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3. Executive Summary: 
This project has advanced solid-state lighting (SSL) by utilizing new phosphorescent systems 
for use in organic light-emitting diodes (OLEDs). The technical approach was two-fold:  
 

a) Targeted synthesis and screening of emitters designed to exhibit phosphorescence with 
maximized brightness in the solid state.  

 
b) Construction and optimizing the performance of monochromatic and white OLEDs from 

the best new emitters to improve performance metrics versus the state of the art.  
 
The phosphorescent systems were screened candidates among a large variety of recently-
synthesized and newly-designed molecular and macromolecular metal-organic phosphors. The 
emitters and devices have been optimized to maximize light emission and color metrics, 
improve the long-term durability of emitters and devices, and reduce the manufacturing cost 
both by simplifying the process flow and by seeking less expensive device components than 
common ones. The project succeeded in all these goals upon comparison of the best materials 
and devices investigated vs. the state of the art of the technology. 
 
4. Comparison of Actual Accomplishments with Original Goals and Objectives:  
The original goals and objectives were as follows: “The expected result is to demonstrate white 
and monochrome OLEDs from materials in this project with device performance metrics that 
exceed those of Ir-ppy based OLEDs and that are consistent with the MYP of DOE-SSL.” 

 
The actual accomplishments for devices based on one preferred embodiment phosphorescent 
material developed in the project, Pt(ptp)2 =  bis[3,5–bis(2–pyridyl)–1,2,4–triazolato]platinum(II), 
after extensive screening are summarized as follows: 

a) Attaining a turquoise-blue OLED with power efficiency maximum of 61 lm/W using our 
5%-doped Pt(ptp)2 devices versus 41 lm/W for analogous turquoise-blue baseline 
devices using FIrpic. Optimization has been finished so we met and exceeded the 
milestone goal.  This performance constitutes a new world record for a turquoise-blue 
emitter. 

 
b) Attaining a yellow-orange OLED with power efficiency maximum of 80 lm/W and near 
100% IQE (21% EQE) using neat Pt(ptp)2 devices versus 45.5 lm/W and 16% EQE for the 
highest performance baseline devices using Ir(ppy)3. This performance constitutes a new 
world record for neat OLEDs. 
 
c) Attaining a warm-white OLED with power efficiency maxima of 45-50 lm/W and near 
100% IQE using a single phosphor by gradient doping. There is no precedent in the 
literature for a WOLED from a single Ir-ppy phosphor to run as a baseline. This performance 
constitutes a new world record for a single emitter-based white OLED and is projected to 
reach total efficacy of at least 90-100 lm/W with 2x out-coupling enhancement as a 
conservative estimate among current technology protocols to attain such an enhancement. 
 
d) Regarding white color metrics, we have achieved white OLEDs within the warm-white 
CCT range and up to 82 CRI in both single-phosphor devices and single phosphor plus 
single fluorophore devices.  
 
e) The project identified a road map toward white OLEDs with power efficiency that will 
exceed 150 lm/W (with out-coupling enhancement) from a single emitter with a simple 
doping-free device architecture. 



