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EXECUTIVE SUMMARY 

The	objective	of	 this	 research	program	 is	 to	address	major	nuclear	 fuels	performance	
issues	for	the	design	and	use	of	oxide‐type	fuels	in	the	current	and	advanced	nuclear	reactor	
applications.	 Fuel	 performance	 is	 a	major	 issue	 for	 extending	 fuel	 burn‐up	which	has	 the	
added	advantage	of	reducing	the	used	fuel	waste	stream.	 It	will	also	be	a	significant	 issue	
with	 respect	 to	 developing	 advanced	 fuel	 cycle	 processes	 where	 it	 may	 be	 possible	 to	
incorporate	minor	actinides	in	various	fuel	forms	so	that	they	can	be	“burned”	rather	than	
join	the	used	fuel	waste	stream.	The	potential	to	fission	or	transmute	minor	actinides	and	
certain	 long‐lived	 fission	 product	 isotopes	would	 transform	 the	 high	 level	 waste	 storage	
strategy	by	removing	the	need	to	consider	fuel	storage	on	the	millennium	time	scale.	

For	light	water	reactor	(LWR)	fuels,	the	potential	of	going	to	fuel	burn‐ups	in	excess	of	
100,000	MWd/MT	 is	 appealing,	 but	 limited	by	 fuel	 restructure,	 burn‐in	of	 various	 fission	
products	and	cladding	performance	limitations.	One	are	of	high	burn‐up	fuel	performance	
that	is	not	well	understood	is	the	“rimming”	effect	or	restructuring	of	the	fuel	pellets	in	the	
outer	 rim	 volume	 of	 the	 fuel.	 A	 better	 understanding	 of	 the	 microstructural	 level	 of	
irradiation	 effects	 in	 oxides	 fuels	 is	 necessary	 to	 characterize	 irradiation‐induced	 fuel	
restructuring	processes	and	their	effects	on	fuel	performance.		

The	potential	 for	 the	development	of	a	minor	actinide	burning	process	was	studied	 in	
past	fast	reactor	programs	and	was	under	consideration	during	the	past	decade	for	a	new	
fast	burner	reactor	concept.	The	innovative	part	of	mixed	oxide	(MOX)	fuel	used	in	the	fast	
burner	 reactor	 concept	 is	 the	 incorporation	 of	 minor	 actinides	 in	 the	 (U,	 Pu)O2	 phase,	
focusing	directly	on	irradiation	damage	and	fission	product	dynamics	in	these	types	of	fuels	
since	fuel	performance	will	be	the	central	issue	for	the	performance	of	the	system.	

This study combined experimental and materials modeling techniques to study 
irradiation-induced microstructural effects in oxide fuels. The work consisted to a large 
extent of examining irradiation effects in CeO2 and (Ce,La)O2 as a function of 
temperature, dose, and composition. These material have comparable structures to UO2 
and (U,Pu)O2 and are commonly used for surrogates for those materials. The addition of 
La has the added advantage of producing cation vacancy defects in a highly controllable 
way. 

The experimental program relied heavily on ion irradiations with Kr and Xe of 
various energies where the damage level and the implantation level of the gas atoms 
could be controlled. The use of Kr and Xe mimics the effects of fission gases since these 
two elements are among the most frequently produced fission products and have a major 
impact on fuel restructuring and fuel physical properties. Many of the irradiation study 
results were obtained using the ANL IVEM-Tandem Microscope facility where the 
evolution of irradiation-induced microstructural changes could be observed in situ. This 
is a critically important experimental for studying the evolution of radiation-induced 
processes.   

The results of the study show that it is possible to predict the development of the 
irradiation-induced microstructural changes which are largely due to the development and 
growth of the dislocation loop microstructure and the development of bubble structures. 
The dislocation loop characteristics were shown to be consistent with MD modeling 
results based on lowest energy loop configurations. 
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damage.		The	transport	and	trapping	of	simulated	fission	products	were	also	examined.		We	have	
carried	out	using	 inert	gas	 ions	 (e.g.	Kr	and	Xe)	 for	both	 ion	 implantation	 to	cause	 irradiation	
damage,	 and	 for	 dynamic	 transport	 studies	 to	 understand	 both	 trapping	 and	 defect	 mobility	
processes	in	these	fuel	forms.		

Another	 objective	 of	 this	 program	 is	 to	 compliment	 experimental	 studies	 with	 modeling	
works	using	both	molecular	dynamics	(MD)	simulations	of	damage	cascades	in	the	oxide	lattice	
as	well	as	kinetic	Monte	Carlo	(kMC)	to	study	defect	dynamics.	The	combination	of	experimental	
and	 modeling	 efforts	 have	 been	 extremely	 productive	 in	 understanding	 atomic	 displacement	
damage	and	effects	 in	metal	and	metal	alloy	systems.	The	MD	approach	 is	extremely	useful	 to	
understand	 the	 very	 early	 stages	 of	 irradiation	 damage	 defect	 structures	 during	 energetic	
displacement	 cascades	 under	 irradiation	 and	 kMC	 is	 very	 useful	 for	 using	 the	 defect	
configuration	 energies	 from	 MD	 to	 examine	 the	 defect	 and	 fission	 product	 transport	
mechanisms.		

II. METHODOLOGY 
	

The	 program	 is	 designed	 to	 develop	 an	 atomistic‐level	 and	 microstructural‐level	
understanding	 of	 irradiation	 effects	 and	 impurity	 atom	 dynamics	 in	 surrogate	 oxide	 nuclear	
fuels.	 	This	information	will	provide	the	basis	for	the	development	of	microstructural‐level	fuel	
performance	models	which	will	be	capable	of	providing	the	foundation	for	modeling	TRU‐MOX	
fuel	behavior	to	high	burn‐ups	and	predictive	models	of	fuel	performance	in	off‐normal	events.		
The	approach	is	divided	into	three	sections:	

1.		Irradiation	Performance	of	Simple	Oxides	–	the	program	started	by	examining	the	irradiation	
behavior	of	simple	fluorite	oxides	at	stoichiometry	and	hypo‐	and	hyper‐stoichiometric	ratios.	
The	work	was	performed	on	CeO2+x	and	UO2+x	 in	a	well‐characterized	form.	 	We	used	single	
crystal	material	 to	 avoid	 grain	 boundary	 for	 ion	 irradiation/implantation	 experiments.	We	
have	 examined	 both	 inert	 gas	 fission	 product	 types,	 Kr	 and	 Xe	 for	 various	 energies	 and	
temperatures.	

