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Introduction: 

Current LPI modeling efforts are based on successful predictions of experiments at the Omega 
Laser Facility [1] and rely strictly on classical models for the plasma physics.  The laser energy of 
NIF, however, is close to fifty times greater in the blue, and even higher in green.  This 
enormous jump in laser energy catapults laser-plasma physics into uncharted territory where 
extrapolation from smaller facilities fails to be adequate.  As an example, simulations 
demonstrate that the maximum electron temperature achieved in Omega hohlraums is close to 
12 keV [2].  These hohlraums were designed especially for a high radiation temperature, 
resulting in the high electron temperature.  Early experiments on NIF, using far less than the full 
laser energy, have already achieved these temperatures without having explored the 
temperature limits of the design space [3].  NIF is already pushing the limits of energy-density 
with minimal laser performance.   
 
To this end, we have undergone a theoretical investigation of the relevant relativistic effects 
occurring in plasmas at energy-densities available only on NIF. In particular, we have developed 
a generalized, fully relativistic dispersion relation for laser plasma instabilities.   The dispersion 
relation can provide the relativistic growth rate for any manner of parametric instability and 
can be considered a generalization of the well known Drake dispersion relation [4].   In addition 
to the inclusion of special relativity, our dispersion relation differs from the Drake dispersion 
relation in two key facets: we have made no assumption about the relative time scales by 
performing a ponderomotive average, and we have included electrostatic parametric 
instabilities.   

 

Scientific Description: 

The shortcoming of classical modeling in the NIF parameter regime is threefold: one, certain 
electromagnetic decay processes in a plasma should never be considered classical, two, as the 
temperature increases, the number of electrons with relativistic behavior grows exponentially, 
and, three, at high densities the phase velocity of a plasma wave can become relativistic.  With 



fully relativistic models, which can be refined and validated with optical Thomson scattering, 
these shortcomings can be overcome and provide more accurate analysis of the experimental 
data, including reflectivity measurements with FABS and NBI.     

From an ignition standpoint, the hohlraum laser entrance hole (LEH) is of great interest due to 
symmetry tuning using cross beam energy transfer and the possibility of backward Raman 
amplification [5].  The LEH is also the highest temperature region of the hohlraum.  Proper LPI 
modeling of this region, which includes the effects of relativity, is critical for backscatter 
mitigation, which can lead to improved design margins.  Furthermore, NIF can provide more 
than twice the laser energy when operated with green light, making it an attractive alternative 
to blue, and likely the next generation option of ignition designs.  With the increased energy in 
green light, ignition targets designs will achieve higher electron temperatures in the LEH and 
throughout the hohlraum.  Operating with increased energy in the green also results in a higher 

value of 2I , increasing the danger of LPI, and necessitating accurate and precise models.        

While relativity is a mature concept, the study of relativistic effects in hot dense-plasmas is still 
developing.  Several fundamental relativistic concepts manifest at the energy-densities 
achievable on NIF:  relativistic mass corrections to the electron, effective rotation of the 
incident electric field in the electron frame, modifications to electromagnetic force due to the 
relative motion of the electron and light, and collective wave effects at relativistic phase 
velocities.  These effects alter the coupling of the laser pulse to the plasma and result in 
modified LPI gains.  With an understanding of these effects, traditional LPI assessment tools 
such as PF3D and SLIP can be upgraded, and made more true-to-life.  
 
The relativistic alterations to the classical electron motion can be observed from the force 
equation ( /a F m ) for an electron in a plane electromagnetic wave  
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where v / c   is the normalized electron velocity, 0E  is the electric field amplitude,   is the 

relativistic factor, rn  is the index of refraction of the medium, ê  is unit vector in the 

polarization direction, and k̂  is the unit vector in the propagation direction.  The occurrence of 
  and ˆ( )e   in the force equation are clear deviations from the non-relativistic force 

equation.  The relativistic phase evolution results from the relativistic aberrations to the 



electron's trajectory, while the relativistic wave dispersion accounts for electromagnetic wave 
propagation in a relativistic plasma.  
 
Neglecting relativistic modifications to the electron trajectory can result in LPI estimates with 
up to 100% error.  In the figure below, the single particle trajectory error (the magnitude of, 

[ ( ) ( )] / ( )r nr rx t x t x t
 

where the subscripts r and nr indicate relativistic and non-relativistic 

respectively) for an electron moving in an electromagnetic field with NIF-like laser intensities 
(1x1015 W/cm2) is plotted as a function of initial electron velocity.   

                                             

 
Caption, Single Particle Error: Error in using a classical 
equations of motion compared to relativistic for a single 
electron trajectory in an electromagnetic wave at 
different values of initial velocity, vp.  The associated 
velocities of the collective wave processes are 
demarcated.  As the phase velocity increases, the error 
increases non-linearly. 

