice, this work has had little real-world impact. My 

project addresses this problem by developing a modular methodology to analyze the behavior of applications and 

systems during both normal and faulty operation. By synthesizing models of individual components into a whole-

system behavior models my work is making it possible to automatically understand the behavior of arbitrary real -

world systems to enable them to tolerate a wide range of system faults. 

My project is following a multi -pronged research strategy. Section II discusses my work on modeling the behavior 

of existing applications and systems. Section II.A discusses resilience in the face of soft faults and Section II.B looks 

at techniques to tolerate performance faults. Finally Section III presents an alternative approach that studies how a 

system should be designed from the ground up to make resil ience natural and easy. 

II. MODELING APPLICATION AND SYSTEM BEHAVIOR 

A. SOFT FAULTS 

As the feature sizes and voltages of electronic components grow smaller and the numbers of such components 

grow larger, soft faults are becoming a serious threat to application correctness. Even as today’s systems 

experience soft faults on a regular basis (a 104k node BlueGene/L system suffers from 1 uncorrected soft fault 

every 8 hours (1)), tomorrow’s systems will  grow even less reliable (2) (3). 

1. MODELING ERROR PROPA GATION 

Traditional approaches for analyzing application vulnerability to soft faults use fault injection to determine how 

faults in individual applications components affect application performance and the correctness of its results. 



However, the complexity of real -world applications means that a given fault injection experiment must consist of 

thousands of application runs  to cover all  major failure modes. This is expensive for sequential applications and 

completely infeasible for large-scale parallel applications. In collaboration with Lide Duan, Sui Chen and Lu Peng 

from Louisiana State University I am developing modular techniques to analyze how soft faults affect applications. 

My approach divides applications 

into major routines and studies 

the error properties of each. 

Errors are injected into each 

routine and its outputs are 

checked for errors to measure the 

routine’s error vulnerability. 

Further, errors are injected into 

operation inputs and the outputs 

are checked to measure how 

much the routine amplifies or dampens errors in inputs. Figure 1 shows the vulnerability of the outputs of the 

Matrix-Matrix Multiplication and SVD Factorization routines in the GNU Scientific Library. The data shows the 

fraction of entries in the output matrixes that have an error of a given magnitude from 1e-14 to .75 (if the correct 

value is   and the error magnitude is  , the erroneous value is    ). We are working to combine error 

vulnerability models of individual routines in numeric libraries to predict the error vulnerability of applications that 

use them. 

2. ALGORITHMIC RESILIENCE 

Because soft faults affect the application state in subtle ways, the resulting corruptions of application results are 

often extremely difficult to detect. Replication can be used to detect faults by executing the application twice and 

comparing the results of the replicas. Correction is possible if more than two replicas are used. Although 

replication works for arbitrary applications, it can be expensive both in power and performance because it doubles 

or triples the amount of computation performed by the application. It is thus necessary to develop techniques to 

provide resil ience to soft faults at a lower overhead, making it practical for HPC applications. 

Although result checkers that execute in asymptotically less time than the ori ginal algorithm are not possible in 

general, such checker can be designed for specific algorithms. Since significant amounts of time spent by HPC 

applications is actually spent in general -purpose libraries I am working on techniques to detect and correct errors 

that occur in such libraries by leveragi ng their algorithmic properties. My specific focus is on sparse linear algebra. 

Linear algebra constitutes a key class of algorithms that is used widely in scientific applications. These algorithms 

can be checked via the use of linear error correcting codes  (4). Consider the case of matrix-matrix multiplication AB 

→ C, where A, B and C are matrixes. This computation can be checked by multiplying both sides by a check vector   

and checking if the resulting vectors are close to each other: (   )      . An error is declared i f the differenc e 

is too large. Computeational errors can be corrected if the multiplication from the left as above is augmented with 

another multiplication from the right:  (  )     A(By) ?= Cy or if the vectors   and   are replaced with the 

generator matrix of a linear error correcting code. This check is both effective and efficient: the  (  ) matrix-

matrix multiplication algorithm is checked via constant number of  (  ) matrix-vector multiplications. 