2.	 	 Irradiation	 Performance	 of	 Complex	 Oxides	 –	 the	 work	 in	 this	 section	 employed	 more	
complex	oxide	forms,	(LaCe)O2‐x,	to	start	to	form	an	understanding	of	more	complex	oxides	to	
simulate	MOX‐type	 structures	 and	 actinide	 behavior	 in	 this	 system.	 	 The	 experimental	 and	
modeling	approach	will	be	similar	to	that	described	for	section	1	(above).	

3.	Fission	Product	Dynamics	and	Transport	–	the	work	in	this	section	employed	the	as‐irradiated	
specimens	as	a	starting	point	 for	examining	 fission	product	 trapping	and	transport	 in	 these	
oxide	systems.	 	The	work	relied	on	annealing	and	post‐annealing	examination	of	 irradiated	
specimens	 to	 characterize	 “impurity”	 atom	 trapping	 and	 transport,	 as	 well	 as	 irradiation‐
induced	defect	 configurations.	 	The	modeling	work	employed	kinetic	Monte	Carlo	 (kMC)	 to	
characterize	the	atom	transport	mechanisms.	

	

A. Experimental Program 

In	this	study,	krypton	and	xenon	atoms	were	incorporated	into	the	CeO2,	(LaCe)O2	and	UO2	
crystals	by	ion	implantation.	This	technique,	combined	with	implantation	computer	simulation,	
provides	good	monitoring	of	 the	depth	distribution	and	concentration	of	 implanted	 species.	 It	
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Then,	the	system	can	evolve	with	time.	

For	all	the	three	simulation	methods,	periodical	boundary	condition	is	essential	for	modeling	
the	 bulk	 properties	 instead	 of	 the	 surface	 effects.	 Also,	 the	 detailed	 setups	 of	 the	 systems	 are	
described	in	the	corresponding	result	part	of	each	specific	project.	

III. RESULTS 
	
The	results	are	composed	of	four	parts:	(a)	the	temperature	effects:	studying	the	behavior	of	

defect	 structure	 (dislocations,	 voids/bubbles)	 evolution	 in	 CeO2	 and	 UO2	 under	 Xe	 and	 Kr	
irradiations	 at	 various	 temperatures.	 (b)	 The	 stoichiometry	 effects:	 studying	 the	 behavior	 of	
defect	structure	evolution	 in	CeO2	doped	with	various	amount	of	La,	under	similar	 irradiation	
and	temperature	conditions	as	in	part	(a).	(c)	Characterization	of	dislocation	loops:	determining	
several	 properties	 of	 dislocation	 loops	 formed	 by	 irradiations	 in	 CeO2	 such	 as	 loop	 plane,	
burgers’	vector	and	the	nature	of	the	loops.	(d)	Measurement	of	radiation	enhanced	diffusivity:	a	
cooperation	 with	 Prof.	 Heuser	 group	 in	 university	 of	 Illinois	 studying	 the	 diffusivity	 of	 La	 in	
CeO2	under	irradiation.	
	

A. Temperature Effects 

1. Evolution of dislocation structure 

Figure	2.1	shows	the	sequential	change	of	defect	cluster	damage	in	CeO2	with	500	keV	Xe	ions	
at	 800°C.	 	 This	 dose	 sequence	was	 taken	during	 irradiation	 in	 the	ANL	 IVEM/Tandem	 facility	
where	the	dose	levels	could	be	tracked	in	the	same	sample	area.	The	choice	of	800°C	irradiation	
temperature	 is	 sufficiently	high	 that	O	defects	 should	be	mobile	 as	 should	 vacancies	 on	 the	O	
sublattice.	
	
				The	evolution	of	a	fine	defect	structure	was	evident	in	the	microstructure.	In	figure	2.1,	image	
(a)	 and	 (b)	 show	 the	 microstructure	 of	 the	 specimen	 before	 irradiation	 as	 prepared	 and	
annealed	 respectively.	 There	were	defect	 clusters	 to	begin	with	 (black	 contrasts),	which	were	
induced	by	the	ion	milling	process.	The	defect	clusters	changed	from	irregular	shapes	to	almost	
circular	ones	after	 annealing.	This	 shows	defects	become	mobile	when	 temperature	 rises.	The	
exact	characteristic	of	these	defect	clusters	is	not	yet	clear.		
	
To	understand	the	nature	of	the	defect	clusters,	gb	analysis	and	trace	analysis	will	be	applied	

in	 the	 future.	 From	 previous	 studies	 [7],	 it	 is	 believed	 that	 interstitials	 generated	 during	
irradiation	 displacement	 are	 inclined	 to	 form	 dislocation	 loops.	 Furthermore,	 the	 relatively	
excessive	vacancies	left	in	the	matrix	group	into	voids,	which	provide	perfect	traps	for	gas	atoms.	
	

				The	 size	 of	 defect	 structures,	 which	 were	 characterized	 as	 dislocation	 loops,	 grew	 with	
increasing	dose	(0	–	3x1014	ions/cm2),	as	displayed	in	figure	2.1	(c‐e).	Meanwhile,	the	density	of	
defect	 clusters	 remained	 nearly	 unchanged.	 This	 suggests	 that	 nucleation	 of	 defect	 clusters	 is	
completed	 in	a	very	early	stage	of	 irradiation	(during	 ion	milling	 in	 this	case).	A	similar	result	
was	observed	in	CeO2	irradiated	with	electrons	[8].	
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irradiation	damage	 limit	 to	sustain	the	maximum	amount	of	 individual	 loops.	Before	 this	dose,	
most	 of	 the	 radiation	 damage	 events	 contribute	 to	 the	 nucleation	 process	 of	 dislocation	 and	
dislocation	loops.	The	formation	and	growth	of	dislocation	loops	at	this	stage	is	attributed	to	the	
accumulation	 of	 point	 defects.	 Beyond	 the	 peak	 dose,	 dislocation	 loops	 grow	 rapidly	 through	
coalescence/coarsening	mechanisms.	 As	 displayed	 in	 figure	 2.3	 (b),	 the	 process	 of	 nucleation	
completed	 in	 an	 earlier	 stage	 at	 800°C,	 since	 the	 peak	 of	 density	 profile	 could	 have	 appeared	
before	3x1014	ions/cm2.		
	

