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Abstract

Many advanced technical tools are available to prevent attacks on national infrastructure. Neverthe-
less, while traditional analyses of security problems have succeeded in producing good technical
solutions, they have often ignored the human factor integral to these problems. Human attack-
ers (who may be individuals or state-level attackers) expend substantial effort to breach security
because they have the incentive for doing so. People involved in implementing security follow
individual incentives, which need not align with global security concerns; consequently, desired
security solutions are often implemented poorly, or not at all. This complex interplay between in-
dividual incentives and global (organizational and/or national) goals can be modeled and analyzed
using game theoretic techniques. By analyzing not only what is possible, but also what is moti-
vated, a holistic approach to security problems can be developed, informing policy and providing
tools to policy makers.

We study game theoretic models that unify several current incentive-based approaches to se-
curity, and develop simulation-based and mathematical optimization methods for analyzing such
models that exploit the high-performance computing capabilities at Sandia. Our first model studies
security in interdependent settings, offering a scalable local search heuristic to approximate opti-
mal security decisions in general, and a linear programming approach, coupled with simulations
of consequences, to optimally compute security in an important special case. Our second class of
models addresses security patrolling problems when an adversary gets to observe the patrol loca-
tion. We present a general framework, based on stochastic games, for computing optimal security
policies in such settings, and present more scalable tools that apply in the important special cases.
Our third contribution is a model of security that involves many defenders, but only models non-
adaptive attackers (or natural disasters, inadvertent errors, etc). In this model, we demonstrate that
the security decisions of many players result in global security configuration that is not very far
from optimal, and is much more resilient to environment changes that an optimal solution. This
positive effect dissipates, however, when the number of decision makers becomes too large.
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Chapter 1

Introduction

Securing critical infrastructure has long been at the forefront of research at the National Security
Laboratories, including Sandia. More often than not, however, approaches to security fall into
two categories. The first class of approaches uses human intuition and expert opinion to iden-
tify possible vulnerabilities (e.g., through red teaming exercises) and patch them if feasible and
cost-effective. In its more formal incarnations, this approach introduces some structure to such a
decision process, involving, for example, the construction of attack graphs, as is done in the IDART
methodology. The second class of approaches appeals to statistics to estimate the likelihood of se-
curity breaches based on past data, or, as is done in intrusion and spam detection, may use machine
learning techniques to attempt to predict security threats. Neither of these approaches takes se-
riously the fundamental reality that security breaches due to deliberate attacks involve a decision
maker (the attacker) who will surely respond to mitigation strategies by consciously changing his
attack approach, often actively circumventing whatever security policies are in place. To a certain
extent, repeatedly red teaming a system as mitigations and patches are introduced to fix previously
discovered vulnerabilities does aim to do precisely this: the red team keeps attacking the system
and, ideally, looks to circumvent the applied fixes. However, repeated red teaming efforts are ex-
pensive, as they involve highly trained expertise and, moreover, take a considerable amount of time
to apply even once. Moreover, red teaming efforts hinge on the human factor: if the same people
are used through multiple of patch and red team phases, they may well have reached the limit of
their creativity for that specific system early in the process.

In this report, we advocate instead using the formal framework provided by game theory to rea-
son about and anticipate attacker’s response to mitigations, and to prescribe mitigation (defense)
policies that account for the adversary’s response. Specifically, we study game theoretic models
that unify several current incentive-based approaches to security, and develop simulation-based and
mathematical optimization methods for analyzing such models that exploit the high-performance
computing capabilities at Sandia. Our first model (Chapter 3) studies security in interdependent
settings, offering a scalable local search heuristic to approximate optimal security decisions in
general, and a linear programming approach, coupled with simulations of consequences, to op-
timally compute security in an important special case. Our second class of models (Chapter 4)
addresses security patrolling problems when an adversary gets to observe the patrol location. We
present a general framework, based on stochastic games, for computing optimal security policies
in such settings, and present more scalable tools that apply in the important special cases. Our
third contribution (Chapter 5) is a model of security that involves many defenders, but only models
non-adaptive attackers (or natural disasters, inadvertent errors, etc). In this model, we demonstrate
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that the security decisions of many players result in global security configuration that is not very
far from optimal, and is much more resilient to environment changes that an optimal solution. This
positive effect dissipates, however, when the number of decision makers becomes too large.

In the final chapter (Chapter 6) we step back to study the concepts of trust and risk from both
a decision theoretic and game theoretic perspectives. In this chapter, we draw analogies between
our framework for understanding risk and the typical heuristic methods used in much practice, and
elucidate the distinction between decision and game theoretic approaches.1

1The work described in chapters 3, 4, 5, and 6 was jointly supported by the Advanced Simulation and Computing
program.
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Chapter 2

Game Theory and Security

2.1 Game Theory, In General

Over the years, game theory has received much attention from experts and non-experts alike. A
typical layman, and media, perception of game theory is at least fifty years antiquated, for better
of for worse, and this is all the more true in the context of security. Among experts, opinions
vary depending on the field of expertise. For economists, who are generally fond of constructing
models of the world based on the “rational man” (or homoeconomicus) hypothesis, game theory is
a natural fit, as its mathematical foundations are firmly embedded in optimization. For many other
social scientists, in contrast, game theory has been a common target of scorn, as its mathematical
assumptions are demonstrably at odds with data about actual human behavior. In this author’s
view, many attacks on game theory are founded in poor or antiquated understanding of the field
and its goals. My aim in this section, therefore, is both to provide formal definitions of the specific
game theoretic concepts that will be used later on, and a discussion about their limitations, real and
mythical.

2.1.1 Games

Game theory is, first and foremost, a formal mathematical model of strategic interactions. Specif-
ically, it is a way for us to description in a stylized way (that is, leaving only details that are most
salient to the goals at hand) who the players (interested and empowered parties) are, what they can
do (i.e., player actions or strategies), and what they care about (i.e., payoff or utility functions).
We say that there is a set I of players, and each player is then denoted by i ∈ I; throughout, we
will assume that there are finitely many players, and let n = |I| be the number of players. (Indeed,
in most cases, there will only be 2 players.) To player i be assign a set of choices Ai. There is
varying terminology used for the set of player choices in the game theory literature. Sometimes
it is called “actions”; other times “strategies”. There is also the possibility, at the core of crucial
mathematical concepts within game theory, that players randomize their decisions, meaning that
they non-deterministically decide which of their choices to follow; each probability distribution
over choices is then itself considered a strategy (since this is something that a player may do).
Much confusion may result from these various terms, even while conceptually distinctions may
often be entirely unimportant. We will use the following terminology. When we say “actions”, we
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intend to mean the most basic choices available to the player in a particular definition of the game.
Commonly, these are called pure strategies. When we say “strategies”, we mean any set of choices,
deterministic or randomized, available to players in the game; these could, for example, include
probability distributions over actions, in which case they are often called mixed strategies. The set
of strategies of a player i will be denoted by Si. The crucial distinction between game theory and
optimization is that when there are at least 2 players, decisions by all players may matter for each
of them. Let A = A1×·· ·×An be the set of joint player actions (frequently called action profiles)
and, similarly, let S = A1× ·· ·× Sn be the set of joint player strategies (strategy profiles). Then,
we will use a ∈ A to refer to a particular vector of actions, one for each player, and s ∈ S will be a
vector of player strategies. An extremely confusing piece of notation that has become universal in
game theory is to allow a−i (resp. s−i) refer to the vector of actions (resp. strategies) of all players
not including player i; thus, for example, a = (ai,a−i), that is, a vector of all players’ actions is
just a combination of i’s action, and actions by everyone other than i.

Finally, preferences of players are typically expressed with respect to joint actions a, or strate-
gies, s. Each player is endowed with a utility function, ui(a) in the former case, and ui(s) in the
latter. Indeed, in most cases the utility function is actually defined only with respect to player ac-
tions, and subsequently extended to randomized strategies by taking expected utility with respect
to the joint probability distribution which mixed strategies come to represent; that is:

ui(s) = ∑
a∈A

s(a)ui(a),

where s(a) = ∏i si(ai), with si(ai) representing the probability that action ai is played by player
i under mixed strategy si (thus, we literally equate a player’s mixed strategy with a probability
measure). This completes the formalism of games in so-called normal form.

A few comments are in order at this point. It is easy to miss how general the above construction
(i.e., the normal form) is. For example, in taking the sum when we define ui(s) we imply that A
is finite. This is done to avoid unnecessary complexity at this point, but let us assure the reader
that ui(s) can similarly be extended where a are finite-dimensional vectors. Moreover, ignoring
the technical distinctions between actions and strategies, we can define games as above where
player strategies are functions. Thus, for example, a player may condition his decision on time
and all past observations that are relevant to his decision. The point is that the above formalism
is in no way fundamentally static. Furthermore, if there is uncertainty about outcomes for any
particular choice of player actions a, we can fold that into the definition of the corresponding
utility functions; hence, the above construction also allows us to model situations where there is
uncertainty. Because of its generality, therefore, the formalization of games we presented thus far
allows considerable leverage. Nevertheless, we shall see below that there are other, more detailed,
formulations which allow us to explicitly represent salient aspects of strategic scenarios (games)
in order to better focus our analysis.

There is a special class of games, referred to variously as zero-sum, constant-sum, and strictly
competitive. These games have only 2 players, with interests that are completely opposed; thus,
when one of these gains, the other necessarily loses. Formally, a zero-sum game is defined exactly
as above, with the added caveat that u1(a)+u2(a) = c for all a∈ A, where c is an arbitrary constant
(for example, 0, hence the term zero- or constant-sum; the value of the constant is mathematically
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irrelevant, although it may well be relevant from the perspective of framing and loss aversion in
practice).

2.1.2 Equilibria

Upon being handed a game model, we must still determine what to do with it. In optimization
and decision theory, it is relatively straightforward: you have an objective function, perhaps some
constraints, and you wish to make the best decision. In game theory, the notion of a best (or
optimal) decision for a player is ill-defined, since it depends on what others do. This fundamental
indeterminacy is, indeed, what makes game theory in general very difficult to apply in practice,
even if one believes its assumptions of perfect rationality. This indeterminacy, however, does not
emerge in zero-sum games: these “work” very much like optimization problems. In a formal sense,
if the action sets are finite and we consider mixed strategies, each player should unambiguously
choose a strategy which minimizes the other’s maximum utility (i.e., a minimax strategy). In a
landmark result, von Neumann [108] proved the following theorem:

Theorem 2.1.1. For every zero-sum finite game, mins2 maxs1 u1(s1,s2) = maxs1 mins2 u1(s1,s2).

Let us call any pair of player strategies in a zero-sum game, (s1,s2), a solution if, jointly, they
satisfy the condition in Theorem 2.1.1; equivalently, we will also call it an equilibrium. Zero-sum
games are, thus, supremely elegant: the order of moves makes no difference (as long as players
cannot observe actual realizations of each other’s actions, but only the mixed strategies), and even
if there are many alternative solutions, they are “interchangeable”, that is, taking the strategy of
one player from one solution and plugging in a strategy of the other player from a different solution
together still makes a pair of strategies which satisfy the equality in Theorem 2.1.1. We shall make
use of some of these properties later on.

Elegant or not, zero-sum games are patently unrealistic in most interesting settings (save, per-
haps, two-player boardgames like chess). As Shelling [100] argued, even conflicts are rarely purely
competitive: there may well be outcomes that are best, or worst, for both parties; so, for example,
both the USA and the USSR had an incentive to cooperate, even if tacitly, to avoid nuclear war.
The natural question, then, is: what is a “natural” solution for games which are not strictly com-
petitive? This question was answered by John Nash, who first defined what came to be called a
Nash equilibrium as follows:

Definition 2.1.1. A strategy profile s is a Nash equilibrium if

ui(si,s−i) = max
s′i∈Si

ui(s′i,s−i) ∀i ∈ I.

In words, a Nash equilibrium profile is composed of strategies which are mutual best responses
(put differently, each player is doing the best he can given that others stay put). Nash then articu-
lated the following groundbreaking result:

Theorem 2.1.2. Every finite game has at least one Nash equilibrium in mixed strategies.
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We mentioned earlier that the normal form representation of games is, in a sense, very gen-
eral. It pays, however, to extend this representation in a number of cases to allow us to analyze
games possessing specific properties. One such property of enormous importance is uncertainty;
we mean, in particular, uncertainty that players have regarding each other’s utility function. To for-
mally define a game that captures this property we make use of a notion of a player’s type, which
is just a mathematical construct allowing us to conveniently index a player’s utility function. Let’s
take an arbitrary player i and suppose that i has a type θi ∈ Θi (where Θi is the set of all possible
types of i). Then his utility function is ui(a,θi) where a ∈ A is the joint set of player actions, as
before. We may now suppose that each player knows that if i has type θi, his utility function is
ui(a,θi); the caveat is, players are uncertain about i’s type, aside from i, of course, who certainly
knows his own type. Next, we introduce a probability distribution Fi(θi) over i’s types, which we
also posit is common knowledge. For simplicity, assume that each player’s type is drawn inde-
pendently, although we make this assumption only to simplify exposition a bit and it is natural to
generalize it.

An important thing to note at this point is that since players other than i do not know i’s type,
they must reason about his strategy as if i could have any possible type; that is, i’s strategy is, for
their purposes, a function ai(θi) of i’s type (i’s mixed strategy is a probability measure over such
functions, but let’s not worry about that for the moment). The following then, is an extension of
the Nash equilibrium solution concept which explicitly accounts for all the constructs in what is
called either a Bayesian game, or a game of incomplete information.

Definition 2.1.2. A strategy profile (a1(θ1), . . . ,an(θn)) is a Bayes-Nash equilibrium if

Eθ−i∼F−i[ui(ai(θi),a−i(θ−i),θi)] = max
a′i∈Ai

Eθ−i∼F−i[ui(a′i,a−i(θ−i),θi)] ∀i ∈ I,θi ∈Θi(a.s.).

(The a.s. designation means that we only care about a subset of types here which occurs with
probability one, and the condition may not hold for a subset that occurs on a probability zero subset
of types).

Now we turn our attention to the final significant game theoretic construct that will serve our
purposes later on: Stackelberg games. At the moment, the game definitions involved no dynamics
whatsoever. Stackelberg games incorporate dynamics of the minimal sort: they involve two play-
ers, one moving after the other. The significance of sequencing moves is that the follower (i.e., the
chap, or lady, that moves second) observes the decision by the leader (i.e., the fellow that gets to
move first). Here it is paramount to explicate precisely what it is that the follower observes. There
are, indeed, two options: first, the follower may observe that actual action the leader takes, even
if the leader may deliberately attempt to randomly select an action; second, the follower may ob-
serve the leader’s strategy, but if the leader randomizes, the follower only knows the corresponding
probabilities, but does not observe actual realizations. The latter possibility is, in fact, distinctly
powerful: the leader in a game possessing such a quality can do no worse than in any Nash equi-
librium of a game in which both players move simultaneously! On the other hand, if the follower
observes actual realizations of the leader’s actions, it is he that may have an advantage. In most of
our work below we, in fact, assume that the follower can only react to the leader’s strategy, but not
directly to actual realizations, should the leader randomize. For the purposes of analyzing Stack-
elberg (and, later, security) games, we introduce now the appropriate solution concept for such
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settings, called a Stackelberg equilibrium. First, it is convenient to define a set of best responses
for the follower.

Definition 2.1.3. We say that s f is a best response to sl if

u f (sl,s f ) = max
s′f∈S f

u f (sl,s′f ).

Let BR(sl) be the set of all best responses to sl . Let BRL(sl) be the set of all leader-optimal best
responses, that is, s f ∈ BRL(sl) if s f ∈ BR(sl) and

ul(sl,s f ) = max
s′f∈BR(sl)

ul(sl,s′f ).

Let BRP(sl) be the set of all leader-pessimal best responses, that is, s f ∈ BRL(sl) if s f ∈ BR(sl)
and

ul(sl,s f ) = min
s′f∈BR(sl)

ul(sl,s′f ).

Definition 2.1.4. The profile of leader-follower strategies (sl,s f ) constitutes a Stackelberg equilib-
rium if s f is a best response to sl , or, formally,

s f ∈ BR(sl),

and sl is the optimal strategy for the leader, that is

sl = max
s′l∈Sl

ul(sl, f (sl)),

where f (sl) ∈ BR(sl) for all sl . It is a Strong Stackelberg equilibrium or SSE if f (sl) ∈ BRL(sl)
above, and a Weak Stackelberg equilibrium or WSE if f (sl) ∈ BRP(sl) above.

A SSE in the definition above means, in essence, that the follower breaks ties in leader’s favor,
whereas a WSE involves a follower who breaks ties to maximally hurt the leader. Surprisingly
enough, it is SSE that is usually used in the literature on security games. There are two reasons.
The first is that SSE is guaranteed to exist, while a WSE is not. The second is that if the follower
only observed a mixed strategy of the leader, the leader can make a tiny change to his SSE strategy,
with negligible effect on his own payoff, but ensuring that the follower now strictly prefers his
corresponding SSE response s f to any other. As these nuances are, more often than not, relatively
insignificant in practice, we will not concern ourselves with them very much here.

At this point, we have built up the necessary foundations to transition to the problem of formally
modeling security using game theory.

2.2 Security Games

Security is a kind of catch-all term, often with a wide variety of meanings depending on context.
It is, thus, something of a challenge to create a general framework of any kind to model security.
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We will attempt to do so anyway. To us, security will mean an encounter among defenders, or
parties that wish to prevent negative effects on assets that they possess, and threats, or sources of
negative outcomes. This language is quite generic: a threat can be a lightning strike, a hurricane,
or a malicious hacker, and a defender can be an individual with a computer, a firm, or a nation.
Often, the language of security implies specifically malicious threats, or attackers, and this is the
perspective that will permeate much of what is to follow. Formally and semantically, we shall
distinguish two kinds of threats: a malicious threat, or an attacker, who aims to actively do damage
to the defenders, and nature, which is meant to model a non-malicious threat, for example human
error or natural disasters. Nature and attackers are different quite fundamentally, as the former can
be modeled as a probability distribution which does not actively respond to mitigations, whereas
the attacker does, in fact, take into account mitigation (defense) strategies in forming its attack
vectors.

Through much of our work below, we will make a strong simplification, though one which
is rather common, that there is a single defender and a single attacker (or nature). However, this
is not necessarily as dramatic as it may seem at first. For example, there may be many different
attackers, but only a single attacker would actually deploy an attack at any given point in time; in
this case, it suffices to posit a single attacker agent with many different types, and use the formalism
of Bayesian games to study such settings.

2.3 Stackelberg Security Games

Much of the material that follows in the upcoming chapters fundamentally builds on the now
well established line of research on Stackelberg models of security. The Stackelberg models of
security are many and varied, but it will suffice for our purposes to describe one model in particular
which possesses considerable structure and allows highly scalable SSE computation. This model
is referred to simply as Stackelberg security game [66].

A Stackelberg security game consists of two players, the leader (defender) and the follower
(attacker), and a set of possible targets. The leader can decide upon a randomized policy of de-
fending the targets, possibly with limited (but costless) defense resources. The follower (attacker)
is assumed to observe the randomized policy of the leader, but not the realized defense actions.
Upon observing the leader’s strategy, the follower chooses a target so as to maximize its expected
utility.

Formally, the set of (possible) targets (of attack) is denoted by T , with |T | = n. The defender
has K homogeneous resources, that is, any defense resource can be used to defend any of the
targets. If a target t ∈ T is covered (defended), and then attacked, the utility to the defender is Uc

t ,
while the attacker’s utility is V c

t . On the other hand, an uncovered (undefended) target is valued at
Uu

t by the defender and V u
t by the attacker if this target is attacked. This notation implies that the

utility functions of the defender and attacker only depend on which target is attacked and whether
or not it is defended. We say that in this case the targets are independent. Crucially, observe that
the game between the attacker and defender here is not zero-sum, since relative utilities may well
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differ for different targets. Let qt denote the probability that a target t is defended (covered); these
will be the decision variables for the defender. Since the attacker faces a decision problem given a
fixed qt , it suffices to consider only deterministic strategies for him.

Kiekintveld et al. [66] offer a mixed-integer programming formulation (MILP), as well as faster
alternatives, to compute SSE in this setting. We leverage the fact that while this setting is not zero-
sum, it is so strategically as long as there are no ties among player utilities above, and the defender
prefers that a target is covered, while the attacker prefers it to be uncovered. Consequently, the
SSE can be computed by solving the following LP:

min
q

v (2.3.1a)

s.t.
∀t v≥ qtV c

t +(1−qt)V u
t (2.3.1b)

∀t ∑
t

qt = 1 (2.3.1c)

∀t qt ≥ 0. (2.3.1d)

Characteristic to most SSE computation approaches using mathematical programming is that we
compute the attacker’s best response, and corresponding utility, using a set of constraints. Here,
it is done using Constraints 2.3.1b. In the program above, the defender than simply minimizes
the attacker’s maximum utility; that is, he is computing a minimax strategy, which, it turns out, is
equivalent to SSE in this highly restricted setting [66, 70].

The model above makes one particularly troublesome assumption: that we (the defender) know
exactly what the attacker’s preferences are. Typically, of course, we do not. The way to generalize
this setting to allow uncertainty about attacker preferences is via Bayesian Stackelberg games,
which are analogues to Bayesian games we discussed above. Specifically, suppose that there is
a finite set of attacker types Θ, and let pθ denote the probability that the attacker’s type is θ .
Let V u

t (θ) and V c
t (θ) denote the attacker’s utilities when his type is θ ∈ Θ. Keeping a zero-

sum framework for simplicity, we can rewrite the above LP as follows to compute a Bayesian
Stackelberg equilibrium:

min
q ∑

θ

pθ vθ (2.3.2a)

s.t.
∀t,θ vθ ≥ qtV c

t (θ)+(1−qt)V u
t (θ) (2.3.2b)

∀t ∑
t

qt = 1 (2.3.2c)

∀t qt ≥ 0. (2.3.2d)
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Chapter 3

Security for Interdependent Assets

3.1 Introduction

The revolution in communication and computing technologies has spurred unprecedented growth
in connectivity, be it technical, economic, or social. Everyone benefits from an increasingly con-
nected world: we can collect more information and make better decisions about the electric power
grid by communicating with an increasingly complex network of sensors and smart devices, can
lead a large-scale project with globally dispersed participants from the comfort of an office, and
maintain active membership in a community, real or virtual, despite being geographically removed
from its epicenter. The benefits are so patent, indeed, that associated risks are often easy to over-
look. The risk of connectivity is that local failures can have global consequences. This is now
well recognized in cybersecurity, as viruses propagate from system to connected system, often
affecting a large fraction of businesses. Melissa virus, for example, affected more than 300 orga-
nizations, causing over $80 million in damage [34, 98]. As another example, the electric power
grid, which is already a complex networks of generators, electric lines, along with businesses and
households, is becoming much more so with the increasingly sophisticated sensors and “smart”
meters, and with increasing complexity of the grid, security failures can have increasingly severe
consequences [103, 96].