5. Summary of Project Activities: 
 
5.1. Screening of Phosphors: 

The project focused on screening neat (as opposed to doped) emitting materials so as to 
ameliorate common quenching mechanism and phenomena in OLEDs. The problems include 
triplet-triplet annihilation, the culprit behind low wall-plug efficiencies at high 
current/voltage/brightness, as it pertains to doped thin films of the first ever breakthrough 
phosphorescent OLED  employing Pt(octaethylporphyrin), “PtOEP” (Forrest; Thompson et al., 
Nature 1998, 395, 151). While we presented some synthetic and photoluminescence screening 
data suggesting a possible remedy to overcome triplet-triplet annihilation and the consequent 
self-quenching in OLEDs based on PtOEP to be pursued in the future, we focused more on 
tackling the extreme situation represented by neat materials of phosphors. The matter is 
addressed here for the Pt(ptp)2 phosphorescent complex that we have successfully screened as 
a preferred embodiment in OLEDs during this project following extensive examination of a large 
variety of synthetic targets. The self-quenching issue limited the maximum doping level to attain 
optimum OLED efficacy has been reported to be ~ 6% for PtOEP (Forrest et al., Nature 1998, 
395, 151) and fac-Ir(ppy)3 (Forrest; Thompson et al., APL 1999, 75, 4) complexes, whereas the 
PL and EL data here show that we can obtain very high efficiency for thin films that have ~ 50-
100% concentrations of Pt(ptp)2 due to its “self-sensitization” and the insignificance of triplet-
triplet annihilation in this material. Slow triplet relaxation of the emitter can form a “bottleneck” in 
electrophosphorescent OLED performance at high brightness levels that are practical for SSL. A 
long exciton lifetime (> 10 μs) in OLEDs leads to saturation of emissive sites and consequent 
decreased quantum efficiency at high currents and low dopant concentrations. While the 
problem can be ameliorated by increasing the doping concentration of the phosphor, doing so 
beyond 6-10% cannot lead to improvement in PtOEP and Ir-ppy based OLEDs due to the self-
quenching problem whereby the proximity of molecules to one another leads to bimolecular 
quenching. Since Ir-ppy complexes in common OLED hosts such as CBP exhibit triplet lifetimes 
on the order of ~ 1 μs (Forrest; Thompson et al., APL 1999, 75, 4; APL 2000, 77, 904), two 
orders of magnitude shorter than the ~ 100 μs lifetimes for PtOEP, the saturation issue is much 
less severe but remains significant especially at high current/voltage/brightness and high doping 
levels. For example, the power efficiency of 6% Ir(ppy)3:CBP devices drops by 76%, from a 
maximum of 31 lm/W near turn-on to 7.5 lm/W at 1000 cd/m2; meanwhile, increases in dopant 
concentration to 12%-doped and 100%-neat films lead to rather significant drops in the peak 
EQE by 62% and 91%, respectively, i.e. from EQE = 8% for the 6%-doped film to EQE = 3% for 
the 12%-doped film and EQE = 0.75% for the neat film (Forrest; Thompson et al., APL 1999, 75, 
4). The PL data in this section and EL data in subsequent sections show that our breakthrough 
Pt(ptp)2 material is a “self-sensitizing fast phosphor” that solves both the triplet lifetime and self-
quenching problems that have hampered the performance of electrophosphorescent OLEDs at 
practical brightness levels for SSL applications up to now. In addition to self-sensitization and 
overcoming triplet-triplet annihilation, another advantage offered by neat or highly-doped films of 
the phosphor in OLEDs is circumventing exchange energy loss, hence decreasing the device 
drive voltage.  

 

The screening data in this section pertain to three forms of neat Pt(ptp)2 that have different 
structural and PL properties in the single crystal or bulk powder form (Fig. 1). The spectral data 
of the three forms shown in Fig. 1 (top-to-bottom) are rather similar to those exhibited by lightly-
doped (~ 5% Pt(ptp)2:CBP), heavily-doped (≥ ~40% Pt(ptp)2:CBP), and neat thin films of Pt(ptp)2, 
respectively. Fig. 1 shows that the orange form exhibits the brightest emission and shortest 
radiative lifetime among the three forms of Pt(ptp)2. Triplet-triplet annihilation is negligible in this 



form because of two reasons: (1) The triplet lifetime of 92 ns is unusually short for a brightly-
phosphorescent solid material at ambient temperature, rendering the material a “fast phosphor”. 
(2) The stacking of molecules is maximized because the molecules perfectly overlap with one 
another. This overlap causes the bright orange emission of this form, turning the “self-
quenching” problem common in other materials into “self-sensitization” in this neat form of 
Pt(ptp)2. As the overlap between the Pt(ptp)2 molecules decreases gradually on going from the 
orange/orange-emitting form (bottom) to the bright-yellow/yellow-emitting form (middle) and then 
to the pale-yellow/turquoise-green emitting form (top), the emission becomes less bright with a 
longer lifetimes. This trend accentuates the self-sensitization phenomenon as it manifests 
exactly the opposite trend known for most luminescent materials, including PtOEP and Ir-ppy 
complexes, for which lesser degree of overlap between molecules is desirable for their PL or EL 
while it is desirable to maximize such intermolecular interactions in Pt(ptp)2. Given the fact that 
the emission in the limiting orange form is metal-centered, the phonon energy associated with 
the Pt···Pt interaction is much less than that involving ligand-centered or metal-ligand charge 
transfer emissions for which the phonon energies are typically an order of magnitude higher, 
making them more susceptible to quenching by non-radiative multiphonon relaxation processes 
to the ground state while such processes are inhibited for the *Pt-Pt excimeric emissions 
characteristic of the stacked forms of Pt(ptp)2.  

Fig. 1. PL and structural data for three forms of Pt(ptp)2 with differing stacking density of 
molecules. 
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Further PL screening evidence to the self-sensitization phenomenon has been collected by 
spectroscopic studies of Pt(ptp)2 in solution. Thus, quantitative measurements have shown that 
upon increasing the total Pt(ptp)2 concentration from 10-5 M to 10-3 M in 
dichloromethane/methanol, the peak area of the emission peak (normalized to solution 
absorption under the respective excitation wavelength) increases by a factor of 2.38, 
representing a 138% self-sensitization due to the association of the phosphor in solution. The 
spectral data are shown in Fig. 2. Qualitatively, proceeding from solution to the solid state 
enhances the self-sensitization effect even further because only the more efficient extended 
excimer emissions are seen for neat thin films (see Task 2 data). 

