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Executive Summary

This feasibility study (12-FS-007) investigated the current state-of-the-art for the construction of reduced
order models (ROMs) from dynamic PDE-based simulations. One novel result of was the demonstration
of a time-partitioned ROM for the advection-diffusion equation that achieved high accuracy with a small
ROM size. The time-domain of a model PDE was partitioned and a fixed-size ROM was tuned to each sub-
domain resulting in an effective method for achieving an efficient and accurate ROM for a dynamic problem.
This LDRD also investigated the construction ROMs for simulations that utilize overlapping grids. In this
case, it was found that weighting the discrete inner product in a manner that approximates the continuous
inner product yields a significantly more accurate ROM.This project demonstrated the feasibility of applying
reduced order models to complex PDE-based simulation tools and explored the benefits of adaptive ROM
techniques.The results of the work led to an Exploratory Research LDRD, funded for FY13, that will focus
on the development of composite adaptive reduced order models suitable for use with a number of LLNL
applications.

1



1 Introduction

Reduced-order models (ROMs) approximate the essential features of complex, large-scale, mathematical
models of physical systems. ROMs are designed to be orders of magnitude more efficient (in CPU and
memory) than their corresponding high-fidelity models. For example, a single high-fidelity Large Eddy
Simulation of a wind turbine may contain billions of unknowns and take days on a high-performance computer
while a reduced order model of the same problem would consist of only hundreds or thousands of unknowns
and execute in a few seconds on a desktop (or handheld) machine. This efficiency makes ROM-based fast
running adaptive codes (FRACs) invaluable in applications that require large numbers of simulations such
as design optimization, parameter space sampling or rapid evaluation of an engineering model (e.g. optimal
control).

Currently, the most popular, and computationally effective, reduced order models project a high-fidelity
mathematical model into a lower dimensional subspace to produce a dynamical ODE system with many
fewer degrees a freedom: this smaller system forms the fast running code (see, for example [1, 2, 3]). Such
model order reduction techniques have been successfully applied to a number of specific areas; however, their
practical application to high-fidelity, nonlinear partial-differential (PDE) and differential-algebraic (DAE)
equation based simulations has been limited by a number of open research problems. Of particular impor-
tance to LLNL applications is the adaptation of the reduced model to efficiently capture highly localized
spatially and temporally evolving physics with many variable parameters. Current ROMs cannot efficiently
represent local features in highly complex and dynamic simulations of physical phenomenon without enlarg-
ing the entire reduced model [4, 5, 6, 2, 7, 8]. Some approaches provide a degree of dynamic adaptation by
interrupting the ROM’s execution in order to reconstruct the subspace using expensive full-fidelity simula-
tions [9, 10, 11]. While in some specific cases this may be acceptable, in general it defeats the purpose of
having a fast running code.

2 An overview of dynamic ROMs

The construction of reduced order models generally consists of two steps: the distillation of large-scale,
high-fidelity data into a lower dimensional subspace; and the projection (e.g. Galerkin) of the original
governing equations into the chosen subspace. The first step usually progresses by the collection of a number
of “snapshots” of the time-dependent and/or multi-parameter PDE (or DAE) solution at a number of times
and parameter space locations. To be more specific, consider a high-fidelity PDE model given abstractly by

∂tu(t, x; p) = Lu(t, x; p), x ∈ Ω, t ∈ [0, T ], (1)

which depends on time, t, space, x and a collection of parameters, p ∈ P. The snapshots consist of solutions
at some times ti ∈ T and some parameter values pi ∈ P̄ arranged into columns of the M × N snapshot
matrix

AM×N =
[
u(t1, x1; p1) u(ti, xi; pi) ... u(tN , xN ; pN )

]
.