			In	order	to	understand	the	nature	of	the	dislocation	loops,	Burgers	vector	determination	was	
applied.	 However,	 the	 obtained	 information	 was	 not	 enough	 to	 specify	 the	 Burgers	 vectors:	
<001>,	<110>,	or	<111>.	This	is	due	to	the	limited	tilting	range	(±40°	in	both	of	axes)	around	the	
single	 crystal	 orientation	 of	 [001].	 In	 spite	 of	 the	 ambiguity,	 the	 analysis	 results	 helped	 to	
exclude	 the	 possibility	 of	b	 =	 <110>.	Helpful	 information	was	 obtained	 from	 the	 past	 studies.	
Analogous	 dislocation	 loops	were	 observed	with	 TEM	on	 ion‐irradiated	UO2,	 and	 their	 nature	
was	characterized	as	interstitial	type.	Moreover,	during	1000	keV	electron	irradiation	in	CeO2	[7],	
defect	 clusters	 appeared	 as	 circular	 contrasts	 on	 bright‐field	 TEM	 images.	 The	 gb	 and	 trace	
analyses	 suggested	 the	 defect	 clusters	 were	 interstitial‐type	 dislocation	 loops	 lying	 on	 {111}	
planes	with	Burgers	vector	of	<111>	direction.	
	
				The	 expanding	 of	 loop	 size	 leads	 to	 interaction	 of	 dislocation	 loops	 at	 higher	 doses,	 which	
started	from	the	dose	of	3x1015	ions/cm2	(figure	2.2	(a6))	at	600°C	and	8x1014	ions/cm2	(figure	
2.2	(b4))	at	800°C.	The	dislocation	loops	then	developed	into	line	structure	as	shown	in	figure	
2.2	(b6),	and	slowly	aggregated	to	form	dislocation	networks	by	climb	motion	(figure	2.2	(b7)).		
	
			At	600°C,	the	transition	from	individual	loops	to	dislocation	networks	occurred	in	a	much	later	
stage.	At	the	final	dose	of	5x1015	ions/cm2	(figure	2.2	(a7)),	in	addition	to	the	similar	dislocation	
line	structure,	small	individual	dislocation	loops	could	still	be	distinguished.		
	
			There	were	no	remarkable	changes	of	defect	microstructure	observed	in	the	investigated	dose	
range	 once	 the	 tangled	 dislocation	 networks	 formed.	 Moreover,	 such	 inhomogeneous	
accumulations	of	dislocations	are	believed	to	serve	as	nuclei	for	recrystallization	in	high	burnup	
nuclear	fuel.		
	
			The	diffraction	patterns	taken	after	irradiation	at	both	600°C	and	800°C	indicate	the	specimens	
remain	perfectly	crystalline	(shown	in	the	inset	of	figure	2.2	(a7)	and	(b7)).	Hence,	at	the	highest	
dose	investigated,	no	amorphization	or	recrystallization	of	CeO2	occurred.	
	
	
	
	
	



Fun

	

Figure	
functio
	
The	 s

800°C	w
much	fa
morpho
temper
defects
	

			The	 t
investig
was	 ac
intersti
ions/cm
	
			Given
evolutio
Ce‐vaca
migrati
	
A	 che

intersti
the	vac
temper
vacanci
	
Comp

structu
follows
	
Evolu

600°C	
process
dislocat

ndamental	S

2.3.	 Variatio
n	of	ion	dose

substantial	 d
were	 observ
aster	growth
ology	 at	 the
rature	 depen
	(vacancies,	i

temperature
gated	 throug
ccounted	 for
itials	occurre
m2	at	5	K	at	1

n	 the	 similar
on	process	o
ancy	 mobili
ion	of	atoms	

emical	 rate	 t
itial‐type	dis
cancies	are	 im
ratures,	dislo
ies	balance	w

prehensive	 T
res	 in	 single
s:	

ution	of	micr
and	 800°C.	
s:	 the	 defec
tion	lines	an

Studies	of	Ir

on	of	 (a)	 the
e	during	the	i

differences	 i
ved	during	 ir
h	rate	of	defe
e	 high	 doses
ndence	 of	 th
interstitials	a

	 dependenc
gh	 thermal	 r
	 the	 recover
ed	in	the	tem
100	keV	ener

rity	 in	 cryst
of	defect	stru
ty.	 At	 lowe
[9]	and	is	th

theory	 deve
location	loop
mmobile,	mo
ocation	loops
with	each	oth

TEM	 observa
e	 crystal	CeO

ostructure	in
Sequential	
ts	 start	 to	
nd	finally	seg

(a)	

rradiation‐In
Dynami

	 average	dia
irradiation	o

in	 damage	 i
rradiation	 of
ect	structure	
s.	 These	 fact
he	 accumula
and	fission	g

ce	 of	 the	 ki
recovery	 of	 d
ry	 stage	 cen
mperature	ra
rgy.	

tal	 propertie
uctures	at	80
er	 temperat
e	governing	

loped	 by	 Ma
ps	with	the	m
ost	of	 the	 int
s	can	grow	q
her	at	this	con

ations	 were	
O2	 induced	b

n	CeO2	was	o
TEM	 microg
form	 cluste
gregate	toget

nduced	Def
cs	in	Oxide	

	

18	

ameter	 and	 (
f	1	MeV	Kr	io

ngrowth	 at	
f	 1	MeV	Kr	 i
at	the	higher
ts	 may	 resu
ation	 rate	 of
gas	atoms)	[1

inetics	 of	 d
defects	 in	 ir
ntered	 aroun
ange	77	‐	293

es,	 it	 is	 reas
00°C	might	b
tures,	 Ce‐int
factor	in	disl

aehara	 [13]	
mobility	of	v
terstitials	re
uickly	since	
ndition.		

performed	
y	Kr	 ion	 irra

observed	dur
graphs	 (figu
rs	 and	 loop
ther	to	form	

fect	Formati
Fuels 

(b)	 the	dens
ons	at	600°C

irradiation	
ions,	 as	 pres
r	temperatur
ult	 from	 a	 c
f	 radiation	 d
11].	

efect	 transf
radiated	UO
nd	 870	 K,	 a
3	K	in	the	U

sonable	 to	 d
be	closely	re
terstitial	 mo
location	grow

also	 correla
vacancies	[8].
combine	wit
migration	ef

to	 characte
adiation.	The

ring	in‐situ	ir
ure	 2.2)	 clea
ps	 at	 low	 d
extremely	ta

ion	and	Fiss

sity	 of	 disloc
	and	800°C.	

temperature
sented	 in	 fig
re,	and	slight
combined	 ef
damage	 and	

formation	 in
O2	 [9,12].	 U‐v
and	 the	 mig
O2	irradiated

deduce	 that	
elated	 to	 the
obility	 enab
wth.			

ated	 the	 gro
.	At	low	tem
th	the	vacan
fficiencies	of

rize	 the	 evo
e	 results	are

rradiation	of	
arly	 illustrat
ose,	 develop
angled	dislo

(b)	

sion	Produc

cation	 loops	

es	 of	 600°C	
gure	 2.2	 and	
t	different	de
ffect	 of	 diffe
the	 mobilit

n	 UO2	 has	 b
vacancy	mob
ration	 of	 U‐
d	with	1x101

the	 acceler
ermally	activ
bles	 short‐ra

wth	 behavio
peratures	w
ncies.	At	elev
f	interstitials

olution	 of	 de
e	 summarize

1	MeV	Kr	ion
te	 the	 evolu
p	 into	 exten
cation	netwo

ct	

as	 a	

and	
2.3:	
efect	
erent	
ty	 of	

been	
bility	
‐self‐
15	Xe	

rated	
vated	
ange	

or	 of	
here	
vated	
s	and	

efect	
ed	as	

ns	at	
ution	
nded	
orks.	