Although very effective for dense linear algebra, this technique works poorly for sparse linear algebra, a domain 

that is becoming increasingly important for adaptive simulations. This is because in sparse matrixes both the 

matrix-matrix multiplication and matrix-vector multiplication have the same complexity:  (  ). In collaboration 

with Joseph Sloan and Rakesh Kumar from the University of Ill inois Urbana-Champaign I am researching 

Figure 1: Fraction of Entries in Operation Outputs with Errors of a Given Magnitude  



algorithmic resilience techniques that specifically target the unique challenges of sparse linear algebra libraries to 

improve the resil ience of the scientific applications that rely on it.  

Our current work focuses on checking sparse matrix-vector multiplication, the backbone operation of sparse linear 

algebra. The state of the art is to check the operation     , where A is a matrix and x and y are vectors, by 

multiplying both sides by a checker vector and compari ng the results: (   )     (  ). If    ⃗  (vector of all  1s), 

as is common in dense linear algebra literature, performance is poor, averaging 30% overhead across a broad 

range of matrixes from the University of Florida Sparse Matrix Collection (5). Our work thus focuses on developing 

alternate vectors that balance performance and accuracy. We have developed several “sparse” techniques (6): 

 Approximate Random – Random fraction of  ’s entries are set to 1 and remaining entries are 0.  

 Approximate Clustering – Cluster  ’s columns by their sums; random assignment of 1s in c is biased to ensure 

each cluster gets the same number of 1s. 

 Identity conditioning – Set   to minimize |     ⃗ |, which reduces detection error due to complex matrixes A. 

 Null conditioning – Set   in or near the null -space of A (     ⃗ ), which 

reduces detection error due to complex vectors x. 

Since each technique works best in different contexts we use a Decision Tree 

to choose the best algorithm for a given matrix. Figure 2 shows that our 

approach is both more efficient and more accurate than the traditional check. 

The F-score is an accuracy metric that balances the rates of (i) faults that were 

correctly detected and (i i) fault alarms that correspond to real faults. Although 

the traditional check achieves F-Score of ≥ 0.9 on just 14% of matrixes, our 

algorithm meets this target for 72% and 88% if the detection algorithm is 

chosen perfectly by an oracle. Further, while the traditional algorithm has 33% 

average (26% median) overhead on the matrixes for which it achieves F-Score 

≥ 0.9, both our algorithm and the oracle feature 16% average (12% median) 

overhead on the 72%/88% of matrixes on which each provides high accuracy.  

B.  PERFORMANCE FAULTS 

The large number of software and hardware components in HPC systems  can result in complex interactions that 

significantly reduce performance. For instance, if a given chip is far away from the rack’s fans, a normal computi ng 

load may cause it to overheat. If the chipset or OS respond by throttling its performance, the entire parallel 

application will  slow down because it is stalled on data from the throttled chip. Effects l ike this can be very difficult 

to identify and resolve because they span many different components and depend on very specific combinations 

of events. A key portion of my work is to develop techniques to automatically analyze the behavior of systems and 

applications to detect, localize and tolerate such performance faults. 

Most prior work in this area focuses on building models of individual systems of interest (e.g. Hadoop (7)  or PVFS 

(8)) or workloads in a datacenter (9). While theoretically interesting, it does not offer a way forward to model 

arbitrary applications and systems. First, research on individual systems relies on human knowledge their design. 

Given the large numbers of individual systems and applications and their combinations, this methodology cannot 

model general systems. Conversely, research on large-scale behavior of many applications must deal with very 

complex behavior, which results in models that have limited util ity. 

In contrast, my approach looks at systems and applications at a very fine grain, such as individual loops or function 

calls. At this granularity software behavior is fairly simple and can be described using a few metrics such as cache 

miss rates and number of instructions per cycle. By combining very accurate models of all  components  it will  be 

Figure 2: Overhead of Traditional and 

Our Sparse Checks 



possible to automatically and precisely model the behavior of entire systems. My research has touched on three 

aspects of this problem: detection and localization of faults, characterization of the type of fault that is occurring 

and fine-grained measurement of application behavior. 

