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1 Abstract5

A new inversion algorithm based on the maximum entropy method (MEM) is proposed to remove unwanted6

effects in fast neutron imaging which result from an uncollimated source interacting with a finitely thick7

scintillator. The algorithm takes as an input the image from the thick scintillator (TS) and the radiography8

setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesi-9

mally thin scintillator (ITS). The inversion is accomplished by numerically generating a probabilistic model10

relating the ITS image to the TS image and then inverting this model on the TS image through MEM.11

Algorithm details as well as numerical results using MCNP simulated images are presented. This recon-12

struction technique can reduce the exposure time or the required source intensity without undesirable object13

blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer14

source-to-detector distances to maximize incident radiation flux. The technique should also be applicable to15

high energy gamma or x-ray radiography using thick scintillators.16

17

Keywords: Maximum Entropy Method; Support Vector Machines; Fast Neutron Radiography; MCNP;18

Cone Beam Effect19

2 Introduction20

Fast neutron imaging is an active area of research as it offers unique imaging modalities compared with21

traditional x-ray and thermal neutron imaging, such as the ability to nondestructively discern features in low-22

Z objects shielded by thick high-Z materials [1]. In digital fast neutron imaging for example, fast neutrons are23

passed through a target onto a scintillator whose light is collected by a CCD camera. Scintillator thicknesses24

of multiple centimeters are required to detect MeV level neutrons with viable efficiencies. Collimated neutron25

beams are thus typically used because un-collimated and divergent beams will induce a cone beam effect26

in the resulting image due to both the finite thickness of the target and the scintillator itself. However,27

collimating a neutron source through increased source distance-to-target drastically reduces the neutron flux28

incident on the target and results in significantly longer imaging times. Here, we present one solution for29

uncollimated neutron imaging which removes the cone beam effect caused by the finite thickness of the30

scintillator via post-processing imaging reconstruction.31

Previous work in fast neutron image reconstruction that would be adaptable to cone-beam effect removal32

has focused on computerized tomography utilizing either the Algebraic Reconstruction Technique (ART)33

[2, 3] or the Total Variation method (TV) [4, 5].34

While ART can also be used to deconvolve the cone beam effect from an uncollimated point source, we35

examined a variation of the maximum entropy method (MEM) in our computational inversion because prior36

work by [6, 7] showed that MEM offers a qualitative advantage over ART when dealing with noisy images.37

MEM also offers an additional advantage over ART in that it minimizes artifacts by explicitly making the38

reconstructed image as noiseless as possible [8, 9].39

On MEM vs TV, the comparision was not as clear cut, and there has not been scholarly work quantifying40

the advantages of either algorithm over the other. Past work in the TV by [5] showed how TV can be used41

to reconstruct and denoise any data and image linked through a linear operator. Nevertheless, we chose to42

implement MEM over TV in our work because MEM allowed us to easily define a Bayesian prior over the43

space of possible reconstructed images (see Appendix B) while it is not obvious how one would do so with44

TV. Adding a Bayesian prior to the reconstruction improves quality because it changes the default image45

from uniformly flat to the specified prior. For a spherical source which does not impart uniform neutron46
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Figure 1: Cone beam effect for a feature focused at the detector’s surface and for a feature focused away

from the detector’s surface

flux over the entire scintillator, the introduction of the correct prior reduces artifacts and improves contrast.47

This improvement is especially prominent in the peripherals of the image.48

In this paper we describe our MEM based software for removing the cone beam effect, and apply the49

algorithm to a simulated fast neutron radiography image as a proof of concept. The algorithm is able to50

remove the part of the cone beam effect in the simulated image caused by the thick scintillator. With the51

help of the proposed algorithm, the reconstructed image appears to be taken with an infinitesimally thin52

scintillator (ITS). To the authors’ knowledge this is the first algorithm presented which targets radiography53

image problems caused by thick scintillators.54

We have arranged the paper as follows: Section 3 gives a reformulation of the cone beam problem, and55

Section 4 presents an overview of our algorithm. Section 5 details the MCNP simulation we used to generate56

our test images and Section 6 presents key algorithm details. Finally, we close with numerical results in57