Fun

	

In	addi
the	 the
develop
	
	

2. 

	
In	 or

implant
stopped
	

Figure	
(ions/c
	
Figur

at	 600°
underfo
dose.	F
nm‐2,	an
with	20
	

Figure	
a	dose	o
	

Vi

ndamental	S

tion,	the	com
ermal	 activa
pment.	

Gas Bubble

der	 to	 inves
ted	 into	 sing
d	inside	the	s

2.4.		Bright‐f
cm2)	at	600°C

re	2.4	shows	
°C.	 In	 these	
ocusing	the	o
or	the	specim
nd	the	avera
00	keV	Kr	at	

2.5	Bright‐fie
of	1x1016	ion

rgin	

(a)

Studies	of	Ir

mparison	of	g
ated	 Ce‐vac

e Formation 

tigate	 the	pr
gle	 crystal	 C
specimens	ac

field	images	s
C.	These	micr

the	sequent
micrograph
objective	len
men	irradiat
ge	bubble	di
600°C	[14].		

eld	TEM	mic
ns/cm2	at	(a)

1x1015	

)	

rradiation‐In
Dynami

growth	beha
cancy	 mobil

recipitation	
eO2	TEM	 thi
ccording	to	t

show	sequen
rographs	are

tial	change	o
hs,	 Kr	 bubble
ns).	The	size	
ted	to	a	dose
ameter	is	1.2

rographs	of	s
	room	tempe

2x1015	

nduced	Def
cs	in	Oxide	

	

19	

avior	of	defec
ity	 plays	 a

of	 gas	 atom
in	 foils.	At	 th
he	SRIM	[5]	

ntial	change	o
e	taken	by	un

f	Kr	bubbles
es	 show	 as	
and	density	
	of	1x1016	io
2	nm.	Similar

single	crysta
erature	and	(

5x10

fect	Formati
Fuels 

ct	structures
an	 importan

s	 in	CeO2	 cr
his	 low	 ener
calculation,	s

of	Kr	bubble
nderfocusing

s	during	imp
white	 dots	
of	Kr	bubbl

ons/cm2,	the	
r	features	are

al	CeO2	impla
(b)	600°C.	

15	 1

(b)	

ion	and	Fiss

s	at	600°C	an
nt	 role	 in	 d

rystal,	 150	k
rgy,	most	 of	
shown	in	tab

	
s	with	the	in
g	the	objectiv

plantation	of	
with	 black	
es	grow	with
bubble	dens
e	observed	o

	
anted	with	15

1x1016	

sion	Produc

nd	800°C	rev
dislocation	

eV	Kr	 ions	w
gas	 atoms	w
ble	V.1.	

ncrease	of	dos
ve	lens.	

150	keV	Kr	
edges	 (taken
h	the	increas
sity	reaches	
on	UO2	irradi

50	keV	Kr	ion

ct	

veals	
loop	

were	
were	

se	

ions	
n	 by	
se	of	
0.15	
iated	

ns	at	



Fundamental	Studies	of	Irradiation‐Induced	Defect	Formation	and	Fission	Product	
Dynamics	in	Oxide	Fuels 

	

20	
	

	Figure	2.5	shows	the	bright‐field	TEM	micrographs	of	 in‐situ	 irradiated	CeO2	with	Kr	at	150	
keV	ion	energy	to	a	dose	of	1x1016	ions/cm2.	The	peak	Kr	concentration	is	estimated	to	be	4.9%	
at	this	dose.	 Irradiation	results	at	room	temperature	(figure	2.5	(a))	and	600°C	(figure	2.5	(b))	
are	compared	here.	Typically,	gas	bubble	 features	display	opposite	contrast	at	underfocus	and	
overfocus	conditions,	as	seen	in	figure	2.5	(b).	However,	such	features	were	not	found	in	figure	
2.5	(a).	In	other	words,	gas	bubbles	did	not	form	at	room	temperature.	This	fact	might	lead	to	the	
conclusion	 that	 a	 threshold	 temperature	 exist	 between	 room	 temperature	 and	 600°C	 for	 Kr	
precipitation	in	CeO2	which	is	correlated	with	metal‐vacancy	mobility	[14].	Another	explanation	
of	this	phenomenon	can	be	tied	to	the	gas	solubility	limit	dependent	on	temperature.	The	gas	in	
solution	 needs	 to	 reach	 a	 critical	 value	 before	 a	 multi‐atom	 nucleation	 process	 can	 occur.	 At	
higher	temperatures,	this	dynamic	solubility	 limit	 is	reduced	so	that	the	nucleation	occurs	at	a	
lower	dose	[15].	
	
This	result	 is	confirmed	by	previous	studies	of	gas	atom	precipitation	conditions.	Evans	[14]	

reported	that	no	visible	bubbles	were	found	below	400°C	in	irradiation	of	200	keV	Kr	in	UO2	for	
the	 dose	 of	 5x1015	 ions/cm2.	More	 recently,	 Sabathier	 [9]	 found	 Xe	 bubbles	 in	 UO2	 at	 1x1016	
ions/cm2	after	annealing	to	670	K.	
	
			For	the	quantitative	characterization,	gas	bubbles	in	figure	2.5	(b)	were	measured	as	~1.2	nm	
in	average	diameter	and	1.5x1017	m‐2	for	area	density.	These	values	are	in	good	agreement	with	
previously	reported	values	[9,	14,	16].	Kashibe	[16]	observed	the	bubble	size	and	density	in	low	
burnup	spent	fuel	(23	MWd/kg)	were	2	nm	and	1024	m‐3,	which	are	comparable	with	present	ion	
irradiation	 results.	 In	 addition,	 Xe	 bubbles	 which	 were	 1.8±0.3	 nm	 in	 size	 with	 a	 density	 of	
(4±2)x1023	m‐3	were	found	by	Sabathier	[9].		
	

