
SANDIA REPORT
SAND2008-4590
Unlimited Release
Printed July 2008

Two-way Coupling of Presto v2.8 and
CTH v8.1

H. Carter Edwards, David A. Crawford, Christopher W. S. Bruner, Joseph E. Bishop

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

2

SAND2008-4590
Unlimited Release
Printed July 2008

Two-way Coupling of Presto v2.8 and CTH v8.1

H. Carter Edwards
Computational Thermal and Fluid Mechanics

hcedwar@sandia.gov

David A. Crawford
Computational Thermal and Fluid Mechanics

dacrawf@sandia.gov

Christopher W. S. Bruner
Aerosciences

cwbrune@sandia.gov

Joseph E. Bishop
Solid Mechanics / Structural Dynamics

jebisho@sandia.gov

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

Abstract

A loose two-way coupling of SNL’s Presto v2.8 and CTH v8.1 analysis code has
been developed to support the analysis of explosive loading of structures. Presto is a
Lagrangian, three-dimensional explicit, transient dynamics code in the SIERRA me-
chanics suite for the analysis of structures subjected to impact-like loads. CTH is
a hydro code for modeling complex multi-dimensional, multi-material problems that
are characterized by large deformations and/or strong shocks. A fundamental assump-
tion in this loose coupling is that the compliance of the structure modeled with Presto
is significantly smaller than the compliance of the surrounding medium (e.g. air) mod-
eled with CTH. A current limitation of the coupled code is that the interaction between
CTH and thin structures modeled in Presto (e.g. shells) is not supported. Research is
in progress to relax this thin-structure limitation.

3

4

Contents

1 Introduction . 7
1.1 Fortissimo contains Presto . 7
1.2 Fortissimo contains CTH . 8
1.3 CTH AMR Tracking of the Structure . 8
1.4 Decoupled “Leap Frog” Time Stepping . 9
1.5 Coupled Parallel Execution . 9
1.6 Coupled Restart . 10

2 Loose Coupling Algorithm . 11
2.1 Algorithm Steps . 11
2.2 Interface Mesh . 12
2.3 Parallel Gather / ReduceScatter . 13
2.4 Quadrilateral Splitting . 14

3 Initial Testing . 15
3.1 Scaling Study . 15
3.2 Hydrobulge Cylinder Experiment . 17

4 Plans . 21

5

Figures

1 Presto input file extension for CTH pressure loading 7
2 Fortissimo input file for CTH-only execution mode 8
3 Example CTH input file (fragment) for CTH AMR in the vicinity of a

Presto surface . 9
4 Fortissimo loose coupling “leap frog” time stepping 11
5 Simple ’C’ language interface for interface surface data 13
6 Scaling study spherical shell meshesm1 andm2 with removed octant 15
7 Scaling results for problem size scaled with processor count 17
8 Schematic of the Hydrobulge Cylinder Experiment 18
9 Presto Mesh for the hydrobulge cylinder experiment 19
10 Equivalent plastic strain in the aluminum tube . 19
11 Comparison of experimental and simulatian surface velocities 20

6

1 Introduction

A new SIERRA Mechanics capability, labeled Fortissimo, provides a loose two-way cou-
pling of SNL’s Presto and CTH analysis codes to support the analysis of explosive blast
loading of structures. This new single code includes all of Presto v2.8 [5] for modeling the
structure, all of CTH v8.1 [3] for modeling the explosive blast in a medium (e.g. air) sur-
rounding the structures, and a new interface component that exchanges data between Presto
and CTH. The coupling between Presto and CTH is loose in that each code performs its
own independent time step solution using boundary data from other code. For CTH this
boundary data consists of a time-interpolated surface mesh (position and velocity) from
Presto’s finite element mesh. For Presto this boundary data consists of a time-averaged sur-
face pressure from CTH. The Fortissimo interface code negotiates the time-interpolation,
time-averaging, and exchange of this surface data between the codes during coupled exe-
cution.