Despite the importance of accounting for interdependent risks in security decisions, there are
few systematic approaches for empowering a decision maker to do so. The majority of the ap-
proaches to guide security investment decisions aspire to do so without explicitly accounting for
interdependencies. For example, the standard approach to security risk management in the indus-
try is to consider consequences in terms of asset value, consequence of a threat on that value, and
frequency of threat, but either treats assets as independent, or abstracts away the complex interde-
pendencies in a single cost/value measure [72]. Research in IT security management has largely
been in line with this framework [113, 107, 32, 29, 43, 31, 88, 30, 33, 15]. The strands that ex-
plicitly model interdependent risk focus on spillover effects among many organizations or entities,
rather than policy to secure interdependent assets [73, 89].

Our point of departure is a class of optimization-based game theoretic approaches in security
settings referred to as Stackelberg security games [91]. These are two-player games in which a
defender aims to protect a set of targets using a fixed set of limited defense resources, while an
attacker aims to assail a target that maximizes his expected utility. A central assumption in the
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literature on Stackelberg security games is that the defender can commit to a probabilistic defense
(equivalently, the attacker observes the probabilities with which each target is covered by the de-
fender, but not the actual defense realization). Much of the work on Stackelberg security games
focuses on building fast, scalable algorithms, often in restricted settings [66, 61, 101]. One impor-
tant such restriction is to assume that targets exhibit independence: that is, the defender’s utility
only depends on which target is attacked and the security configuration at that target. Short of that
restriction, one must, in principle, consider all possible combinations of security decisions jointly
for all targets, making scalable computation elusive. Many important settings, however, exhibit
interdependencies among potential targets of attack. These may be explicit, as in IT and supply
chain network security, or implicit, as in defending critical infrastructure (where, for example, suc-
cessful delivery of transportation services depends on a highly functional energy sector, and vice
versa), or in securing complex software systems (with failures at some modules having potential
to adversely affect other modules). While in such settings the assumption of independence seems
superficially violated, we demonstrate below that under realistic assumptions about the nature of
interdependencies, we can nevertheless leverage the highly scalable optimization techniques which
assume independence.

In all, we offer the following contributions. First, we introduce a general framework to mod-
eling security decisions for interdependent assets in the presence of both adversarial and non-
adversarial threats. Second, we instantiate our general model of interdependencies using a graph
in combination with an independent failure cascade model. Third, we present a general heuris-
tic algorithm for computing approximately optimal security policies on networks that leverages
submodularity of the attacker’s problem in combination with a simple, yet highly effective, local
search heuristic. Fourth, we present an important special case of our model which admits a highly
scalable algorithm for computing optimal security policies exactly. Fifth, we apply our frame-
work to study several applications of interdependent security, using both real networks, as well as
stochastic generative network models. One of our most significant experimental contributions is
an extensive study of comparative network resilience. This is a field which has had considerable
significance in the broad network science literature and, indeed, is at the focus of two disparate
strands of literature: the first comparing susceptibility of networks to attacks or random failures
when no defense is present, and second, studying inoculation strategies on networks to protect from
infectious disease spread, allowing for no targeted attacks. Our framework is the first that allows
us to capture both endogenous defense measures and targeted attacks on networks, allowing us
to unify these two strands of research. Our results, thus, provide much insight into both of these
areas, offering additional nuance and, at times, contradicting the commonly held intuitions.

3.1.1 Literature Review

Our work is situated within the rapidly expanding body of literature on security investment and
policy. Topically, this literature can be grouped into several streams. The first studies security poli-
cies from the perspective of liability considerations [30, 15], considering, for example, alternative
ways to allocate burden or damage of security decisions (such as liability for zero-day exploits).
The second is focused on the technical capabilities side, aiming to develop better intrusion de-
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tection systems (IDS), or IDS that are especially attuned to costs of decisions about classifying
threats [95, 45, 74, 13]. The third stream, which is most closely connected to our aims, involves
approaches to improve security investment decision support. Within this stream there are three
general approaches: risk-based, decision theoretic, and game theoretic.

The risk-based approach is perhaps the oldest and seems still to be the principal approach in
practice. At the crux of this approach is evaluation of specific security risks facing an organization,
perhaps through an associated assessment of vulnerabilities, threats, and consequences [72, 42, 46,
81]. While much attention is paid in this literature on risk assessment and understanding threats
(e.g., attackers), it offers relatively little quantitative guidance about mitigation, aside from the most
basic cost-benefit comparison between deploying a particular security measure, and the expected
risks and consequences it is meant to ameliorate.

The academic research community, in contrast, has aimed to shift focus on providing specific
guidance about security investments, though in many cases this guidance is in very specific se-
curity contexts, such as whether or not to deploy a firewall or an IDS, and how to configure it if
deployed [113, 107, 32, 29, 31, 33]. The corresponding approaches are either decision theoretic,
modeling threats as unaffected by mitigation policies [113, 107, 32], or game theoretic, accounting
for the impact of security policies on attackers’ incentives [32, 29, 31, 33].

Game theoretic treatment of security is intimately connected to two simple classical models:
inspection games [16] and colonel Blotto games [97]. The most basic variant of an inspection
game involves an inspectee (e.g., a tax evader) who can choose to perform an illegal or a legal
action, and an inspector, who receives a noisy signal upon which he can inspect (at some cost),
or not. One qualitative difference between this generic inspector game and some of the models
we described above, as well as our own approach, is that in our case the defender (inspector)
acts first, and the attacker (inspectee) acts after observing the defender’s decision (which may be
randomized, in which case the attacker observes the probability distribution). Moreover, here,
as in the above references, the defender’s and attacker’s action spaces are quite simple, and no
interdependencies are relevant. Colonel Blotto game, too, is a simultaneous move game, but here
two commanders are endowed with armies, and get to place a fraction of their force on each of n
battlefields. Whichever side has the most forces on a battlefield wins that battle, and the winner of
the game is the commander with the most battle victories. In this game, the decision space of each
player is actually rather complex, though complex in a different way from our setting. However,
the game is zero-sum (ours is not), and here again no interdependencies are typically modeled.

Insofar as interdependencies in security decisions have been modeled in related literature, this
has been done in the context of interdependencies among multiple entities aiming to jointly defend
their systems, with the focus on outcomes of strategic interactions, rather than offering a security
policy for the entire interdependent system [73, 43, 89, 57]. For example, [73] study the problem of
interdependencies among players, each deciding whether or not to invest in better security. There
is no attacker in their model, so in that sense its scope is quite different from ours. Moreover, an
individual player’s decision is binary. What they aim to model are spillovers due to a decision
not to secure one’s own assets onto others, and they demonstrate that in many cases equilibrium
exhibits insufficient security overall.
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While most of the work described above considers either exogenously specified risks (e.g.,
natural disasters or human error), or deliberate attacks that adopt to the security policy, [115]
were the first to consider both in a single comprehensive model as we do, albeit without explicitly
modeling interdependent risks.

All the work described so far on game theoretic and decision theoretic approaches to security
attempts to characterize decisions by the defender, attacker, or both using closed-form mathemati-
cal expressions. In parallel, there has been considerable literature that aspires to compute security
decisions. One such stream involves numerous variants of network interdiction problems. At the
high level, all such approaches start with a network flow or shortest path problem, with the goal of
choosing an action (such as blocking a subset of nodes or arcs on the network) that most effectively
reduces the flow or increases shortest paths [111, 41, 112, 24, 25, 82]. Like ours, these efforts all
use mathematical programming formulations to compute an optimal interdiction strategy. Unlike
our work, however, these efforts are fundamentally restricted to zero-sum games, account for in-
terdependencies using models based on network flow, and in most cases do not include defense
against interdiction, which is our focus here. [24] do present a tri-level formulation that attempts
to allow one to take countermeasures against being interdicted by an attacker, but this model is
extremely difficult to scale, making its practical utility quite limited.

Our point of departure is a class of optimization approaches for security decisions referred to
commonly as Stackelberg security games. The paper that provided the computational foundations
for what has become an active subfield of computational game theory was the work by Conitzer and
Sandholm on computing optimal Stackelberg commitment strategies in general finite games [39].
In this paper, Conitzer and Sandholm presented the first algorithm for computing optimal random-
ized commitment strategies in Stackelberg games. [91] presented the first mixed-integer linear pro-
gramming formulation for computing a Stackelberg equilibrium in Bayesian Stackelberg games.
[66] introduce an important restricted class of Stackelberg games specifically targeted at security
settings; they refer to these as Stackelberg security games, and demonstrate that extremely scal-
able algorithms can be devised for this class of games. Since then, a number of follow-up papers
have emerged, studying, for the most part, computational aspects of the problem and aiming to
scale the algorithms to larger and larger instances [75, 106, 109, 61, 69, 62, 38, 105], as well as
illustrating their actual deployment in the field, such as the LAX airport [94], Federal Air Marshall
Service [63], and the US Coast Guard [101]. Of these approaches, [105] presents the most similar
model to ours. The principal difference is in the game structure and motivation: Tsai et al. model
both the defender and attacker as agents who aim to influence contagion of ideas in a simultaneous
move game; thus, the two players actually have symmetric roles. In our model, the attacker’s goal
is to start a failure cascade, but the defender aims to minimize damages from cascading failures,
not start a cascade of his own.

3.2 Stackelberg Security Games

At the core of our model lies a Stackelberg security game, which consists of two players, the
leader (defender) and the follower (attacker), and a set of possible targets. The leader can decide
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upon a randomized policy of defending the targets, possibly with limited defense resources. The
follower (attacker) is assumed to observe the randomized policy of the leader, but not the realized
defense actions. Upon observing the leader’s strategy, the follower chooses a subset of targets to
attack so as to maximize its expected utility. The typical solution concept for these games is a
Strong Stackelberg Equilibrium (SSE), in which the leader plays an optimal policy that accounts
for an follower’s optimal response to it and, moreover, presumes that the follower breaks ties in
the leader’s favor.1

In past work, Stackelberg security game formulations focused on defense policies that were
costless, but resource bounded, and security decisions amounted to covering (defending) a set of
targets, or not. In numerous settings such models are quite limiting. For example, in cybersecu-
rity, protecting computing nodes could involve configuring anti-virus and/or firewall settings, with
stronger settings carrying a benefit of better protection, but at a cost of added inconvenience, lost
productivity, as well as possible licensing costs. Indeed, costs on resources may usefully replace
resource constraints, since such constraints are often not hard, but rather channel an implicit cost
of adding further resources. Thus, our model allows the defender to choose among many secu-
rity configurations for each valued asset, and, additionally, security resources are only available at
some cost. Furthermore, while security games as described above naturally entail an attacker, in
practice most failures are not at all a deliberate act of sabotage, but are due entirely to inadvertent
errors. Thus, we also depart from previous literature on Stackelberg security games by explicitly
modeling both attacks and random failures.

To formalize, suppose that the defender can choose from a finite set O of security configurations
for each target t ∈ T , with |T | = n. A configuration o ∈ O for target t ∈ T incurs a cost co,t
to the defender. Let s = {o1, . . . ,on} be the (pure strategy) security configuration vector, with
ot ∈ O denoting the security configuration chosen for target t; we refer to s as the defense policy.
We denote by qs the probability that the defender chooses a security configuration vector s. The
attacker observes the randomized defense policy vector q, and chooses a subset of at most L targets
to attack; let us denote this subset by A = {t1, ..., tL}. We denote the defender’s utility function by
U(s,A) and the attacker’s by V (s,A) where s is the defense policy and A the attacker’s response.
To capture the distinction between active attacks and “nature”, let r be the prior probability of the
defender that a failure will happen due to a deliberate attack. If no attack is involved, any target
can fail; the defender’s belief that a set of targets B randomly fails (conditional on the event that
no attack is involved) is gB, with ∑B gB = 1.

1The idea that the follower breaks ties in the leader’s favor may seem strange in the context of security games.
However, note that the leader can make the follower strictly prefer the corresponding action by a slight change in his
randomized policy.
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3.3 Modeling Asset Interdependencies

3.3.1 A General Model

In this section we offer a general model of interdependencies among assets. We then present
an important special case that admits a far more scalable approach for computing optimal security
policies. Throughout this section we focus on the defender’s utilities; attacker is treated identically.

Let wt be an intrinsic worth of a target to the defender, that is, how much loss the defender
would suffer if this target were to be compromised with no other target affected (i.e., not accounting
for indirect effects). In doing so, we assume that these worths are independent for different targets.
Moreover, suppose that when a target t is damaged or compromised (due to a successful attack
either on t directly, or on another target which indirectly impacts t), only a fraction αt of its worth
remains. We allow αt to be a random variable if the impact of an attack is non-deterministic. Let
z(A,sA) be the probability that a subset A of targets fails (or are compromised) when these (and
possibly other targets) are attacked and the defense configuration for nodes in A is sA (that is, sA is
the portion of the defense vector s restricted to nodes in A). For example, if a failure of every node
t due to an attack is independent of security configuration of other nodes, z(A,sA) = ∏t∈A z(o, t),
where z(o, t) is the probability that node t fails if attacked when its security configuration is o. The
defender utility when security configuration is s and the attacker attacks a subset A of targets is

U(s,A) = ∑
Ã⊆A

z(Ã,sÃ)E

[
∑
t ′

αt ′wt ′| s, Ã

]
= ∑

Ã⊆A

z(Ã,sÃ)∑
t ′

wt ′E
[
αt ′| s, Ã

]
. (3.3.1)

We can think of the term E
[
αt ′| s, Ã

]
as the expected damage to target t ′ when the subset of targets

Ã is successfully compromised by the attacker and the security configuration vector is s.

3.3.2 Cascading Failures Model

In general, one may use an arbitrary model to compute or estimate the consequences of node
failures due to interdependence, E [αt ′| s,A]. Here, we offer a specific model of interdependence
between targets that is simple, natural, and applies across a wide variety of settings.

Let us fix the security policy vector s and the set A of targets that are initially compromised.
Suppose that dependencies between targets are represented by a graph (T,E), with T the set of
targets (nodes) as above, and E the set of edges (t, t ′), where an edge from t to t ′ (or an undirected
edge between them) means that target t ′ depends on target t and, thus, a successful attack on t
may have an impact on t ′. Each target has associated with it a worth, wt , as above, although in the
current context this worth is incurred only if t is affected (e.g., compromised, broken). We model
the interdependencies between the nodes as independent cascade contagion, which has previously
been used primarily to model diffusion of product adoption and infectious diseases [65, 44]. The
contagion proceeds starting at the attacked nodes t ∈ A, affecting each of their network neighbors t ′

with probability pt,t ′(s), then spreads from each affected t ′, and so on, recursively. Contagion can
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only spread once along any network edge, and if a node is affected, it remains affected through the
diffusion process (note also that in this model, the node is either affected, or not; we let αt = 0 when
a node is affected by an attack and αt = 1 when it is not2). An equivalent way to model this process
is to start with the network (T,E) and remove each edge (t, t ′) with probability (1− pt,t ′(s)).
The entire connected component of each attacked node is then deemed affected. As an important
special case, we can use pt,t ′(ot ′) to model the impact of inoculation on the probability of becoming
infected, for example, setting it to 0 if ot ′ is the decision to administer inoculation on node t ′ and
to 1 if ot ′ is the decision not to inoculate t ′.

3.3.3 Computing Expected Utilities

In principle, our setup allows us to fully decouple computing or estimating expected utilities
U(s,A) and V (s,A) of the defender and the attacker respectively, and subsequently computing
an optimal defense policy. In general, we can estimate player utilities by simulating cascades start-
ing at every subset of nodes Ã of size at most L and for every (deterministic) security configuration
vector s, with expected utility of defender/attacker estimated as a sample average over K simulated
cascades to obtain estimates of E

[
αt ′| s, Ã

]
, and applying Equation 3.3.1. Clearly, however, even

estimating expected utilities for the entire game is an entirely intractable process in our general
setup. Consequently, in the fully general case, we would wish to compute or approximate a Stack-
elberg equilibrium without having to know the full payoff functions of both players. Below, we
demonstrate how this can be done using a combination of heuristic and submodular optimization
methods. For the moment, however, we introduce a special case which allows us to compute an
optimal security policy exactly and efficiently.

3.3.4 Special Case: Single-Node Attacks and Security-Independent Cascades

The most basic problem with the general setup that we described above is that in order to estimate
the defender and attacker utility functions, and ultimately compute optimal security strategies,
one needs to perform a set of simulations for each defense policy vector s and attack strategy A.
Clearly, this becomes intractable even for a modest number of targets. In this section, we introduce
several restrictions on the general model that allow both a much more compact representation of
the players’ payoff functions, and, ultimately, offers an opportunity for highly scalable Stackelberg
equilibrium computation.

The first restriction is that the attacker can only attack a single target. Note that under this
restriction, Equation 3.3.1 simplifies to

U(s, t) = z(o, t)∑
t ′

wt ′E [αt ′| s, t] . (3.3.2)

Indeed, this restriction has been operational in most related work on computing strong Stackel-
berg equilibria in the context of security [66, 61, 101]. The second restriction is captured by the

2Note that it is direct to replace these choices by arbitrary different constants
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following condition on the impact of interdependencies:

Condition 3.3.1. For all t and t ′, E [αt ′| s, t] = E [αt ′| ot , t] .

In words, the probability that a target t ′ is affected when an initially attacked target t fails only
depends on the security configuration at the attacked target t. Below, we use o instead of ot where
t is clear from context.

There are several natural ways to think about Condition 3.3.1. The simplest is consider the
consequences of attacks as affecting network flows. In this case, removing a node t and its incident
edges from a network means that any flow between a pair of other nodes s,r must take a different
route and, indeed, it may even be that s and r are now disconnected. Significantly, the utility
lost in this case only depends on the security configuration at t. An alternative way to interpret
Condition 3.3.1 is that security against external threats is not very efficacious once an attacker
has found a way into the system. For example, in cybersecurity defense is often focused on
external threats, with little attention paid to threats coming from computers internal to the network.
Thus, once a computer on a network is compromised, the attacker may find it much easier to
compromise others on the same network. This second interpretation gives rise to a very natural
restriction on the cascading failure model that satisfies Condition 3.3.1: pt,t ′ do not depend on
security configurations at nodes. This restriction is very common, as argued above. There is,
however, an important setting in which it is clearly unrealistic: bioterrorism, where inoculation
decisions reduce the likelihood of an individual being infected either by the attacker, or by another
infected individual.

Under Condition 3.3.1, the defender’s utility when t is attacked under security configuration o
becomes:

U(o, t) = z(o, t)wtE[αt |ot , t]+ ∑
t ′ 6=t

wt ′E[αt ′|ot , t].

Thus, in this special case, we can represent the game much more compactly, using U(o, t) and
V (o, t) to denote the defender’s and attacker’s utility, respectively, when target t is attacked and
the security configuration at that target is o. In a slight abuse of notation, we denote by qo,t the
probability that the defender chooses o at target t. Note that given qs, we can compute qo,t as
qo,t = ∑s qs1(st = o), where 1(·) is an indicator function which is 1 when its argument is true
and 0 otherwise. Capturing the natural disasters in this special setting requires us (for algorithmic
reasons) to restrict nature to affect a single target at a time. Thus, we will abuse notation again,
denoting by gt the probability that target t randomly fails (conditional on the event that no attack
is involved), with ∑t gt = 1.

Observe that even when Condition 3.3.1 is operational, if we use the independent cascades
model for failures above, we still need to estimate the consequence of cascades starting from each
node t (i.e., from each target of possible attack). In several special cases, however, we can either
compute player expected utilities from cascading failures exactly and efficiently, or substantially
speed up utility estimation. We now address these special cases.
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Cascades on Trees

It is intuitive that when the dependency graph is a tree, expected utilities can be computed effi-
ciently. A naive algorithm can do it in linear time for each target t, yielding quadratic time in total
(since we must repeat the process for all targets). In fact, we can do it in linear time for all targets,
as the following theorem asserts.

Theorem 3.3.1. Suppose the attacker can only attack a single target and condition 3.3.1 holds. If
(T,E) is an undirected tree we can compute expected utilities for at targets in O(|T |) time.

Proof. Let us define the neighbors of a target t as Nt . By definition, the expected utility of a
given node t (U(o, t)) is the direct utility at that node (z(o, t)wt) plus the expected utility due to the
cascading failure. The expected utility due to cascading failure is

z(o, t) ∑
t ′ 6=t

wt ′ p( f ailure(t ′)|t)

where p( f ailure(t ′)|t) is the probability a node t ′ fails if node t fails. Since this is a tree, there
is only one path between any pair of nodes, which means we can express p( f ailure(t ′)|t) as the
product of probabilities of the edges on the path between t and t ′.