Fig. 2. PL data for solutions of Pt(ptp)2 in dichloromethane/methanol with 10-3 M and 10-5 M total 
concentration.  

 

5.2. Monochromatic and White OLED Device Fabrication and Testing: 
 
Figs. 3-6 and Tables 1-3 summarize the results that prove the self-sensitization concept via EL 
while Fig. 7 illustrates a proof-of-concept example showing how these results can be utilized to 
design a high-CRI WOLED with no roll-off from a single emitter. These data illustrate our 
approach in detail while further optimization is described subsequently in less detail. 
 
Fig. 3 and Table 1 show EL spectra and device performance metrics for OLEDs based on 
Pt(ptp)2 versus doping level (3-100%) in an unoptimized device structure. Color tuning between 
blue and orange is achieved by controlling the dopant concentration. The performance metrics 
summarized in Table 1 are consistent with the normal behavior in electrophosphorescent 
OLEDs because the best performance is achieved for devices with 5-12% doping level, similar 
to reported devices based on Ir(III) phenylpyridine and Pt(II) porphyrin complexes such as 
Ir(ppy)3 and PtOEP, respectively. Below 5% incomplete energy transfer takes place, resulting in 
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CBP emission. A first look at the EL data at > 12% doping level suggests a trend that is contrary 
to the PL trends in the previous section, as Table 1 data seem more consistent with self 
quenching as opposed to self sensitization at higher dopant concentrations. However, Fig. 3 
clearly shows that devices with the higher doping levels exhibit emission due to the ETL 
material NPB; the effect is maximized for the neat film device in which the NPB emission is quite 
significant. (Indeed, the CIE coordinates and CRI are close to those of white light sources for 
the 100% device due to the combination of the broad orange emission of Pt(ptp)2 and the deep 
blue emission of NPB.) This suggests excess of electrons in devices that contain significant 
amounts of the Pt(ptp)2 dopant, necessitating the addition of an electron-blocking layer in order 
to achieve a better charge balance. When this was done, the trend became consistent with the 
PL data and we obtained efficient devices for highly-doped (Fig. 4 and Table 2) and neat 
emissive layer devices (Figs. 5-6 and Table 3) to prove the self-sensitization effect via EL.  
 

Fig. 3. EL spectra for unoptimized OLEDs based on Pt(ptp)2 showing color tuning by controlling 
the doping level.  
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Table 1. Performance metrics for the OLEDs shown in Fig. 3. Device efficacies and color 
coordinates are reported at peak performance and at 1000 cd/m2.  

x% PEpeak  
(lm/W) 

PE1000  
(lm/W) 

EQEpeak  
(%) 

EQE1000  
(%) 

CIEpeak  
(x, y) 

CIE1000  
(x, y) 

CRIpeak  CRI1000 VT  
(V) 

3% 6.32 ±0.72 2.47±0.06 3.92±0.20 2.46±0.07 (0.229 ,0.496)  (0.225,0.472)  26 27 5.0 

5% 9.83±0.02 5.81±0.04 6.55±0.03 5.32±0.04 (0.248,0.517) (0.245,0.514) 27 30 4.0 

7.5% 8.07±0.02 7.29±0.03 4.91±0.02 4.89±0.03 (0.274,0.526) (0.272,0.526) 32 32 4.2 

10% 7.16±0.4 4.27±0.03 4.03±0.04 3.53±0.03 (0.276,0.513) (0.268,0.509) 38 35 4.4 

12% 7.63±0.21 7.22±0.16 4.84±0.14 4.78±0.11 (0.334,0.533) (0.328,0.532) 45 40 4.2 

15% 6.72±0.16 4.26±0.12 2.98±0.05 2.82±0.07 (0.333,0.536) (0.326,0.533) 45 41 4.2 

25% 1.72±0.15 0.87±0.14 0.84±0.08 0.69±0.07 (0.469,0.508) (0.418,0.518) 47 51 4.4 

45% 2.38±0.15 1.13±0.14 1.02±0.08 0.79±0.07 (0.462,0.509) (0.436,0.510) 51 56 4.0 

65%  2.28±0.22 1.17±0.20 1.69±0.23 1.09±0.22 (0.491,0.491)  (0.450,0.484) 50 53 4.2 

100% 3.18±0.07 1.15±0.23 1.44±0.18 0.82±0.13 (0.537,0.454) (0.464, 0.424) 60 68 3.2 

 
Fig. 4 shows that modifying the baseline structure by adding a 10-nm thin film of N,N’–
dicarbazolyl-3,5-benzene (mCP) as an electron- and exciton-blocking layer results in EL only 
from the Pt(ptp)2 with complete absence of any emission from the ETL and host materials, 
suggesting charge balance and exciton confinement in the emissive layer. Table 2 show that the 
higher-doped devices actually have a better performance than the lower-doped devices, 
accentuating the self-sensitization phenomenon and absence of self-quenching. Remarkably, 
the performance of the best devices in Table 2 is an order of magnitude higher in this device 
structure than in the analogous structure that does not contain the ultrathin mCP layer; compare 
with Table 1 data for x =  45 and 65%.  