3. Xenon Precipitation in CeO2 

	
700	 keV	 Xe	 ion	 beams	 were	 obtained	 at	 the	 University	 of	 Illinois	 with	 a	 Van	 de	 Graaff	

accelerator.	Ion	beams	hit	the	CeO2	crystals	along	[17]	orientation.	Irradiations	were	performed	
at	 room	 temperature	 and	 600°C.	 Three	 dose	 levels	were	 achieved:	 2x1016,	 5x1016	 and	 1x1017	
ions/cm2,	which	result	in	peak	dpa	values	of	106.3,	265.7	and	531.4	respectively,	calculated	with	
SRIM	2008	[5].	Following	irradiation,	TEM	specimens	were	prepared	by	mechanically	polishing	
followed	by	3	–	5	kV	Ar	ion	milling.	TEM	observation	of	irradiation	damage	was	preformed	with	
JEOL	2010LaB6	 and	 JEOL	2200FS	 electron	microscopes.	 The	 in‐situ	 annealing	 experiment	was	
conducted	in	the	IVEM‐Tandem	facility	at	Argonne	National	Laboratory.	
	
In	 the	 first	 series	of	 experiments,	 the	microstructures	of	 irradiated	CeO2	 single	 crystals	 as	 a	

function	of	various	dose	levels	are	compared.	As	shown	in	figure	2.6,	pure	CeO2	was	irradiated	
with	 700	 keV	Xe	 at	 600°C	 to	 varied	 dose	 levels.	 The	 thicknesses	 of	 thin	 films	 reduced	 during	
irradiation	 due	 to	 the	 sputtering	 effect.	 At	 the	 highest	 dose	 level,	 1x1017	 ions/cm2,	 the	 film	
thickness	 decreased	 ~15	 nm.	 The	 inset	 diffraction	 patterns	 demonstrate	 that	 the	 specimens	
remain	crystalline	at	600°C	even	at	a	dose	as	high	as	1x1017	ions/cm2,	which	confirms	the	high	
irradiation	tolerance	in	fluorite‐structure	materials.	Under	similar	irradiation	conditions,	Matzke	
[11	Bei	 thesis]	 reported	a	 fully	developed	polygonization	process	 in	UO2	bombarded	with	300	
keV	Xe	at	500°C	 in	 the	range	of	5	–	7x1016	 ions/cm2	with	 the	Rutherford	backstattering	(RBS)	
technique.	In	contrast	to	the	results	presented	by	Matzke	[18],	possible	polygonization	processes	
were	not	found	in	current	TEM	observations.	
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irradiations	 carried	 out	 on	 5%	 La	 doped	 CeO2	 at	 the	 same	 temperature	 of	 600C.	 This	
demonstrates	a	very	interesting	effect	of	Lanthanum	as	impurity.	A	plausible	(but	not	definitive)	
explanation	 is	 that	 the	 higher	 initial	 density	 of	 oxygen	 vacancy	 (12.5%	 compared	 to	 2.5%	
between	 two	materials)	affected	 the	defect	chemistry	 that	 the	dislocation	 loops	react	with	 the	
readily	available	oxygen	vacancies	and	annihilate.	Also,	the	presence	of	Lanthanum	in	the	lattice	
effectively	decreases	the	mobility	of	the	dislocation	loops.	A	combination	of	the	two	effects	led	to	
the	 trends	 observed	 experimentally.	 There	 are	 two	 hypotheses	 associated	 with	 the	 above	
provided	explanation:	the	dislocation	loops	are	primarily	of	oxygen	interstitial	type	(that’s	why	
they	 annihilate	 with	 oxygen	 vacancies);	 the	 mobility	 reduced	 by	 the	 presence	 of	 Lanthanum	
couldn’t	be	caused	by	the	higher	concentration	of	oxygen	vacancies	alone.	The	first	hypothesis	
has	been	tentatively	confirmed	by	the	burgers	vector	analyses	combined	with	the	inside/outside	
contrast	 analyses	 earlier.	 However,	 due	 to	 the	 unclear	 natures	 of	 the	 outside	 contrast	 of	 the	
dislocation	 loops	and	 the	 fact	 that	 the	 inside/outside	 contrast	experiment	 is	very	 complicated	
(one	small	mistake	will	result	 in	totally	opposite	conclusions),	the	inside/outside	experimental	
results	 are	 not	 shown	 in	 this	 dissertation	 and	 are	 not	 held	 as	 supporting	 evidence	 to	 the	
speculation	on	the	nature	of	the	dislocation	loops.	Other	supporting	evidences	will	be	provided	
in	 the	 later	 chapter	 where	 the	 void/bubble	mobility	 is	 analyzed.	 The	 second	 hypothesis	 was	
tested	by	the	kinetic	Monte	Carlo	simulation	together	with	the	lattice	simulation.	The	results	will	
be	shown	in	the	chapter	for	modeling	later	as	well.	

The	 following	 figures	 2.12	 to	 2.13	 summarize	 results	 on	 quantitative	measurements	 for	 the	
dislocation	 loop	 density	 and	 sizes.	 For	 the	 density	 measurements,	 five	 boxes	 with	 same	
dimension	 of	 220nm	 by	 220nm	 were	 drawn	 and	 the	 dislocation	 loops	 that	 fall	 within	 these	
boxes	 were	 counted.	 As	 a	 result,	 the	 density	 values	 are	 statistical	 averages.	 For	 the	 size	
measurements	 of	 the	 loops,	 100	 loops	 have	 been	 surveyed.	 It	 becomes	 a	 little	 trickier	 for	 the	
measurements	on	the	size	of	the	dislocation	loops	as	the	measurements	are	done	not	really	on	
the	dislocation	loops	but	on	their	diffraction	contrasts.	The	loops	could	exhibit	inside	or	outside	
contrast	 and	 the	 shape	 of	 the	 loops	 change	 according	 to	 specific	 tilting	 conditions.	 Therefore,	
careful	planning	was	done	before	the	experiments	such	that	the	measurements	were	taken	out	
on	similar	locations	on	the	Kikuchi	map	(indicating	very	similar	tilting).	The	g	vectors	were	set	
up	right	so	the	features	exhibiting	diffraction	contrasts	measured	in	the	images	all	represent	the	
inside	 contrasts	 of	 the	 dislocation	 loops.	 This	 implies	 that	 the	 resulting	 size	 values	 for	 all	
experiments	were	in	fact	the	length	of	the	inside	contrast	of	dislocation	loops.	The	realistic	size	
(on	 the	 long	 side)	would	be	bigger	 than	 the	measured	values.	Under	 these	very	 similar	 tilting	
conditions,	all	the	loops	measured	exhibited	elliptical	shapes	with	a	long	side	to	short	side	ratio	
of	about	1.8~2.	It	is	therefore	believed	that	the	measurements	provide	consistent	data	between	
each	data	point	on	the	various	dose	levels.	The	long	sides	of	the	dislocation	loops	were	measured	
as	it	was	easier	and	more	accurate	to	measure	the	long	sides	when	the	loops	were	of	such	small	
sizes.	
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conditions).	With	 the	observation	made	 in	 the	earlier	 chapters	 that	defect	of	 contrary	natures	
(interstitial	 and	 vacancy)	 tend	 to	 cluster,	 the	 buildup	 of	 the	 dislocation	 network	 can	 be	
interpreted	 as	 a	 result	 of	 the	 clustering	of	higher	 and	higher	 concentration	of	 interstitial	 type	
defects	produced	by	 the	 ion	beam	 irradiation.	At	 the	 same	 time	when	 interstitial	 type	defects	
become	more	concentrated	and	cluster,	vacancy	type	defects	are	believed	to	cluster	in	their	own	
ways	–	they	start	to	form	voids.	As	voids	form	in	the	material	lattice,	they	become	ideal	trapping	
sites	 for	 inert	 gas.	 When	 a	 high	 concentration	 of	 inert	 gas	 atoms	 is	 deposited	 in	 the	 lattice,	
bubbles	are	believed	to	form.	This	is	only	a	quick	glance	at	the	interpretation	from	a	theoretical	
perspective.	