Section 7, and conclusions along with future work in Section 8.58

3 Cone beam effect59

The cone beam effect (CBE) is a generalization of the concept of geometric unsharpness. The effect is60

dependent on the thickness of the radiation detector used, and the angle formed by the source to detector61

ray. When the source to detector distance is within an order of magnitude compared to the detector thickness,62

CBE becomes the prominent factor in image degradation .63

As shown in Figure 1, when source to detector distance, d, and detector thickness, t, are fixed, the CBE64

can be completely characterized by Φ, the angle between the ray passing through the entry point and the z65

axis. Since this angular dependence is rotationally invariant about the z axis, any line from the source to a66

point on the surface of the detector can be rotated about the z axis to create a cone which is subject to the67

same blurring effect. It is this conical symmetry which gives this particular geometric unsharpness its name,68

the cone beam effect.69

There are two ways to mitigate the CBE given a fixed d. The first is to reduce the source cross sectional70
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Figure 2: Algorithm Flowchart

area and for a feature focused at the surface of the detector, we can see this will at most reduce the blur from71

β1 to β2. The other approach is to reduce the thickness of the detector and from Figure 1, we see that this72

approach will yield an infinitely sharp point, when the detector becomes infinitesimally thin. For a feature73

not focused at the surface of the detector, taking d → 0 will not recover a completely sharp image, α3, but74

the resulting image quality is still superior to the approach of taking s → 0, α2, Figure 1. Thus, we focus75

our efforts on removing the primary effect of CBE and create a post processing routine to recover the image76

taken with an ITS when given an image taken with a detector of finite thickness t.77

4 Algorithm overview78

Our strategy for removing the cone beam effect from the uncollimated images comprises of MEM in con-79

junction with two supporting subroutines. MEM requires an input of a zero information image for noise80

suppression purposes and we accomplish this by modeling the ideal background image. Also, MEM requires81

a linear operator linking the ITS image to the observed image and we compute this operator through a82

Monte Carlo simulation of the neutron scintillator. Finally, we input the thick scintillator image with both83

the ideal background image and the linear scintillator model to reconstruct the ITS image.84

5 Algorithm Test Procedures85

For validation, we tested the algorithm with a typical fast neutron radiography problem that involves a low86

Z material hidden behind a high Z shield. We used MCNP simulation to generate both the ITS image and87

the thick scintillator image since MCNP can predict scattering by the high Z shield, the low Z object, and88

also scattering within the scintillator itself. To allow for future validation, we used realistic geometries and89

materials which can be readily replicated in a lab setting, Figure 3.90

The simulation setup consists of a Cf-252 source imaging a composite test object placed behind a 1 inch91

thick lead shield. The test object contained plastics of different densities as well as metal features, Figure92

3b. We purposely kept the source to detector distance small to ensure prominent CBE on the simulated93

radiographs.94
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Figure 3: A) Top down view of MCNP model B) Expanded view of test object

P (en = x) =
1

3.37823
e(−x/1.025)sinh(2.96x) (1)

We ran two MCNP simulations, one for the thick scintillator and one for the ITS. In both runs, we used95

the neutron distribution shown in Eqn. 1, [10, 11] and a 2 mm diameter Cf-252 source. For the 2 cm thick96

detector, a 500 x 500 mesh heating tally was imposed on a Bicron BC 400 scintillator with the assumption97

that the heating tally directly translates to the light output of the scintillator. We used this MCNP run as98

the observed image input for our algorithm, Figure 4a. We also reran the simulation with the lead shield99

and test object removed to get a background image, Figure 4c. For the thick scintillator 1e11 Monte-Carlo100

neutrons confined to emission angles less than 40 degrees off the z-axis were used for each run.101

For the ITS, a 500 x 500 radiography tally with MCNP’s hybrid point detector model, which returns the102

incident neutron energy flux at each pixel, was used. This resulted in an essentially noiseless image which103

is shown in Figure 4b. As this model is essentially noiseless, it can be understood as the ideal detector104

image when the number of source particles is taken to infinity. With these simulated data, we can test our105

algorithm by inputting the observed image and seeing how well it reconstructs the ITS image.106

6 Algorithm Implementation107

In this section, we describe the maximum entropy method along with its two subroutines in detail.108