Next, let us consider the set of paths generated by each pair of nodes in the tree. If we organize
these paths by the edges they contain (and use linearity of expectation), we can express the expected
utility of the contagion spreading across an edge (t, t ′), E[U(t,t ′)], as:

E[U(t,t ′)] = pt,t ′

(
wt ′+ ∑

t ′′∈Nt′ ,t ′′ 6=t
E[U(t ′,t ′′)]

)
. (3.3.3)

Thus, we can reason that for each node t:

U(o, t) = z(o, t)Ut ,

where
Ut = wt + ∑

t ′∈Nt

E[U(t,t ′)] (3.3.4)

Now let us describe a two-pass algorithm for calculating Ut for all t. First, choose an arbitrary
node to be the root of the tree. In the first pass, we calculate the expected loss due to each edge from
parent to child (E[U(P,C)]) from the bottom of the tree upward. In the second pass, we calculate the
expected loss on each edge from child to parent (E[U(C,P)]) from the top of the tree downward. We
can model this as a message passing algorithm, where calculating E[U(t,t ′)] is done by passing a
message from t ′ to t. We can see by Equation 3.3.3 that the necessary inputs to calculate E[U(t,t ′)]
are the messages from Nt ′ \ t to t ′. We will now show that at the time that each of these messages
is generated, all of the necessary inputs will be available.
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Consider the edges between a given node t and its neighbors. Unless t is the root, one of these
edges will be between t and its parent Pt , and the rest (possibly 0 in the case where t is a leaf
node) will be between t and its children. Since in the first pass we are passing messages from child
to parent and a node has only one parent, we will have received messages from Nt \Pt when we
generate the message from t to Pt .

For the second pass, when we pass information to a child of t, Ct , we will have received
messages from Nt , thus we again have the necessary information to generate the message from t to
Ct .

Finally, once a node has received messages from all of its neighbors we can easily calculate the
expected loss at each node by Equation 3.3.4. However, to achieve a runtime of O(n), we need to
be slightly more clever in how we store these values. By combining Equations 3.3.3 and 3.3.4 we
can reason that E[U(t,t ′)] = pt,t ′(Ut ′−E[U(t ′,t)]). This allows us to give an equivalent definition of
Ut :

Ut = wt + ∑
t ′∈Nt

pt,t ′(Ut ′−E[U(t ′,t)]). (3.3.5)

Now, consider the same two-pass algorithm as before, but rather than storing the expected loss
for every edge, we merely store a running total of the expected loss at each node. We argue that by
the same reasoning as before that the necessary calculations will have been performed before we
need them as inputs. However, we still need to show that we can recover the correct value out of the
values stored at the two nodes. When we calculate E[U(P,C)] in the first pass, the value stored at C
will be (UC−E[U(C,P)]), since we have not yet updated C with E[U(C,P)]. However, when we reach
this edge on the downward pass to to calculate E[U(C,P)], P will have UP stored. Since the value
stored at C is still (UC−E[U(C,P)]), we can easily calculate E[U(C,P)] = pC,P(UP−E[U(P,C)]) =
pC,P(UP− pP,C(UC−E[U(C,P)])) and update C.

Since we visit each edge twice, and perform a constant amount of work each time, we can
bound the runtime by O(|E|). Since in a tree |T | − 1 = |E|, we can also bound the runtime by
O(|T |).

Cascades on Undirected Graphs

In general undirected graphs, we can apply a very simple optimization in the way we sample
cascades to obtain substantial speedups when the graph is dense. First, observe that rather than
determining live edges as the cascade unfolds, we can instead flip the biased coin for each edge
to determine whether it is live or not during a particular cascade prior to propagating the failure.
The resulting graph contains a subset of edges from the original graph. At this point, observe
that each potential target in a given connected component will result in the same defender/attacker
utility. We therefore only need to compute the expected loss once for each connected component.
When the size of the largest connected component is O(|T |), a likely scenario in dense graphs, this
optimization results in an O(|T |) speedup.
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3.3.5 The Significance of Capturing Interdependence

An obvious question that may arise upon pondering the complexities of our framework is whether
they are worthwhile: it may well be that previous approaches which assume target independence
offer satisfactory approximation. We now show theoretically, and later experimentally, that our
approach improves dramatically as compared to one which assumes independence.

Proposition 3.3.2. There exists a family of problem instances for which the independence assump-
tion yields a solution that is a factor of O(n) worse than optimal.

Proof. Consider a star with edges all directed towards the spokes and cascade probabilities of 1.
All nodes have worth wt = 1 for both defender and attacker. Now, suppose that cost of defending
a target is c = 2. If targets are independent, it is clearly not worth defending any of them. But
since they are, in fact, dependent, and the attacker will attack the hub, the utility of the defender
is −1∗n =−n. If the defender recognizes the dependencies, he will protect the hub, and the total
loss will be −3.

Additionally, we now show that allowing for interdependence, but assuming that cascades are
independent of security decisions, also comes at a substantial loss.

Proposition 3.3.3. There exists a family of problem instances for which assuming that cascades
are independent of security decisions yields a solution that is a factor of O(n) worse than optimal.

Proof. Consider again a star, now undirected, and cascade probabilities still 1. Suppose that the
hub has worth wt = n and the rest of the nodes have no worth, and the cost of defense is c = 1. If
we assume that defending the hub will still leave it susceptible, the defender must defend all nodes,
or none at all. Defense in this case will cost n+1, and since the benefit is only n, the defender will
not protect anything, yielding a utility of −n. However, since in actuality it suffices only to protect
the hub, the utility of an optimal defense is −1.

3.3.6 Incorporating Uncertainty about the Network

Applying our framework in real-world networked security settings requires an accurate understand-
ing of the interdependencies. Thus far, we assumed that the actual network over which cascading
failures would spread is perfectly known. A natural question is: what if our network model is
inaccurate?

Formally, we model the uncertainty about the network as a parameter ε which represents the
probability of incorrectly estimating the relationship between a pair of targets. Thus, if there is an
edge between t and t ′, we now let this edge be present with probability 1− ε . On the other hand,
if t and t ′ are not connected in the graph given to us, we propose that they are, in fact, connected
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with probability ε . Thus, when the graph is large, even a small amount noise will cause us to err
about a substantial number of edges.3

Note that there is a natural way to incorporate this model of uncertainty into our framework.
Let us interpret pt,t ′(ot ,ot ′) as the probability of a cascade from t to t ′ conditional on an edge
from t to t ′. Then, if t and t ′ are connected, we modify cascade probabilities to be p̂t,t ′(ot ,ot ′) =
pt,t ′(ot ,ot ′)(1− ε), whereas if they are not connected, the cascade probability is p̂t,t ′(ot ,ot ′) =
pt,t ′(ot ,ot ′)ε .

3.4 Computing Optimal Randomized Security Configurations

3.4.1 The General Case: Exact Solution

Previous formulations of Stackelberg games for security involved a fixed collection of defender re-
sources, and in most cases a binary decision to be made for each target: to cover it, or not. To adapt
these to our domains of interest, we first modify the well-known multiple linear program (hence-
forth, multiple-LP) formulation to incorporate an arbitrary set of security configurations, together
with their corresponding costs of deployment. In the multiple-LP formulation, each linear program
solves for an optimal randomized defense strategy given that the attacker attacks a fixed subset of
targets Â, with the constraint that Â is an optimal choice for the attacker. The defender then chooses
the best solution from all feasible LPs as his optimal randomized defense configuration. The LP
formulation for a representative subset of targets Â is shown in Equations 3.4.1a-3.4.1d.

max r
(

∑
s

U(s, Â)qÂ
s

)
+(1− r)

(
∑
B,s

gBU(s,B)qÂ
s

)
−∑

t
∑
o

co,tqÂ
o,t . (3.4.1a)

s.t.

∀s qÂ
s ∈ [0,1] (3.4.1b)

∑
s

qÂ
s = 1 (3.4.1c)

∀A ∑
s

V (s,A)qÂ
s ≤∑

s
V (s, Â)qÂ

s (3.4.1d)

The intuition behind the multiple-LP formulation is that in an optimal defense configuration, the
attacker must (weakly) prefer to attack some subset of targets, and, consequently, one of these LPs
must correspond to an optimal defense policy.

3We assume here that both the defender and attacker share the same uncertainty about the network. An alternative
model could consider an attacker that has more (or exact) information about the network. The resulting defender
problem would become a Bayesian Stackelberg game.
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3.4.2 Approximating Security Policy in the General Case

There are two significant problems with the LP formulation for computing optimal defender poli-
cies we described above. First, the LP itself becomes intractably large when we have a sufficient
number of network nodes and defense configuration options. Perhaps a far more significant prob-
lem, however, is that the LP requires us to first compute or estimate the expected utilities for each
joint strategy of the defender and attacker based on our model of interdependencies. It is this
bottleneck, as much as any other, that renders the exact approach intractable in practice.

In this section, we offer an alternative that takes advantage of the special structure in the in-
dependent failure cascades model. This alternative approach allows us to avoid estimating the
entire payoff matrix, interleaving optimization and estimation steps instead in a manner analogous
to simulation-based game theoretic analysis [110]. To simplify the problem, we restrict attention
here to deterministic defense policies; generalization is immediate if we discretize randomized
policies.

We begin by focusing on the attacker’s best response problem, an algorithmic challenge in
its own right, and subsequently proceed to propose a local search heuristic to obtain a defender’s
policy in which the attacker’s optimization problem is a subroutine. We assume henceforth that
the interdependencies among the targets are modeled using the dependency graph and independent
failure cascades.

Approximating an Optimal Attack

The attacker’s problem is to choose a subset of L targets to attack so as to maximize his expected
utility V (s,A). This problem is a generalization of the well-known problem of influence maxi-
mization [65], in which a decision maker aims to maximize the expected number of individuals
(rather than utility) affected by a cascade started from the chosen nodes. Kempe et al. showed that
the problem of choosing an optimal subset of L nodes to seed when subsequent influence spreads
according to an independent cascades model is NP-Hard. In our setting, the attacker’s problem
is a slight generalization of this model, and NP-Hardness of the attacker’s problem is therefore
immediate (setting wt = 1 for all nodes recovers the original influence maximization problem).

Theorem 3.4.1. Computing an optimal attack strategy is NP-Hard.

An important algorithmic insight by Kempe et al. is that while solving the influence maxi-
mization problem optimally is hard, the objective function is submodular. Consequently, a simple
greedy heuristic yields a constant factor approximation and, in practice, gives nearly optimal solu-
tions. While our setting is slightly more general, we can readily extend this submodularity result.

Theorem 3.4.2. The attacker’s objective function is submodular.

Proof. Note that the cascade process can be equivalently formulated by first flipping the biased
coins for each edge, keeping the edge between t and t ′ with probability pt,t ′(ot ,ot ′) and deleting it
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otherwise. The total utility to the attacker given such a realization is the sum of the worths of all
targets affected by the attacker’s decision A. Let Tt be the set of targets with a finite path from a
particular target t, and let TR = ∪r∈RTr be the set of targets reachable from any target in a set R.
Finally, for any set of targets R⊆ T , define U(R) = ∑r∈R wr, that is, the total worth of all targets in
R.

Suppose R ⊆ S ⊆ T be targets of initial attack and consider attacking an additional target t ′.
The attacker’s utility when the set R of targets is attacked is U(TR), while the utility from attacking
targets in R∪ t ′ is U(TR∪t ′). Then,

U(TR∪t ′)−U(TR) = ∑
r∈TR∪t′

wr− ∑
r∈TR

wr = ∑
r∈TR∪t′−TR

wr.

Now, observe that if R⊆ S, TS∪t ′−TS ⊆ TR∪t ′−TR, which implies that

∑
r∈TR∪t′−TR

wr ≥ ∑
r∈TS∪t′−TS

wr =U(TS∪t ′)−U(TS),

which in turn implies that for every realization of the random cascade graph, the attacker utility is
submodular. Since submodularity is preserved under linear transformations, the attacker expected
utility is also submodular.

The implication is that for a fixed defense policy s we can approximate the optimal attack to
a factor of 1− 1/e with an iterative greedy algorithm which chooses, in each iteration, the target
to attack that attains the highest increase in expected utility with respect to previously chosen
targets [83].

Computing a Defense Policy

Thus far we have shown that we can compute a near-optimal strategy for the attacker reasonably
fast. We now come to the main problem: computing a defense policy. First, we observe that while
the attacker’s problem is submodular, this is not the case for the defender: defense decisions have
complementarities. These arise because targets are interdependent and, therefore, defending one
target may have little effect until other targets connected to it are also defended. The presence
of such complementarities would in principle make the combinatorial optimization problem faced
by the defender extremely difficult. However, we offer a simple local search heuristic and show
empirically that it is highly effective, particularly when combined with random restarts.

To begin, let us make several basic structural observations. First, if a particular security config-
uration o is less effective than another, o′, and is at the same time more expensive than o′, we can
prune it from consideration, since it is dominated by o′, a notion which we now formally define.

Definition 3.4.1. A security configuration o′ is stronger than o if z(o, t) ≥ z(o′, t) for all t ∈ T ,
pt,t ′(o′,o′)≥ pt,t ′(o′,o), pt,t ′(o′,o′)≥ pt,t ′(o,o′), and pt,t ′(o′,o′)≥ pt,t ′(o,o) for all t, t ′ ∈ T .

Definition 3.4.2. A security configuration o is dominated if ∃o′ ∈O with co′,t ≤ co,t ∀ t ∈ T that is
stronger than o (i.e., o′ is both stronger and cheaper).
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Second, suppose that cascade probabilities do not depend on security configurations (a special
case of our model). In this case, increasing the amount of defense (formally, choosing a stronger
security configuration that is more expensive) at a particular target has no value to the defender un-
less either this target is attacked, or the defender simultaneously increases defense at another target
that is. The reason is that since the attacker’s decision is not affected, the only consequence is the
increased cost to the defender. While this observation is no longer true when cascade probabilities
depend on defense, we nevertheless base our local search on it, and view it as a heuristic in the
general case.

We propose a simple local search algorithm (Algorithm 1) that iteratively chooses a single
target at a time, distinguishing between those that are currently attacked and those that are not
based on the second observation above, and chooses a locally optimal security configuration for
that target.

Data: Starting defense policy s0, number of iterations I
Result: Final defense policy s
s← s0;
prune all dominated o ∈ O;
for i = 1 to I do

A← computeAttack(s) // targets attacked under s for t ∈ A do
// fix all other decisions
// compute the local optimum at target t
ot ← computeBest(t);
s←{s1, . . . ,ot , . . . ,sn};

end
for t /∈ A do

// compute local optimum, considering only decreasing security
ot ← computeBestDecrease(t);
s←{s1, . . . ,ot , . . . ,sn};

end
end

Algorithm 1: Local search for a defense policy.

Algorithm 1 requires as input an initial defense policy from which to start local search. Two
natural candidates are the weakest and strongest policies, i.e., a policy in which every target is
using a weakest (resp. strongest) security configuration, if these exist. As an example, one usually
has an option of “no security”, which is the weakest option, and “high security”, which would be
the strongest. A third natural candidate is a well-known heuristic, choosing individuals to defend
in decreasing order of degree; this is commonly referred to as targeted vaccination [93]; since
this heuristic plays an important role in the literature on vaccination on networks, below we show
experimentally that in isolation it is significantly worse than our local search method. Finally,
we can start from a random defense policy. Ultimately, since this is only a local search, and our
problem exhibits complementarities, we would not expect it to yield optimal solutions in general.
Therefore, our full approach runs the local search from the weakest and strongest defense policy,
if these exist, then from a configuration based on targeted vaccination, and finally runs it from

39



P random starting policies. Below, we show empirically that the local search often yields nearly
optimal solutions even without random restarts.

Note that local search implicitly invokes a subroutine for computing an optimal attacker strat-
egy; this is actually explicit in the computeAttack(s) function call and implicit in both functions
computing locally best security configuration at a given target. If we could compute this strat-
egy optimally, we could guarantee that our overall approach converges to an optimal defense with
probability 1 if we let the number of random restarts grow without bound. While this is easy
to guarantee when the attacker can only attack a single target, it is no longer reasonable when
the attacks can happen on multiple targets simultaneously. Nevertheless, if the game is nearly
constant-sum (in the sense we formalize presently), computing an approximately optimal attacker
strategy suffices to guarantee convergence to an approximately optimal defense. For convenience,
suppose that both the attacker and defender always obtain non-negative payoffs.

Definition 3.4.3. A security game is ε-constant-sum if there exists c≥ 0 such that c− ε ≤Us,a +
Vs,a ≤ c+ ε for all s,a.

Theorem 3.4.3. Suppose that the game is ε-constant-sum. Additionally, suppose that Â(s) is an
α-approximation of an optimal attacker strategy A∗(s) for a given defense policy s. Let ŝ be an
optimal defender policy if the attacker response is measured according to Â, and let s∗ be the true
optimal policy. Then U(ŝ,A∗(ŝ))≥U(s∗,A∗(ŝ))− (α−1)V (s∗,A∗(ŝ))−2ε(α +1).

Proof. Choose an arbitrary defence policy s. Since Â(s) is an α-approximation (for α ≥ 1),

αV (s, Â(s))≥V (s,A∗(s)).

Using c− ε ≤U(s,A)+V (s,A)≤ c+ ε for all s,A, this implies that

α(c−U(s, Â(s))+ ε)≥ c−U(s,A∗(s))− ε,

or, equivalently,
U(s,A∗(s))≥ αU(s, Â(s))− c(α−1)− ε(α +1).

Since this is true for every s,

U(ŝ,A∗(ŝ))≥ αU(ŝ, Â(ŝ))− c(α−1)− ε(α +1) (3.4.2)

≥ αU(s∗, Â(s∗))− c(α−1)− ε(α +1) (3.4.3)
≥ αU(s∗,A∗(s∗))− c(α−1)− ε(α +1)−2ε (3.4.4)
= αU(s∗,A∗(s∗))− c(α−1)− ε(α +3), (3.4.5)

where inequality 3.4.3 follows because of optimality of ŝ for the defender under â and inequal-
ity 3.4.4 is due to the fact that â is suboptimal for the attacker. Rearranging and letting c ≤
U(s∗,A∗(s∗))+V (s∗,A∗(s∗))+ ε we get the desired result.

If V (s∗,A∗(s∗)) is relatively small (e.g., attacker gains are a relatively small fraction of available
value) and α−1≈ 0.6 (as is the case when we use the greedy algorithm to approximate attacker’s
policy), we can be sure to be relatively close to optimal defender utility with sufficiently many
random restarts and sampled cascades.
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3.4.3 Special Case: Single-Node Attacks and Security-Independent Cascades

The multiple-LP formulation 3.4.1 for the general case requires us to have a variable for each
possible security configuration vector and requires us to solve an LP for each subset of L targets.
Since the number of possible configurations, as well as the number of possible subsets of targets, is
exponential in the number of targets, exact security policy computation cannot scale beyond very
small instances. However, if we assume that the attacker can attack at most a single target, restrict
random failures to a single target at a time, and assume that the defender’s utility only depends
on the target being attacked or failing (Condition 3.3.1), we can obtain a far more compact and
scalable formulation. Under these assumptions, we can treat the defense configuration for each
target qo,t in isolation, as we no longer need to randomize over joint defense schedules. Moreover,
we need only solve n LPs, one for each target t̂ of possible attack. The LP formulation for a
representative target t̂ is shown in Equations 3.4.6a-3.4.6d.

max r
(

∑
o

U(o, t̂)qt̂
o,t̂

)
+(1− r)

(
∑
t,o

gtU(o, t)qt̂
o,t

)
−∑

t
∑
o

co,tqt̂
o,t . (3.4.6a)

s.t.

∀o,t qt̂
o,t ∈ [0,1] (3.4.6b)

∀t ∑
o

qt̂
o,t = 1 (3.4.6c)

∀t ∑
o

V (o, t)qt̂
o,t ≤∑

o
V (o, t̂)qt̂

o,t̂ (3.4.6d)

Notice that we can easily incorporate additional linear constraints. For example, it is often
useful to add a budget constraint of the form:

∀t̂,t ∑
o

co,tqt̂
o,t ≤C.

The Impact of Sampling Noise

While we can compute the expected utilities exactly in certain important special cases (see [78]),
in general we must sample cascades to estimate expected utilities of players, and solve the opti-
mization problem (3.4.6a-3.4.6d) using estimated utilities. This raises a natural question: does this
approach yield a solution close to optimal if we take sufficient samples of cascades, and thereby
obtain an arbitrarily good estimate of utilities for all outcomes? The answer, it turns out, is non-
trivial, because sampling noise does not merely affect the objective functions of the LPs we solve,
but also the constraints.

To appreciate what can go wrong, consider an example with two targets, 1 and 2, and suppose
that there are only two security configurations: a target can either be covered or not. Let Uu

t and Uc
t

be the defender’s actual utilities if target t is uncovered and covered, respectively, and, similarly,
let V u

t and V c
t be the corresponding utilities for the attacker, and let r = 1. Moreover, suppose
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that V u
1 =V c

1 =V u
2 =V c

2 = 1, that is, the attacker is completely indifferent between the targets and
defender strategy choices. Assume that Uu

1 = −K, and Uc
1 = Uu

2 = Uc
2 = 0. That is, the defender

prefers that the attacker attacks target 2. Finally, let the cost of leaving a target uncovered be 0,
and coverage costs be c1 = c2 = K/2. Clearly, the optimal defender strategy is to cover nothing,
because the attacker’s indifference will result in him attacking target 2 in a strong Stackelberg
equilibrium.

Now, suppose that we add some mean-zero random noise to the attacker’s payoffs. With prob-
ability 1/24, the attacker’s payoffs will be perceived to be ordered as follows: V̂ c

2 < V̂ u
2 < V̂ c

1 < V̂ u
1 .

This ordering implies that the attacker will prefer to attack target 1 no matter what the defender’s
strategy is. Thus, the LP for target 2 will be infeasible, and the LP for target 1 is always feasible.
The objective value of the LP for target 1 can be written as

max
q1,q2

K
2

q1−
K
2

q2,

where q1 and q2 are the probabilities of covering targets 1 and 2 respectively. Clearly, the optimal
solution is to have q1 = 1 and q2 = 0, yielding an actual loss to the defender of K/2 (due to
unnecessary security expenditures), compared to 0 in an optimal solution.

We now show that if we restrict the game to be strictly competitive, we do indeed obtain con-
vergence to an optimal solution if we increase the number of samples. Let O∗ be the true optimal
utility of the defender (when the utilities are computed exactly), define q̂ as an optimal solution
when the player utilities are computed from samples, and let O(q̂) denote the actual defender utility
when the security policy is q̂. Let Û(o, t) denote the estimate of the defender’s utility function.