The	experimental	evidence	of	void/bubble	growth	is	presented	and	discussed.	The	underlying	
mechanisms	of	such	growth	are	derived	from	the	experimental	data.	Here,	the	general	guidelines	
towards	KMC	level	modeling	are	provided	based	on	the	observation	and	analyses	of	qualitative	
trends	and	quantitative	results	obtained	by	the	experiments.	

For	 all	 the	 experiments	 conducted,	 the	 size	 distributions	 and	 the	 density	 of	 void/bubble	
structures	 have	 been	 measured	 and	 analyzed.	 The	 procedures	 for	 the	 measurements	 are	
clarified	as	follows.	

For	the	density	measurements,	five	boxes	of	dimension	32.5	nm	x	32.5	nm	are	drawn	with	the	
number	 of	 features	 registered	with	 the	 reversed	 Fresnel	 contrast	 in	 under	 focusing	 and	 over	
focusing	conditions	counted.	The	resulting	number	density	 is	 therefore	a	 statistical	average	of	
the	five	individual	measurements.	The	tricky	part	of	this	process	is	the	selection	of	the	areas	to	
be	measured.	 It	 is	 ideal	 to	measure	 the	 areas	 with	 consistent	 thickness.	 However,	 diffraction	
contrasts	 often	 limit	 the	 areas	 available	 for	 good	measurements.	 It	 then	 becomes	 a	 quest	 for	
balance	to	find	areas	with	good	contrast	(minimum	diffraction	contrast)	and	similar	thicknesses.	

For	the	size	measurements,	120	features	that	exhibit	reversed	Fresnel	contrast	 in	under	and	
over	 focusing	 conditions	 have	 been	 measured	 for	 each	 single	 data	 point	 in	 order	 to	 give	
reasonable	statistical	 survey	data	rather	 than	 to	have	small	measured	quantity	 induced	bigger	
statistical	errors.	The	area	of	the	void/bubble	features	was	measured	using	the	software	package	
ImageJ	and	the	diameter	is	then	derived	from	the	measured	area.	The	resulting	diameter	in	units	
of	nm	 is	 then	a	statistical	average	of	 the	survey	of	120	 features.	The	 large	error	bars	are	 then	
believed	to	be	mostly	due	to	the	wide	size	distributions	of	features	recorded	in	the	data	rather	
than	a	result	of	under	measurement.	The	size	distributions	are	also	given	as	key	results	obtained	
from	these	measurements.	

Figure	 2.14	 and	 figure	 2.15	 show	 respectively	 void	 areal	 number	 density	 dependence,	 void	
diameter	 dependence	 and	 void	 volume	 dependence	 on	 the	 irradiation	 dose	 for	 1MeV	 Kr	 ion	
irradiations	 at	 600C	 in	 5%	 La	 doped	 CeO2.	 The	 black	 data	 set	 shows	 the	 results	 of	 ex	 situ	
irradiation	 experiments	 and	 the	 red	 data	 set	 shows	 the	 results	 of	 the	 in	 situ	 irradiation	
experiments.	 Unfortunately,	 the	 quality	 of	 the	 data	 from	 in	 situ	 experiment	 on	 void	 size	 and	
number	density	is	not	good	enough	for	quantitative	analyses	(due	to	the	quality	of	under‐focus	
and	over‐focus	images	being	low	with	objective	astigmation	problems	mainly).	As	a	result,	only	
the	data	point	for	the	final	dose	(1	x	1016ions/cm2),	for	which	the	measurement	was	done	with	
the	2011	LaB6	facility	in	MRL	at	UIUC,	is	presented.	The	number	density	was	measured	with	a	
32.5nm	x	32.5nm	square	window	at	different	 locations	on	an	 image	 (with	 likewise	 thickness).	
The	obtained	data	were	 then	 statistically	 averaged.	The	data	points	 and	 associated	 error	bars	
reflect	 the	means	 and	 standard	 deviations	 of	 the	measurements.	 The	measurements	were	 all	
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oxygen	vacancy	diffusivity	as	the	mechanism	of	charge	transfer	inside	this	material	is	believed	to	
be	via	an	oxygen	vacancy	mechanism	[24].	As	a	result,	the	curve	of	dc	conductivity	versus	dopant	
concentration	 in	 [23]	 reflects	 oxygen	 vacancy	 self‐diffusivity	 change	 with	 La	 dopant	
concentration	within	the	CeO2	lattice.	As	discussed	earlier,	5%	La	concentration	was	chosen	to	
ensure	the	close	to	maximum	oxygen	vacancy	diffusivity	and	25%	La	concentration	was	chosen	
to	investigate	the	change	on	defect	mobility	given	this	result	that	at	25%	La	concentration	the	dc	
conductivity	becomes	significantly	lower	(almost	2	orders	of	magnitude).	The	activation	energy	
for	oxygen	vacancy	 is	also	shown	 in	 reference	 [23],	where	 the	smallest	value	 in	 the	activation	
energy	 in	La	doped	CeO2	occurs	at	 the	concentration	of	about	1	atom%,	which	 is	 inconsistent	
with	the	diffusivity	data	as	the	pre‐exponential	factor	is	also	dependent	on	the	La	composition.	
But	 in	general,	 the	5	atom%	La	concentration	provides	an	activation	energy	value	close	 to	 the	
minimum	value	and	the	25	atom%	La	concentration	provides	a	much	higher	activation	energy	
(about	1.1eV	as	opposed	to	about	0.75eV).	This	is	also	confirmed	by	the	KMC	simulation	done	in	
this	work	which	will	be	shown	later.	