6.1 Maximum Entropy Method109

The problem of going from an observed image to an ITS image can be posed as a linear inversion. First we110

order the pixels in the observed image (size M ×N) from 1 to MN and reformulate the image into a vector111

based on the ordering. Next, we assume there exists a linear operator relating x, the (MN ×1) vector which112

represents the ITS image, and y, the observed image. We term this linear operator, A. Finally, we are left113

with a simple linear model relating the ITS image to the observed image, Eqn. 2.114
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Figure 4: A) MCNP image with a 2cm thick scintillator B) MCNP image with the ideal thin scintillator C)

MCNP background image

Ax = y (2)

While Ax = y can be solved via Gaussian-Jordan elimination, in practice we are faced with a noised115

perturbed version of the original equation, Eqn. 3.116

Ax = y + ε where ε ∼ N(0, σ · IMN ) (3)

Given the additive noise ε, Eqn. 3 is ill posed and requires regularization for a viable solution. Many117

regularization techniques, such as ridge regression or the L1 loss, have been proposed for this ill posed problem118

but most lack a sound theoretical basis, [8, 12]. Out of these regularization techniques, the maximum entropy119

method (MEM) stands out because it allows the input of background image or Bayesian prior. MEM uses120

this Bayesian prior and the observed image to select a reconstructed image, x, which is most similar to121

the Bayesian prior while remaining statistically alike to the observed image when transformed with A. To122

accomplish this, MEM requires three inputs, A, y, σ and b, the zero information image. In most imaging123

applications of MEM, b is assumed to be the background image and here we do the same. We define bi as124

the value of the background image for cell i. For numerical purposes, we normalized the background image125

such that
∑

i bi = 1. Additionally, σ is a tuning parameter trading off noise suppression versus accuracy in126

the reconstructed image.127

Once the inputs are defined, MEM approximates a solution to Eqn. 3 by solving Eqn. 4, which is always128

guaranteed to be well posed.129

argmax S(x1, . . . , xMN ) = −∑
i pi log(

pi

bi
)

s.t.

∑MN
i=1

(yi−
∑

i Aijxj)
2

σ ≤ MN

Where

pi =
xi∑
j xj

(4)

Eqn. 4 states that the optimal reconstruction is found by maximizing the Shannon entropy of the130

reconstruction while making sure that the reconstructed image, when operated on by A, is still statistically131

similar to the observed image. Intuitively, maximizing the Shannon entropy flattens the reconstruction132

and grants MEM its noise suppression characteristics. Also, the statistical similarity criterion forces the133
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Figure 5: Comparison of the RB-SVR noise removal versus inverse square law noise removal

reconstruction to approximately satisfy Eqn. 3 and is what enables MEM to invert A. A derivation of134

MEM, is given in Appendix B.135

6.2 Bayesian Prior Subroutine136

Since maximum entropy reconstruction depends heavily on the Bayesian prior to flatten the image, it is137

crucial that we have an intensity map of the scintillator response for when there is no object of interest.138

This map also needs to be as smooth as possible as any noise in the Bayesian prior will be magnified in the139

reconstructed image. We start by noting that the neutron flux is only quasi-radial symmetric because the140

CF-252 source is not spherical and is large enough to make point particle approximations insufficient.141

While we can generate a noise-free background image through a Monte-Carlo routine, the amount of142

simulated particles required for smooth convergence will require many computer days. Also, this approach143

assumes that the simulation geometry and experimental geometry are one and the same. Any geometrical144

artifacts from incomplete calibration will result in errors propagating through the reconstruction. As we145

expect calibration errors to happen when we eventually deploy this technique, we searched for techniques146

based on smoothing an observed background image. The top two candidates were inverse square regression147

and residual boosted support vector regression (RB-SVR). Previously work with SVR in image processing,148

[13, 14], showed great success but we found RB-SVR demonstrated better empirical performance, Figure149

5. Thus, we choose RB-SVR as our smoothing algorithm. Rather than writing our version of RB-SVR,150

we wrapped LIBSVMs support vector regression algorithm, [15], in our own residual boosting module. A151

derivation of RB-SVR is given in Appendix A.152
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Figure 6: Graphical demonstration of the bijection between voxel and pixel