Fig. 4. EL spectra for OLEDs based on Pt(ptp)2 that are partially-optimized by adding the 
exciton- and electron-blocking material mCP to modify the baseline device structure in Fig. 3. 
Note the absence of EL from NPB or CBP due to the better charge balance and exciton 
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confinement in this device structure. The improvement in performance metrics is seen upon 
comparing Table 2 vs. Table 1 data. 
 
Table 2. Performance metrics for highly-doped OLEDs with the device structure shown in Fig. 4. 

Device efficacies and color coordinates are reported at peak performance and at 1000 cd/m2.  
x% PEpeak  

(lm/W) 
PE1000  
(lm/W) 

EQEpeak  
(%) 

EQE1000  
(%) 

CIEpeak  
(x, y) 

CIE1000  
(x, y) 

CRIpeak  CRI1000 VT  
(V) 

16% 18.14 ±0.05 11.02±0.04 9.39±0.05 7.83±0.02 (0.285 ,0.521)  (0.290 ,0.522)  37 37 4.1  
25% 19.12±0.24 9.09±0.08 8.32±0.15 5.64±0.05 (0.322,0.532)  (0.321,0.530)  37 38 3.8 
30% 21.30±0.06 14.55±0.08 9.41±0.06 8.39±0.09 (0.342,0.536)  (0.341,0.535)  47 46 3.8 
40% 19.70±0.10 12.20±0.10 8.66±0.07 7.22±0.06 (0.376,0.531)  (0.369,0.532)  48 43 3.9 
45% 26.30±0.30 19.9±0.19 11.92±0.14 11.07±0.11 (0.417,0.525)  (0.411,0.528)  49 46 3.9 
65% 27.80±0.16 21.10±0.12 13.16±0.04 12.40±0.07 (0.446,0.516)  (0.443,0.518)  49 47 3.9 

 
It is important to note the little roll-off in the Table 2 data at 1000 cd/m2 in both power efficiency 
and especially in EQE. Thus, the data herein manifest increase in OLED stability (which roll-off 
predicts best aside from actual lifetime testing) while simultaneously increasing EQE in the 
highly-doped devices. This is exactly what we have promised when we submitted the proposal 
application for this project originally in a literal implementation of the language used in the 
solicitation. The following is the exact text to this effect reproduced from the introduction of the 
original proposal application: 
 

[[We firmly believe that the planned work will make major strides in all 
research objectives confronting the advancement of OLEDs for practical 
SSL applications, as identified in Area of Interest 3 of the solicitation. To 
illustrate, that section of the solicitation states:  
  
 “Of special importance under this topic is research that will increase 
stability while simultaneously increasing IQE.” ]] 

 
The ultimate manifestation of the self-sensitization phenomenon is for OLEDs based on neat 
emissive layers of Pt(ptp)2. Interestingly, Fig. 5 shows that the EL spectra and CRI of such 
devices are sensitive to the thickness of the neat emissive layer. Although the 50-55 CRI values 
are not ideal for these light orange OLEDs, they are more than a factor of two better than the 
CRI values for high pressure sodium so it is possible that they find use in some SSL 
applications if the performance can be satisfactory (albeit we are addressing the CRI issue; vide 
infra).  
 
Fig. 6 and Table 3 show that the performance of neat emissive layers of Pt(ptp)2 can be as high 
as 30 lm/W upon improving the device structure with better ETL and HTL materials. The 
approach is to replace the materials that sandwich the neat emissive layer by better materials.  
Thus, we replaced NPB, or both NPB and mCP, by 1,1-bis-(4-bis(4-methyl-phenyl)-amino-
phenyl)-cyclohexane (“TPAC”) from the anode side and replaced TPBI by tris(2,4,6-trimethyl-3-
(pyridin-3-yl)phenyl)borane (“TPYMB”) from the cathode side. This was done because TPAC 
can function a triple role (hole transporting, electron blocking, and exciton blocking) based on its 
HOMO and LUMO energy while TPYMB has superior mobility for electron transport. We have 
performed multiple device optimizations to systematically introduce these two materials and 
vary their thickness along with the thickness of the Pt(ptp)2 neat emissive layer. Fig. 6 and Table 
3 illustrate some of these optimization efforts. While the work is still ongoing, the available 
results from partial optimization already amount to a world-record performance for neat emissive 



materials. In comparison, neat PtOEP does not exhibit any EL; neat Ir(ppy)3 exhibits EQE = 
0.75% (Forrest; Thompson et al., APL 1999, 75, 4) compared to 15.5% for neat Pt(ptp)2 (i.e., a 
factor of 20.7x higher); the highest reported peak power efficiency for neat Ir(III) complexes we 
are aware of is 7.0 lm/W for neat FIr6 (Forrest; Thompson et al., APL 2003, 82, 2422) compared 
to 30.25 lm/W for Pt(ptp)2 (i.e., a factor of 4.3x higher). Even higher performance is expected for 
neat and highly-doped Pt(ptp)2 OLEDs than what is conveyed in Tables 2 and 3, respectively, 
upon further optimization of our device structure outlined below. 
 