1. FAULT DETECTION AND CHARACTERIZATION  

In collaboration with Ignacio Laguna and Saurabh Bagchi from Purdue University and Bronis R. de Supinski from 

LLNL I have developed a technique to detect bugs and system faults HPC applications by observing the effect of 

these phenomena on application behavior (10; 11). Our approach, called “Automata-Based Debugging for 

Dissimilar Parallel Tasks” (AutomaDeD) divides 

application execution into individual code 

regions separated MPI calls. For each such 

region we record metrics such as execution 

time and performance counters. Since each 

code region runs multiple times during a single 

application execution AutomaDeD builds a 

probability distribution of the observed values, 

as i l lustrated in Figure 3.  

After the model is trained on representative application runs it is 

applied to production runs. The elapsed time and performance 

counters observed while a code region executes are compared to the 

probability distribution of these values collected during training. If 

the probability of a given observation is low, it is declared to be an 

error and sent to the developer or system administrator for further 

review. Our experiments show that this approach can accurately 

detect faults and localize the fault time and location (process and 

code region. Figure 4 i llustrates this by showing the degree to which 

one execution of the NAS BT benchmark deviates from normal 

behavior when another application is executed concurrently (models 

a bug in the MVAPICH-0.9.9 task launcher). It  shows that while the 

interfering application is executed BT’s behavior is significantly 

abnormal (high deviation scores) and returns to normal behavior (low 

deviation scores) when the interfering application terminates.  

The fault location and time provided by AutomaDeD can be used to detect the problem and help  focus developers or 

automated tools on its most significant effects. Since multiple faults may have 

the same causes or may  afflict the system in the same way  it, AutomaDeD has 

been enhanced to provide even more useful informat ion by collecting similar 

faults together. AutomaDeD does this by asking the administrator for examples 

of what each  given fau lt type looks like. A  fault  type is described in terms of a 

set of sample runs of a g iven applicat ion that are believed to be affected by the 

fault. Further, the administrator provides a set of non-faulty sample runs. 

AutomaDeD then builds a classifier based on the execution time and 

performance counter observations taken for each code region during the 

different runs. When a production run of the application is affected by a fault  

the trained classifier then determines which fau lt type is occurring. This guides 

administrators and automated tools more precisely to the fault’s root cause.  

Figure 3: Building a Probability Distribution from Observations 

Figure 4: Deviation from Normal Behavior 

Figure 5: Accuracy of Classifying Faults 



While this simple approach has intuitive appeal, in the context o f system faults it  works very poorly. As Figure 5 

shows, traditional statistical classification algorithms are used only 40% of the fault classifications are correct 

(Precision) and just 10% of the real fau lts are classified 

correctly (Recall). This is because system faults have a 

very irregular effect on the application behavior. Figure 6 

shows that during faults only a small fraction of events 

(code regions executions) are abnormal (points with a h igh 

“Abnormality Value”). This is because the influence of a 

system fault depends strongly on how the OS schedules 

the application and the faulty software and on the resource 

needs of application code regions (e.g. code with few memory accesses is not affected by memory performance 

faults). We solved this by developing a novel feature extractor that trains the fault classifiers using only the highly 

abnormal observations. This technique, which identifies structure in observations without supervision, is correct in 

85% of its predictions (Precision) and real faults are correctly classified 78% of the time (Recall), as Figure 5 shows.  

2. DIFFRACTIVE PROFILIN G 

To create fine-grained models of application and system behavior it is necessary to measure it very precisely. For 

instance, the counters that measure energy use on the Intel Sandybridge architecture are only updated at a 1 

millisecond granularity and other measurement tools are even coarser (12). Since most function calls and loops are 

significantly shorter than this, it is not possible to directly measure their energy use. Statistical profiling overcomes 

this by inferring the average number of events during a very small code region from many coarse measurements.  

Figure 7 illustrates this approach. Observation code is executed periodically at a coarse granularity using periodic 

interrupts (one interrupt for many code regions). To measure each code region's execution time, the observation 

code examines the Program Counter (PC) at the time of the observation to identify the currently executing code 

region. It then builds a histogram of code region 

observation counts. Each region’s estimated 

average execution time is computed by 

multiplying the application's overall  execution 

time by 
               

                       
. This estimate 

converges to the true average as the number of 

observations increases. Statistical profiling has also been extended to counter-based metrics other than time. 