Another	very	important	finding	is	illustrated	in	the	following	figure	2.18.	Fresnel	fringes	that	
would	appear	when	different	material	lattices	overlap	can	be	clearly	identified	in	this	bright	field	
TEM	 image	 at	 about	 in	 focus.	 These	 structures	 can	 be	 seen	 from	 earlier	 TEM	 images	 with	
under/over	 focusing	 conditions.	 However,	 they	 are	 most	 clearly	 seen	 when	 the	 focusing	
condition	 is	 near	 in	 focus	 and	 when	 the	 specimen	 is	 tilted	 to	 be	 close	 to	 the	 zone	 axis.	 The	
structures	are	believed	to	be	solid	state	Xe	precipitates	as	they	are	represented	by	some	extra	
spots	 in	 the	SAD	diffraction	patterns.	The	SAD	diffraction	pattern	 is	 shown	 in	 figure	2.19.	The	
extra	 diffraction	 spots	 correspond	 to	 an	 f.c.c.	 type	 atomic	 structure	with	 a	 lattice	 constant	 of	
about	6.0nm.	This	is	the	form	that	most	Xe	solid	state	precipitates	have	been	observed	[25‐26].	
Figure	2.20	(a)	and	(b)	illustrate	the	High	Resolution	TEM	(HRTEM)	image	of	such	faceted	solid	
state	Xe	precipitate	structure	and	the	corresponding	Fast	Fourier	Transform	(FFT)	 in	order	 to	
show	the	different	facets	of	the	precipitate	structure.	It	can	be	seen	that	the	structure	has	both	
(200)	and	(220)	type	of	facet	planes.	Further	experiments	near	the	[011]	zone	will	be	needed	to	
illustrate	the	three	dimensional	structure	of	such	precipitate.	

The	 discovery	 of	 the	 faceted	 solid	 state	 Xe	 precipitates	 shows	 an	 important	 factor	 that	
simulations	work	carried	out	later	will	need	to	account	for.	The	factor	is	the	solution	of	Xe	inside	
the	CeO2	and	La	doped	CeO2	material	lattice	or	pure	CeO2	lattice.	It	suggests	a	possible	competing	
mechanism	at	high	dose	range	of	the	irradiations.	This	is	to	say	that	when	the	Xe	concentration	
in	the	material	lattice	becomes	very	high,	Xe	tends	to	stay	either	in	a	bubble	form	or	precipitate	
from	 the	 lattice.	 The	 Xe	 atoms	 in	 solution	 with	 the	 material	 lattice	 can	 migrate	 to	 a	 bubble	
structure	and	get	absorbed	into	such	structures,	or	they	can	migrate	to	become	associated	with	
other	Xe	atoms	in	solution	and	precipitate	as	solid	state	Xe	precipitates	when	there	are	enough	
Xe	atoms	available.	A	very	crude	estimate	indicates	that	there	are	about	1,400	Xe	atoms	in	one	of	
such	precipitate	structure.	The	formation	of	such	a	structure	then	requires	a	huge	concentration	
of	Xe	coming	close	enough	to	each	other.	It	can	therefore	be	speculated	that	room	temperature	
experiments	might	not	produce	these	structures	simply	due	to	the	low	mobility	of	Xe.	In	other	
words,	 such	precipitates	might	 only	 be	 expected	 in	 the	 lattice	 at	 room	 temperature	when	 the	
random	injection	of	Xe	by	implantation	can	gather	some	1,400	Xe	atoms	in	a	solid	state	 lattice	
structure.	The	dose	can	then	be	expected	to	be	extremely	high.	As	25%	La	doped	CeO2	has	much	
lower	Xe	mobility	as	discussed	earlier,	a	same	dose	experiment	on	that	material	could	be	very	
informative.	

Interestingly,	 similar	precipitates	have	not	been	 found	 in	 room	temperature	experiments	on	
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First	 of	 all,	 the	 Frenkel	 pair	 evolution	 simulation	 is	 used	 to	 examine	 the	 lanthanum	 doping	
effect.	 In	 the	 material	 with	 fluorite	 structure,	 due	 to	 the	 excellent	 radiation	 tolerance,	 the	
consequence	 of	 a	 displacement	 cascade	 is	 no	 more	 than	 some	 randomly	 distributed	 Frenkel	
pairs	 rather	 than	 the	 interstitial	 shell‐vacancy	 core	 structure	 formed	 in	 metallic	 materials.	
Therefore,	the	randomly	distributed	Frenkel	pair	is	a	good	initial	condition	for	MD	simulation	to	
predict	the	evolution	of	radiation	induced	defects.	In	addition,	the	Frenkel	pair	evolution	method	
make	 it	 possible	 to	 study	 on	 the	 anion	 or	 cation	 defect	 separately	 so	 that	 more	 valuable	
information	about	the	defect	evolution	can	be	revealed.	

The	ceria	system	including	16×16×16	conventional	cells	are	doped	with	0%,	5%,	10%,	15%,	
20%	 and	 25%	 of	 lanthanum.	 After	 the	 systems	 are	 relaxed	 for	 2ns,	 pure	 oxygen	 (350),	 pure	
cation	 (175)	 and	mixed	Frenkel	 (175+350)	pairs	 are	 randomly	 introduced	 into	 these	 systems	
respectively.	Then	those	systems	are	evolved	for	another	hundreds	of	picoseconds	and	the	final	
defect	structures	are	carefully	examined.	The	NpT	ensemble	is	used	here	for	zero	pressure	and	
1000K	temperature.	

For	the	pure	oxygen	Frenkel	pair	cases,	the	survived	Frenkel	pair	population	verses	time	data	
is	shown	in	Figure	2.21.	The	oxygen	Frenkel	pairs	are	not	stable	 in	ceria.	Actually,	 few	oxygen	
point	defects	can	endure	more	than	200ps.	More	importantly,	the	lifetime	of	the	oxygen	Frenkel	
pair	 decreases	 as	 the	 doping	 concentration	 rises.	 For	 the	 doping	 ration	 larger	 than	 10%,	 no	
oxygen	point	defects	exist	after	2ps.	This	can	be	easily	understood	since	the	rise	of	the	doping	
results	in	the	increase	of	the	intrinsic	oxygen	vacancy.	
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Figure	2.21	Oxygen	Frenkel	Pair	Evolution	