Theorem 3.4.4. Suppose that the game is strictly competitive and suppose that |Û(o, t)−U(o, t)| ≤
ε for all o, t. Then O(q̂)≥ O∗−2ε.

Proof. When the game is zero-sum, an optimal solution can be computed using the following
simpler, single-LP formulation:

max r
(

min
t ∑

o
U(o, t)qo,t

)
+(1− r)

(
∑
t,o

gtU(o, t)qo,t

)
−∑

t
∑
o

co,tqo,t (3.4.7a)

s.t.
∀o,t qo,t ∈ [0,1] (3.4.7b)

∀t ∑
o

qo,t = 1. (3.4.7c)

First, note that the solution q̂ obtained when utilities are estimated is feasible for program 3.4.7
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where actual utilities are used. Thus, we can focus just on the objective value. Then,

O(q̂) = r
(

min
t ∑

o
U(o, t)q̂o,t

)
+(1− r)

(
∑
t,o

gtU(o, t)q̂o,t

)
−∑

t
∑
o

co,t q̂o,t

≥ r
(

min
t ∑

o
Û(o, t)q̂o,t

)
+(1− r)

(
∑
t,o

gtÛ(o, t)q̂o,t

)
−∑

t
∑
o

co,t q̂o,t− ε

≥ r
(

min
t ∑

o
Û(o, t)q∗o,t

)
+(1− r)

(
∑
t,o

gtÛ(o, t)q∗o,t

)
−∑

t
∑
o

co,tq∗o,t− ε

≥ r
(

min
t ∑

o
U(o, t)q∗o,t

)
+(1− r)

(
∑
t,o

gtU(o, t)q∗o,t

)
−∑

t
∑
o

co,tq∗o,t−2ε

= O∗−2ε.

Since the number of security configurations o and targets t is finite, we can obtain the uniform
bound required by Theorem 3.4.4 directly from the law of large numbers. Thus, the theorem
implies that as we take more samples, the resulting solutions converge to optimal in terms of the
defender’s utility.

3.5 Illustrations

In this section we illustrate our framework on two simple examples. The first is an artificial supply
chain example that we constructed. The second uses a graph of interdependencies among critical
infrastructure and key resource sectors obtained from the DHS and FEMA websites. For both
these examples, we use the exact approach in the restricted setting with an attacker only attacking
a single node and cascades that do not depend on security decisions.

3.5.1 A Simple Supply Chain

Consider a seven-node supply chain (directed acyclic graph) shown in Figure 3.1. We suppose
that the entire supply chain (or at least the relevant security decisions) is controlled by a single
firm which is primarily concerned with manufacturing two types of cars, one more profitable than
the other. The actual components that ultimately comprise the cars are not intrinsically valuable
to the manufacturer (or are valued so low relative to the final product as to make them effectively
unimportant in this decision). All parts of the supply chain may be inspected at some cost c, or not
(in which case no cost is incurred).

The first step in our framework is to compute (or estimate) the expected utility for each node
in the supply chain. To do this, we first specify the probability that an attacked node is affected (in
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Figure 3.1. A simple supply chain example. Left: supply chain
and defender worths for targets (darker means higher values).
Right: solutions for the zero-sum (top) and general-sum (bottom)
variants.

this case, becomes faulty), z(o, t). We let z(o, t) = 1 when node t is not inspected and z(o, t) = 0
when it is. Next, we must specify the contagion probabilities for each edge. We use pt,t ′ = 0.5 for
all edges here, and assume that they are independent of security decisions Moreover, we assume
that the attacker only attacks a single target.

The results are color coded in Figure 3.1: the darker colors correspond to more valuable nodes.
Note that while intrinsic worth is only ascribed to the final products, all components carry some
value, due to their indirect impact on the final product (for example, a faulty part will, with some
probability, make the component which uses it faulty as well). First, suppose that the game is
zero-sum. We show the results for two different inspection costs, chigh = 0.14 and clow = 0.02
in Figure 3.1 (right, top). The higher cost setting (Figure 3.1, right, top, middle solution) yields
a security configuration in which five of the seven nodes incur some probability of inspection,
with the heavier colors corresponding to a higher inspection probability. The low-cost setting
(Figure 3.1, right, top, solution on the right) yields a solution in which every node is defended with
probability 1. Next, consider a non-zero-sum variant in which the defender’s utility is as before,
while the attacker has uniform valuations (worths) over targets. The solution for this case with
cost 0.14 is shown in Figure 3.1, right, bottom (the figure also shows the attacker’s worths, as well
as expected utilities derived from the dependency graph). This solution would at first sight seem
quite unintuitive: the defender defends only the two targets at the top, which have the least value
to him! The reason is that these targets happen to have the highest expected utility for the attacker,
since they result in the greatest utility from cascades, because the attacker’s worths are identical
for all targets. The defender will partially defend these targets, and given the defender’s strategy,
the attacker will still prefer to attack one of these, but will now be caught with positive probability.
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Figure 3.2. Defending critical infrastructure and key resources.
Top: baseline, with node worths based on rough economic impact.
Bottom: an anomalous valuation function where only monuments
and icons sector has positive worth.

3.5.2 Defending Critical Infrastructure: The Lobby Effect

Our second illustration of the framework developed above is on a graph representing dependencies
between the critical infrastructure and key resource sectors listed on the DHS and FEMA websites.
We used these websites to also infer the dependencies between the sectors, as well as the relative
strengths of these dependencies. We then grouped these into “high” and “low” strength, with
cascade probability set to 0.5 in the former and 0.1 in the latter cases. Defense cost is fixed at
c = 0.2, and when a target is defended, it is assumed that no direct attack on it can succeed, while
an attack on an undefended target succeeds with probability 1.

Figure 3.2 offers a view of the defense configuration in two cases: first (top), the baseline case
in which importance of nodes is roughly representative of its economic value, and second (bottom),
a comparative example in which only the monuments and icons sector is deemed valuable. One
motivation for this particular contrast is to illustrate a lobby effect which makes the value of a
particular sector appear “out-of-whack” with economic considerations.
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One interesting observation is that in the baseline case, even though every node has positive
worth, not all nodes are defended with positive probability. For example, the defense industrial
base sector is left undefended, as is the monuments and icons sector. In contrast, if there is a
highly effective lobby on behalf of monuments and icons, to one’s surprise nearly all nodes are
fully defended, and defense expenditures are much higher than in the baseline case. This difference
is due to the nature of dependencies: monuments and icons has either direct, or indirect but strong
dependencies on almost all other sectors. The broader policy insight we may glean is that lobbying
can have compounding effects on the budget, and a global impact well beyond what is intended by
the direct lobbying effort due to systemic interdependencies.

3.6 Experiments

The goal of this section is to illustrate the value of our framework as a computational tool for
designing security in interdependent settings. Specifically, we aim to demonstrate that our ap-
proach clearly improves on state-of-the-art alternatives, and offers a scalable solution for realistic
security problems. We pursue this aim by randomly constructing dependency graphs using Erdos-
Renyi (ER) and Preferential Attachment (PA) generative models [84], as well as using a graph
representing a snapshot of Autonomous System (AS) interconnections generated using Oregon
routeviews [87]; this graph contains 6474 targets and 13233 edges and thus offers a reasonable test
of scalability. In the ER model, every directed link is made with a specified and fixed probability
p; we refer to it as ER(p). The PA model adds nodes in a fixed sequence, starting from an arbitrary
seed graph with at least two vertices. Each node i is attached to m others stochastically (unless
i ≤ m, in which case it is connected to all preceding nodes), with probability of connecting to a
node j proportional to the degree of j, d j.

For the randomly generated networks, all data presented is averaged over 80-100 graph sam-
ples. Since we generate graphs that may include undirected cycles, we obtain expected utilities for
all nodes on a given graph using 1000-10,000 simulated cascades (below we show that this is more
than sufficient). Intrinsic worths wt are generated uniformly randomly on [0,1]. Cascade proba-
bilities pt,t ′ (when independent of security strategies) were set to 0.5 unless otherwise specified.
Except where otherwise specified, we restrict the defender to two security configurations at every
target, one with a cost of 0 which stops attacks with probability 0 and one with a cost of c which
prevents attacks with probability 1.

Where relevant, we run local search starting from 20 random starting points in addition to the
three described above, unless specified otherwise. Finally, unless otherwise specified, we consider
games with 50 targets for the general setting, and 100 targets for the restricted setting with security-
independent cascades. We note that even with only 50 targets the running time of local search with
random restarts on a given game instance was on the order of hours for large L. A single data point
in many experiments below is therefore a product of as much as 400 processor-hours.
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3.6.1 Sampling Efficiency

Throughout our experiments we use 10,000 samples to evaluate the expected utilities of players.
A natural question is: are we taking enough samples? To answer this, we systematically varied
the number of samples between 0 (i.e., letting Uo,t = −wt) and 100,000. Our results offer strong
evidence that 10,000 samples is more than enough: the expected utility (evaluated using 100,000
samples) of the resulting defense configurations becomes flat already when the number of samples
is 1000.

3.6.2 Scalability

An important question given the complexity of our framework is whether it can scale to realistic
defense scenarios. To test this, we ran our restricted framework (i.e., a single target of attack and
security-independent cascades) on the AS graph consisting of 6474 targets and 13233 edges. Since
this is a large undirected graph containing cycles, a sampling approach was required, but the total
running time (including both sampling and solving linear programs) amounted to less than 1 hour.
Given the importance of security, and the fact that distributions of security settings are computed
once (or at least infrequently, as long as significant changes to the interdependency structure are
not very frequent), this seems a relatively small computational burden.

3.6.3 Comparison to State-of-the-Art Alternatives

There are two prime computational alternatives to our framework. The first is to assume that targets
are independent. While it is not difficult to show that in the worst case this can be quite a poor
approximation, we offer empirical support to the added value of our approach below. The second
is to use a well-known heuristic developed in the context of vaccination strategies on networks.
This latter heuristic would in our case defend nodes in order of their connectivity (degree), until
the defense budget is exhausted. Figure 3.3 (left) compares our approach in the restricted setting
(single-target attack and security-independent cascades) to the former, while Figure 3.3 (middle,
right) compares it to the latter. In both cases, computing optimal defense strategies using our
framework yields much higher utility to the defender than the alternatives.

In the general case, one trivial way to compute an optimal solution is to search all possible
defender (leader) actions, compute the best response of an attacker, and choose the action for the
defender maximizing his utility. This trivial approach is linear in the size of the game. The problem
is that the game size grows exponentially with the number of targets. Here we compare our simple
local search routine with no random restarts to the optimal search in terms of running time and
expected attained utility for the defender. The comparison is done in a simplified setting where we
generate networks of interdependencies according to an Erdos-Renyi generative model with edge
probability 0.4. We fix cascade probabilities to be pt,t ′ = 0.2 whenever there is an edge between
t and t ′ and t ′ is not defended; when t ′ is defended, we set pt,t ′ = 0. We also fix defense costs
at c = 0.2 and limit attacks to a single target (L = 1). Figure 3.4 (left) shows that local search is
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Figure 3.3. Left: Comparison between our approach (“with
graph info”) and one assuming independence (“without graph
info”) using the ER(0.1) generative model. Middle/right: Com-
parison of total expected loss (disutility to the defender) with
the degree-based heuristic in the restricted setting. Left: On PA
graphs. Right: On the AS graph.

dramatically more scalable; indeed, optimal search quickly becomes intractable. Figure 3.4 (right)
demonstrates that there are no (statistically significant) differences between the optimal objective
value and that of the local search solution (confidence intervals omitted for clarity).

Since our model of security is partly motivated by epidemic spread (e.g., bioterrorism), it is
natural to compare our approach to targeted vaccination on networks (widely recognized as state-
of-the-art when initial infections are random [93, 80, 53]), where nodes are defended in decreasing
order of degree.4 Figure 3.4 (right) shows that the targeted vaccination heuristic performs sig-
nificantly worse than local search, even when we completely remove inoculated nodes from the
network.

Aside from interdependencies, two other important aspects of our model are the fact that it
allows an arbitrary number of security configurations, instead of simply allowing the defender to
defend, or not, each target, and its ability to optimize with respect to both intelligent attackers
and inadvertent failures. We now show that both of these can add substantial value. Figure 3.5
(left) shows a comparison between a solution which only allows two configurations (defend and
do not defend) and two solutions which also allow for a third configuration, which is less effective
than full defense, but also less costly. We consider two potential third options, one providing
50% defense at 12.5% of the cost of full defense (1/2 – 1/8) and one providing 75% defense at
12.5% cost (3/4 – 1/8). It is clear from this graph that considering the third configuration adds
considerable value. Figure 3.5 (right) assumes that all (or nearly all) failures arise randomly, and
compares a solution which posits an attacker to an optimal solution. Again, the value of solving
the problem optimally is clear. This plot actually shows an interesting pattern, as the expected
utility of the defender is non-monotonic in cost when the solution is suboptimal. This is because
the differences between the two solutions are most important when costs are intermediate; with
low costs, nearly everything is fully defended, while high costs imply almost no defense.

4There are a plethora of minor variations on this general heuristic, but the performance of the best tends to be
similar to this baseline.
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Figure 3.4. Comparison between local search, optimal search,
and targeted (degree-based) vaccination. Values are generated ac-
cording to a Pareto distribution with γ = 1.1 (the results are robust
to variations of this distribution and other parameters). Left: run-
time comparison. Right: utility comparison.
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3.7 Applications to Interdependent Security Analysis

In this section we apply our framework to several network security domains. For simplicity, we re-
strict attention to zero-sum security games. As above, we consider ER and PA generative models,
although we utilize a generalized version of PA. In a generalized PA model, connection proba-
bilities are (di)

µ

∑ j(d j)µ , such that when µ = 0 the degree distribution is relatively homogeneous, just
as in ER, µ = 1 recovers the “standard” PA model, and large values of µ correspond to highly
inhomogeneous degree distributions. Throughout, we use µ = 1 unless otherwise specified. All

49



parameters are set as in the experiments section, unless otherwise specified. In addition to the gen-
erative models of networks, we explore two networks derived from real security settings: one with
18 nodes that models dependencies among critical infrastructure and key resource sectors (CIKR),
as inferred from the DHS and FEMA websites, and the second with 66 nodes that captures pay-
ments between banks in the core of the Fedwire network [102]. For the CIKR network, each node
was assigned a low, medium, or high worth of 0.2, 0.5, or 1, respectively, based on perceived im-
portance (for example, the energy sector was assigned a high worth, while the national monuments
and icons sector a low worth). Each edge was categorized based on the importance of the depen-
dency (gleaned from the DHS and FEMA websites) as “highly” or “moderately” significant, with
cascade probabilities of 0.5 or 0.1 respectively. For the Fedwire network, all nodes were assigned
an equal worth of 0.5, and cascade probabilities were discretely chosen between 0.05 and 0.5 in
0.05 increments depending on the weight of the corresponding edges in [102].

3.7.1 The Impact of Uncertainty

Our framework offers a natural way to incorporate uncertainty about the network into the analysis.
An important question is: how much impact on defender decision does uncertainty about the net-
work have? Figure 3.6 quantifies the impact of uncertainty on the quality of defense if the observed
graph is the PA network with average degree of 2. When cascade probabilities are relatively high
(pt,t ′ = 0.5 for all edges, top plot), even if the amount of noise is relatively small (ε = 0.01), the
resulting increase in the number of possible cascade paths in the network makes the defender much
more vulnerable. With smaller cascade probabilities (pt,t ′ = 0.1, bottom plot), however, noise has
relatively little impact. It can thus be vital for the defender to obtain an accurate portrait of the true
network over which failures may cascade when the interdependencies among the components are
strong.
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3.7.2 The Impact of Marginal Defense Cost

Our first analysis deals with the impact of marginal defense cost c on total defense expenditures
(total costs), total losses due to failure cascades (or simply total loss), and total expenses incurred
(or simply total expense, corresponding to negative defender utility, or the sum of total costs and
total loss). The results for ER and BA (both with 100 nodes and average degree of 2), as well as
CIKR and Fedwire networks are shown in Figure 3.7. All the plots feature a clear pattern: expected
loss and (negative) utility are monotonically increasing, as expected, while total costs start at zero,
initially rise, and ultimately fall (back to zero in 3 of the 4 cases). It may at first be surprising
that total costs eventually fall even as marginal costs continue to increase, but this clearly must be
the case: when c is high enough, the defender will not wish to invest in security at all, and total
costs will be zero. What is much more surprising is the presence of two peaks in PA and Fedwire
networks. Both of these networks share the property that there is a non-negligible fraction of
nodes with very high connectivity [84, 102]. When the initial peak is reached, the network is fully
defended, and as marginal costs rise further, the defender begins to reduce the defense resources
expended on the less important targets. At a certain point, only the most connected targets are
protected, and since these are so vital to protect, total costs begin increasing again. After the
second peak is reached, c is finally large enough to discourage the defender from fully protecting
even the most important targets, and the subsequent fall of total costs is no longer reversed.

3.7.3 Changing the Number of Attacked Targets

Our next analysis concerns an important extension that traditional Stackelberg security game ap-
proaches cannot handle in a scalable way: allowing an attacker to attack more than a single target.
Specifically, we study the impact of the number of targets L an attacker can attack on total de-
fense expenditures, total losses due to failure cascades, and total expenses incurred. We do this
while keeping cascade probabilities pt,t ′ independent of defense configuration; we set all of these
to p = 0.2. Moreover, we generate the dependency graphs based on the Erdos-Renyi generative
model with edge probabilities fixed at 0.05.

Total defense expenditures (costs) are shown in Figure 3.8 (left) for three different values of
cost per target defended, c (we also call this marginal defense cost). The difference between
the three cost regimes is negligible when only a single target can be attacked, yet the behavior
of defense expenditures as L increases exhibits striking qualitative differences, and techniques
that only consider L = 1 would therefore be blind to these. In all three cases, there is a critical
threshold Lc of the number of attacked targets. When L < Lc, defense expenditures remain very
low and relatively stable, but when L ≈ Lc, expenditures rise sharply, ultimately leveling off at
a much higher value which again remains relatively stable for L > Lc. Surprisingly, increasing
marginal defense cost c causes Lc to increase: it takes greater attacker capability to stimulate the
defender to invest more in security; however, the rise in security investment is greater for higher c
once the threshold Lc is reached.

Figure 3.8 (right) shows the total loss as a function of the attacker’s capability L. The result is
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Figure 3.7. Expected loss, cost, and their sum in (a) 100-node
ER(0.2), (b) 100-node PA, (c) 18-node critical infrastructure, and
(d) 66-node core of the Fedwire networks as defense cost in-
creases. The results for ER and PA are averages over 100 stochas-
tic realizations of these networks.

somewhat counter to initial intuition: the total losses are non-monotonic. The reason comes from
the observation we had already made about total expenditures: until a threshold Lc is reached, few
defense resources are deployed, and total losses rise, but after the threshold, defense expenditures
ramp up substantially, and, as long as c is sufficiently low, the defender will ultimately come to
defend every target. The pattern of total defender expenses (the sum of losses and total expendi-
tures; not shown) is largely predictable: expenses increase monotonically with L, and are higher
for higher c.

3.7.4 Resilience to Targeted Attacks: The Impact of Network Structure

One of the important streams in the network science literature is the question of relative resilience
of different network topologies to failures, random or targeted. One feature of network topology,
the distribution of degrees (number of node neighbors) has received particular attention. There
is, in particular, one measure of degree distribution—its homogeneity—that plays an especially
important role. (For example, an Erdos-Renyi network has a homogeneous degree distribution,
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Figure 3.8. Total defense expenditures (left) and losses due to
cascading failures (right) as the number of attacked targets in-
creases for three different defense cost values (i.e., cost of defend-
ing a single target): 0.05, 0.1, and 0.2.

while a heavy-tailed distribution, such as Pareto, is inhomogeneous.) Two very disparate streams
of literature tie homogeneity of the degree distribution to network resilience. The first of these
features a widely replicated finding that networks with an inhomogeneous (e.g., scale-free) degree
distribution exhibit poor tolerance to targeted attacks as compared to Erdos-Renyi graphs [6, 84].
On the other hand, when failures are random (no attacks), scale-free graphs have been found to
be more resilient than Erdos-Renyi counterparts. The second stream of literature demonstrates
that scale-free graphs are particularly easy to defend against epidemic spread, as inoculating high-
degree nodes dramatically reduces the expected number of infections; however, this stream does
not model targeted attacks.

Our framework allows us to cleanly unify both these streams of literature and present a much
more refined analysis of the relationship between the homogeneity of the degree distribution and
network resilience to cascading failures. Specifically, we undertake here a study of the total losses
and costs incurred by the defender under a variety of network regimes.

As a starting point, consider Figure 3.9 (left), which shows the defender’s utility for three
different network topologies, PA, ER, and Fedwire as a function of cost c. The results presented in
this figure are generated based on our special case when cascade probabilities pt,t ′ are independent
of security decisions, and when the attacker can only attack a single target (through the rest of
this paper, we focus only on the impact of deliberate attacks and fix the probability of “nature”
to 0). In light of the previous discussion, what we can readily observe in Figure 3.9 (left) would
appear quite remarkable: network topology seems to play little role in resilience. A superficial
difference here is that we consider a cascading failure model, while most of the previous work
on the subject involving targeted attacks focused on diminished connectivity due to attacks. We
contend that the most important distinction, however, is that previous work studying resilience did
not account for a simple observation that most important targets of potential attacks are also most
heavily defended; indeed, to the best of our knowledge, none of the previous work on resilience
in the face of attacks allows for endogenous defense decisions. Indeed, we can observe from the
figure that once defense costs c are sufficiently high, PA leads to substantially higher losses (greater
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disutility to the defender), confirming previous results in this rather extreme setting.
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Figure 3.9. Left: Expected total loss: comparison across differ-
ent network structures. Middle: Expected defender disutility in the
generalized PA model as we vary µ (keeping average degree fixed
at 2). ER is also shown for comparison. Right: Total defender ex-
penses (total expenditures + losses from cascades) as a function of
pd for µ = 0.01 (nearly Erdos-Renyi) and µ = 10 (highly hub-like
structure). Cascade probabilities of undefended nodes are fixed at
p = 0.2. Cost of defending each node is fixed at 0.5.