1.1 Fortissimo contains Presto

Fortissimo couples Presto and CTH by linking both codes into a single executable named
“fortissimo”. The coupled analysis code is run just like Presto with a standard Presto
input file; however, the name ’fortissimo’ is substituted for the name ’presto’ on a command
line, e.g. “sierra fortissimo ...” instead of “sierra presto ...” If this Presto
input file does not include a command block to activate CTH coupling then it will simply
run Presto. The standard Presto input file is extended with the command block shown in
Figure 1.

begin pressure

surface = skin

object type = face

field variable = pressure

cth input = <cth_input_file_name> \#

idrun = h \#

coordinate scaling = 2.54 \#

pressure scaling = 14.5e-6

coordinate scaling is Presto’s inches to CTH’s centimeters

pressure scaling is CTH’s dyne/cm^2 to Presto’s psi

end

Figure 1. Presto input file extension for CTH pressure loading

The “surface = skin” command line in Figure 1 denotes that the entire surface skin
of the structure is to be involved in the interaction. The two “object type = face” and

7

“field variable = pressure” command lines informs Presto that that face pressure
loads will be applied through thepressure variable. The “cth input =” command line
provides the CTH input file name, run identifier (defaults tohwhen CTH is run standalone),
how to scale coordinates when passing Presto data to CTH (e.g. inches to centimeters), and
how to scale pressure when passing CTH data to Presto (e.g.dyne/cm2 to psi). The
<cth_input_file_name> is the name of a standard CTH input file that is passed to CTH
as if it had been placed on the command line of a standalone CTH execution.

1.2 Fortissimo contains CTH

The CTH code is fully contained within the Fortissimo executable. The coupled code
utilizes the immersedrigid material option within the DIATOM capability of CTH. It
is necessary to invoke the rigid model with arigid keyword in the CTHcontrol section.
The Presto mesh will have first-in priority in the CTH mesh as a rigid material. Other
traditional CTH materials will be inserted via DIATOM afterwards. The current version of
Fortissimo requires that all rigid materials inserted in this manner have at least three CTH
cells through their thickness in order to prevent bleed-through of CTH material from one
side of the Presto mesh to the other.

For testing purposes the CTH component can be run from within Fortissimo without
running Presto. This CTH-only execution mode is activated by providing Fortissimo with
the three line input file illustrated in Figure 2, where the<cth_input_file_name>denoted
in Figure 2 is the name of a standard CTH text input file.

begin sierra fortissimo

cth input = <cth_input_file_name> idrun = h

end

Figure 2. Fortissimo input file for CTH-only execution mode

1.3 CTH AMR Tracking of the Structure

CTH can be requested to adaptively refine its mesh in the vicinity of the Presto’s surface.
This capability is supported by Fortissimo passing a characteristic length for each surface
element from Presto to CTH. In CTH this is the database variable known as RGDL for
visualization and adaptive meshing purposes. The RGDL variable is used to control CTH
adaptive mesh refinement (AMR) as shown by example in Figure 3. This particular exam-
ple input will direct CTH mesh refinement to occur in the vicinity of Presto surface mesh
that has a characteristic element length less than 2 cm.

8

indicator

val RGDL

refbelow 2.0

endi

Figure 3. Example CTH input file (fragment) for CTH AMR in
the vicinity of a Presto surface

1.4 Decoupled “Leap Frog” Time Stepping

The time steps performed by Presto and CTH are decoupled such that no attempt is made
to align their respective simulation times. Thus each code is allowed to run at what it
determines to be its own optimal time step. While Presto’s and CTH’s time steps are
independent, Fortissimo manageswheneach code performs its time step. Presto and CTH
time step such that the code that is behind in simulation time executes until its simulation
time overtakes the other code’s simulation time. Thus the code that currently has a smaller
time step will usually perform several time steps (i.e. subcycle) until it catches up to the
code with the larger time step.

In this “leap frog” coupled time stepping algorithm the surface data exchanged between
the codes will not be aligned with respect to the codes’ simulation time. The Fortissimo
interface manages this time-misalignment by interpolating Presto’s moving surface mesh
to CTH’s time step and time-averaging CTH’s surface pressure load given to Presto. In
this algorithm the surface pressure load is time-lagged such that Presto is responding to
pressure loads generated with respect to the motion of the surface during Presto’s previous
time step. For the problems of interest and anticipated time step sizes we have assumed
that this loose coupling strategy of time-averaging and time-lagging of pressure loads will
not have a significant impact on the accuracy of the solution.

1.5 Coupled Parallel Execution

The exchange of surface data between Presto and CTH is complicated by Presto and CTH
having completely independent parallel domain decompositions. In a parallel execution of
Fortissimo it is highly unlikely that the surface data extracted from Presto on a given pro-
cessor will align with the surface data that CTH requires on that processor. This situation
is further complicated in that both Presto and CTH are capable of changing their domain
decomposition via dynamic load balancing.