6.3 Linear Scintillator Model153

For our linear scintillator model, we opted for a full discrete treatment instead of any continuous approxima-154

tion. First we partitioned the scintillator into voxels, volumetric pixels. Next, we assumed that the distance155

to first interaction of a neutron in the scintillator is an exponential random variable with its mean equal to156

the mean free path of the neutron. Finally, we assumed that all neutrons give up all their energy on the first157

interaction so there is no scattering within the scintillator.158

Working off the above assumptions, we defined a bijection between each pixel in the observed image and159

a voxel on the scintillator, Figure 6.160

If any neutron interacts with the scintillator in voxel i, we assume pixel i increases its intensity count161

by a constant factor. The prior assumption is justified because each voxel interacts with enough neutrons162

to ensure central limit convergence, and the ratio of standard deviation of neutron count to mean neutron163

count is less than 0.05.164

In the framework of the discrete voxel scintillator, we wish to solve the number of neutrons incident on165

each voxel given the number of neutrons terminating in each voxel. Neglecting the intensity variance, the166

number of incident neutrons is exactly the response of the ideal infinitesimally thin detector. Thus removing167

the cone-beam effect is equivalent to solving for the number of incident neutrons.168

6.4 Probability Transfer Matrix169

Given our voxel scintillator model, we now clarify our linear model, Eqn. 2. We redefine x as the vector170

consisting of the incident counts for each voxel, and y as the vector consisting of the termination counts for171

each voxel. Now A becomes the probability transfer matrix (PTM) between incident voxel and termination172

voxel, such that [A]ij denotes the probability a neutron incident on voxel i will terminate in voxel j, Figure173

7.174

While A can be determined analytically for certain neutron emission distributions and scintillator compo-175

sitions, we follow the time tested approaches of [16, 17, 18, 19] and obtain A through Monte Carlo simulation,176

whose pseudocode is listed below.177

for i = 1 → MN do178

for n = 1 → numNeutrons do179

Sample αn, the entry point on voxel i’s surface180
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Figure 7: Neutron incident on voxel i contributing to light output in voxel j

Sample βn, the emission point on the sources surface181

Sample en, the neutron energy for neutron n182

Calculate λn given en183

Sample pn, the penetration distance, given λn184

Ray Trace from αn to βn and find psin, the termination point, given pn185

Calculate which voxel j � n186

Add 1
numNeutrons to [A]ij187

end for188

end for189

For sampling the emission energy, en, we utilized Eqn. 1 and to calculate the mean free path given190

neutron energy, we utilized the Evaluated Nuclear Reaction Data library, [20], and found the mean free path191

of neutrons with energy ranging from 1e-10 to 20 MeV in Bicron BC-400 through its molecular formula. We192

show the mean free path in Figure 8. Technically, the energy distribution of the neutron incident to the193

scintillator after passing through the lead shield and the test phantom will not be the same as Eqn. 1 due to194

spectral hardening. However looking at Figure 8, we see that the mean free path of neutrons in BC-400 is195

roughly flat for energies of 2 MeV to 4 MeV. Since the mean neutron energy of Cf-252 is 2.314 MeV, we see196

that spectral hardening by the lead shield and the test phantom can shift the mean neutron energy upward197

by a factor of 2 and still have negligible effect on average mean free path.198

Finally, as a check, we applied A to a uniformly flat image. Based on the inverse square law, we expect199

to see a concave sink extending out from center of the image after transformation, confirmed in Figure 9.200

7 Numerical Results201

First, to estimate the Bayesian prior of the scintillator response with no object, we used MCNP to simulate202

a background image as discussed in Section 4. Figure 10a shows a histogram of the neutron counts per203

pixel of Figure 4c which illustrates the noise in the background image which we have to minimize for the204

reconstruction. Figure 10b shows a histogram of the neutron counts per pixel after RB-SVRs estimate of205

the background image. The uneven landscape of the difference between the two demonstrates the successful206

noise removal of RB-SVR processing, Figure 10c.207

Next, we generated two versions of the PTM in order to study the effects of Monte Carlo noise on the208

reconstruction. The first PTM had 2e6 neutrons per voxels and the second PTM had 2e7 neutrons per voxel.209

Given a desktop Intel I7 950, we were able to simulate 2e6 neutrons per second and build a PTM matrix210

with numNeutrons set at 2e7 in 140 CPU hours.211

Finally, after combining the RB-SVR Bayesian prior and the observed image, we used MEM to reconstruct212

our estimate of the original image, shown in Figure 11b and Figure 11c. The original observed image, Figure213