Unfortunately, statistical profiling requires a large number of samples to produce an accurate estimate (13), which 

can be expensive for coarse-grained measurements such as energy counters or for very-fine grained code regions 

such individual basic blocks. I am collaborating with Marc Casas -Guix from LLNL to improve the convergenc e speed 

of statistical profiling via a technique called Diffractive Profil ing. This technique explicitly tracks the code regions 

executed between adjacent observation points, 

recording the number of times each region 

executed. The number of events between adjacent 

observations is modeled as the sum of events in 

each code region. Thus, if    represents the 

number of events that occur during code region  , and    is the number of events between observations   and 

   , the number of events that occur during the first measurement period in Figure 7 is            . Taken 

together these observations induce the linear system in Figure 8. As the number of observation increases the 

system’s solution converges to the average number of events in each code region. Figure 9 shows that this is more 

accurate than traditional statistical  profiling. Across three different applications and observation periods ranging 

Figure 6: Abnormality of Events During a Fault 

Figure 7: Illustration of Statistical  and Diffractive Profiling 
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 Figure 8: Linear System Solved in Diffractive Profiling 



from 1μs to 100ms, the error of diffractive profiling is orders of magnitude smaller. Intuitively, this is because 

statistical profiling is equivalent to the solution of the linear system where only the last code region between two 

observations is known. This corresponds to the system where each row contains a 1 in the column of the last 

observation, rather than an accurate count of all  code 

regions, which is significantly less accurate.  

We are currently using diffractive profil ing to measure 

the energy use of small code regions. Further, we are 

extending it to infer additional metrics about code 

regions that are not possible with statistical profiling, 

such as the standard deviation of the event counts. 

Finally, to explore the dependence of the number of 

events in each code region on the application’s 

execution history we are also extending diffractive 

profiling to infer the exact number of events during 

every execution of each code region. 

III. MODEL GUIDED SYSTEM MANAGEMENT 

My work focuses on enabling systems and applications to productively operate in the face of faults. While it is 

critically important to address the resilience needs of legacy applications, it is also important to develop new ways 

to design systems and applications so that they are inherently flexible and resilient. To achieve this goal it is 

necessary to (i) dynamically schedule application components to computing resources and to (ii) make optimal 

scheduling decisions by predicting their outcomes before they are made. This is difficult for traditional applications 

and systems for two reasons. First, they are typically organized around some fixed work management policy that 

assigns work without considering the connections between the algorithm’s current needs or the capabilities of the 

currently available resources. Second, even if they are designed to be flexible, it is difficult to productively exploit 

this flexibil ity because the outcomes of various scheduling decisions are difficult to predict in practice. 

To overcome these difficulties a programming model must make it easy for developers to 

 Divide their overall  algorithm into individual tasks 

 Identify the state of each task and the information exchanged between tasks  

 Describe each task’s input data in a way that can be easily analyzed by a modeling algorithm 

Given an application written in this fashion it becomes possible for a runtime system to adaptively schedule its 

tasks on available computing resources. Further, because task interactions and inputs are explicitly specified, it is 

significantly easier to make intelligent scheduling decisions by using statistical models to predict how each task will 

behave in a given execution scenario. 

To explore the design of such programming models and systems I am designing a prototype system called 

“Minions”. To an application developer a Minions  application is a sequential recursive program where function 

calls are discrete units of computation. Each function’s arguments are specified as strings and it may operate only 

on its own local state. Functions interact with each other via calls and returns (returned data may have arbitrary 

structure). The Minions runtime then schedules individual tasks (function calls) on available computing resources. 

This approach revolutionizes the design of dynamic systems because it naturally makes available key information 

about tasks and their relationships . This makes easy to use statistical modeling techniques to predict the behavior 

of tasks and make scheduling decisions. For instance, task arguments are strings because such simple data 

structures are easily handled by state of the art statistical modeling techniques. Further, the constraints on the 

Figure 9: Diffractive Profiling is More Accurate than Statistical  



state of Minions tasks are designed to enable concurrent execution of tasks on arbitrary computing resources. 

Finally, explicit task boundaries make it easier to measure task performance and behaviors. 