This parallel execution complexity is currently addressed by simply replicating the en-
tire surface mesh from Presto on every processor before passing it to CTH. For the size of
the problems of interest the surface mesh data structure is assumed to be sufficiently small
so that it will not be a performance concern, both in the amount of memory consumed

9

and in the time required to process the surface. The initial scaling study of the coupled
code, presented in Section 3.1, indicates that this assumption will hold for the problems of
interest.

If replication of surface data becomes a performance concern then the Fortissimo inter-
face will have to be enhanced to query CTH’s domain decomposition and redistribute the
surface mesh extracted from Presto accordingly. Such an enhancement would significantly
increase the complexity of the interface and increase communication overhead to determine
the mapping between Presto’s and CTH’s domain decomposition. It was decided to not in-
troduce this complexity and communication overhead unless it is shown to be necessary
for scalability.

1.6 Coupled Restart

Coupled restart of Presto and CTH requires writing and reading of coordinated restart im-
ages to each code’s respective restart files. The writing of restart files is scheduled through
restart commands in Presto’s input file (i.e., Presto’s “begin restart” command block.
When Presto performs a time step in which a restart image is written the coupling code
instructs CTH to also write its own restart image. These two restart images are written into
standard Presto and CTH restart files, no additional restart data is needed for the coupling
code.

The Presto and CTH restart images will not have the same simulation time due to the
“leap frog” loose coupling algorithm. In order to properly restart the coupled code Presto
and CTH must each read restart images that were written as a pair. The simulation time-tags
of each written Presto and CTH restart images are noted in the Presto log file as fillows.

COUPLED Presto + CTH WRITING RESTART
Presto RESTART TIME TAG = <time for presto>
CTH RESTART TIME TAG = <time for cth>

In order to restart coupled code the respective read-restart commands must be en-
tered into the respective input files for the analysis. These restart commands must spec-
ify each code’s restart simulation times as noted in Presto’s log file. For Presto this is
“RESTART TIME = <time for presto>” and for CTH this is

restart
time = <time for cth>

endr

10

2 Loose Coupling Algorithm

Fortissimo loosely couples Presto and CTH through a “leap frog” algorithm where Presto
and CTH are allowed to take their own “best” time step, unconstrained by the other code’s
time step. Fortissimo matches the Presto-to-CTH mesh and CTH-to-Presto pressure data
exchanges by interpolating Presto mesh data to CTH’s time step and time-averaging CTH
pressure data to Presto’s time step.

2.1 Algorithm Steps

A simple illustration of this “leap frog” algorithm is given in Figure 4.

Figure 4. Fortissimo loose coupling “leap frog” time stepping

The sequencing steps of this algorithm are labeled with a number (1-8) and the first
letter of the code (Presto,Fortissimo,CTH) to indicate which code has control of that step.

1[P] Presto performs an explicit dynamics time stepTP:i → TP:i+1 and calls the Fortissimo
interface routine at the end of its time step.

2[F] Fortissimo queries the CTH status andplannedCTH time step,TC j → TC j+1. If the
CTH status is not terminating and the midpoint of the planned CTH time step occurs
before the end of the Presto time step then Fortissimo will call CTH. Otherwise
Fortissimo returns execution control to Presto to take another time step.

let TC: 1
2
= 1

2

(
TC: j +TC: j+1

)

if TC: 1
2
< TP:i+1 then go to3[F]

else go back to1[P]

11

3[F] Fortissimo extracts the current (TP:i+1) surface mesh from Presto’s solid structure(s)
and replicates it on all processors. This surface mesh consists of triangular facet
connectivity, vertex coordinatesX and average velocitȳV, and a characteristic length
of the element underlying each facet (to support CTH AMR if enabled).

4[F] Fortissimo interpolates the vertex coordinates to the current CTH half time step,TC: 1
2
.

X
(

TC: 1
2

)
= X(TP:i+1)−

(
TP:i+1−TC: 1

2

)
V̄

The surface facet normals are computed from these interpolated coordinates and ver-
tex normals are computed as the angle-weighted average of the attached facets’ nor-
mals. Fortissimo calls CTH to perform its time step with the updated surface data.

5[C] CTH accepts the triangular faceted surface data and inserts it into CTH’s data struc-
tures. CTH performs its planned time stepTC: j+n → TC: j+n+1, where if CTH is sub-
cycling thenn is the current subcycle counter. For this time step CTH defines a
boundary condition for the embedded surface such that reaction loads are computed
and accumulated on each facet. Each facet load consists of an load and weight con-
tribution

(
L f ,wf

)
accumulated for each CTH cell that intersects a facet on that pro-

cessor and during the time step. The mean CTH pressure loading for a facet is given
by Pf = L f/wf for all

(
L f ,wf

)
contributions to that facet.