Of course, the exact solution to the PDE is usually replaced by the approximate solution uh resulting from
the discretization of the continuous problem. This data is then used to construct a lower dimensional basis
using techniques such as the proper orthogonal decomposition (POD, also known as principle component
analysis or the Karhunen-Loéve decomposition) [1, 2, 3] or the reduced basis method (RBM) [1, 2, 5, 6].
In the POD approach, for instance, the N snapshots are reduced into a small subspace by computing the
singular-value-decomposition (SVD) of AM×N = UM×MΣN×NV

T
N×N , and then taking the first K � M

columns of U corresponding to the K largest singular values of A. This approach is often described through
the equivalent (and typically smaller) eigenvalue-eigenvector problem for the N ×N covariance matrix ATA.
For complex problems whose solutions vary greatly in space and time, K may still need to be large in order
to accurately represent the dynamics, particularly for complex physical systems, long time simulations and
large problem domains, as well as for varying values of the model parameters.

Once the projection subspace has been selected, the original PDE or ODE model is projected into this
lower dimensional subspace; this projected dynamical system then forms the actual reduced order model, or
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“fast running code”. For example, let the semi-discrete approximation to our continuous problem be

∂tuh(p) = Lhuh(p) (2)

where we have suppressed the explicit dependence on time, space and parameters for clarity and Lh is the
discrete approximation to the operator L. Given a POD or RBM basis of size K, constructed from snapshots
of solutions to this discrete system, we can perform a Galerkin (for example) projection to form a smaller
ODE system of K unknowns, v ∈ RK ,

dv

dt
= LR(p)v + FR(p, t). (3)

Equation (2) may have many billions of unknowns (M = 109) and take days on a high-performance computer
to solve while Equation (3) is only of dimension K which can be orders of magnitude smaller. The reduced
order model approximation of uh is then uKR = Qv where QM×K is the rectangular matrix whose columns are
the POD or RBM basis vectors. The matrix Q and the projected system are dependent upon the parameters
pi ∈ P̄ and times ti ∈ T used in choosing the snapshots.

Of course, the real purpose of a ROM is to efficiently provide the data necessary to compute an objective
function in an optimization procedure, the system model in a control law or even rapid results to a real-time
simulation. These situations boil down to using uKR instead of uh (or even the exact solution u) in a functional
that computes a diagnostic quantity of interest (QOI) such as drag in an aerodynamics problem or average
room temperature in a building air flow simulation. In order for uKR to be useful it must accurately predict
the QOI while keeping the cost of evaluation to a minimum.

3 Adaptive ROM methods

The current state-of-the-art “adapts” ROMs to localized phenomenon by either enriching the subspace (i.e.
increasing M) [6, 12]; or completely recomputing the subspace using the original high-fidelity model [10, 11].
Both approaches retain the “global” nature of the subspace while incurring costs that reduce the efficiency
of the technology. Pope’s ISAT (in-situ adaptive tabulation) procedure[9], developed for chemical kinetics
applications, does provide some degree of locality, however it still requires the ability to summon the full-
scale simulation when the local approximations are deemed insufficient. ISAT-like schemes have currently
only been applied to stiff forcing terms of larger (unreduced) models [9, 13, 14].

We propose the development of locally (in space, time and parameter domains) adaptive reduced order
models using a constructive approach in which the ROM solution is represented as a composite collection
of localized model reductions.An example of a spatially adaptive ROM would be based on partitioning the
computational domain (e.g. for the flow solver) into sub-domains and using different numbers of POD vectors
in the different sub-domains. A sub-region where the solution is changing rapidly could use a locally defined
ROM with more degrees of freedom compared to a sub-region where the solution does not change very much.
Developing rigorous and efficient mechanisms for coupling spatially and temporally partitioned ROMs, using
tools such as partitions of unity, will be a novel contribution of this LDRD.

Adaptive ROMs could also be utilized as “sub-scale” models within even larger high-fidelity models. For
example, a wind farm simulation might consist of a spatial domain tens of kilometers in extent and hours
in time while an individual wind turbine exhibits physics on the sub-meter and sub-second space and time-
scales. A ROM based on the high-fidelity simulation of a single turbine could be used as a sub-scale model
in wind park simulations consisting of 10s or 100s of wind turbines.