The design of Minions is fundamentally different from prior approaches. Previous work attempts to extract from 

legacy applications information that is needed to create statistical models . In contrast, this information is available 

in Minions directly, with no special effort. Further, because it includes function arguments, creating workload-

sensitive models is natural. In contrast, such models are extremely difficult for prior approaches, which have no 

direct way to get a description of the application’s workload. The key advantage of Minions is that while tools that 

work with legacy applications must perform very complex analyses schedule and model them, Minions makes 

these capabilities natural . This makes it possible to fully explore model -guided applications and system 

management techniques in isolation from other concerns, guiding the designs of the next generation of application 

and system designs. 

Figure 10 illustrates the Minions design, which is partitioned to enable components focused on system modeling, 

measurement, runtime optimizations and task scheduling to interact easily and to to combine various component 

implementations in a single runtime. Minions will be given a set of tasks (names and arguments known), compute 

resources (performance capabilities known) and runtime actions that it can apply to the tasks  (e.g. executing a task 

on a given architecture or co-locating a set of tasks on the same core or node). Minions will  use the Experiment 

Selector module to choose a subset of task/action combinations that are representative of the others. These will 

be given high priority to ensure they are executed before the others. For each run it will  select one or more 

measurements to be made of the task’s behavior and resource needs . These will  range from simple metrics such as 

CPU util ization to complex inferences that may require multiple task executions  (e.g. statistical sampling). 

Figure 10: Workflow of Model-Guided Work Management 



The resulting set of tasks, with their associated priorities and measurements will  be provided to the Scheduler, 

which will  assign them to available compute resources. As tasks complete, their measurements will  be fed back to 

the runtime and used to build (i) Models that associate task arguments to their behavioral properties and (ii) 

Models that map task properties to the productivity (e.g. execution time, energy use, cost) of a given runtime 

action on the task. By predicting the outcomes of various runtime actions on tasks in the queue, these models will 

enable the scheduler to intell igently choose tasks and runtime actions to maximize system productivity.  

The ultimate vision of this work is to develop a system that provides highly efficient, adaptable and resilient 

performance to real -world HPC applications. By demonstrating the benefits of a  model-guided dynamic system and 

application design, I hope to influence the design of other programming models and runtime systems to brin g the 

benefits of this approach to the entire HPC application community. 

IV. SUMMARY 

The growing power of HPC systems comes at the price of increasingly lower reliability  and higher system 

complexity. To continue DoE leadership in HPC into the Peta - and Exa-scale eras we must make systems resilient to 

these phenomena. My work is developing a detailed understanding of the effects of faults on real HPC systems, 

and enabling the design of application and systems that can tolerate them. My ultimate goal is to help create a 

new generation of highly-productive and cost-efficient HPC systems to enable novel DOE science applications. 
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Impact and Champions Milestones/Dates/Status 

Novel Ideas 

PI: Greg Bronevetsky, LLNL 

10/04/2011 

Failures and performance degradations 

significantly reduce the productivity of HPC 

systems by reducing confidence in simulation 

results and increasing the time and cost to 

producing each scientific result. This project will 

enable applications to operate productively on 

complex, unreliable HPC systems by modeling the 

behavior of application components during 

normal and faulty operation and identifying their 

reliability needs. Further, it will develop novel 

algorithms to improve application resilience.  

As the size and complexity of HPC systems grows they 

become less reliable and perform more erratically. We are 

developing a modular methodology to analyze effect of 

faults on applications and improve application resilience: 

• Resilience for numerical libraries 

• Modular error propagation analysis 

• Detection, localization and characterization of 

performance faults 

• Very fine-grain performance analysis 

• Model-guided system management 

IMD Reliable High Performance Peta- and  
Exa-Scale Computing 

Sched

uled 

Actual 

Detection and localization of performance faults 11/10 11/10 

Characterization of performance faults 5/11 5/11 

Soft fault detection in linear algebra libraries 12/11 12/11 

Model-guided system prototype 3/12 3/12 

Fault detection and characterization in generic 

applications 

9/12 

Generic framework for hybrid algorithmic- and 

resilience-based fault tolerance 

5/13 

Resilient model-guided system deployment 5/14 
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Supercomputers are growing increasingly complex, as reflected both in the exponentially increasing numbers of 

hardware components (LLNL is currently install ing the 1.6 mill ion core Sequoia system) as well as the variety of 

software and hardware in a typical system. At this scale component failures and degenerate cross -component 

interactions become a regular occurrence. The resulting faults and instability cause HPC applications to cr ash, 

perform sub-optimally or even produce erroneous results. Since full  system reliability will  become prohibitively 

expensive for Exascale systems, we will  require novel techniques to bridge the gap between the lower reliability 

provided by hardware systems and users’ unchanging need for consistent performance and reliable results. 