Fig. 5. EL spectra for OLEDs based on a neat emissive layer of Pt(ptp)2 using the same 
partially-optimized device structure shown in Fig. 4 except for using a neat emissive layer 

instead of doping. Note the fine tuning of the EL peak maximum and CRI by controlling the 
thickness of the neat emissive layer. 

 

Wavelength (nm)

390 420 450 480 510 540 570 600 630 660 690 720 750 780

N
o

rm
a

li
ze

d
 E

L
 i

n
te

n
s

it
y 

(a
.u

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pt(ptp)2 10nm

Pt(ptp)2 25nm

Pt(ptp)2 50nm

Pt(ptp)2 100nm

Thickness

596
588580

576
Thickness
Pt(ptp)2

λ (nm) 
FWHM

CRI

10 nm 628 ‐ 532 51

25 nm 632 – 536 51

50 nm 640 – 540 52

100 nm 652 – 552 54

FWHM: Full width at half maximum based 
on the EL spectra of Pt(ptp)2 neat films.



Current density (mA/cm2)

10-3 10-2 10-1 100 101 102 103

E
Q

E
 (

%
)

100

101

102

TAPC 50 Ptptp 40 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 30 

Luminance (cd/m2)

10-1 100 101 102 103 104 105

E
Q

E
 (

%
)

100

101

102

TAPC 50 Ptptp 40 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 30 

Luminance (cd/m2)

10-1 100 101 102 103 104 105

P
o

w
er

 E
ff

ic
ie

n
cy

 (
lm

/W
)

100

101

102

TAPC 50 Ptptp 40 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 30 

Current density (mA/cm2)

10-3 10-2 10-1 100 101 102 103

P
o

w
er

 E
ff

ic
ie

n
cy

 (
lm

/W
)

100

101

102

TAPC 50 Ptptp 40 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 20
TAPC 50 Ptptp 30 TPYMB 30 

ITO

TAPC  50 nm

Pt(ptp)2 30/40 nm
TPYMB 20/30 nm

Mg‐Ag– 100 nm

 
Fig. 6. Plots of EL metrics for OLEDs based on a 30-nm neat emissive layer of Pt(ptp)2 upon 
partial optimization of the device structure shown in Fig. 3 by replacing the ETL material from 

TPBI to TPYMB and the HTL material from NPB to TAPC. The order-of-magnitude improvement 
in performance metrics is seen upon comparing Table 3 data vs. the corresponding data in the 

last row of Table 1. 



Table 3. Performance metrics for OLEDs with a neat emissive layer using the device structure 
shown in Fig. 6 by partial optimization of the thicknesses of TAPC, TPYMB, and Pt(ptp)2. Device 

efficacies and color coordinates are reported at peak performance and at 1000 cd/m2. 

Device ID PEpeak

(lm/W)
PE1000

(lm/W)
EQEpeak

(%)
EQE1000

(%)
CIEpeak

(x, y)
CIE1000

(x, y)
LEpeak

(cd/A)
LE1000

(cd/A)
VT

(V)
TAPC 60 
Ptptp 30  

TPYMB 30

28.63 + 1.95
(30.25)

12.85 + 0.55
(14.23)

13.97 10.3 (0.50,0.48) (0.50,0.49) (38.21) (27.8) 3.0

TAPC 50 
Ptptp 30  

TPYMB 30

29.00 + 0.10
(29.25)

15.65 + 1.50
(16.30)

14.53 10.95 (0.50,0.48) (0.50,0.49) (40) (31) 2.8

TAPC 40 
Ptptp 30 

TPYMB 30

26.67 + 1.10
(28.24)

16.1 + 0.50
(17.1)

10.48 9.15 (0.50,0.48) (0.49,0.49) (29.5) (26.2) 2.6

TAPC 30 
Ptptp 30 

TPYMB 30

23.37 + 1.35
(26.47)

17.03 + 1.0
(17.80)

9.41 8.64 (0.50,0.48) (0.49,0.49) (26.7) (24.9) 2.5

TAPC 50 
Ptptp 30 

TPYMB 20

19.43 + 1.04
(20.16)