6[F] Fortissimo checks the CTH return status and next planned CTH time step. If the CTH
return status is not terminating and the CTH half time step is still less than the end
of the Presto time step then Fortissimo loops back to step4[F] to subcycle CTH.
Otherwise CTH subcycling is complete and Fortissimo continues on to step7[F].

let TC: 1
2
= 1

2

(
TC: j+n +TC: j+n+1

)

if TC: 1
2
< TP:i+1 then go back to4[F]

7[F] Fortissimo sums the accumulated per-processor CTH facet loading contributions from
each processor onto the processors from which the facets originated. The mean pres-
sure loading for each facet,Pf = L f/wf , is then input to the Presto data structures.
Execution control is then returned to Presto (go to step1[P]) to perform its next time
step with the current CTH-determined surface loads.

2.2 Interface Mesh

The interface mesh between Fortissimo and CTH consists of a set of triangular facets with
normal vectors and element thicknesses. If the Presto mesh defines quadrilateral facets
then Fortissimo splits these facets along a diagonal into two triangles. A surface defined by
triangle facets is used for interface simplicity and processing efficiency within CTH. The
interface data structure is a single ’C’ language ’struct’ consisting of simple flat input arrays
for the triangle-to-vertex connectivity, vertex coordinates, facet normals, vertex normals,
and facet-element thickness; and output arrays for the accumulated loads and weights.

12

struct Triangle_Faceted_Surface {
unsigned num_dim ; /* 3D (someday could be 2D) */
unsigned num_loading ; /* Per-facet loading coefficients */
unsigned num_nodes ; /* Total number of nodes on this processor */
unsigned num_facets ; /* Total number of facets on this processor */
double * node_coord ; /* Node coordinates [num_nodes * num_dim] */
float * node_velocity; /* Node velocities [num_nodes * num_dim] */
float * node_normal ; /* Node unit normal [num_nodes * num_dim] */
float * facet_normal ; /* Facet unit normal [num_facets * num_dim] */
float * facet_length ; /* Facet characteristic length [num_facets] */

/* Node-connectivity of the triangular facets.
* The connectivity values are zero-based ordinals into the
* ’node_coord’, ’node_velocity’, and ’node_normal’ arrays.
*/

unsigned * facet_node_connectivity ; /* [num_facets * num_dim] */

/* The last coefficient is the accumulation weight. */
double * facet_loading ; /* [num_facets * num_loading] */

};

Figure 5. Simple ’C’ language interface for interface surface data

2.3 Parallel Gather / Reduce Scatter

Presto’s distributed surface is gathered to all processors into the data structure given in
Figure 5 which is identically duplicated on all processors. For this gathering operation
Fortissimo extracts Presto’s surface data that is available on each processor according to
Presto’s domain decomposition. This decomposed surface data is replicated on all proces-
sors using the Message Passing Interface (MPI) [4] functionMPI Allgatherv function.

CTH computes loads for facets which intersect cells in CTH’s domain decomposition.
If a given facet intersects CTH cells on two different processors then CTH will compute a
contribution for that facet, but only on the cell’s processor. These facet load contributions
(partial sums) must be summed among processors to determine the complete load on a
given facet. The facet arrays (Fig. 5) are partitioned such that each processor “owns” a
contiguous span of an array. This partitioning allows the final parallel assembly of the facet
load data to be performed with a single call to the MPI functionMPI Reduce scatter.

The parallel gather and reducescatter operations are implemented in the described
manner for simplicity and performance. It is simpler to utilize a single MPI collective com-
munication function that to orchestrate a set of point-to-point communications. It is also
our experience that a MPI collective function will be faster than an application-orchestrated
set of point-to-point communications that accomplish the same operation.

13

2.4 Quadrilateral Splitting

Quadrilateral surface facets extracted from Presto’s mesh are split along a diagonal into two
triangles when loaded into the interface data structure. The splitting diagonal is selected
such that the resulting two triangles’ normals are the least aligned. Given a quadrilateral
with vertex coordinates{X1,X2,X3,X4} the quadrilateral is split as follows.

n1 = (X2−X1)× (X4−X1) n2 = (X3−X2)× (X1−X2)
n3 = (X4−X3)× (X2−X3) n4 = (X1−X4)× (X3−X4)
d13 = (n1/‖n1‖)• (n3/‖n3‖) d24 = (n2/‖n2‖)• (n4/‖n4‖)

If d13 < d24 then the quadrilateral is split along the 2-4 diagonal to place vertices #1 and #3
in separate triangles, otherwise it is split along the 1-3 diagonal to place vertices #2 and #4
in separate triangles.