4a, and the ideal image, Figure 4b, are reproduced and enlarged in Figure 11a and 11d for convenience and214
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Figure 8: Mean free path vs neutron energy for neutrons entering Bicron BC-400

Figure 9: A uniformly flat image before (A) and after (B) applying our linear scintillator model

9



Figure 10: A) Histogram of MCNP background image’s neutron counts per pixel. B) Histogram of back-

ground image’s neutron counts per pixel after RB-SVM processing. C) Difference in neutron counts per

pixel

ease of comparison. On the same desktop, MEM reconstruction took 20 seconds per image.215

For both reconstructions, we observed suppression of CBE and restoration of hard edges. Comparing216

Figure 11b and Figure 11c, we see that Monte Carlo noise in the probability transfer matrix carries through217

to image reconstruction. The improvement in reconstruction quality between Figure 11b and Figure 11c, is218

due to the use of an order of magnitude more simulated particles in the construction of Figure 11cs PTM.219

In this formulation, the reconstructed image is completely defined by the A, b, and σ. We would like220

to stress that the reconstruction is defined in terms of a global optimzation problem and with A, b, and221

σ fixed, the reconstruction is also completely independent of any initial conditions to the MEM problem.222

In an effort to explore the robustness of the algorithm to noise, we added increasing levels of Gaussian223

white noise to Figure 4a before removing the CBE with our algorithm. For each level of Gaussian noise,224

we set the reconstruction parameter σ equal to the σ of the Gaussian noise. We measured the degradation225

effects of the white noise by computing the normalized RMSE between the reconstruction with noise and226

the reconstruction without noise. We chose normalized RMSE because of it’s natural interpretation as the227

average percentage difference between pixel values and define it below.228

Norm(x)i =
xi

max(x)

RMSENORM =

√∑N
i (Norm(x̂)i −Norm(x)i)

2

N

Next as an objective reference, we estimated the signal to noise ratio (SNR) for the original image and229

its corrupted copies. For the estimation, we chose a 50× 50 pixel background area in the image, Figure 4a,230

and calculated the mean well as the standard deviation of the neutron counts in the area.231

As shown in Figure 12, the relationship between RMSE and SNR is approximately linear. Assuming a232

Poisson emission model for the neutron counts, white noise at the σ = 50 level increases variance per pixel by233

2500 or 33% (from the average neutron count of 7500). However, this 33% increase in variance only results234
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Figure 11: A) MCNP simulated image with finite thick scintillator. B) Restored image with a PTM built

with 2e6 neutrons per voxel. C) Restored image with a PTM built with 2.5e7 neutrons per voxel. D) MCNP

simulated image with ideal thin scintillator. NOTE: SNR values in Figure 12 are estimated from pixels

within the red square in (A).
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Figure 12: RMSE vs SNR

in a 15% difference in reconstruction value, Figure 12, demonstrating that the algorithm is robust to modest235

amounts of noise.236

8 Conclusion237

It has been shown by simulation that the cone beam effect can be practically removed from an uncollimated238

fast neutron image through a simple model of the scintillator response and source to scintillator geometry.239

Residual boosted support vector regression was used to smooth the background intensity and large scale240

Monte Carlo simulation was used to generate a linear approximation of the scintillator response to a near241

field divergent neutron source. Finally, the maximum entropy method was used to invert the scintillator242

response from an MCNP simulated observed image.243

Overall, the discussed reconstruction techniques could reduce exposure times or required source intensity244

without undesirable object blurring on the image by both allowing closer source-to-detector distances to245

maximize incident radiation flux and the use of thicker scintillators with higher efficiencies. In addition to246

neutron imaging the technique should also be applicable, with the right PTM, for high energy gamma or247

x-ray radiography using thick scintillators.248

Future work will revolve around calibrating an experimental setup which mimics our simulation geometry249

and applying the algorithm to an empirical image. Also, while we chose to utilize MEM as the current inver-250

sion algorithm because of the ease with which it can accomodate a Bayesian prior, a systematic comparison251

which will quantify the advantages and disadvantages of the method still needs to be done between MEM252

and the other two contending algorithms, ART and TV. That comparision, however, is non-trivial due to253

the complexities involved with adapting and implementing ART and TV to the CBE problem. In addition,254