4 LDRD results

4.1 Time-composite ROM

This LDRD has demonstrated that even a simple partitioning of the time domain of a problem using tuned
reduced order models for each time-partition can produce very accurate ROMs with small system sizes.
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Figure 1: Even a static partitioning of the time domain produces more accurate ROMs

Consider a model problem consisting of the one dimensional advection diffusion equation:

ut + aux − νuxx = 0 with u(t, 0) = u(t, 1) = 0, x ∈ [0, 1], t ∈ [0, T ] (4)

u(t = 0, x) =

{
1 for 0 < x < 0.5
0 for x = 0 and x ≥ 0.5

(5)

The discrete “high-fidelity” approximation, uh, to this PDE is obtained using second order central finite
differences in space and a second order accurate predictor-corrector method in time. We a-priori break up
the time domain, [0, T ], into S intervals and collect snapshots for each interval. A POD basis of order K

is computed for each interval and is used to compute the ROM solution uK,S
R using a different projection

and set of ROM coefficients, vS , for each interval. Upon entering a new interval S, the change of basis from
interval S − 1 to S is easy to accomplish using the projection matrices QS−1 and QS

vS = QT
SQS−1v

S−1. (6)

The K ×K matrix QT
SQS−1 can be computed before the ROM simulation begins and is only applied once

at each transition between time partitions.
Figure 1 compares ROM solutions to uh for the model problem for K = 5 with one (traditional OD)

interval and two intervals. Even splitting the time domain into just two intervals improves the accuracy
considerably, as shown in Table 1. Future work will include an analysis of these errors in an effort to
determine efficient interval sizes and to make the process of selecting appropriate intervals dynamic and
adaptive.

4.2 Reduced Order Models on Overlapping Grids

4.2.1 Choice of the inner product on an overlapping grid

The POD vectors φj computed from the SVD decomposition are orthogonal (orthonormal) with respect to
the usual Euclidean inner product,

φT
j φj = δij . (7)

One advantage of using this inner product is that the mass matrix M in (21) is diagonal.
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intervals K E = |uKR − uh|2
1 5 5.50e-2
1 10 1.43e-4
2 5 7.97e-5
4 5 3.93e-6
4 3 1.45e-4
8 3 1.81e-4

Table 1: Multiple partitions can improve the answer, but only up to the resolving ability of the reduced
POD basis.

We could also choose an area-weighted inner product (volume-weighted in 3D),

(φi,φj)h =
∑
k

wkφj,kφi,k = φT
i Wφj ≈

∫
Ω

ui(x)uj(x) dx. (8)

where ui and uj are the continuous functions corresponding to φi and φj respectively. Here wk ≥ 0 are
integration weights which are some approximation to the local element of area dx. W is the diagonal matrix
with entries wk. On an overlapping grid, the weights wk should be adjusted in regions where grids overlap
to take into account the multi-valued nature of the discrete solution (i.e. we need to avoid double counting
where two grids overlap). The mass matrix will no longer we diagonal using the area inner product (8)

Weighted snap-shot vectors: Instead of using the area-weighted inner product, one could instead
consider weighting the snap-shot vectors {wn} used to form the SVD. Suppose we weight the snap-shot
vectors by a matrix D, w̃n = Dwn. The SVD for the new snap-shot matrix DA = [Dw1 Dw2 . . .] is

DA = Ũ Σ̃Ṽ T . (9)

If the columns of Ũ are denoted by φ̃i then

φ̃i

T
φ̃j = δij . (10)

Note that the basis vectors we should use to represent our solution u(x, t) are φ̂i = D−1φ̃i, since we need
to scale back to the original representation. In this case we look for a ROM solution to our PDE of the form

uK(x, t) =

K∑
i=1

qi(t)D
−1φ̃i =

K∑
i=1

qi(t)φ̂i. (11)

Note that

φ̃i

T
φ̃j = φ̂j

T
DTDφ̂j = δij . (12)

Therefore if we choose D to be the diagonal matrix D = W 1/2 then φ̂i are orthogonal with respect to the
area-weighted inner product,

(φ̂i, φ̂j)h =
∑
k

wkφ̂j,kφ̂i,k = φ̂j

T
W φ̂j = δij . (13)

Thus the mass matrix will be diagonal w.r.t. the area-weighted inner product when we weight the snap-shot
vectors using D = W 1/2.