15.1 + 0.10
(15.18)

7.5 7.0 (0.50,0.48) (0.50,0.49) (21.5) (20.1) 2.5

TAPC 50 
Ptptp 30  

TPYMB 30

29.00 + 0.10
(29.25)

15.65 + 1.5
(16.30)

14.53 10.95 (0.50,0.48) (0.50,0.49) (40) (31) 2.8

RUN 2 for 
50/30/30

27.55 + 2.10
(29.5)

16.00 + 1.52
(17.6)

14.50 10.8 (0.50,0.48) (0.50,0.49) (37.35) (30.2) 2.8

TAPC 50 
Ptptp 30 

TPYMB 40

25.10 + 2.1
(26.8)

9.1 + 0.60
(9.3)

15.5 7.9 (0.50,0.48) (0.50,0.49) (44.9) (23) 3.8

TAPC 50 
Ptptp 40  

TPYMB 20

29.40+ 0.25
(29.57)

19.20 + 0.50
(19.76)

12.30 10.48 (0.50,0.48) (0.50,0.48) (34.42) (31) 2.4

TAPC 50 
Ptptp 30  

TPYMB 30

29.00 + 0.10
(29.25)

15.65 + 1.5
(16.3)

14.53 10.95 (0.50,0.48) (0.50,0.49) (40) (31) 2.8

 
  
In order to attain white light, the orange emission of the highly-doped or neat devices with near 
30 lm/W performance can be combined with either a deep-blue emission to attain good CIE 
coordinates (cool WOLED approach) or blue-green emission to attain high CRI (warm WOLED 
approach). Detailed results from this ongoing effort will be communicated in subsequent reports. 
To illustrate the latter approach, Fig. 7 shows that we have been able to combine the orange 
emission from a 100-nm neat Pt(ptp)2 layer with the blue-green emission from a second 
emissive layer consisting of a 5% Pt(ptp)2:CBP lightly-doped film to attain a WOLED with a high 
CRI (up to 82). Note that no roll-off is obtained in the EQE in this WOLED made from a single 
emitter.  
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Fig. 7. Plots of EL metrics for WOLEDs based on a single emitter, Pt(ptp)2, in two emissive 
layers: a 100-nm neat layer and a 5%-doped layer in CBP.   
 

The devices were further optimized at later project stages to improve performance, color, 
processing cost, and/or stability metrics by multiple means to attain the best results mentioned 
in Section 4 above. The corresponding technical data are overviewed briefly as follows: 
 

a) Turquoise-blue OLEDs with record performance: We demonstrated high-efficiency 
turquoise-blue electrophosphorescence from our bis[3,5–bis(2–pyridyl)–1,2,4–
triazolato]platinum(II) (Pt(ptp)2) phosphor doped in 4-(diphenylphosphoryl)-N,N-
diphenylaniline (HM-A1) host developed by the PNNL lighting group. Organic light-emitting 
diodes (OLEDs) with 5% Pt(ptp)2:HM-A1 attain peak power efficiency of 70.6 lm/W, versus 
42.8 lm/W for analogous devices employing the 
standard turquoise-blue phosphor bis[(4,6-
difluorophenyl)-pyridinato-
N,C2’](picolinato)iridium(III) (FIrpic). Devices with x% 
Pt(ptp)2:HM-A1 exhibit blue emission maxima (max 

~480 nm) with monotonic increase in 
excimer/monomer intensity ratio at higher doping 
levels within 1-10%, causing color shift toward green and less charge balance. Fig. 8 and 
Table 4 summarize the results. 
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Fig. 8. EQE and PE plots of a 5% Pt(ptp)2 doped in various hosts. Device structure: 
ITO/TAPC 350 Å/Host: 5% Pt(ptp)2 150 Å/PO15 500 Å/LiF-Al. 

 

Table 4. Summary of important parameters for OLEDs with variable doping concentrations of 
Pt(ptp)2 in HM-A1. The subscripts (peak) and (1000) refer to the numbers at their peak value 
and at 1000 cd/m2, respectively. The values reported are an average ± standard deviation of 8 
devices and the numbers in parentheses are the best- pixel data.  

 

Doping 

Conc. 