To investigate the impact of network topology on resilience further, we consider the generalized
PA model in which we systematically vary the homogeneity of the degree distribution by way of
the parameter µ . Figure 3.9 (middle) shows the results for the special case of security-independent
cascades with the attacker restricted to attack only one target. In this graph, we do observe clear
variation in resilience as a function of network topology, but the operational factor in this variation
is homogeneity in the distribution of expected utilities, rather than degrees: increasing homogene-
ity of the utility distribution lowers network resilience. This seems precisely the opposite of the
standard results in network resilience, but the two are in fact closely related, as we now demon-
strate. Superficially, the trend in the figure seems to follow the common intuition in the resilience
literature: as the degree distribution becomes more inhomogeneous (more star-like), it becomes
more difficult to defend. Observe, however, that ER is actually more difficult to defend than PA
with µ = 0. The lone difference of the latter from ER is the fact that nodes that enter earlier are
more connected and, therefore, the degree distribution in the PA variant should actually be more
inhomogeneous than ER! The answer is that random connectivity combined with inhomogeneity
of degrees actually makes the distribution of utilities less homogeneous in PA with µ = 0, and, as
a result, fewer nodes on which defense can focus as compared to ER. On the other hand, as the
graph becomes more star-like, the utilities of all nodes become quite similar; in the limiting case,
all nodes are only two hops apart, and attacking any one of them yields a loss of many as a result
of cascades.

Our final exploration in this vein considers a more general setting where security decisions
have some (varying) effect on the likelihood of cascade spread. Specifically, define the parameter
pd as the probability that a cascade spreads to a node which is defended, and fix the probability
that a cascade spreads to an undefended node at 0.2. Thus, if pd = 0, we have an instance of
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perfect inoculation: if a node is defended (inoculated), it is equivalent to removing that node from
the network entirely. At the other end of the spectrum, pd = 0.2 will imply that defense has
no impact on the probability of cascades. Figure 3.9 (right) presents the total defender disutility
(losses due to cascading failures + defense costs incurred) as a function of pd for two extreme
cases of µ , one (µ = 0.01) corresponding to a highly homogeneous degree distribution, while the
other (µ = 10) to a highly inhomogeneous one. The two classes of graphs exhibit dramatically
different resilience behavior as a function of pd which paints a more complete picture than the
literature on network resilience to date. When pd = 0.2 (equal to the cascade probability when
a node is not defended), hub-like structures are far less resilient to targeted attacks as compared
to a graph with a homogeneous degree distribution; this is inline with previous results, which
suggest that inhomogeneous graphs are less resilient [6]. With pd = 0, on the other hand, hub-
like networks are highly resilient, since it suffices for the defender to target the few hubs; this
is similar to the observation that targeted vaccination is more effective on scale-free graphs [93],
although in that stream of literature failures are assumed to arise randomly, rather than in a targeted
manner. At the high level, the resilience of the hub-like network decreases with increasing pd ,
whereas a homogeneous network remains relatively unaffected by pd . The reason is that when
pd is high, a hub-like structure implies low diameter. Unless the hub itself is actually removed
from the network by the defense action, it can serve as the conduit for failure cascades started at
other nodes; therefore, when pd is high the defense of the hub is insufficient to make the network
resilient, and vastly greater defense expenditures are required. In contrast, a homogeneous network
has no such hubs with global connectivity, and is therefore less sensitive to pd .

There is another aspect of network topology that has an important impact on resilience: network
density. Figure 3.10 (left) shows a plot of an Erdos-Renyi network with the probability of an edge
varying between 0.0025 to 0.08 (average degree between .25 and 8) and cost c fixed at 0.04.
Clearly, expected utility and loss of the defender are increasing in density, but it is rather surprising
to observe how sharply they jump once the average degree exceeds 1 (the ER network threshold
for a large connected component); in any case, network density has an unmistakable impact. The
reason is intuitive: increased density means more paths between targets, and, consequently, greater
likelihood of large cascades in the event that a target is compromised. Total cost initially increases
in response to increased density, in part to compensate for the increased vulnerability to attacks,
but eventually falls, since it is too expensive to protect everything, and anything short of that is
largely ineffective.

3.7.5 Interaction Between Cascade Probabilities and the Number of Targets
Attacked

In this section we study the impact of the cascade probability to a defended node, pd , while at
the same time varying the attacker’s capability L. As in the previous section, we maintain the
probability that a failure cascades to an undefended node at 0.2. We generate the dependency
graphs based on the Erdos-Renyi generative model with edge probabilities fixed at 0.05.

Figure 3.10 (right) shows the total defense expenditures (cost per target defended fixed at 0.1).
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While the differences are relatively small, there is a clear pattern: when the number of targets
attacked is low (below Lc), increasing the impact of defense on cascade probability prompts the
defender to increase investment in security (defense has an increasing marginal value), but once
attacker capabilities are high, defense expenditures fall when pd falls (i.e., defense has higher im-
pact). In the latter case, making the network sufficiently resilient to attacks requires relatively fewer
protected nodes and, therefore, lower defense expenditures. Indeed, decreasing pd systematically
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ues of pd (p(defense) in the legend): 0.2 (cascades independent
of defense), 0.1 (defense partially protects from cascades), and 0
(defense fully protects from cascades). Graphs are ER(0.05).

reduces total defender expenses (sum of losses due to cascades and defense costs).

3.8 Conclusion

We presented a framework for computing and approximating optimal security policies in network
domains. Our framework involves a general model of asset interdependencies, which we instanti-
ate using a dependency graph between assets and a cascading failures model based on a common
epidemiological model of disease contagion. In the general case, we offer an effective approxi-
mation technique based on a combination of submodular optimization and a local search heuristic.
Moreover, we show that in an important special case which restrict the attacker’s capabilities to
only attack one target and restricts the cascade probabilities to be independent of security deci-
sions, we can effectively decouple simulations that estimate player expected utilities from a linear
programming formulation which subsequently computes an optimal security policy. Our results
demonstrate the value of our approach as compared to alternatives, and show that it is scalable to
realistic security settings. Furthermore, we used our framework to analyze four models of inter-
dependencies: two based on random graph generation models, a simple model of interdependence
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between critical infrastructure and key resource sectors, and a model of the Fedwire interbank
payment network.
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Chapter 4

Stochastic Stackelberg Games, with
Applications to Adversarial Patrolling

4.1 Introduction

Game theoretic approaches to security based on Stackelberg game models have received much at-
tention in recent years, with several finding deployment in real-world settings including LAX (Los
Angeles International Airport), FAMS (United States Federal Air Marshals Service), TSA (United
States Transportation Security Agency), and USCG (United States Coast Guard) [63, 12]. At the
backbone of these applications are defender-attacker Stackelberg games in which the defender
first commits to a randomized security policy, and the attacker uses surveillance to learn about
the policy before attacking. The analysis of Stackelberg security games has focused primarily on
computing a Strong Stackelberg equilibrium (SSE) [40, 92, 67].

To date, the Stackelberg game models for all real-world security applications assume that at-
tacker knows the probability that each target is covered by the defender, but is oblivious to the
actual sequence of defender moves. For example, the defender may in fact visit targets according
to some fixed (but randomly generated) patrolling schedule, but the attacker is presumed to be
unable to observe the defender’s location at any point during the patrol. In many realistic settings,
such as USCG [12], it is likely that the attacker can in fact observe the patrol while it is in progress
(e.g., the coast guard ships can be quite overt). Thus, a more plausible model in such a setting
would allow the attacker to observe both the randomized policy of the defender (i.e., probability
distribution over moves) as well as current defender location.

We formally model this setting as an adversarial patrolling game, or APG. An APG is a very
special case of a much broader class of general-sum discounted stochastic Stackelberg games
(SSGs). An SSG involves a leader, who commits to a (possibly stochastic) policy (in general, a
function of all previous actions and states), and a follower, who observes the leader’s commitment
and optimally responds to it. We begin by studying the properties of Strong Stackelberg Equilibria
in SSGs (Section 4.3), and proceed to offer algorithms for computing exact and approximate SSE
solutions when the leader is restricted to play Markov stationary policies (Sections 4.4 and 4.4.2).

Subsequently, we proceed to offer an extensive treatment of adversarial patrolling games,
mostly restricting attention to their zero-sum variants. We consider three different general models
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of adversarial patrolling. The first, baseline, model described in Section 4.2.2 is that of the most
basic adversarial patrolling scenario, with an exogenously imposed network of constraints on de-
fender’s moves, a single defender resource (i.e., a single patroller), and an attacker who can deploy
an attack one time step after the actual decision to attack is made. We describe an exact NLP
formulation of this problem. We then extend this model, and the baseline NLP formulation, in two
directions. First, we generalize the formulation in Section 4.6.3 by allowing the defender to use
multiple defense resources. In this case, defender’s actions take the form of coverage vectors (i.e.,
specify which targets are covered). Second, the baseline formulation is generalized in Section 4.6.3
to allow the attacks to take more than a single time step to unfold. In this case, the defender must,
in general, condition his policies on sequences of several previously visited targets, rather than just
the last. As this implies severe limitations on scalability of the approach, we present a formulation
which allows a tunable approximation, allowing one to make the best tradeoff between optimality
and scalability. In the experimental section (Section 4.7) we compare our approaches to the state-
of-the-art alternative, as well as to each other. We also show that the MILP approximation requires
only a very coarsely discretized probabilities to obtain near-optimal solutions, and demonstrate the
tradeoffs between scalability and approximation quality using our formulation when attacks take
more than a single time step.

Our second general model of patrolling relaxes the assumption that the graph which constrains
patrolling moves is exogenous, and instead allows the defender to first build the edges, at some cost,
that will impose patrolling constraints, and then use this graph in an optimal patrol (Section 4.8).
If the baseline formulation were generalized directly, this new setting would introduce integer
variables into the non-linear program. We therefore offer an alternative formulation which allows
us to relax the integrality constraints.

Our final model of patrolling is a more significant departure from the baseline APG, as it elim-
inates the graph as a constraint altogether, imposing instead differential costs on the defender for
making specific moves between targets (Section 4.9). Since the defender’s objective now involves
minimizing patrolling costs, the game is no longer zero-sum. As using integer variables in this
APG variant becomes inevitable, we generalize the MILP approximation for this setting.

4.1.1 Related Work

Our work lies at the point of convergence of several research thrusts: pursuit-evasion games,
inspection games, robotic patrolling (particularly, in adversarial settings), stochastic games, and
Stackelberg security games.

Pursuit-evasion (alternatively, hider-seeker, infiltration, or search) games typically involve a
hider, either stationary or mobile, who hides in or traverses a path through a graph, and a seeker,
whose goal it is to find the hider [50, 90, 52, 9, 8, 1, 60]. A number of variations on that general
theme have been considered, some studying the number of seekers required to find the hider with
certainty [90], others aiming to minimize the expected time to find the seeker [52, 9, 1], yet oth-
ers considering a game where both players simultaneously choose a vertex on a graph, with the
distance between the ultimate choices determining the amount one pays to the other [36]. Closely
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related infiltration games involve a hider who traverses a path and a seeker who chooses a set
of vertices that overlap with the hider as much as possible [8]. Another closely related class of
games is accumulation games, which is a game between a hider, who distributes a divisible re-
source among a collection of descrete locations (e.g., nodes on a graph), and a seeker, who aims
to find a sufficient fraction of the resource by searching a limited number of locations [68, 10].
The goal of most of this work is to bound the value of the game (as a function of the graph) and,
if possible, to mathematically characterize player strategies. In contrast, [58] present exact and
an approximate double-oracle algorithms for computing equilibrium hider-seeker strategies. There
are several salient differences between our setting and approach and the literature on search games.
First, we consider general stochastic games, whereas search games can be viewed (modulo a few
technical nuances) as special cases. Second, the attacker the special case of APGs that we study
can choose whether to attack, and when, and is able to condition his choice on observed location
of the defender. Third, we focus on leader-following games, allowing the attacker full knowledge
of the defender’s policy, and in several instances allow these to be general-sum. A similar line
of work has had a long history in the Operations Research community, commony referred to as
network interdiction [111, 41, 112, 24, 25, 82]. Like our work, these are focused on mathematical
programming formulations to compute optimal policies, but, unlike us, the focus is on damaging
the network to reduce network flow (or increase shortest path), rather than patrolling a network of
targets.

Another related thrust is the literature on inspection games [16]. The most basic variant of an
inspection game involves an inspectee (e.g., a tax evader) who can choose to perform an illegal or
a legal action, and an inspector, who receives a noisy signal upon which he can inspect (at some
cost), or not. One qualitative difference between this generic inspector game and our setting is that
in our case the defender (inspector) acts first, and the attacker (inspectee) acts after observing the
defender’s decision (which may be randomized, in which case the attacker observes the probability
distribution). Moreover, the inspection games feature very simple defender and attacker strategy
spaces, whereas strategic complexity is at the root of the problem we study.

The third thrust upon which we build is robotic patrolling. In this literature, there are two
distinct approaches. The first, and earliest, is non-adversarial in nature, and most patrolling work
falls into this category. In general, classical patrolling work is focused either on covering all the
potential targets (or patrol sectors) in the most efficient way, often using multiple coordinated
patrollers [2], or on patrolling that minimizes target idleness, or maximizes patrol frequency [7,
35, 55, 48]. The second approach does involve explicit adversarial modeling and in that sense
much more like our own. One line of work on adversarial patrolling settings is done in the context
of robotic patrols, but involved a very simple defense decision space (for example, with a set of
robots moving around a perimeter, and a single parameter governing the probability that they move
forward or back) [4, 5, 3]. In a somewhat different vein, [11] study win-lose patrolling games in
which the patroller chooses a sequence of targets to visit, while the attacker can only choose a
target, and a time of attack, with the goal of mathematically characterizing the value of the game
for different classes of graphs. Another line of work on adversarial patrolling studies general-sum
patrolling games in which the patroller (defender, leader) first commits to a stochastic policy, which
is observed by the attacker who chooses which target to attack and in which context [19, 22, 21, 18,
23, 20]. An important differentiating assumption of the latter work is that, like in our setting, the
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attacker is assumed to observe both the defender’s policy, as well as its past realizations, and can
condition his decision on both. Unlike our work, however, Basilico et al., and others, study games
in which the attacker is infinitely patient (we consider discounted games in which an attacker can
be arbitrarily patient or impatient), and make restrictions on the attacker policy space which we
relax. We also study for the first time a number of important variants of the adversarial patrolling
problem, one allowing the defender to alter the patrol network at some cost, and another in which
a defender incurs variable costs for traversing network edges.

[19], as well as other work that follows in the same framework, build on the literature that
explores the problem of computing Stackelberg equilibria in security settings [40, 92, 67, 63, 12].
While most applications of these approaches are to security patrolling problems, they all assume
that the adversary cannot observe past realizations of patrol moves. This assumption is quite rea-
sonable in some settings, such as Federal Air Marshall Service, where marshalls are usually not
clearly identifiable, but is a strong assumption in others, such as coast guard patrols, which are
clearly visible. Our model therefore explicitly allows an attacker to observe past patrol moves.

Finally, in the abstract, Stackelberg models of security are a special case of leader-follower, or
Stackelberg games. [40] offered the first extensive treatment of the subject in the setting where
games are represented in normal form. [76] present the first results about pure and mixed strategy
commitment in the context of finite horizon extensive form games, and [77] study commitment in
general stochastic games. Both [76] and [77] offer mainly negative results about mixed-strategy
(randomized) commitment, and the latter present an efficient approximate algorithm for comput-
ing correlated commitment. As such, ours is the first attempt to compute uncorrelated randomized
stationary Markov policies in general discounted stochastic Stackelberg games. Our use of math-
ematical programming techniques for computing equilibria builds in part on [49], who study the
question of computing Nash equilibria in two-player stochastic games. While Stackelberg and
Nash equilibria coincide in zero-sum games, they can be very different in general, and we there-
fore require very different formulations for computing Stackelberg equilibria in stochastic games.

4.2 Stochastic Stackelberg Games

4.2.1 General Setup

We consider two-player infinite-horizon discounted stochastic Stackelberg games (SSGs from now
on) in which one player is a “leader” and the other a “follower”. The leader commits to a policy
that becomes known to the follower who plays a best-response policy. These games have a finite
state space S, finite action spaces AL for the leader and AF for the follower, payoff functions
RL(s,al,a f ) and RF(s,al,a f ) for leader and follower respectively, and a transition function T

ala f
ss′ ,

where s,s′ ∈ S, al ∈ AL and a f ∈ AF . The discount factors are γL,γF < 1 for the leader and follower,
respectively. Finally, β (s) is the probability that the initial state is s.

The history of play at time t is h(t) = {s(1)al(1)a f (1) . . .s(t−1)al(t−1)a f (t−1)s(t)} where
the parenthesized indices denote time. Let Π (Φ) be the set of unconstrained, i.e., nonstationary
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and non-Markov, policies for the leader (follower), i.e., mappings from histories to distributions
over actions. Similarly, let ΠMS (ΦMS) be the set of Markov stationary policies for the leader
(follower); these map the last state s(t) to distributions over actions. Finally, for the follower we
will also need the set of deterministic Markov stationary policies, denoted ΦdMS.

Let UL and UF denote the utility functions for leader and follower respectively. For arbitrary
policies π ∈Π and φ ∈Φ,

UL(s,π,φ) = E
[ ∞

∑
t=1

γ
t−1
L RL(s(t),π(h(t)),φ(h(t)))|s(1) = s

]
,

where the expectation is over the stochastic evolution of the states, and where (abusing notation)

RL(s(t),π(h(t)),φ(h(t))) = ∑
al∈AL

∑
a f∈AF

π(al|h(t))φ(a f |h(t))RL(s(t),al,a f ),

and π(al|h(t)) is the probability of leader-action al in history h(t) under policy π , and φ(a f |h(t))
is the probability of follower-action a f in history h(t) under policy φ . The utility of the follower,
UF(s,π,φ), is defined analogously.

For any leader policy π ∈Π, the follower plays the best-response policy defined as follows:

φ
BR
π

def
∈ argmax

φ∈Φ
∑
s

β (s)UF(s,π,φ).

The leader’s optimal policy is then

π
∗ def
∈ argmax

π∈Π
∑
s

β (s)UL(s,π,φ BR
π )

Together (π∗,φ BR
π∗ ) constitute a Stackelberg equilibrium (SE). If, additionally, the follower breaks

ties in the leader’s favor, these are a Strong Stackelberg equilibrium (SSE).

4.2.2 Adversarial Patrolling Games

Adversarial patrolling games (APGs) form a highly restricted special case of SSGs. We begin with
a somewhat restricted definition of these games for clarity, and extend these later. Formally, an
adversarial patrolling game can be described by the tuple {T,Uc

d (i),U
u
d (i),U

c
a (i), Uu

a (i),γd,γd,G},
where T is the set of n targets patrolled by the defender, Uc

d (i) and Uu
d (i) are the utilities to the

defender if an attacker chooses a target i ∈ T when it is patrolled and not, respectively, while Uc
a (i)

and Uu
a (i) are the corresponding attacker utilities, γa,γd ∈ (0,1) is the discount factor (in some

cases, we also allow γa = γd = 1), and G = (T,E) is a graph with targets as vertices and E the set
of directed edges constraining defender patrolling moves between targets. It is useful to consider
the representation of this graph as an adjacency matrix A, where Ai j = 1 if and only if there is an
edge from target i to target j. In the special case of zero-sum game APGs which we consider in
some detail below, Uc

d (i) =−Uc
a (i) and Uu

d (i) =−Uu
a (i).

63



The game proceeds in a (possibly infinite) sequence of steps in which the defender moves
between targets (subject to the constraints imposed by G), while the attacker chooses the time and
target of attack. The defender’s (stochastic) patrolling policy is a schedule π which can in general
be an arbitrary function from all observed history (i.e., the sequence of targets patrolled in the past)
to a probability distribution over the targets patrolled in the next iteration. The attacker is presumed
to know the defender’s policy π at the time of decision. At each time step t the attacker observes
the defender’s current location i and may choose to wait or to attack an arbitrary target j ∈ T . If an
attacker waits, he receives no immediate utility, while attacking a target j gains the attacker Uc

a (i)
if it is covered by the defender at time t +1 and Uu

a (i) if it is not. We denote the attacker’s policy
by a.

We use vi to denote the expected discounted value to the attacker upon observing the defender
at target i. Where relevant, we assume that the defender always starts at target 0, and the aim of
the defender is, consequently, to minimize v0, which the attacker attempts to maximize.
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Figure 4.1. Example of a simple New York Bay patrolling sce-
nario.

Example 4.2.1. USCG’s Patrolling Problem as an APG: USCG safeguards important infrastruc-
ture at US coasts, ports, and inland waterway. For this example, we chose a simple Newark Bay
and New York Harbor patrolling scenario, shown in Figure 4.1. We chose five possible targets,
with the graph roughly representing geographic patrolling constraints (assuming a boat patrol).
There is a target which is connected to all others, and is a natural candidate for a base of opera-
tions. The number near each target represents its value to the defender and attacker. Two targets
have the highest value, but the patrol boat cannot move directly between these. The base has no
value intrinsically, but its high connectivity makes it valuable nonetheless (as we shall see below,
it will therefore play a crucial role in defense). 2

4.2.3 APG as a Stochastic Stackelberg Game

We now show how to formulate an instance of an adversarial patrolling games as a SSG. In our
setting, states correspond to the set of targets T (representing the current defender location in the
patrol), together with an absorbing state s. Defender actions in each state are the targets j that he
can move to in a single time step, while attacker actions are to wait or to attack (for the moment,
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we will assume that we can compute expected utilities when attacker chooses to attack; we deal
with the issue of which targets are attacked below). The state transitions are actually deterministic,
conditional on player actions: if the attacker chooses to attack, the system always transitions to
the absorbing state s; otherwise, the next target is completely determined by the defender’s action.
Finally, if the attacker waits, our baseline model involves zero reward accruing to both players.
Let Ra

i denote the expected utility to attacker of attacking in state i; the defender’s corresponding
utility is Rd

i , which becomes −Ra
i if the game is zero-sum. The stochastic game has an infinite

horizon, and γL = γd while γF = γa. Figure 4.2 offers a schematic illustration of a zeros-sum APG
as a stochastic game.
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Figure 4.2. Schematic illustration of APG as a stochastic game,
showing example targets-states i and j, as well the absorbing state
s. pi j(·) denotes the transition probability, as a function of the
probability πi j that the defender moves from i to j and whether or
not the attacker chooses “wait” or “attack”.