For	the	pure	cation	Frenkel	pair	cases,	the	survival	cation	Frenkal	pair	population	versus	time	
data	is	 listed	in	Figure	2.22.	The	lanthanum	ratio	of	the	introduced	Frenkel	pairs	and	the	local	
cation	type	environment	do	not	affect	the	evolution	significantly.	In	the	end,	around	80%	of	the	
Frenkel	pairs	survive	the	400ps	simulation.	In	fact,	in	the	2ns	simulation,	the	survival	population	
has	only	marginal	reduction.	Thus,	the	cation	point	defect	is	quite	stable	within	the	MD	timescale	
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due	 to	 the	 low	mobility.	 On	 the	 other	 hand,	 the	 planar	 interstitial	 clusters	 are	 formed	 in	 the	
simulation.	More	importantly,	oxygen	Frenkel	pairs	are	produced	by	the	system	spontaneously	
to	 help	 neutralize	 the	 charge	 bias	 of	 the	 cation	 interstitial	 clusters,	 which	 indicates	 that	 the	
cation	Frenkel	pairs	dominate	the	formation	of	the	dislocation	loops.	However,	the	stoichiometry	
effect	is	not	prominent	in	this	stage	of	the	simulation.	
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Figure	2.22	Cation	Frenkel	Pair	Evolution	

For	 the	 mixed	 Frenkel	 pair	 cases,	 the	 final	 defect	 structures	 are	 shown	 in	 Figure	 2.23	
compared	with	 the	 corresponding	 pure	 cation	 Frenkel	 pair	 cases	 (with	 identical	 initial	 cation	
Frenkel	pair	positions).	As	the	lanthanum	doping	concentration	is	high,	the	mixed	Frenkel	pair	
cases	are	similar	to	the	mixed	cases.	However,	when	the	doping	concentration	is	low,	more	and	
larger	 dislocation	 loops	 are	 observed	 in	 the	mixed	 Frenkel	 pair	 cases.	 Also,	 the	 final	 survival	
numbers	of	the	cation	Frenkel	pairs	are	listed	in	Table	2.2.	Both	the	loop	formation	and	cation	
Frenkel	 pair	 survival	 situations	 indicate	 that	 the	 mobility	 of	 cation	 interstitial	 rises	 with	 the	
existence	of	the	initial	oxygen	Frenkel	pairs	as	the	doping	ratio	is	low,	which	can	also	be	related	
to	 the	 longer	 lifetime	of	 oxygen	Frenkel	pairs	 and	 fewer	 lanthanum	cations	 in	 the	 low	doping	
cases.	

Table	2.2	Comparison	of	the	Survival	Cation	Frenk	Pairs	

Doping	Concentration	 0% 5% 10% 15% 20%	 25%	

Pure	Cation	 142 137 141 140 144	 145	

Mixed	 125 136 142 137 144	 148	

Although	 the	 Frenkel	 pair	 evolution	 simulation	 can	 not	 only	 predict	 the	 defect	 structures	
formed	 in	 irradiated	ceria,	but	also	 focus	on	cation	and	anion	point	defects	separately,	 it	 lacks	
the	 capability	 of	 modeling	 the	 effect	 of	 the	 subsequent	 cascade	 on	 the	 previously	 produced	
defects.	Thereby,	the	displacement	cascade	overlaps	simulation	is	still	necessary.	In	the	cascade	
simulations,	 the	 ceria	 systems	 including	 25×25×25	 conventional	 cells	 with	 0%,	 5%	 and	 25%	
doping	 are	 relaxed	 for	 2ns	 before	 the	 introduction	 of	 twenty	 10keV	PKA’s.	 The	 10keV	kinetic	
energy	 is	 close	 to	 the	 limit	 of	 producing	 sub‐cascades.	 Each	PKA	 is	 introduced	only	when	 the	
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With	the	simulation	results	 from	both	the	Frenkel	pair	evolution	simulation	and	the	cascade	
overlaps,	we	can	conclude	the	stoichiometry	effect	on	the	evolution	of	the	loops.	The	nucleation	
of	 the	 loop	 is	 dominated	 by	 the	 cation	 interstitials.	 Although	 the	 isolated	 cation	 interstitial	 is	
immobile	within	the	MD	timescale,	the	energy	barrier	of	migration	is	largely	lowered	when	the	
cation	 interstitials	 are	 closely	 distributed	 so	 that	 the	 loop	 can	 be	 formed.	 Then	 the	 oxygen	
interstitials	help	neutralize	the	charge	of	the	loop	structure.	In	the	meantime,	the	existence	of	the	
oxygen	Frenkel	pairs	 can	 further	 raise	 the	mobility	of	 the	 cation	 interstitial.	When	 the	doping	
exists,	the	lifetime	of	the	oxygen	Frenkel	pairs	is	shortened,	resulting	in	the	lower	mobility	of	the	
cation	interstitial,	which	can	cause	bother	the	suppression	of	the	loop	formation	and	the	cation	
Frenkel	 pair	 annihilation.	 Also,	 the	 preference	 of	 the	 lanthanum	 interstitial	 also	 reduces	 the	
mobility	 of	 cation	 interstitial	 as	 the	 doping	 ratio	 is	 high.	 Competition	mechanisms	 due	 to	 the	
lanthanum	dopant	are	then	found.	However,	the	simulation	methods	with	longer	timescale,	such	
as	rate	theory	and	kMC,	are	needed	to	examine	the	long‐term	behaviors	of	accumulation	of	the	
point	defects	in	high	doping	concentration	cases	(25%).	
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Figure	2.24	Loop	Size	Distributions	in	Cascade	Overlaps	Simulations	
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Figure	2.25	Cation	Frenkel	Pair	Populations	in	Cascade	Overlaps	Simulations	
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Figure	2.26	Lanthanum	Ration	of	the	Cation	Interstitial	

D. MS, kMC Modeling of Stoichiometry Effects on Oxygen Diffusivity in CeO2 

The	 stoichiometry	 introduced	 by	 the	 lanthanum	 doping	 also	 affects	 the	 oxygen	 diffusivity.		
Since	 the	 lanthanum	 dopant	 is	 a	 trivalent	 cation,	 every	 two	 doped	 lanthanum	 introduce	 an	
oxygen	 vacancy	 into	 the	 system.	 Thus,	 these	 intrinsic	 oxygen	 vacancies	 make	 the	 thermal	
activation	 of	 oxygen	 Frenkel	 pairs	 unnecessary	 for	 the	 diffusion	 process,	 raising	 the	 oxygen	
diffusivity	a	 lot	compared	with	that	of	 the	pure	ceria.	However,	as	 the	doping	concentration	 is	
high,	 the	 previous	 experimental	 results	 indicate	 the	 reduction	 of	 the	 oxygen	 diffusivity	 (See	
Figure	2.27)	[28].	To	better	understand	this	phenomenon,	kMC	simulation	is	conducted	based	on	
the	parameters	calculated	by	molecular	statics.	
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