Previous resil ience research has developed fault detection and tolerance techniques . However, they have seen 

very l imited real use because (i) the effects of complex faults on real systems are poorly understood (e.g. soft 

faults or performance degradations) and (i i) it is difficult to implement resil ience for a real system in a modular 

fashion. With little idea of what needs protection and few tools to implement whole-system resil ience from 

building blocks, developers have little opportunity to make applications resil ient. My work addresses this problem 

via a modular methodology for analyzing the behavior of applications and systems during normal and faulty 

operation and modular system design techniques that will  improve application resil ience and adaptability. 

MODELING APPLICATION AND SYSTEM BEHAVIOR 

MODELING ERROR PROPA GATION 

I am working to model the propagation of errors through applications by dividing them into individual routines and 

using fault injection to observe how 

their outputs are affected by errors 

injected during their execution or 

into their inputs. Figure 1 shows the 

vulnerability of the outputs of the 

Matrix-Matrix Multiplication and 

SVD Factorization routines in the 

GNU Scientific Library. The data 

shows the fraction of entries in the 

output matrixes that have an error 

of a given magnitude from 1e-14 to .75 (if the correct value is   and the error magnitude is  , the erroneous value 

is    ). We are working to combine error vulnerability models of individual routines in numeric l ibraries to 

predict the error vulnerability of applications that use them. 

ALGORITHMIC RESILIEN CE 

There has been extensive work on detecting and correcting errors in dense 

linear algebra applications via checkers that are asymptotically faster than the 

original algorithms. Unfortunately, these techniques are expensive for sparse 

linear algebra because in this context their cost is asymptotically the same as 

the original algorithm. I am developing error checks for sparse matrix -vector 

multiplication     , the backbone of sparse linear algebra, by using the 

identity (   )     (  ). The traditional check, which uses    ⃗  (vector of 

all  1s), has 30% average overhead and frequently misses errors. We have 

Figure 2: Fraction of Entries in Operation Outputs with Errors of a Given Magnitude  

Figure 1: Overhead of Traditional and 

Our Sparse Checks 



Figure 3: Workflow of Model-Guided Work Management 

combined several techniques for choosing   that include sparsely sampling 1s and 0s or that condition   to 

minimize |     ⃗ | or to be near  ’s null-space. As Figure 2 shows, by choosing the right technique for each matrix 

detection overhead shrinks to just 10%, and 12% if the choice is made using a decision tree. Further, the technique 

is much more stable than the traditional check, with consistently high detection accuracy across many error rates.  

MODEL GUIDED SYSTEM MANAGEMENT 

My work focuses on enabling systems and applications to productively operate in the face of faults. In addition to 

addressing resil ience in legacy applications, it is also important to develop new ways to design systems and 

applications so that they are inherently flexible and resil ient. To achieve this goal it is necessary to (i) dynamically 

schedule application components to computing resources and to (i i) make optimal scheduling decisions by 

predicting their outcomes before they are made. Although critical for Exascale, these capabilities are not common 

in today’s HPC applications. I am working on a new dynamic system that both demonstrates how to design 

applications to be dynamically optimizable and is itself a proxy application that can be used to evalu ate different 

modeling, monitoring and optimization approaches. Figure 3 i l lustrates its overall  design. 

Work is decomposed into many individual tasks, the arguments of which are explicitly identified by the developer . 

The developer also identifies one or more runtime configuration decisions that can be made to optimize each 

task’s performance (e.g. setting voltage or task co-location). The modeling system uses empirical observations of 

task performance under various configurations to predict the optimal configuration of each subsequent task. The 

system is organized in a modular fashion into a (i) task-specific statistical model, (i i) a model focused on hardware 

behavior, (i i i) an experiment selector that prioritizes the execution of representative combinations of tasks, 

configurations and measurements, and (iv) a scheduler that optimizes task execution on available resources.  