4.2.2 Reduced order models for an advection-diffusion equation on an overlapping grid

Consider solving the advection diffusion equation on some domain Ω,

Tt + (a · ∇)T = κ∆T + fb(x, t), for x ∈ Ω (14)

T (x, 0) = T0(x), for x ∈ Ω, (15)

αT + β∂nT = g(x, t) for x ∈ ∂Ω, (16)
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with some body forcing fb(x, t). We will solve these equations on an overlapping grid, G = {Gg}
Ng

g=1,
consisting of Ng component grids. On each component grid Gg we define a discrete approximation, Tn

i ≈
T (xi, t

n).
Given a reduced (POD) basis {φi}Ki=1, where φi ∈ RM are vectors representing Tn

i at all grid points on
all grids (there being a total of M grid points).

We look for a reduced order solution of the form

TK(x, t) =
∑
m

gm(t)T p
m(x, t) +

K∑
j=1

qj(t)φj(x). (17)

for some unknowns {qi(t)}, and where T p
m(x, t) are particular functions, chosen, for example, to satisfy the

boundary conditions.
Substituting (17) into the advection-diffusion equation (14) gives

TK
t + (a · ∇)TK = κ∆TK + fb(x, t), (18)

or

K∑
j=1

dqj
dt

φj +

K∑
j=1

qj(a · ∇)φj = κ

K∑
j=1

qj∆φj + Fb(x, t), (19)

Fb(x, t) = fb(x, t)−
∑
m

{
∂t[gm(t)T p

m(x, t)] + gm(t)(a · ∇)T p
m(x, t) + gm(t)∆T p

m(x, t)
}
. (20)

These last equations implicitly define (an over-determined) system of ODEs for the unknowns {qi(t)}.
We can use a Galerkin projection to define a set of N ODE equations for the N unknowns qi(t).

Let < ·, · > denote some inner product on RM . Different choices for the inner-product will be considered.
Taking the inner product of φi with (18) (i.e. we project the equations onto the space spanned by {φi})

gives

K∑
j=1

Mij
dqj
dt

+
∑
j

Bijqj =

K∑
j=1

Kijqj(t) + fi, (21)

where

Mij =< φi,φj >, Bij =< φi, (a · ∇)φj >, Kij =< φi, ν∆φj >, (22)

fi = − < φi, Fb > (23)

Equations 21 can be written as

M
dq

dt
+Bq = Kq + f . (24)

4.2.3 Cgad: advection-diffusion of a pulse past a cylinder

In this example we solve an advection diffusion equation (Cgad) for a pulse moving past a cylinder. The
boundary conditions are Neumann (check me).

We save 200 snapshots over the time interval [0, 2] so that the snap shot time interval is ∆ts = .01
We consider two ways to form the projected equations: (1) A Galerkin projection using the standard

inner product and (2) a Galerkin projection using the integration weights in the inner product.
Here are the first 21 singular values:

151.71704 108.46108 79.70319 57.30043 33.02741 19.41691 10.25015 9.04892

5.27542 2.52297 1.30634 1.00365 0.48398 0.21195 0.08702 0.03895 0.02111

0.01361 0.00904 0.00629 0.00445
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Figure 4 shows results using the weighted inner-product (WIP) projection. Figure 5 shows results using
the standard inner-product (SIP) projection. The projected initial conditions are accurate to about 4e-3
and 2e-9 for 10 and 20 POD modes, for either SIP or WIP. The WIP scheme has errors of about 1.7e-4 (10
modes) and 9.6e-4 (20) modes at t=1.5. Question: is the accuracy of the 20 mode solution being limited by
the frequency of snapshots?