14

3 Initial Testing

3.1 Scaling Study

The runtime of Fortissimo is a sum of the Presto runtime, CTH runtime, and the transfer
time between the two codes orchestrated by Fortissimo. For most problems the Fortissimo
transfer time is expected to be a small percentage of the Presto and CTH runtime. Thus, the
total runtime should be approximately equal to Presto runtime plus the CTH runtime. For
problems dominated by CTH the cpu scaling rate of Fortissimo should be comparable to
the scaling rate of CTH. Likewise, for problems dominated by Presto the cpu scaling rate
of Fortissimo should be comparable to the scaling rate of Presto. Either extreme could be
realized by using a relatively fine mesh in either CTH or Presto, respectively.

For a first scaling study an example problem dominated by CTH was chosen. The
problem consists of an initially stress free elastic spherical shell containing an inert gas at
an initially uniform pressure of 100 atm. The inside radius of the sphere is 24 inches and the
thickness is 4 inches. Two unstructured finite-element meshes (m1 andm2) were generated
for this problem using the Cubit meshing tool, as shown in Figure 6. Both meshes have four
elements through the sphere thickness. However, the second mesh (m2) has approximately

Figure 6. Scaling study spherical shell meshesm1 andm2 with
removed octant

twice as many elements around the circumference of the sphere as the first mesh (m1).
These two baseline meshes are referred to as resolutionr0. For this scaling study each
mesh (m1-r0 andm2-r0) was refined by uniformly dividing each hexahedral element into
eight elements resulting in two meshes at resolutionr1 (m1-r1 and m2-r1). A further
refinement was performed to obtain two meshes at resolutionr2. A summary of number of
elements for each mesh and resolution is given in Table 1.

15

For the structured CTH mesh a uniform rectangular grid was used. The baseline CTH
grids (r0) were chosen such that were at least three CTH cells through the sphere thickness
to avoid bleed through of the internal gas to the exterior of the sphere. The two baseline
CTH grids were then refined by decreasing the cell size by factor of two for each refinement
level. The total number of CTH cells used for each finite-element mesh type and refinement
level is given in Table 1.

Table 1. Scaling Presto element and CTH cell counts

Meshm1 Meshm2
refinement Presto CTH Presto CTH

r0 10.7 K 216 K 20.5 K 422 K
r1 86 K 1.73 M 164 K 3.38 M
r2 688 K 13.8 M 1.13 M 27 M

The scaling study was performed on SNL’s Thunderbird platform with CTH perform-
ing 100 time steps and Presto performing 575 time steps. The simulation for the mesh-grid
combinationm1-r0 used four cpus, and the Fortissimo simulation for the mesh-grid com-
binationm2-r0 used eight cpus as list in Table 2. The next finer mesh resolution used a
factor of eight more processors. Thus, the number of elements and cells per processor was
kept constant for each of the six mesh-grid combinations. The resulting run times are given
in Table 2 and graphed in Figure 7. A linear regression of the runtime data, also shown
in Figure 7, has a slope of 0.26, or approximately 74% scaling efficiency for this problem.
This scaling result is comparable to that which would be expected from a similar, pure CTH
calculation, confirming that the runtime of this calculation is dominated by CTH.

Table 2. Scaling study results on SNL’s Thunderbird

mesh processor total interface
refinement count run time memory

(seconds)
m1-r0 4 1248 0.7 Mb
m2-r0 8 1017 1.4 Mb
m1-r1 32 1757 2.9 Mb
m2-r1 64 1660 5.6 Mb
m1-r2 256 2711 11.7 Mb
m2-r2 512 4276 22.3 Mb

The interface memory listed in Table 2 is the memory required by the interface mesh
data structure described in Section 2.2. Assuming that this scaling problem is representative
of the proportions of CTH cells, Presto elements, and interface facets that will be appear in
an actual coupled analysis, then the current strategy of replicating the interface mesh data
on all processors shouldnot impose a constraint on the scalability of the coupled code.