4.3 The form of a SSE in Stochastic Games

It is well known that in general-sum stochastic games there always exists a Nash equilibrium (NE)
in Markov stationary policies [49]. The import of this result is that it allows one to focus NE
computation on this very restricted space of strategies.

To begin, let us state a very basic, and weak, result that does hold in general:

Lemma 4.3.1. For any general-sum discounted stochastic Stackelberg game, if the leader follows
a Markov stationary policy, then there exists a deterministic Markov stationary policy that is a best
response for the follower.
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This follows from the fact that if the leader plays a Markov stationary policy, the follower faces
a finite MDP. A slightly weaker result is, in fact, at the core of proving the existence of Markov
stationary NE: it allows one to define a best response correspondence in the space of (stochastic)
Markov stationary policies of each player, and an application of Kakutani’s fixed point theorem
completes the proof. The difficulty that arises in SSGs is that, in general, the leader’s policy need
not be a best response to the follower’s.

We now show that in general an optimal leader policy need not be stationary Markovian and,
indeed, a stationary Markovian policy could be arbitrarily suboptimal.

Example 4.3.1. The leader’s optimal policy may not be Markov stationary even if transition
probabilities are deterministic and independent of player actions. Moreover, the best station-
ary policy can be arbitrarily suboptimal.

Consider the following counterexample.1 Suppose that the SSG has three states, i.e., S =
{1,2,3}, and the leader and the follower have two actions each, AL = {U,D} for the leader and
AF = {L,R} for the leader. Let initial state be s = 1 and suppose that the following transitions
happen deterministically and independently of either player’s decisions: T12 = 1, T23 = 1, T33 = 1,
that is, the process starts at state 1, then moves to state 2, then, finally, to state 3, which is an
absorbing state. In state s = 1 only the follower’s actions have an effect on payoffs, which is as
follows: RL(1, ·,L) =−M, RL(1, ·,R) = 0, RF(1, ·,L) = ε , RF(1, ·,R) = 0, where M is an arbitrarily
large number and ε << M. In state s = 2, in contrast, only the leader’s actions have an effect on
payoffs: RL(2,U, ·) = RL(1,D, ·) = 0, RF(1,U, ·) =−M, RF(1,D, ·) = 0. Suppose that the discount
factors γ = δ are close to 1. First, note that a Markov stationary policy for the leader would be
independent of the follower’s action in state 1, and, consequently, the follower’s best response is
to play L, giving the leader a payoff of −M. On the other hand, if the leader plays U when the
follower plays L and D otherwise, the follower’s optimal policy is to play R, and the leader receives
a payoff of 0. Since M is arbitrarily large, the difference between an optimal and best stationary
policy is arbitrarily large.

We can consider an alternative restriction on stochastic games, disallowing the leader to observe
actual realizations of the follower’s actions (since payoff observations reveal information about
joint action choices, we would also make an associated assumption that payoff observations are
delayed sufficiently long to be uninformative for decisions; in any case, the result below is negative
even if we ignore this complication). However, this restriction does not suffice either.

Example 4.3.2. The leader’s optimal policy may not be Markov stationary even if transition
probabilities are deterministic and only depend on the follower’s action, and, moreover, the
leader cannot condition his policy on past observations of follower’s actions (or associated
payoffs). Moreover, the best stationary policy can be arbitrarily suboptimal, and the se-
quence of states on which an optimal policy conditions can be arbitrarily long.

Consider Example 4.3.1, but modify it as follows: suppose each the follower’s action maps to
a unique state, so that if follower plays L in state 1, next state is 1a, while R maps to 1b. Both 1a
and 1b map deterministically to a sequence of states of arbitrary length to state 2, and the rest of

1We are grateful for Vincent Conitzer for suggesting this counterexample.
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the example is unchanged. As before, let discount factors be close to 1. We can now repeat the
argument in Example 4.3.1, noting only that the optimal strategy must condition on the states 1a
and 1b, which may have happened arbitrarily far in the past.

Our final consideration involves general-sum adversarial patrolling games. Both our examples
above involved a kind of “punishment” meted out to the follower by the leader who plays an
undesirable policy early on. APGs seem structurally quite different: the only meaningful decision
by the attacker is which target to attack. The wait decision seems to have no consequences for the
leader, and the leader cannot move after the attack action has been executed. Nevertheless, we now
illustrate that even in this case Markov stationary policies do not suffice.

Example 4.3.3. The leader’s optimal policy in general-sum APGs may not be Markov station-
ary even if the only difference in utilities over targets for the attacker and defender comes
from the difference in discount factors.

Consider an APG with three targets, 1, 2, and 3. Targets 1 and 2 have value 1 and target 3
has value 0. Targets 1 and 2 are connected (to each other and each to itself); target 3 can be
reached from either 1 or 2, but does not connect back to these; it is, effectively, an absorbing state.
Suppose that the defender’s discount factor is 0.1 and the attacker’s is 0.9. That is, the defender is
only concerned about what happens during the first time step, while the attacker is willing to wait.
Finally, suppose that the defender starts at target 1.

Since targets 1 and 2 are identical in every way, there is an optimal Markov stationary policy
that plays the same strategy in both of these. For the same reason, the probability of staying put or
moving to the other valued target (1 or 2) is the same in some optimal Markov stationary policy.
Let us call this probability p. Then the probability of moving to target 3 from each of these is
1−2p; obviously, then, p≤ 0.5.

Since target 3 is value 0 and absorbing, clealry the attacker would attack, accruing utility of 1
(which is lost to the defender) if ever he finds the defender at that target. Suppose that the defender
is at target 1 (target 2 is symmetric). Let VA be the attacker’s expected discounted value at target 1.
Then the attacker will wait if and only if

0.9((1−2p)+2pVA)≥ (1− p).

Since V ≤ 1, we must have 1− p≤ 0.9 or p≥ 0.1 to force the attacker to wait. If the attacker were
to attack immediately, the expected loss to the defender is p, which is maximized when p = 0.5. If
the attacker waits, the defender loses

0.1((1−2p)+2pVD)≥ 0.1−0.2p≥ 0.08.

Now consider the following non-stationary policy for the defender. The defender plays p = 0.5
for the first two rounds, then moves to target 3 with probability 1. Clearly, the attacker will wait
and attack in round 3, since his expected utility of waiting both rounds is 0.92 = 0.81 > 0.5, which
is what he would attain from attacking immediately. For the defender, however, the expected loss
from this policy is 0.12 = 0.01, much smaller than the expected loss from an optimal Markov
stationary policy.
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A natural question is: what makes this setting fundamentally distinct from Stochastic games,
where there does, in fact, exit a Markov stationary Nash equilibrium. The first key distinction is
that there could be different stationary Markov policies that are leader-optimal in different states.
While true in MDPs, the following example demonstrates this assumption to be false in SSGs.

Example 4.3.4. Consider again a 3-state game with S = 1,2,3. Player 2 (follower) moves in state
1, player 1 (leader) moves in state 2, and state 3 is an absorbing state, just as in the examples above.
Rewards are almost (but not quite) the same as well: RL(1, ·,L) =−M,RL(1, ·,R) = 0;RF(1, ·,L) =
ε,RF(1, ·,R) = 0 and RL(2,D, ·) = ε,RL(2,U, ·) = 0;RF(2,D, ·) = 0,RF(2,U, ·) =−M. Transitions
are a little different, however: if player 2 chooses L, the system transitions into state 2, while a move
R transitions it to state 3. Once in state 2, the system always transitions to state 3. State 3 is an
absorbing state in which both get 0 reward.

First, suppose that state 2 is a starting state. In this case, the optimal policy has player 1
choosing D in this state (irrelevant what he chooses in other states, or what player 2 does). Now,
suppose that starting state is state 1. Then optimal policy of player 1 is to choose U in state 2,
which causes player 2 to choose R in state 1.

The second distinction from MDPs and Stochastic games is that dynamic programming does
not “work” in SSGs, whereas it does in stochastic games or MDPs. In fact, decisions at different
time periods are intricately interdependent in SSGs, because a decision by the leader at any given
time period will impact the utility and, hence, the best response of the follower both before and
after the leader’s decision point. Therefore, we cannot use backwards induction, which was the
crucial step in our proof.

A natural question is whether there is any setting where a positive result is possible, besides
zero-sum games where there is no distinction between Nash equilibria and SSE. Indeed, there is:
team games.

Definition 4.3.1. A team game is a SSG with RL(s,al,a f )=RF(s,al,a f )=R(s,al,a f ) and γL = γF .

Proposition 4.3.2. For any general-sum discounted team game, there exist a leader’s Markov
stationary policy and a follower’s deterministic Markov stationary policy that form a strong Stack-
elberg equilibrium. Moreover, these are both deterministic.

Proof. Proof. Construct an MDP with the same state space as the team game, but the actions space
A = AL×AF (which is still finite), the reward function is R(s,a) where a = (al,a f ) ∈ A, and the
transition probabilities are as in the original team game. Let π∗MDP be an optimal deterministic
stationary Markov policy of the resulting MDP, which is known to exist. We can decompose
this policy into π∗MDP = (π∗L,φ

∗
F), where the former simply specifies the leader’s and the latter the

follower’s part in the optimal MDP policy. We now claim that (π∗L,φ
∗
F) constitutes a SSE.

First, we show that φ∗F must be the best response to π∗L . Let U(π,φ) be the expected utility
of both leader and follower when following π and φ respectively, where expectation is taken also
with respect to the initial distribution over states; that these are equal follows by the identity of the
payoffs and discount factors in the team game. Note that U(π,φ) =U(πMDP = (π,φ)), where the
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latter is the corresponding expected utility of the MDP we constructed above. Now, suppose that
there is φ ′ which yields a higher utility to the follower. Then,

U(π∗,φ ′) =UF(π
∗,φ ′)>UF(π

∗,φ∗) =U(π∗,φ∗),

which implies that U(π∗,φ ′)>U(π∗,φ∗), a contradiction, since (π∗,φ∗) are optimal for the MDP.

Second, we show that π∗ is leader-optimal. Suppose not. Then there exists (π ′,φ ′) where φ ′ is
a best response to π ′ and

U(π ′,φ ′) =UL(π
′,φ ′)>UL(π

∗,φ∗) =U(π∗,φ∗),

which implies that U(π ′,φ ′)>U(π∗,φ∗), a contradiction, since (π∗,φ∗) are optimal for the MDP.

4.4 Computing Markov Stationary SSE

4.4.1 Exact MINLP Formulation

While in general SSE in Markov stationary strategies do not suffice, we restrict attention to these in
the sequel, as general policies need not even be finitely representable. Moreover, it is unlikely that
policies that are much more complicated than first-order Markov stationary would even be prac-
tically implementable. A crucial consequence of the restriction to Markov stationary strategies is
that policies of the players can now be finitely represented. In the sequel, we drop the cumber-
some notation and denote leader stochastic policies simply by π and follower’s best response by φ

(with π typically clear from the context). Let π(al|s) denote the probability that the leader chooses
al ∈ AL when he observes state s ∈ S. Similarly, let φ(a f |s) be the probability of choosing a f ∈ AF
when state is s ∈ S. Above, we also observed that it suffices to focus on deterministic responses
for the attacker. Consequently, we assume that φ(a f |s) = 1 for exactly one follower action a f , and
0 otherwise, in every state s ∈ S.

At the root of SSE computation are the expected optimal utility functions of the leader and
follower starting in state s ∈ S defined above and denoted by VL(s) and VF(s). In the formulations
below, we overload this notation to mean the variables which compute VL and VF in an optimal
solution. Suppose that the current state is s, the leader plays a policy π , and the follower chooses
action a f ∈ AF . The follower’s expected utility is R̃F(s,π,a f )

= ∑
al∈AL

π(al|s)

(
RF(s,al,a f )+ γF ∑

s′∈S
T

ala f
ss′ VF(s′)

)
.

The leader’s expected utility R̃L(s,π,a f ) is defined analogously. Let Z be a large constant. We now
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present a mixed integer non-linear program (MINLP) for computing a SSE:

max
π,φ ,VL,VF

∑
s∈S

β (s)VL(s) (4.4.1a)

subject to :
π(al|s)≥ 0 ∀s,al (4.4.1b)

∑
al

π(al|s) = 1 ∀s (4.4.1c)

φ(a f |s) ∈ {0,1} ∀s,a f (4.4.1d)

∑
a f

φ(a f |s) = 1 ∀s (4.4.1e)

0≤VF(s)− R̃F(s,π,a f )≤ (1−φ(a f |s))Z ∀s,a f (4.4.1f)
VL(s)− R̃L(s,π,a f )≤ (1−φ(a f |s))Z ∀s,a f (4.4.1g)

The objective 4.4.1a of the MINLP is to maximize the expected utility of the leader with respect
to the distribution of initial states. The constraints 4.4.1b and 4.4.1c simply express the fact that
the leader’s stochastic policy must be a valid probability distribution over actions al in each state s.
Similarly, constraints 4.4.1d and 4.4.1e ensure that the follower’s policy is deterministic, choosing
exactly one action in each state s. Constraints 4.4.1f are crucial, as they are used to compute the
follower best response φ to a leader’s policy π . These constraints contain two inequalities. The
first represents the requirement that the follower value VF(s) in state s maximizes his expected
utility over all possible choices a f he can make in this state. The second constraint ensures that if
an action a f is chosen by φ in state s, VF(s) exactly equals the follower’s expected utility in that
state; if φ(a f |s) = 0, on the other hand, this constraint has no force, since the right-hand-side is just
a large constant. Finally, constraints 4.4.1g are used to compute the leader’s expected utility, given
a follower best response. Thus, when the follower chooses a f , the constraint on the right-hand-side
will bind, and the leader’s utility must therefore equal the expected utility when follower plays a f .
When φ(a f |s) = 0, on the other hand, the constraint has no force.

While the MINLP gives us an exact formulation for computing SSE in general SSGs, the fact
that constraints 4.4.1f and 4.4.1g are not convex, together with the integrality requirement on φ ,
make it relatively impractical, at least given state-of-the-art MINLP solution methods. Below we
therefore seek a principled approximation by discretizing the leader’s continuous decision space.

4.4.2 MILP Approximation

What makes the MINLP formulation above difficult is the combination of integer variables, and
the non-convex interaction between continuous variables π and VF in one case (constraints 4.4.1f),
and π and VL in another (constraints 4.4.1g). If at least one of these variables is binary, we can
linearize these constraints using McCormick inequalities [79]. To enable the application of this
technique, we discretize the probabilities which the leader’s policy can use.

Let pk denote a kth probability value and let K = {1, . . . ,K} be the index set of discrete
probability values we use. Define binary variables dal

s,k which equal 1 if and only if π(al|s) = pk,
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and 0 otherwise. We can then write π(al|s) as π(al|s) = ∑k∈K pkdal
s,k for all s ∈ S and al ∈ AL.

Next, let w
ala f
s,k = dal

s,k ∑s′∈S T
ala f

ss′ VL(s′) for the leader, and let z
ala f
s,k be defined analogously for the

follower. The key is that we can represent these equality constraints by the following equivalent
McCormick inequalities, which we require to hold for all s ∈ S, al ∈ AL, a f ∈ AF , and k ∈K :

w
ala f
s,k ≥ ∑

s′∈S
T

ala f
ss′ VL(s′)−Z(1−dal

s,k) (4.4.2a)

w
ala f
s,k ≤ ∑

s′∈S
T

ala f
ss′ VL(s′)+Z(1−dal

s,k) (4.4.2b)

−Zdal
s,k ≤ w

ala f
s,k ≤ Zdal

s,k, (4.4.2c)

and analogously for z
ala f
s,k . Redefine follower’s expected utility as R̃F(s,d,a f ,k) =∑al∈AL ∑k∈K pk

(
RF(s,al,a f )d

al
s,k− γFz

ala f
s,k

)
,

with leader’s expected utility R̃L(s,d,a f ,k) redefined similarly. The full MILP formulation is then

max
φ ,VL,VF ,z,w,d

∑
s∈S

β (s)VL(s) (4.4.3a)

subject to :
dal

s,k ∈ {0,1} ∀s,al,k (4.4.3b)

∑
k∈K

dal
s,k = 1 ∀s,al (4.4.3c)

∑
al∈AL

∑
k

pkdal
s,k = 1 ∀s (4.4.3d)

0≤VF(s)− R̃F(s,d,a f ,k)≤ (1−φ(a f |s))Z∀s,a f (4.4.3e)
VL(s)− R̃L(s,d,a f ,k)≤ (1−φ(a f |s))Z ∀s,a f (4.4.3f)
constraints 4.4.1d−4.4.1e, 4.4.2a−4.4.2c.

Constraints 4.4.3d, 4.4.3e, and 4.4.3f are direct analogs of constraints 4.4.1c, 4.4.1f, and 4.4.1g
respectively. Constraints 4.4.3c ensure that exactly one probability level k ∈K is chosen.

4.4.3 A Bound on the Discretization Error

The MILP approximation above implicitly assumes that given a sufficiently fine discretization of
the unit interval we can obtain an arbitrarily good approximation of SSE. In this section we obtain
this result formally. First, we address why it is not in an obvious way related to the impact of dis-
cretization in the context of Nash equilibria. Consider a mixed Nash equilibrium s∗ of an arbitrary
normal form game with a utility function ui(·) for each player i (extended to mixed strategies in a
standard way), and suppose that we restrict players to choose a strategy that takes discrete proba-
bility values. Now, for every player i, let ŝi be the closest point to s∗i in the restricted strategy space.
Since the utility function is continuous, this implies that each player’s possible gain from deviating
from ŝi to s∗i is small when all others play ŝ−i, ensuring that finer discretizations lead to better
Nash equilibrium approximation. The problem that arises in approximating an SSE is that we do
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not keep the follower’s decision fixed when considering small changes to the leader’s strategy; in-
stead, we allow the follower to always optimally respond. In this case, the leader’s expected utility
can be discontinuous, since small changes in his strategy can lead to jumps in the optimal strategies
of the follower if the follower is originally indifferent between multiple actions (a common artifact
of SSE solutions). Thus, the proof of the discretization error bound is somewhat subtle.

First, we state the main result, which applies to all finite-action Stackelberg games, and then
obtain a corollary which applies this result to our setting of discounted infinite-horizon stochastic
games. Suppose that L and F are the finite sets of pure strategies of the leader and follower, respec-
tively. Let uL(l, f ) be the leader’s utility function when the leader plays l ∈ L and the follower plays
f ∈ F , and suppose that X is the set of probability distributions over L (leader’s mixed strategies),
with x ∈ X a particular mixed strategy with x f the probability of playing a pure strategy f ∈ F . Let
P = {p1, . . . , pK} and let ε(P) = supx∈X max f mink∈K |pk− x f |. Suppose that (x∗, f BR(x∗)) is a
SSE of the Stackelberg game in which the leader can commit to an arbitrary mixed strategy x ∈ X .
Let U(x) be the leader’s expected utility when he commits to x ∈ X .

Theorem 4.4.1. Let (xP , f BR(xP)) be an SSE where the leader’s strategy x is restricted to P .
Then

U(xP)≥U(x∗)− ε(P)max
f∈F

∑
l
|uL(l, f )|.

To prove this theorem, we leverage a particular technique for computing a SSE in finite-action
games: one using multiple linear programs, one for each follower strategy f ∈ F [40]. Each of
these linear programs (LP) has the general form

max
x ∑

l∈L
xluL(l, f )

s.t.
x ∈D( f ),

where D( f ) is the constraint set which includes the restriction x∈X and requires that the follower’s
choice f is his optimal response to x. To compute the SSE, one then takes the optimal solution
with the best value over the LPs for all f ∈ F ; the corresponding f is the follower’s best response.
Salient to us will be a restricted version of these LPs, where we replace D( f ) with Dε( f ), where
the latter requires, in addition, that leader’s mixed strategies are restricted to P (note that Dε( f )⊆
D( f )). Let us use the notation P( f ) to refer to the linear program above, and Pε( f ) to refer to the
linear program with the restricted constraint set Dε( f ). We also use Pε to refer to the problem of
computing the SSE in the restricted, discrete, setting.

We begin rather abstractly, by considering a pair of mathematical programs, P1 and P2, sharing
identical linear objective functions cT x. Suppose that X is the set of feasible solutions to P1, while
Y is the feasible set of P2, and Y ⊆ X ⊆ IRm. Let OPT1 be the optimal value of P1.

Lemma 4.4.2. Suppose that ∀x ∈ X there is y ∈ Y such that ‖x− y‖∞ ≤ ε . Let x̂ be an optimal
solution to P2. Then x̂ is feasible for P1 and cT x̂≥ OPT1− ε ∑i |ci|.
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Proof. Proof. Feasibility is trivial since Y ⊆ X . Consider an arbitrary optimal solution x∗ of P1.
Let x̃ ∈ Y be such that ‖x∗− x̃‖∞ ≤ ε; such x̃ must exist by the condition in the statement of the
lemma. Then

cT x∗− cT x̃ = ∑
i

ci(x∗i − x̃i)≤ |∑
i

ci(x∗i − x̃i)|

≤∑
i
|ci||x∗i − x̃i| ≤ ε ∑

i
|ci|,

where the last inequality comes from ‖x∗− x̃‖∞ ≤ ε . Finally, since x̂ is an optimal solution of P2
and x̃ is P2 feasible, cT x̂≥ cT x̃≥ cT x∗− ε ∑i |ci|= OPT1− ε ∑i |ci|.

We can apply this Lemma directly to show that for a given follower action f , solutions to the
corresponding linear program with discrete commitment, Pε

f , become arbitrarily close to optimal
solutions (in terms of objective value) of the unrestricted program Pf .