The SIP scheme has errors about .1 (10 modes) and .12 (20) modes at t=1.5.
The WIP scheme is clearly much better in this case - but WHY?. We note that when solving the same

problem on a square Cartesian grid there is little difference between WIP and SIP so that the either the
overlap or the curvilinear grid has made a difference.

Figure 2: Advection diffusion of a pulse moving past a cylinder. Solution at various times.

References

[1] A. Deane, I. Kevrekidis, G. Karniadakis, and S. Orszag. Low-dimensional models for complex geometry
flows: applications to grooved channels and circular cylinders. Phys. Fluids A, 3:2337–2354, 1991.

[2] John Burkardt, Max Gunzburger, and Hyung-Chun Lee. POD and CVT-based reduced-order modeling
of navier-stokes flows. Computer Methods in Applied Mechanics and Engineering, 196:337–355, 2006.

[3] Eli Shlizerman, Edwin Ding, Matthew O. Williams, and J. Nathan Kutz. The proper orthogonal
decomposition for dimensionality reduction in mode-locked lasers and optical systems. International
Journal of Optics, 2012, 2012. Artical ID 831604.

[4] T. Braconnier, M. Ferrier, J.-C. Jouhaud, M. Montagnac, and P. Sagaut. Towards an adaptive pod/svd
surrogate model for aeronautic design. Computers & Fluids, 40:195–209, 2011.

7



Figure 3: Advection diffusion of a pulse moving past a cylinder: first few POD vectors.

[5] Simone Deparis and Gianluigi Rozza. Reduced basis method for multi-parameter-dependent steady
navier-stokes equations: Applications to natural convection ina cavity. Journal of Computational
Physics, 228:4359–4378, 2009.

[6] M. Fares, J.S. Hesthaven, Y. Maday, and B. Stamm. The reduced basis method for the electric field
integral equation. Journal of Computational Physics, 230:5532–5555, 2011.

[7] Max D. Gunzburger, Janet S. Peterson, and John N. Shadid. Reduced-order modeling of time-
depdendent pdes with multiple parameters in the boundary data. Computer Methods in Applied Me-
chanics and Engineering, 196:1030–1047, 2007.

[8] Bernard Haasdonk and Mario Ohlberger. Reduced basis method for finite volume approximations of
parameterized linear evolution equations. ESAIM: Mathematical Modelling and Numerical Analysis,
42:277–302, 2008.

[9] S. B. Pope. Computationally efficient implementation of combustion chemistry using in situ adaptive
tabulation. Combustion Theory and Modelling, 1:41–63, 1997.

[10] E. Arian, M. Fahl, and E. W. Sachs. Trust-region proper orthogonal decmposition for flow control.
Technical Report NASA/CR-2000-210124, ICASE, 2000.

[11] Michel Bergmann, Laurent Cordier, and Jena-Pierre Brancher. Active Flow Control, volume 95, chapter
Drag Minimization of the Cylinder Wake by Trust-Region Proper Orthogonal Decomposition, pages
309–324. Springer-Verlag, 2007.

[12] Matthew B. Stephenson, Jin-Fa Lee, and Dan A. White. Automatic black-box model order reduction
using radial basis functions. IEEE Antennas and Propagation Society, July 2011.

8



[13] M. A. Singer and S. B. Pope. Exploiting ISAT to solve the reaction-diffusion equation. Combustion
Theory and Modelling, 8:361–383, 2004.

[14] Michael A. Singer and William H. Green. Using adaptive proper orthogonal decomposition to solve the
reaction-diffusion equation. Applied Numerical Mathematics, 59:272–279, 2009.

9



Figure 4: WIP: advection diffusion of a pulse moving past a cylinder: Galerkin projection WITH weighted
inner product. Left: solution computed with 10 POD modes. Middle: error using 10 POD modes. Right:
error using 20 POD modes.
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Figure 5: SIP: advection diffusion of a pulse moving past a cylinder: Galerkin projection with NO weights
in the inner product. Left: solution computed with 10 POD modes. Middle: error using 10 POD modes.
Right: error using 20 POD modes.
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