Figure 11 demonstrated the importance of quality of the PTM. To the authors’ best knowledge, the only255

way to improve PTM quality is to utilize more particles in its construction. Since the Monte-Carlo routine256

used to generate the PTM is parallelizable, other future work will revolve on adapting the software to run257

on a high performance computing cluster to quickly generate high quality PTM matrices.258
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Figure 13: A visualization of a SVR regression in two variables

A Support Vector Regression Theory265

Developed by [21] in 1990, support vector regression (SVR) is a machine learning technique which can266

approximate nonlinear functions, [22].267

Given a training set, T : (x1, y1), . . . , (xN , yN ) ∈ Rm ×R, we wish to approximate a function f(xi) ≈ yi
s.t.

f(x) =< φ(w), φ(xi) > +b (5)

Where < ·, · > denotes the inner product and φ(xi) is a nonlinear mapping from Rm to a higher dimen-268

sional space. The parameters w, and b are solved via minimization of the following cost function, Rf .269

argmin Rf (w, b) =
1

2
‖w‖2 + CRemp (6)

Here, Remp measures empirical risk, ‖w‖2 measures model complexity and C is a regularization parameter270

which balances model complexity and training set performance. We define Remp as271

Remp =
1

N

N∑
i

|yi − f(xi)|ε (7)

where | · |ε, termed by [21] as the ε-insensitive loss is defined as272

|yi − f(xi)|ε = max{0, |yi − f(xi)| − ε} (8)

Thus as a result of Eqn. 8, regression estimates which err by less than do not factor into the cost function273

resulting in an insensitive tube around the regression estimates, Figure 13.274

We wish to reformulate Eqn. 6 as a quadratic programming problem for tractable computation so275

we introduce slack variables ξ+i , and ξ−i . The two slack variables, ξ+i and ξ−i , measures the deviation of276

observation i above and below the surface of the ε tube respectively. This formulation is termed the ε-SVR277

by [21].278
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argmin F (w, b, ξ−, ξ+) = 1
2‖w‖2 + C

N

∑
i(ξ

+
i + ξ−i )

Subject to

yi − f(xi) ≤ ξ+i + ε

f(xi)− yi ≤ ε+ ξ−i
ξ−i , ξ+i ≥ 0, i = 1, . . . , N

(9)

While we now have a well posed quadratic programming problem, we are required to set the parameter279

ε a priori. This is unsatisfactory because ε is highly data dependent and can range over [0,∞). To remove280

the burden of selecting ε , [23] introduced the ν-SVR. ν-SVR introduces a new parameter ν and redefines281

the optimization problem as follows.282

argmin F (w, b, ξ−, ξ+, ε) = 1
2‖w‖2 + C[νε+ 1

N

∑
i(ξ

+
i + ξ−i )]

Subject to

yi − f(xi) ≤ ξ+i + ε

f(xi)− yi ≤ ε+ ξ−i
ξ−i , ξ+i ≥ 0, i = {1, . . . , N}

(10)

Now, ε is a variable featured in the optimization problem and is no longer a parameter. While we have283

substituted ν for ε, ν is bounded ∈ [0, 1] and has an intuitive meaning as the maximum fraction of yi’s284

allowed to err by more than ε.285

A.1 Kernel Functions286

Much of the SVRs advantage comes from its projection of data into higher dimensional space, φ(·). Let287

K(xi, xj) =< φ(xi), φ(xj) >. K(xi, xj) is called a kernel function and it provides the benefit of a high dimen-288

sional space without explicit computation. For example, the second order polynomial kernel KP2(xi, xj) =289

(xi · xj)
2 is equivalent to < φ(xi), φ(xj) > with φ : R2 → R3 s.t.290

φ

[
x

y

]
=

⎡
⎣ x2

y2

xy

⎤
⎦

Kernels can also be chosen with a priori knowledge and since we know that the true background intensity291

map will be smooth, we choose a kernel function which favors smoothness.292

K(xi, xj) = e(−γ‖xi−xj‖2) (11)

This kernel is known as the Gaussian radial basis function (RBF) and the φ associated with this kernel293

projects the data into an infinite dimension Hilbert space. However, this kernel also introduces an addition294

parameter γ which must be optimized during training.295

A.2 Residual Boosting296

While ν-SVRs have great native performance, they can be combined through boosting for even better results.297