Corollary 4.4.3. Let OPT ( f ) be the optimal value of P( f ). Suppose that xε( f ) is an optimal
solution to Pε( f ). Then xε is feasible in P( f ) and

∑
l∈L

xε
l uL(l, f )≥ OPT ( f )− ε ∑

l
|uL(l, f )|.

We now have all the necessary building blocks for the proof.

Proof. Proof of Theorem 4.4.1 Let x̂ be a SSE strategy for the leader in the restricted, discrete,
version of the Stackelberg commitment problem, Pε . Let x∗ be the leader’s SSE strategy in the
unrestricted Stackelberg game and let f ∗ be the corresponding optimal action for the follower
(equivalently, the corresponding P( f ) which x∗ solves). Letting x̂ f ∗ be the optimal solution to the
restricted LP P( f ∗)ε , we apply Corollary 4.4.3 to get

∑
l∈L

x̂ f ∗uL(l, f ∗)≥ OPT ( f )− ε ∑
l
|uL(l, f ∗)|

=U(x∗)− ε ∑
l
|uL(l, f ∗)|,

where the last equality is due to the fact that x∗ is both an optimal solution to Stackelberg commit-
ment, and an optimal solution to P( f ∗).

Since x̂ is optimal for the restricted commitment problem, and letting f̂ be the corresponding
follower strategy,

U(x̂) = ∑
l∈L

x̂luL(l, f̂ )≥∑
l∈L

x̂ f ∗uL(l, f ∗)

≥U(x∗)− ε ∑
l
|uL(l, f ∗)|

≥U(x∗)− ε max
f∈F

∑
l
|uL(l, f )|.
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The result in Theorem 4.4.1 pertains to general finite-action Stackelberg games. Here, we are
interested in SSGs, where pure strategies of the leader and follower have, in general, arbitrarily
infinite sequences of decisions. However, if we restrict attention to Markov stationary policies
for the leader, we guarantee that the consideration set of the leader is finite, allowing us to apply
Theorem 4.4.1.

Corollary 4.4.4. In any SSG in which the leader is restricted to Markov stationary policies, the
leader’s expected utility in a SSE can be approximated arbitrarily well using discretized policies.

4.4.4 Comparison Between MINLP and MILP

Above we asserted that the MINLP formulation is likely intractable given state-of-the-art solvers
as motivation for introducing a discretized MILP approximation. We now support this assertion
experimentally.

For the experimental comparison between the two formulations, we generate random stochastic
games as follows. We fix the number of leader and follower actions to 2 per state and the discount
factors to γL = γF = 0.95. We also restricted the payoffs of both players to depend only on state s∈
S, but otherwise generated them uniformly at random from the unit interval, i.i.d. for each player
and state. Moreover, we generated the transition function by first restricting state transitions to be
non-zero on a predefined graph between states, and generated an edge from each s to another s′

with probability p = 0.6. Conditional on there being an edge from s to s′, the transition probability
for each action tuple (al,a f ) was chosen uniformly at random from the unit interval.

Exp Utility Running Time (s)
MINLP (5 states) 9.83 375.26
MILP (5 states) 10.16 5.28

MINLP (6 states) 9.64 1963.53
MILP (6 states) 11.26 24.85

Table 4.1. Comparison between MINLP and MILP (K = 5),
based on 100 random problem instances.

Table 4.1 compares the MILP formulation (solved using CPLEX) and MINLP (solved using
KNITRO with 10 random restarts). The contrast is quite stark. First, even though MILP offers
only an approximate solution, the actual solutions it produces are better than those that a state-
of-the-art solver gets using MINLP. Moreover, MILP (using CPLEX) is more than 70 times faster
when there are 5 states and nearly 80 times faster with 6 states. Finally, while MILP solved every
instance generated, MINLP successfully found a feasible solution in only 80% of instances.
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4.5 Extended Example: Patrolling the Newark Bay and New
York Harbor

Consider again the example of patrolling the Newark Bay and New York Harbor under the geo-
graphic constraints shown in Figure 4.1. We now study the structure of defense policies in a variant
of this patrolling example problem that are both deviations from zero-sum games. Our examples
are motivated by some basic reasons for the significance of departure from zero-sum games in
security settings, despite the fact that interests of players are clearly adversarial. In both variants
we therefore assume that the actual values of targets to both players are identical and as shown in
the figure.

In the first example, the sole departure from strict competitiveness is in allowing the defender
and attacker to disagree about the way they discount future payoffs. Specifically, keeping every-
thing else equal, we systematically vary γL and γF . Figure 4.3 shows the most relevant portion of

!L 

!F 

!"#$

!" !"

#"

!"#$

!"%&$

!"%&$

!"'''$

!"'''$

!" !"

#"

!" !"

#"

!" !"

#"

!" !"

#"

!" !"

#"

!" !"

#"

!" !"

#"

!" !"

#"

Figure 4.3. Varying the discount factors γL and γF .

the defender’s policy for the cross-product of three values for γL and γF : 0.1, corresponding to an
extremely impatient player, 0.75, a moderate level of patience, and 0.999, a nearly extreme level
of patience. In this figure, as well as the one below, the thickness of an edge roughly corresponds
to the probability of the associated defense move.

We can observe two important patterns. The first is that the defender’s discount factor plays
little role in determining his policy. The second is that as the attacker becomes increasingly patient,
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the defender spends more time at base (the bottom target), even though it has no value to either.
This last result may seem quite surprising at first. Recall from Figure 4.1, however, that the base is
connected to both of the high-value targets, but these are not connected to each other. As soon as
the defender commits to one of these, the attacker obtains the highest payoff by attacking the other.
The defender will therefore profit by keeping the attacker guessing as long as possible, staying at
base, but always with a threat to cover a high-value target.

Our second example maintains the zero-sum assumption on payoffs, and even lets the discount
factors be identical for both players. This example is motivated by a basic reason for the sig-
nificance of departure from zero-sum games in security settings, despite the fact that interests of
players are clearly adversarial: we assume that the actual values of targets to both players are iden-
tical and as shown in the figure. The departure from strict competitiveness comes from allowing
the attacker (but not the defender) to be risk averse.

To model risk aversion, we filter the payoffs through the exponential function f (u) = 1−e−αu,
where u is the original payoff. This function is well known to uniquely satisfy the property of
constant absolute risk aversion (CARA) [56]. The lone parameter, α , controls the degree of risk
aversion, with higher α implying more risk averse preferences.
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Figure 4.4. Varying discount factors γ = γL = γF and the degree
of risk aversion α .

In Figure 4.4 we report the relevant portion of the defense policy in the cross-product space of
three discount factor values (0.1, 0.75, and 0.999) and three values of risk aversion (risk neutral,
and α = 1 and 5). We can make two qualitative observations. First, as the attacker becomes
increasingly risk averse, the entropy of the defender’s policy increases (i.e., the defender patrols
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a greater number of targets with positive probability). This observation is quite intuitive: if the
attacker is risk averse, the defender can profitably increase the attacker’s uncertainty, even beyond
what would be optimal with a risk neutral attacker. Second, the impact of risk aversion diminishes
as the players become increasingly patient. This is simply because a patient attacker is willing to
wait a longer time before an attack, biding his time until the defender commits to one of the two
most valued targets; this in turn reduces his exposure to risk, since he will wait to attack only when
it is safe.

4.6 Optimal Adversarial Patrolling on Networks

Adversarial patrolling games are an important special case of SSGs; indeed, these provide, per-
haps, the best practical motivation for studying SSGs. We begin by considering the problem of
computing Markov stationary Stackelberg equilibria in general-sum APGs (specializing the corre-
sponding formulation for SSGs), and then proceed to focus on a further specialization to zero-sum
APGs, for which we can obtain far more scalable formulations.

4.6.1 A MINLP Formulation for General-Sum APGs

While we have already provided a formulation for computing Markov stationary policies in general
SSGs, we now offer a specialized formulation for APGs which is somewhat (though not very much)
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more scalable than the general version.

max
π,va,vd ,a,b

vd
0 (4.6.1a)

πi j ≥ 0 (4.6.1b)

∑
j

π j = 1 (4.6.1c)

πi j ≤ Ai j (4.6.1d)
bi ∈ {0,1} (4.6.1e)
0≤ va

i −Ra
i ≤ biZ (4.6.1f)

0≤ va
i − γa ∑

j
πi jva

j ≤ (1−bi)Z (4.6.1g)

vd
i −Rd

i ≤ biZ (4.6.1h)

vd
i − γd ∑

j
πi jvd

j ≤ (1−bi)Z (4.6.1i)

ai j ∈ {0,1} (4.6.1j)

∑
j

ai j = 1 (4.6.1k)

0≤ Ra
i − (1−πi j)Uu

a ( j)−πi jUc
a ( j)≤ (1−ai j)Z (4.6.1l)

Rd
i − (1−πi j)Uu

d ( j)−πi jUc
d ( j)≤ (1−ai j)Z. (4.6.1m)

In the MINLP 4.6.1, bi is an integer variable used to determine whether the attacker attacks or
waits upon seeing state i, and ai j are integer variables that determine which target the attacker
would attack if he chose to do so upon seeing state i. Constraints 4.6.1f and 4.6.1g correspond
to attacker utility of attacking and waiting in state i, respectively. These compute the expected
value of the attacker in state i. Constraints 4.6.1h and 4.6.1i subsequently compute the defender
value in state i using attacker decision bi. Constraint 4.6.1l computes which target is attacked by
the attacker (if he chooses to do so) in state i, and the corresponding attacker expected utility Ra

i .
Constraint 4.6.1m computes expected defender utility if attacker chooses to attack in state i.

Since the MINLP for general-sum APGs is non-convex, it is clearly impractical, and, just as
before, we can obtain a MILP approximation by discretizing the probabilities, just as we had done
above. While certain settings truly warrant a general-sum model, however, in adversarial situations
it is quite natural to consider a zero-sum restriction, which we do next.

4.6.2 Zero-Sum APGs: A Baseline Formulation

Since an APG is a special case of a stochastic game, and since a Stackelberg equilibrium is equiv-
alent to a Nash equilibrium in zero-sum games, we can directly lift the bilinear programming
formulation for computing Nash equilibria for two-player zero-sum games from [49], specializing
it to our setting. One minor change to their formulation that becomes crucial as we consider alter-
native models below is to represent the constraints on the defender’s action imposed by the graph
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G as a set of linear constraints in the formulation. Note also that in a zero-sum formulation, the
discount factors of both the attacker and defender must be identical. We let δ = γa = γd be the
common discount factor. Recalling that vi represents (and, in this case, computes) the expected at-
tacker value of starting in state i, we can formulate the defender’s problem as the following bilinear
program:

min
π,v ∑

i
vi (4.6.2a)

s.t. :
πi j ≥ 0 ∀ i, j ∈ T (4.6.2b)

∑
j

πi j = 1 ∀ i ∈ T (4.6.2c)

πi j ≤ Ai j ∀ i, j ∈ T (4.6.2d)
vi ≥ (1−πi j)Uu

a ( j)+πi jUc
a ( j) ∀ i, j ∈ T (4.6.2e)

vi ≥ δ ∑
j

πi jv j ∀i ∈ T. (4.6.2f)

Constraints 4.6.2b and 4.6.2c simply constrain defender policy to be a valid probability distribu-
tion, and constraint 4.6.2d restricts that defender’s moves must obey the specified graph. The key
constraints 4.6.2e and 4.6.2f are easiest to think about if we fix defender policy π and just con-
sider the MDP faced by the attacker. The right-hand-side of Constraint 4.6.2e corresponds to the
expected utility of attacking immediately, while the right-hand-side of Constraint 4.6.2f is the ex-
pected value of waiting (immediate reward is 0 for a waiting action). The constraints then arise
because the state vi must be the expected utility of making the best action choice, and minimizing
the objective ensures that these values bind to some action in every state.

An important observation about the NLP formulation is that it only involves n non-linear con-
straints, far fewer than a NLP formulation to compute equilibria in general zero-sum stochastic
games. As we demonstrate below, this NLP therefore scales extremely well with the number of
targets, in large part because, additionally, every local optimum is a global optimum [49]. Nev-
ertheless, we note that we can, again, transform this problem into a MILP approximation by dis-
cretizing the defense probabilities.

4.6.3 Extensions to the Basic Model

We now consider several extensions to the basic model that capture several elements that reflect re-
alistic patrolling settings, but are not at the moment captured. In what follows, we restrict attention
to zero-sum APG settings, although analogous extensions can be directly lifted to the general-sum
case as well.
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Defender with Multiple Resources

Our treatment of APGs thus far assumed that the defender has only a single resource to patrol with
(e.g., USCG has only one boat). We now show that our formulation can be naturally generalized to
allow the defender an arbitrary number of resources. First, rather than working with targets directly,
we must work with coverage vectors, which we now identify with states of the corresponding
stochastic game. Thus, a state (or coverage vector) s is a binary vector with si = 1 if and only
if target i is covered by the defender. We let r be the number of defender resources, so that
any valid s has at most r 1’s; we let S denote the set of all valid states (coverage vectors). The
attacker can observe the current coverage vector s of the defender, while the defender’s decision
is the probability πss′ of moving to a new coverage vector s′ starting at s. We also let vs be the
expected discounted attacker utility when he observes the coverage vector s. As before, the graph
with adjacency matrix A constrains defender moves between targets and, consequently, there are
constraints between feasible moves between states induced by A. Let Bss′ = 1 if and only if s′ is a
valid transition for the defender starting with a coverage vector s. Below, we show how to obtain
this matrix given A. Finally, attacker utility function must now be defined with respect to coverage
vectors s, as well as attacked targets j. Let Ua(s, j) be the utility the attacker obtains from attacking
j if the defense coverage vector is s. The full NLP formulation of the resulting problem is:

min
π,v ∑

s
vs (4.6.3a)

s.t. :
πss′ ≥ 0 ∀ s,s′ ∈ S (4.6.3b)

∑
s′

πss′ = 1 ∀ s ∈ S (4.6.3c)

πss′ ≤ Bss′ ∀ s,s′ ∈ S (4.6.3d)

vs ≥∑
s′

πss′Ua(s′, j) ∀ s ∈ S, j ∈ T. (4.6.3e)

vs ≥ δ ∑
s′

πss′vs′ ∀s ∈ S. (4.6.3f)

As we can see, the NLP 4.6.3 is quite similar to the formulation we introduced above. The key
differences are the derivation of the state adjacency matrix B from target adjacencies A, as well as
utilities Ua(s, j) based on Uc

a ( j) and Uu
a ( j). Since the latter question is simpler, let us tackle it first.

Suppose that s is a coverage vector and attacker attacks target j. Then Ua(s, j) = Uc
a ( j) if s j = 1

and Ua(s, j) =Uu
a ( j) otherwise. To obtain the matrix B, consider a pair of coverage vectors s and

s′, and let Ts be the set of covered targets under s and Ts′ the set of targets covered under s′. Next,
let Gss′ = {Ts,Ts′,E} be a bipartite graph with a directed edge (i, j)∈ E if and only if i∈ Ts, j ∈ Ts′ ,
and Ai j = 1. The following proposition is then relatively direct.

Proposition 4.6.1. For each s,s′ ∈ S, Bss′ = 1 if and only if Gss′ has a perfect matching.

Proof. Proof. For one direction, suppose that Gss′ has a perfect matching. This means that every
covered target in s is matched to exactly one covered target in s′, which implies that there is
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a feasible move for a resource situated at each target covered under s to s′ and, since this is a
matching, no two resources move to the same location. For the other direction, suppose that the
maximum matching is not a perfect matching. Since this matching matches the largest number of
covered targets, it must be that under every possible matching there exists an infeasible move for
some resource.

The convenience of this result is that the existence of a perfect matching can be checked in time
polynomial in the number of resources r [47].

Our use of coverage vectors when the defender has multiple resources contrasts with the ap-
proach offered by [21] in a similar context for undiscounted games, who instead identify “states”
with vectors c = {c1, . . . ,cr}, where cd specifies the target covered by a defender d. Observe that
the set all possible states c in the Basilico et al. formulation is therefore the set of all r-length
permutations of targets. In contrast, our formulation only considers r-length combinations. Con-
sequently, each coverage vector s corresponds to r! distinct states c. Our formulation is therefore
exponentially more compact.

Attacks Taking Multiple Time Steps

An important assumption in the baseline formulation above is that once the attacker chooses to
attack, the actual attack commences on the next time step. We now consider a generalization
in which attacks take an arbitrary number of steps h ≥ 0 to unfold. For clarity, we extend only
the baseline model here, assuming that the defender has only a single defense resource. Observe
that stationarity in the space of targets no longer suffices in general. To see this, consider a simple
example with 3 targets (1, 2, and 3), and suppose that there are edges between 1 and 2, and between
2 and 3 only. Finally, suppose that h = 4 and the attacker is infinitely patient. Then a nonstationary
policy in which the defender moves from 1 to 2 to 3 to 2 to 1 is optimal, since the attacker will
always be caught. On the other hand, no stationary policy exists which guarantees that we always
catch the attacker: if the defender is at target 2, and the policy is deterministic, he will necessarily
leave some target uncovered; if the policy at 2 is stochastic, there is strictly positive probability
that the attacker will not be caught.2

That it no longer suffices to consider policies which only condition on the previous defender
move is unfortunate: keeping track of h-step histories, which is now required, means that our
formulations will have O((n+ 1)h) states (recall that n is the number of targets), becoming in-
tractable even when n and h are relatively small. A natural question is therefore whether we can
obtain good approximations considering relatively short histories of length K < h. We offer below
a formulation which can be tuned using an arbitrary choice of K, for a fixed (and given) h.

Let s = {i1, . . . , iK} be a sequence of K defender moves, and let πs, j denote the probability of
moving to j given “current state” s, that is, given the fact that the defender previously followed
a sequence s. Let S be the set of all feasible sequences of moves of length K (that is, sequences,

2We thank Zhengyu Yin for suggesting this example.
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such that Aik,ik+1 = 1 for all k). Similarly, expected value of the attacker is now a function of state,
and we denote it by vs. Let M be a three-dimensional matrix, with Ms, j,s′ = 1 iff moving to j after
a history vector s results in a new history s′. Finally, let As j = 1 iff it is feasible for the defender
to move to j when his previous sequence was s. As j can be computed simply by checking that
AiK j = 1, where iK is the last visited target in s. The full NLP formulation for this problem is then

min
π,v,α ∑

s
vs (4.6.4a)

s.t. :
πs, j ≥ 0 ∀ j ∈ T,s ∈ S (4.6.4b)

∑
j

πs, j = 1 ∀ j ∈ T,s ∈ S (4.6.4c)

πs, j ≤ Ai j ∀ j ∈ T,s ∈ S (4.6.4d)

α
1
s, j = πs, j ∀ j ∈ T,s ∈ S (4.6.4e)

α
t
s, j = ∑

k 6= j
πs,k ∑

z∈S
Ms,k,zα

t−1
z, j ∀ j ∈ T,s ∈ S, t ≤ h (4.6.4f)

vs ≥ (1−
h

∑
t=1

α
t
s, j)U

u
j +

h

∑
t=1

α
t
s, jU

c
j ∀ j ∈ T,s ∈ S (4.6.4g)

vs ≥ δ ∑
j

πs, j ∑
z∈S

Ms, j,zvz ∀ j ∈ T,s ∈ S. (4.6.4h)

Here, α t
s,, j is the probability that a target j will be visited by the defender in exactly t time steps

without passing through j in the process, given history s; it is computed using Constraints 4.6.4e
and 4.6.4f. Constraints 4.6.4g compute the attacker’s utility if he chooses to attack, while Con-
straints 4.6.4h compute the expected utility of waiting.

4.7 Experiments: Patrolling on Exogenous Graphs

In our experimental studies below we use a somewhat simplified model in which Uc
a (i) = 0 for all

targets i ∈ T . We generate the values of successful attacks Uu
a (i) i.i.d. from a uniform distribution

on a unit interval. Throughout, we use δ = 0.95, except where specified otherwise.3 We use
well-known generative models for networks to generate random instances of graphs over which
the defender patrols. The first is an Erdos-Renyi model [84] under which every directed link is
made with a specified and fixed probability p; we refer to this model by ER(p), or simply ER. The
second is Preferential Attachment [84], which adds nodes in a fixed sequence, starting from an
arbitrary seed graph with at least two vertices. Each node i is attached to m others stochastically
(unless i≤m, in which case it is connected to all preceding nodes), with probability of connecting
to a node j proportional to the degree of j, d j. In a generalized version of this model that we

3We considered other discount factors as well, but this one strikes the right balance: it creates interesting tradeoffs
between attacking and waiting, and yet creates a setting that is significantly different from past work which only
considers δ = 1. We study the impact of the discount factor in Section 4.7.5.
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consider below, connection probabilities are (d j)
γ , such that when γ = 0 we recover (roughly) the

Erdos-Renyi model, γ = 1 recovers the “standard” PA model, and large values of γ correspond to
highly inhomogeneous degree distributions. Finally, we also consider simple Cycles.

When the networks are relatively sparse (like a Cycle), and the number of targets large, the
attacker can usually attack the most valuable target at time 0, and not face the tradeoff between
the value of time and attack utility that we are trying to model. In our experiments, we therefore
connected the starting target 0 to every other target, with network topology effective only on the rest
of the targets. We may think of target 0 as a base, and the rest of the targets as initial deployments,
which are unconstrained. Since target 0 is only a nominal target, we additionally set its utility to
the attacker Uu

a (0) to be 0.

All computational experiments were performed on a 64 bit Linux 2.6.18-164.el5 computer with
96 GB of RAM and two quad-core hyperthreaded Intel Xeon 2.93 GHz processors. We did not
make use of any parallel or multi-threading capabilities, restricting a solver to a single thread, when
relevant. Mixed integer linear programs were solved using CPLEX version 12.2, mixed integer
non-linear programs were solved using KNITRO version 7.0.0, and we used IPOPT version 3.9.3
to solve non-linear (non-integer) programs in most cases (the one exception is identified below,
where we also used KNITRO).

The results we report are based on 100 samples from both the attacker utility distribution and
(when applicable) from the network generation model. Throughout, we report 95% confidence
intervals, where relevant.