(%) 

1 mA cm‐2 
EQEpeak  EQE1000  PEpeak  PE1000  λmax 

CIE 

(x,y) 
Voltage 
(V) 

Luminance 

(cd m‐2) 

(%)  (%)  (lm W‐1)  (lm W‐1)  (nm) 

1%  3.94 ± 0.01  358.1 ± 6.0  11.5 ± 1.1  8.4 ± 0.3  37.7 ± 6.8  21.0 ± 0.8  482  (0.19,0.45) 
Pt(ptp)2      (12.4)  (9.0)  (44.5)  (22.3)     

2.5%  4.13 ± 0.01  568.5 ± 7.5  12.0 ± 0.4  9.7 ± 0.1  59.9 ± 3.5  38.6 ± 0.7  483  (0.22,0.49) 
Pt(ptp)2      (12.6)  (9.9)  (65.6)  (39.5)     

5%  3.96 ± 0.03  568.4 ± 11.2  11.8 ± 0.6 10.6 ± 0.2 61.2 ± 5.9 40.3± 1.2 486 (0.26,0.51) 
Pt(ptp)2      (13.1)  (10.8)  (70.6)  (41.6)     

7.5%  3.93 ± 0.04  550.2 ± 6.0  11.5 ± 0.2  10.4 ± 0.1  57.8 ± 2.2  40.2 ± 0.7  488  (0.29,0.53) 
Pt(ptp)2      (12.6)  (10.5)  (68.1)  (41.1)     

10%  3.98 ± 0.03  510.9 ± 21.4  11.1 ± 0.7  9.4 ± 0.5  58.1 ± 3.6  35.2 ± 2.2  490  (0.32,0.54) 
Pt(ptp)2      (11.6)  (9.9)  (60.8)  (37.9)     

 

5% FIrpic 
(Control) 

 

4.02 ± 0.02 

 

431.5 ± 12 
16.7 ± 0.4 

(17.6) 
15.4 ± 0.4 
(16.0) 

40.8 ± 1.7 
(42.8) 

29.4 ± 0.8 
(30.7) 

 

474 

 

(0.16,0.30) 

               
                   

 
 



b) Yellow-orange OLEDs with record performance from a neat emissive layer: When we 
reproduced the same neat devices described in Fig. 6 and Table 3 above but replaced the 
photospectrometer PR-650 (Photo Research Inc.) detector that we utilized in early stages of 

the project with a Si photodiode (Hamamatsu – 18 
mm x18 mm) that we custom built, the power 
efficiency was greatly improved by > 50%, from 27 to 
41 lm/W. The PR-650 can provide light intensity 
(luminance) and chromaticity (CIE x,y coordinates, 

CRI, CCT and EL spectra) simultaneously. However, it suffers from lower sensitivity and 
longer response times compared to a calibrated Si photodiode. The duration for a normal 
voltage sweep of 0 to 10 V (0.2 V steps) is >10 min with the PR-650, which affects device 
efficiencies, compared to merely seconds with a calibrated Si photodiode. The improved 
results with the calibrated Si photodiode are summarized in Fig. 9a. Further improvement to 
79.4 lm/W (80 lm/W for best pixel) was obtained upon using a 100-nm neat film of Pt(ptp)2 
that acts as both emissive layer and electron transport layer (due to its n-type 
semiconducting behavior as we proved in a different NSF-supported project) in combination 
with mCP as electron-/exciton-blocking layer and TAPC as hole transporting layer (Fig. 9b).  

Fig. 9. EQE and PE plots of two neat Pt(ptp)2 devices with device structure as follows: 
(a; top):  ITO/TAPC (40 nm)/Pt(ptp)2 (30 nm)/Tpymb (30 nm)/LiF/Al. 

(b; bottom):  ITO/TAPC (40 nm)/mCP (10 nm)/Pt(ptp)2 (100 nm)/LiF/Al. 
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c) Warm-white OLEDs from a single phosphor by a gradient doping device architecture: We 
demonstrated single-emitter warm-white organic light emitting diodes (SWOLEDs) with high 
efficiency commensurate with that attained by multiple dopants. Broad electroluminescence 
(EL) spectra have been achieved rendering balanced-white color through simultaneous 
monomer (turquoise-blue), excimer (green-yellow) and extended excimer (yellow-orange) 
emissions from low doped (≤ 5%), medium doped (~10%) and neat (100% phosphor with no 
host) films of Pt(ptp)2, respectively, in a graded-doping device architecture. We have also 
demonstrated good control of the recombination zone and its impact on device performance 
by adjusting the number of emissive layers, their thicknesses and relative positions in the 
device stack. We have evaluated several simple device structures to optimize efficiency and 
color of these WOLEDs, keeping in mind low-cost, reliability and high-volume 
manufacturability. Device optimization has resulted in SWOLEDs with peak power efficiency 
of 30.4 ± 1.3 lm/W, EQE of 17.1 ± 0.1 %, and correlated color temperature (CCT) of 3450 K, 
which is well-within the acceptable range for warm-white according to the MYPP despite the 
fact that the color rendering index (CRI) is only 62. The devices exhibit negligible roll-off of 
EQE at lighting brightness (500 cd/m2 corresponding to 1000 cd/m2 with 2x out-coupling 
enhancement as a conservative estimate) maintaining > 90% of its peak EQE value and 
remains > 85% of peak EQE even at double lighting brightness (1000 cd/m2 corresponding 
to 2000 cd/m2 with 2x out-coupling enhancement). Fig. 10 summarizes the results. These 
data were for devices measured with the PR-650 detector. Based on the aforementioned 
power efficiency improvement with Si photodiode, we project the gradient-doped devices to 
attain 45-50 lm/W maximum (47.3 ± 2.02 lm/W with the same improvement ratio), 
constituting a new world record for a white OLED made with a single phosphorescent 
emitter. This performance translates to 90-100 lm/W SWOLEDs upon 2x out-coupling 
enhancement.  
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Fig. 10. EQE and PE plots (left) and EL spectra (right) of four gradient-doped SWOLEDs. 