 

 

Because the strongest interaction between the electrons and decay wave occurs when the 
electron velocity is matched to the phase velocity, vp, the figure above can be considered an 
estimate of the error in collective wave effects.  The dashed lines are typical phase velocity 
values for NIF parameters, demonstrating the importance of collective relativistic effects.     

 

Results:  Relativistic Dispersion Relation 

We start by writing the Vlasov-Maxwell system of equations 
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where qs and Fs are the charge and distribution function for specie s  respectively.  
Transforming Eq. (1c) from the momentum to velocity coordinate we see the effective force in 
Eq. (2) resembles that appearing in the equation of motion on the previous page: 
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We continue by performing a Bloch-wave expansion of the electric field, magnetic field, and 

distribution functions 
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where na= c ka/ a is the index of refraction, kl = lkiz - , and l = li - .   The first term in Eq. 

(3c) represents the plasma conditions in the absence of the pump wave, which we take to be 

charge neutral, uniform, isotropic, and with zero flow.   

The first terms in Eq. (3a) and (3b) represent the pump wave which can be electrostatic or 

electromagnetic.  The second term In Eq. (3c) represents the standard linear change in the 

distribution function due to the pump wave.   To lowest order we simply have the relativistic 

generalization of the plasma response to the pump wave.  The associated dispersion relation 

for the pump wave is then i=0, where 
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where s is the equilibrium number density of specie s, fs is understood to now represent the 

velocity space distribution,  
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Da = (a – ka  v)-1  and “^” above a variable denotes a unit vector.   

Finally the summation terms in Eqs. (3a) – (3c) represent the scattered waves and nonlinear 

plasma response to the pump wave with for each wave. In the Bloch wave expansion each wave 

in the summation is a harmonic of the pump wave shifted in wavenumber and frequency. This 

shift in frequency, , and wavenumber, , is associated with the wave excited by the pump.  In 



particular, the l=0 term in the summation is the excited wave, while the l=+/- 1 terms represent 

the scattered components (stokes and anti-stokes) of the pump wave.   We continue by 

consider these three waves.  After some algebra one can find the nonlinear dispersion relation 

for the lowest order stokes and anti-stokes sidebands to be 
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where I is the linear dispersion relation for each wave 
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with the associated projection vector 
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and resonant denominator Dl = (l – kl  v)-1 .   Finally the J functions represent kinetic coupling 

functions between the waves 
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While these expressions appear complicated, simplification results from specifying the relevant 

species, geometry, and phase matching conditions for the process of interest.            

 

Results:  Stimulated Raman Backward Scattering (SRS) 

Of most critical importance for ignition designs is backward Raman scattering.  Near the quarter 
critical surface of the plasma, the phase velocity of the resulting plasma wave can reach half the 
speed of light, requiring a relativistic treatment for accurate modeling.  In this process the 
pump wave is electromagnetic, the scattered wave electromagnetic, and the excited wave an 
electron plasma wave.   For simplicity we consider one dimension for which the phase matching 
condition can be expressed as 
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                                                             ( ) ( ) ( )i i s sk k       (7b) 

where s refers to the scattered wave and    and   and the frequency and wavenumber of the 
electron plasma wave.   If we consider only the resonant side band, Eq. (6a) simplifies to 
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where  
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and the distribution function is the Juttner [6] velocity distribution function fs  = A5 exp(-) 

with =mec2/T.  While simplification has occurred the expressions for J are still quite 
cumbersome.  We are in the process of evaluating this dispersion relation numerically in order 
to find the gains associated SRS and the relativistic modifications thereof. 

 

Results:  Application to Coupled Mode Equations 

Finally, we have considered an extension of the relativistic dispersion relation to the coupled 

mode equations.  Here we will consider the case of SRS.  The coupled equations for the electric 

field amplitudes for the stokes sideband and driven wave can be expressed in the spectral 

domain as follows: 
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We follow the standard technique of performing a Taylor expansion about the frequencies and 

wavenumbers satisfying the linear dispersion relations: 
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where we have used a(a , ka)=0.  Here a and ka represent nonlinear shifts to the frequency 

and wavenumber.   To ensure phase matching we have 0 = -+ and k0 = -k+.  The electric 

field amplitudes are assumed to depend only on the non-linear frequency shifts.  Upon Fourier 

transforming with respect to these shifts we find: 
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We see that the coupling coefficients for the coupled mode equations depend on the kinetic 

coupling functions J.  Thus our relativistic dispersion relation, Eq. (6a), can provide the 

relativistic generalizations to the standard coupling coefficients used in programs such as pf3D 

or SLIP [7,8].   

 

Conclusions: 
 
We have derived a fully relativistic dispersion relation for nonlinear parametric processes in 
laser driven plasmas.  The dispersion relation, while complicated, can be simplified based on 
the problem of interest.  An example of Raman back scattering was presented.  In addition we 
have considered the application of the dispersion relation to a set of spatio-temporal coupled 
mode equations.  The results can be used to improve current LPI models and gain predictions 
for high temperature experiments on the NIF at LLNL.   
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