In residual boosting, a particular form of ensemble learning, the regression target is iteratively simplified so298

the machine learner can capture higher order effects in successive iteration.299

Residual boosting accomplishes this by defining ti,k, the regression target for observation i at iteration k300

as301

ti,k =

{
yi −

∑k−1
m=0 fm(xi) if k > 0

yi if k = 0
(12)

Thus, the kth iteration of the machine learner only tries to capture the residuals of the prior k − 1302

iterations. For the final estimate, we take sum of all the regression functions, Eqn. 13.303
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f̂(xi) =

K∑
n=0

fn(xi) (13)

K, the maximum number of boosting iterations, is decided in advance and we found that regression304

accuracy converge for K > 3.305

B Maximum Entropy Method306

Developed in 1984 by [8], MEM is a image processing technique well documented in the astronomy commu-307

nity. The original algorithm was developed to deconvolute atmospheric point spread functions from telescope308

images but the technique has been generalized to a variety of fields due to the algorithms ability to invert any309

linear operator, [24, 25, 26, 27, 28]. As an added bonus, MEM also reconstructs the flattest image possible310

given the observed data, reducing the number of post reconstruction artifacts [8, 9].311

To derive the MEM formulation, we assume that we have K balls (neutrons) and when thrown, each ball312

is independent and is equally likely to land in any of the MN buckets (voxels). We do not know the actual313

distribution of the balls among the buckets but the best guess would be the distribution with the highest314

probability. Since each particular distribution is a realization of a multinomial random variable, we can find315

the most probable distribution by maximizing the probability of a certain distribution happening.316

argmax P (x1, . . . , xMN ) =
K!∏MN

i=1 xi!

1

MN

−K

(14)

Maximizing P (x1, . . . , xMN ) is equivalent to maximizing any monotonic transform of P (x1, . . . , xMN ),317

so we choose to maximize318

F (x1, . . . , xMN ) =
1

K
log (P (x1, . . . , xMN ))− 1

K
log

(
1

MN

−K)
(15)

=
1

K
log

(
K!∏
xi

)

=
1

K

[
log (K!)−

MN∑
i=1

log (xi!)

]
(16)

Since K ∼ 1e18, we can use Sterlings approximation, log(K!) ≈ Klog(K)−K, on Eqn. 16.319

=
1

K

[
Klog (K)−

∑
xilog xi −K +

∑
xi

]

= log (K)−
∑ xi

K
log

(xi

K
·K

)

= log (K)−
∑ xi

K
log (K)−

∑ xi

K
log

(xi

K

)

=
(
1−

∑ xi

K

)
log(K)−

∑ xi

K
log

(xi

K

)

= −
∑ xi

K
log

(xi

K

)

= −
∑

pilog (pi) (17)

Looking at Eqn. 17 we see that it is equivalent to the Shannon entropy of a multinomial distribution,320

Eqn. 18.321
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SShannon =

MN∑
i=1

pi log (pi) (18)

Thus we see maximizing the image entropy is equivalent to finding the most probable image. However,322

we cannot blindly apply the balls and buckets model to our problem as each voxel possesses a different solid323

angle area, and thus receive different amounts of neutron flux, we modify each pi in Eqn. 18 with a Bayesian324

prior, bi, to correct for the neutron flux difference, Eqn. 19.325

= −
∑

pi log

(
pi
bi

)
(19)

Looking at Eqn. 19, we see that unconstrained optimization will simply return the bis as the reconstructed326

image. Thus, we add the Chi-Square constraint, Eqn. 20, to guarantee the reconstructed image is statistically327

similar to the observed image when linked through the linear operator. For a more complete discussion on328

the Chi-Square test and its assumptions, please see [29].329

MN∑
i=1

(yi −
∑

[A]ijxj)
2

σ
≤ MN (20)

Combining Eqn. 19 and Eqn. 20, we arrive at the full formulation of MEM.330

argmax −∑
pi log

(
pi

bi

)
s.t. ∑MN

i=1
(yi−

∑
[A]ijxj)

2

σ ≤ MN

(21)

To solve Eqn. 21, a large scale convex optimization problem involving MN variables, iterative precondi-331

tioned gradient descent or quasi-Newton methods can be used. For brevity, we will not restate the various332

numerical algorithms but refer the reader to [8, 30].333
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