 
d) Tunability of white color metrics: Gradient doping has not been our only strategy to attain 
balanced white EL color. Other strategies have included: (i) hybrid 
fluorescent/phosphorescent WOLEDs with 
up to 82 CRI, some with (0.3, 0.3) CIE 
coordinates and CCT in the cool-white 
range, (ii) dual-phosphor doping-free 
WOLEDs with warm-white CCT and up to 
65 CRI, which could be improved at the expense of performance to 75 CRI, and (iii) 
SWOLEDs consisting of one doped and one neat emissive layer that give rise to warm-white 
CCT. All these device architectures could attain some degree of tuning each of the three 



aforementioned color metrics and, in general, we have found that the highest performance is 
associated with the warmest-white devices.  
 
d) Road map for tomorrow’s WOLEDs: This SSL project, upon leverage by another NSF-
supported project on electrical characterization, has identified a road map toward attaining 
white OLEDs with power efficiency that will exceed 150 lm/W (including out-coupling 
enhancement) at lighting brightness from a single emitter with a simple doping-free device 
architecture capable of attaining acceptable CRI > 80. Such a road map toward the 
aforementioned efficiency metric was identified as the goal for next-generation WOLEDs 
during the OLED panel discussion of the SSL Core technology Workshop in Raleigh, NC 
(February, 2010). Although this goal is ambitious since it represented nearly 50% 
improvement of the current technology status at the time (UDC’s ~ 100 lm/W WOLEDs), our 
project team believes that this goal is not only realistic but could be further amended to 
facilitate the manufacturing aspects by both simplifying the device structure and decreasing 
material and device production cost without compromise of neither efficacy nor stability. Our 
road map is based on the aforementioned doping free white and warm-white OLEDs (which 
we affectionately call “DFW-OLEDs” and “DFW-WOLEDs”, respectively, with pun intended 
to our geographical location). The logic for this road map is as follows:  
 
(i) We have attained doping-free OLEDs with up to 80 lm/W with a single emissive layer 
consisting of a neat phosphor that also acts as an electron-transport layer due to its n-type 
behavior that we discovered in the NSF project; see Fig. 9b and discussion thereof in sub-
section b) above. Though these devices fall within the acceptable CCT range so as to merit 
the “DFW-WOLED” name, they do not exhibit acceptable CRI. The performance of such 
devices is expected to reach at least 160 lm/W given the aforementioned 2x out-coupling 
enhancement as a conservative estimate. The slight drop at lighting brightness is expected 
to be more than offset by reproduction by an OLED manufacturer with better deposition 
conditions than what we currently have (including more efficient encapsulation and 
completely in situ device deposition without breaking 
vacuum before cathode deposition like we currently 
have to do). Thus, new materials that exhibit near 
100% PL quantum yield in neat form (like Pt(ptp)2 neat 
films do) are needed to attain the sought 150 lm/W 
performance but with acceptable CRI. 

 
(ii) Our screening efforts have identified materials 
besides Pt(ptp)2 that can emit balanced white light 
effectively in neat form, including one macromolecular 
material that has attained 95 CRI via 
photoluminescence (as shown) and other materials 
that attained varying degrees of warm- and cool-white 
light (see picture here for three forms of a single neat 
material whose white PL color quality could be 
controlled by microwave reaction time). Such materials provide suitable candidates for 
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SWOLEDs in bi-layer or tri-layer DFW-OLED device architectures similar to those utilized for 
Pt(ptp)2 high-performance devices but will also satisfy the CRI color metric. Likewise, we 
also have screened other materials that are suitable for dual-emissive-layer DFW-WOLEDs 
that will consist of a neat blue-turquoise phosphor in one layer and orange-red phosphor in 
another layer. Several such materials have been screened with neat 100% PL quantum 
yield in neat form, some offering deeper-blue (than neat FIrpic or doped Pt(ptp)2 films) and 
others deeper-red (than neat Pt(ptp)2 films) alternative DFW-WOLED emissive materials so 
as to attain suitable CRI >80 along with the 150 lm/W performance. However, such 
materials need to be investigated and scrutinized in functioning OLEDs in future projects. 
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