16

Figure 7. Scaling results for problem size scaled with processor
count

3.2 Hydrobulge Cylinder Experiment

A standard validation test for fluid-structure interaction codes as well as standalone CTH
is the Hydrobuldge Cylinder experiment [2]. A schematic of the test setup is shown in
Figure 8. In this test a small explosive charge is placed in the center of a water filled 5086
aluminum tube. In this test the explosive charge was 2.8g of PETN. The tube was 17.8
cm long with a 10.1 cm outer diameter and a 0.635cm wall thickness. The tube deforms
plastically but does not rupture. Measurements are made of the water-aluminum interface
pressure and the outside surface velocity of the aluminum tube, both at the midplane.

The finite element mesh of the aluminum tube used in the Presto portion of the simula-
tion is shown in Figure 9. The mesh consisted of 110K hexahedral elements with aspect ra-
tios of approximately one. Four elements through the thickness of the tube where adequate
to capture the deformation of the tube as further mush refinements showed no significant
change in results. The base CTH grid contained 11.7M cells with approximately eight cells
through the tube thickness. AMR was used only to resolve the explosive. No attempt was
made to model the plastic enclosures. The BCJ viscoplastic constitutive model [1] was
used in Presto to model the aluminum tube. The BCJ model is a rate dependent plasticity
model with the ability to model adiabatic heating and damage due to void growth. The
equivalent plastic strain field is shown in Figure 10. The maximum plastic strain is roughly
12%. Parameters studies of the DCJ material model showed that the simulation results
were insensitive to both adiabatic heating and damage effects. A comparison of the exper-
imental and simulation surface velocities (outer) at the midplane are shown in Figure 11.
The simulation captures the peak surface velocity but underpredicts the post peak response
Validation studies using CTH alone confirm that the matching of peak surface velocity is

17

Figure 8. Schematic of the Hydrobulge Cylinder Experiment

a critical test of the coupling algorithm. An almost identical post-peak underestimate oc-
curs in the CTH-only studies. The reason is probably due to incomplete understanding of
the material response under these conditions and not do to any deficiencies in the coupling
algorithm.

18

Figure 9. Presto Mesh for the hydrobulge cylinder experiment

Figure 10. Equivalent plastic strain in the aluminum tube

19

Figure 11. Comparison of experimental and simulatian surface
velocities

20

4 Plans

Two-way coupling strategies between CTH and Presto are still evolving and should be
considered experimental in the present version. Work is ongoing to implement coupling
between Presto shell elements with CTH. The promise of this capability is to remove the
three-CTH-cell-through-the-thickness requirement, producing a significant performance
improvement. We intend for the next Fortissimo release to provide an experimental shell
coupling capability. Other areas that we will improve as required include on-the-fly visu-
alization of interfacial quantities via Spymaster, improvements to restart functionality and
more scalable approaches to load balancing of the CTH/Presto interface across processors.

21

References

[1] D. Bammann. Modeling temperature and strain dependent large deformations in met-
als. Appl. Mech. Rev., 5:312–319, 1990.

[2] G. Chambers, H. Sandusky, F. Zerilli, K. Rye, and R. Tussing. Pressure mea-
surements on a deforming surface in response to an underwater explosion. In
Schmidt/Dandekar/Forbes, editor,Shock Compression of Condensed Matter, number
CP429. The American Institute of Physics, 1997.

[3] D. A. Crawford and et al.CTH User’s Manual and Input Instructions: Version 8.0.
Sandia National Laboratories, March 2007. CTH Development Project.

[4] Message Passing Interface Forum.MPI: A Message-Passing Interface Standard, March
1994.

[5] James Richard Koteras, Arne S. Gullerud, Nathan Carl Crane, and Jason Dean Hales.
Presto user’s guide version 2.6. Technical report SAND2006-6093, Sandia National
Laboratories, Albuquerque, New Mexico 87185, October 2006.

22

DISTRIBUTION:

1 MS 0382 Basil Hassan, 01541

1 MS 0380 Joe Jung, 01542

1 MS 0832 Gene S. Hertel, 01545

1 MS 0382 H. Carter Edwards, 01541

1 MS 0382 Greg D. Sjaardema, 01541

1 MS 0382 Michael W. Glass, 01541

1 MS 0380 Arne S. Gullerud, 01542

1 MS 0380 Martin W. Heinstein, 01542

1 MS 0380 Sam W. Key, 01542

1 MS 0372 Jeff D. Gruda, 01524

1 MS 0372 John Pott, 01524

1 MS 0836 David A. Crawford, 01516

1 MS 0825 Chris W. Bruner, 01515

1 MS 0346 Joe E. Bishop, 01525

1 MS 0847 Stephen W. Attaway, 01534

1 MS 0372 Jonathan S. Rath, 01524

1 MS 0899 Technical Library, 9536

23

24

v1.27