4.7.1 Comparison to Basilico et al.

[19] presented a multiple math programming approach to adversarial patrolling for a setting very
similar to ours. By setting δ = 1, and reformulating the algorithm in Basilico et al. in a zero-sum
setting and with a single-step attack, we can make a direct comparison between our algorithm
(using the NLP formulation) and theirs. The results, shown in Figure 4.5 (left), suggest that our
approach yields significantly better solutions. The difference becomes less important as the number
of targets increases: since in both approaches we only allow for one defender resource (defender
can protect at most a single target at a time), and we assign relative values to targets uniformly
randomly, on sparse graphs the attacker becomes increasingly likely to get the target he wants
when the discount factor is 1, since the defender is eventually at least two hops away from the
most valuable target.

It may be quite puzzling that, in a sense, our approach yields solutions better to Basilico et al.,
even “playing on their turf”, that is, having an attacker that is infinitely patient. We now proceed to
show specifically why the approach offered by Basilico et al. is suboptimal; to our knowledge, we
are the first to offer this analysis of what is currently the state-of-the-art (all the current approaches
build on the same core framework).
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Figure 4.5. Left: Comparison between our NLP formulation and
that developed by Basilico et al. Right: MILP objective value as a
function of granularity of discretization. The graph is ER(0.1) in
both cases.

Suboptimality of Basilico et al.

Suboptimality of Attacker Policies. One crucial assumption made by [19] and subsequent pa-
pers is that when attacker does not discount rewards (i.e., δ = 1) attacker policies can take the
compact form of enter when( j,i), meaning that the attack commences if and only if the defender is
observed at target i, in which case j is attacked, and wait otherwise. We now demonstrate that this
restriction is, in general, suboptimal for the attacker. Consider Figure 4.6. The labels on nodes are
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Figure 4.6. Example of suboptimality of restricted attacker poli-
cies.

node numbers. The labels over the directed edges correspond to defender transition probabilities
(based on the defender policy, constrained by the underlying graph). The number next to a node
corresponds to its value (loss to the defender if that node is successfully attacked).
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Now, consider the optimal unrestricted attacker policy, assuming it takes a single step for the
attacker to attack. Since nodes 2 and 3 have the highest value and are not directly connected,
the attacker will attain a utility of 100 with probability 1 by attacking 2 if the defender is at 3,
attacking 3 if the defender is observed at 2, and waiting otherwise. Next, suppose we restrict the
attacker to a policy of the form enter when( j,i), thereby restricting him to attack only upon seeing
the defender at a particular target, and no other. Clearly, it suffices to attack either 2 or 3, so we
can easily enumerate all possibilities here. It is then easy to see that the expected utility of the
attacker, assuming the defender starts at target 1 is 50 no matter which defender location triggers
an attack. Thus, optimal attacker policy is twice the approximation. In fact, it is easy to see that
we can extend this example to make the approximation ration arbitrarily large (and O(n)).

Suboptimality of Defender Policies. The proposed approach by Basilico et al. at computing
optimal Stackelberg commitment in adversarial patrolling settings is by making use of multiple
NLPs, each for a specific enter when( j,i) strategy by the attacker. In each NLP, a set of constraints
are imposed that the enter when( j,i) has a higher utility than all n2 enter when( j′,i′) alternatives.
We now demonstrate that this approach is suboptimal. At the intuitive level, what is missing is
the fact that some alternatives considered in a given NLP may actually not be reachable given the
initial distribution over defended targets. Consequently, the NLPs may be overconstrained and, at
times, appear infeasible.

To begin, assume that we have a zero-sum game, and attacks take a single time step to unfold.
Suppose that the defender starts at target 1. Further, assume that the attacker gets 0 if he waits
or gets caught attacking, and the value of an attacked target if he does not get caught. Moreover,
assume that attacker optimal policies are of the form enter when( j,i) (ignoring the complications
we identified in the previous section). One fortunate aspect of these assumptions is that now every
NLP formulated by Basilico et al. reduces to a linear program. Specifically, suppose that we
are considering an optimal decision for the defender under the constraint that attacker follows a
strategy enter when(r,s) for a specific r and s. Using our notation defined above, the linear program
optimizing defender’s policy then becomes

min
π

(1−πs,r)ur s.t. :

πi j ≥ 0 ∀ i, j ∈ T (4.7.1a)

∑
j

πi j = 1 ∀ i ∈ T (4.7.1b)

πi j ≤ Ai j ∀ i, j ∈ T (4.7.1c)
(1−πs,r)ur ≥ (1−πz,w)uw ∀ z,w ∈ T. (4.7.1d)

(4.7.1e)

We are primarily interested here in Constraints 4.7.1d, which are intended to represent attacker’s
preference for enter when(r,s) compared to other alternatives, as in standard multiple-LP ap-
proaches to solving one-shot Stackelberg games. The main problem with these constraints as
formulated is that they do not correctly compute expected utility accounting for both the initial
distribution of defended over the targets, as well as defender’s policy. As we are about to show,
this results in an overconstrained problem.
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Consider the example in Figure 4.7. This figure shows constraints on the defender policies (the
graph), as well as the values of each node (numbers next to nodes). Node labels are just identifiers
of targets. First, we observe that the optimal strategy of the defender yields the attacker expected
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Figure 4.7. Example of suboptimality of defender policies in the
Basilico et al. multiple-NLP formulation.

utility of 0.85. Consider the defender strategy with π1,2 = π1,4 = 0, π1,3 = 1, and π3,1 = 0, the
attacker’s best response is to attack either 2 or 4, and the attacker’s utility is 0.85. Now, note that
putting positive probability on either 2 or 4 cannot be a part of an optimal defender strategy. If we
suppose that π1,2 > 0, for example, the attacker’s expected utility will clearly be strictly greater
than 0.85, since with this probability he will attack the more valuable target. Thus, an optimal
defense policy would have π1,2 = π1,4 = 0. It then follows that the previous defender policy is in
fact optimal, with attacker utility 0.85.

Now, consider an LP solved for the attacker strategy enter when(2,1). This means that Con-
straints 4.7.1d become

0.85(1−π1,2)≥ uw(1−πz,w) ∀ z,w.

Next, consider z = 4 and w = 3. Since there is no edge between these targets, and, consequently,
when the defender is at target 4 he cannot visit 3 in a single step, the constraint becomes

0.85(1−π1,2)≥ 1.

Since 1 > 0.85, this constraint, and therefore the resulting LP, is infeasible. Note, however, that
if π1,4 = 0, this constraint is in fact irrelevant, as target 4 will never be reached by the defender!
In an optimal formulation, this constraint should therefore not be present. Precisely the same
argument can be made for any LP where attacker strategy involves attacking either target 2 or 4.
Consequently, the only feasible LPs will involve the attacker attacking target 3. Moreover, since
z = 4 and w = 3 are always available alternatives, it must be that the attacker’s expected utility for
any optimal policy of a feasible LP is 1, which is higher than the optimal utility 0.85. Notice that
by appropriately scaling the node values, we can make this difference arbitrarily large.
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In a recent paper, [20] attempted to eliminate the problem noted here by checking whether
the resulting “optimal” policy is consistent, in the sense that the observed target which triggers an
attack, that is, x in an attacker’s best response enter when(t,x), must be reachable if the defender
follows this policy. Their meta-algorithm then solves the multiple-NLP formulation for different
subsets of targets, and returns the optimal consistent solution. We now demonstrate that our coun-
terexample yields a consistent solution and, consequently, even the meta-algorithm of [20] is still
arbitrarily suboptimal.

Consider one particular “optimal” policy solved for the above example: the one to which the
attacker’s best response is enter when(3,1). One of the constraints of the corresponding LP is

(1−π1,3)≥ (1−π4,3) = 1,

which implies that π1,3 = 0 in an “optimal” policy. The key observation is that this policy is
consistent, since target 1 is visited by the defender w.p. 1, as it is the defender’s starting point.

4.7.2 MILP Discretization

The size and, consequently, complexity of the MILP depends greatly on the fineness of discretiza-
tion of the probability interval. While we can, perhaps, presume that a fine enough discretization
would get us close to an optimal solution, computationally we cannot in all likelihood afford a very
fine discretization. An important question, therefore, is: how much is enough? We address this
question by considering a sequence of increasingly fine discretizations, starting at L = 1 (p0 = 0
and p1 = 1) and going up to L = 50 (pl ∈ {0,0.02,0.04, . . . ,1}). To ensure that whatever we find
is not particular to a given setting, we also vary the number of targets between 5 and 50, as well as
the network topology (Cycle, Erdos-Renyi, and Preferential Attachment).

The results, shown in Figure 4.5 (right), are quite reassuring: L = 10 seems to suffice across all
the settings shown, and these results are also consistent with those obtained for Cycle and PA(2,1)
networks. From this point on, results based on a MILP formulation use L = 10, unless otherwise
specified.

4.7.3 Comparison of the Alternative Formulations

We offered several alternative formulations of the defender’s optimization problem: MINLP (the
mixed integer non-linear programming approach in which we explicitly encode attacker target
choices), NLP (non-linear program in which attacker target choices are implicit), and two MILPs,
the first that does encode target choices, which we call “MILP (baseline)”, and the second that
does not, and which we refer to as “MILP(reduced)”.

We compare all these formulations in terms of objective value (i.e. average v0 over 100 ran-
dom realizations of target values and network topologies) and average running time. The results in
Figure 4.8 (left) suggest that there is not a significant difference in efficacy of the programming ap-
proaches we propose. Running time, however, does in fact differentiate them. Experimentally we
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found that MINLP running time diverges rapidly from that of MILP: even with as few as 9 targets,
KNITRO solver takes nearly 300 seconds, as compared to under 2 seconds solving the correspond-
ing MILP approximation using CPLEX. Surprisingly, we found little difference in running time
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Figure 4.8. Left: Comparison of average attacker utility achieved
using MINLP, two versions of MILP, and NLP formulations, us-
ing the Cycle topology. Right: Running time comparison between
MILP and NLP on Cycle and ER(0.1) graphs. We omit MINLP
which does not scale, and the two MILP formulations yield simi-
lar results, so we only present MILP (baseline) here.

between the two MILP formulations, but the difference between MILP and NLP formulations is
rather dramatic. Figure 4.8 (right) shows that the NLP formulation scales considerably better than
MILP, solving instances with as many as 1000 targets in under 200 seconds (MILP already begins
to reach its limit by n = 50). Interestingly, graph topology seems to play some role in determin-
ing the difficulty of the problem: Cycle graphs are solved much faster by NLP than Erdos-Renyi
analogs.

4.7.4 Attacks Taking Multiple Steps

Approximation and Runtime Tradeoff

As our formulation of the defender’s optimization problem in the case when attacks can take more
than a single step to unfold allows one to make a principled tradeoff between runtime and approxi-
mation quality, we now study this tradeoff. Specifically, we fix the number of steps an attack takes
at h = 3, fix the number of targets at 10, and vary 1≤ K ≤ 3,.

The results are shown in Table 4.2. It is quite clear that solving this problem optimally is
an unlikely proposition: even with h = 3 and only 10 targets, solving to optimality requires, on
average, over 20 minutes. Fortunately, it appears that both K = 1 and K = 2 approximations
achieve near-optimal utility, and are much faster.
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K expected utility runtime (s)
1 0.52±0.01 0.3±0.02
2 0.48±0.01 7.18±1.16
3 0.47±0.01 1325±243

Table 4.2. Comparison of attacker’s expected value and de-
fender’s network design cost for the NLP (ND) formulation solved
by IPOPT and KNITRO, and the MILP (ND) formulation. For all,
the number of targets is 20 and per-edge cost is 0.02. For KNI-
TRO, we used 4 restarts; we had not tried more, as even with 4 a
significant fraction of instances (between 5 and 10%) simply stall.

The Impact of Increasing the Length of Attack

Having observed that the defender does not lose very much by considering K = 1, we use this
approximation to study the impact of increasing the length of an attack on attacker’s expected
utility. Specifically, the results in Figure 4.9 show the expected utility of the attacker, as well as
the average running time, as a function of the number of time steps an attack takes to unfold.
As we would expect, increasing the number of time steps decreases attacker utility, and increases
running time; this is true for several values of the discount factor δ . Perhaps surprisingly, however,
discount factor does not have an impact on attacker utility here, except when h = 1. A very high
discount factor does, however, result in a higher running time: as the attacker becomes more
patient, the computation must be increasingly subtle to ensure a highly efficacious patrolling policy.
Nevertheless, we can ultimately observe that the running time scales extremely well with h when
K = 1: even when h = 10, computing the defender policy is still on the order of 1 second.

4.7.5 Experiments with Discount Factor

Here we study the impact of changing the discount factor δ on the attacker’s expected utility and
the runtime of the NLP model. Figure 4.10 (left) shows that once the discount factor is at 0.5 or
lower, it does not pay for the attacker to wait, and the utility is therefore insensitive to changing the
discount factor in this region (recall that positive utility is attained only upon a successful attack in
this setup, so attacking immediately implies that the discount factor plays no role, except to further
discourage waiting). Considering the upper range of discount factors, we can observe that when
δ > 0.75, the attacker can often gain a non-negligible value from waiting, and, on the other hand,
the expected utility at δ = 0.95 is still significantly below that for δ = 1, suggesting that qualitative
differences exist between the two regimes.

Inspecting the runtime plot (Figure 4.10, right) reveals no significant runtime differences as
long as the discount factor is below 0.95, but runtime rises sharply when it is higher.
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Figure 4.9. Attacker utility (left) and running time (right) as a
function of the number of time steps the attacker takes to attack.
The number of targets is fixed at 10, and graphs are generated ac-
cording to ER(0.1), with the base of operations (target 0) con-
nected to all others as before. Problem are solved using IPOPT.

4.8 Adversarial Patrolling Games: Network Design

Thus far we assumed that the network constraining defender moves is given exogenously. A natural
question is: what if the defender can build this network? For example, in a border patrol setting, the
defender may choose to build roads or clear certain areas to enable direct moves between important
checkpoints. Such investments to improve patrolling efficacy will usually be costly (particularly
if one includes maintenance costs), but may be well worth the investment if targets are important
enough.

Formally, suppose that the defender will first decide which edges to construct, with a directed
edge from i to j costing ci j. (Observe that we can allow for existing edges by setting the cor-
responding costs ci j = 0, and can incorporate constraints by letting ci j = ∞.) Once the graph is
constructed, the adversarial patrolling game commences just as described above, and, thus, in mak-
ing the decisions about which edges to construct, the defender must account for the impact of the
resulting graph on patrolling efficacy. Fortunately, the decision to build edges can be incorporated
directly into the mathematical programming formulations above, with Ai j now becoming variables,
rather than specified problem parameters.4

4There is a subtle issue in the network design problem: the result that we rely on to allow us to consider only
stationary Markov policies for the defender assumes a zero-sum game, which this no longer is. However, the setting
is a zero-sum game once the edges have been formed, and that is all that we actually require.
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Figure 4.10. Left: Results for objective value of attacker in
the baseline model as we vary the discount factor δ between 0.1
(very impatient attacker) and 1 (no discounting). The NLP model
(solved with IPOPT) is used throughout, and the number of targets
is fixed at 10. Right: Runtime of the baseline NLP model (solved
with IPOPT) as we vary the discount factor δ between 0.1 (very
impatient attacker) and 1 (no discounting). The number of targets
is fixed at 10.

4.8.1 Baseline Network Design Formulation

One way to solve the network design problem would be to search exhaustively through all the
networks: create a network, solve for defender utility using the approach from Section 4.6, and
iterate. Intuitively, what we do here is short-circuit this approach by doing the entire optimization
in one shot.

Let Ai j be binary variables with Ai j = 1 if and only if the defender builds an edge from i to
j which he can subsequently use in patrolling decisions. The lone term involving Ai j in all our
formulations above is linear in Ai j, and we therefore need to make no further modifications to the
constraints. Since edges have a cost, we must change the objective to reflect the resulting cost-
benefit tradeoffs. Therein lies a problem: our formulations above used ∑i vi as an objective, while
the defender’s concern is only about v0. Consequently, if we simply add a total incurred cost to
∑i vi in the objective, the cost term will not be given sufficient weight, and the solution may be
suboptimal: in fact, it is fundamentally the tradeoff between value and cost of building edges that
we are trying to make here. The true objective of v0 + cost, however, does not work either, since
it will fail to correctly compute the values vi of all states i, which are necessary to correctly obtain
v0: coefficients on all vi must be strictly positive. We therefore offer the following approximate
objective function:

min (1−α)v0 +α ∑
i 6=0

vi +∑
i, j

ci jAi j,

where α > 0 is some small real number, and the last term computes the total cost of building the
graph. We now show that α can be scaled low enough to ensure that the resulting solution is
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arbitrarily close to optimal.

First, let us abstract the constraint set of the above optimization problem as some set C . Let

(π∗,v∗,A∗) ∈ arg min
(π,v,A)∈C

(
v0 + ∑

i, j∈T
Ai jci j

)
be a true minimal (optimal) solution, with u∗ the corresponding optimal utility, while

(π̂, v̂, Â) ∈ arg min
(π,v,A)∈C

(
(1−α)v0 +α ∑

j 6=0
v j + ∑

i, j∈T
Ai jci j

)
,

with û the corresponding expected actual utility of the attacker at an approximate solution.

Proposition 4.8.1. Suppose that 0≤ vi ≤ V̄ for all targets i ∈ I. Then û≤ u∗+αnV̄ .

Proof. Proof.

û = v̂0 + ∑
i, j∈T

Âi jci j = (1−α)v̂0 +α ∑
j 6=0

v̂ j + ∑
i, j∈T

Âi jci j +α(v̂0−∑
j 6=0

v̂ j)

≤ (1−α)v∗0 +α ∑
j 6=0

v∗j + ∑
i, j∈T

A∗i jci j +α(v̂0−∑
j 6=0

v̂ j)

≤ v∗0 + ∑
i, j∈T

A∗i jci j +α(v̂0 + ∑
j 6=0

v∗j)≤ u∗+αnV̄ .

In our setting the attacker receives a reward only once, when he actually attacks a target; con-
sequently, vi ≤max j max{Uc

a ( j),Uu
a ( j)} for all targets i∈ T . Thus, V̄ = max j max{Uc

a ( j),Uu
a ( j)}.

If we further let max{Uc
a ( j),Uu

a ( j)} ≤ 1 for all targets j (this is true in all our experiments below),
V̄ = 1, and our approximation incurs an additive error of at most nα .

The modifications above can be made directly to both the NLP and MILP formulations of the
adversarial patrolling problem. However, the modification introduces integer variables, which are
especially problematic when with start with a non-linear program. Below we offer an alternative
network design formulation in which no integer variables are present.

4.8.2 NLP Network Design Formulation

Above, we used the graph constraint from the basic APG formulations unchanged, and merely
introduced Ai j as integer variables. Alternatively, we can modify the graph constraint to recover
an equivalent formulation of the network design problem that contains no integer variables.

Consider the set of constraints

πi j(1−Ai j) = 0 ∀ i, j ∈ I (4.8.1)

92



which are equivalent to those in Constraint 4.6.2d (when Ai j = 0, πi j are forced to be 0). While
we have just replaced linear constraints with those that are non-linear, the win comes from the fact
that we can now relax Ai j to be real-valued.

Proposition 4.8.2. Suppose that Ai j ≥ 0 is unrestricted and ci j > 0. Further, suppose that we
replace the linear graph Constraint 4.6.2d in the network design formulation with Constraint 4.8.1.
Then an optimal solution Ai j is binary-valued.

Proof. Proof. Suppose πi j > 0. The only way for the constraint to equal zero in this case is to force
Ai j = 1. Alternatively, suppose that πi j = 0. Then the value of Ai j is unrestricted. However, since
Ai j ≥ 0, any positive value of Ai j would carry a cost, and have no benefit to the objective value,
since πi j = 0 and this link is effectively unused. Therefore in an optimal solution, Ai j = 0.

We note that we can make an analogous modification to the MILP network design formulation,
but must subsequently linearize the new set of graph constraints. Nevertheless, we can prove that
the resulting linearized version always results in binary-valued Ai j (details are in the appendix).

4.8.3 Experiments: Network Design

In this section, we compare the MILP formulation for network design, which we refer to as MILP
(ND), and the non-linear programming formulation in Section 4.8.2, which we refer to as NLP
(ND).

The results in Table 4.3 offer a compelling case for the MILP network design formulation:
attacker values achieved are not very different, but NLP-based approaches are clearly quite subop-
timal in terms of design costs, building far more edges than optimal.

method attacker value design cost
MILP (ND) (CPLEX) 0.82±0.014 0.45±0.0058
NLP (ND) (IPOPT) 0.78±0.044 7.35±0.29

NLP (ND) (KNITRO) 0.77±0.021 3.14±0.084

Table 4.3. Comparison of attacker’s expected value and de-
fender’s network design cost for the NLP (ND) formulation solved
by IPOPT and KNITRO, and the MILP (ND) formulation. For all,
the number of targets is 20 and per-edge cost is 0.02. For KNI-
TRO, we used 4 restarts; we had not tried more, as even with 4 a
significant fraction of instances (between 5 and 10%) simply stall.

In the next set of experiments, we let the cost ci j for every edge be a fixed value c, which we
vary between 0 and 0.1. Figure 4.11 shows the attacker expected utility and algorithm runtime for
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Figure 4.11. Network design: objective value and runtime for
different edge costs and numbers of targets. Results from solving
the MILP (ND) formulation (capped at 300 seconds).

varying costs per edge c and number of targets. Interestingly, at costs as low as 0.005, the expected
utility is already nearly optimal (that is, we do essentially as well as when c = 0). For cost between
0.005 and 0.01, we see the peak in computational burden: edge costs are now non-negligible, but
good solutions can still be obtained if only the most important edges are built.

4.9 Transition Costs

4.9.1 Formulation

In many realistic settings, rather than having a fixed graph that constrains defender’s moves, we
may posit that each directed edge (i, j) has some associated cost ci j for the patroller to traverse,
and the defender must decide at each point in time the most cost-effective way to patrol among
all targets, depending on which target he is patrolling at the moment. (Notice that this setting
is again a departure from our zero-sum assumption. In the sequel, we assume that stationary
Markovian strategies nevertheless still suffice.) As an example, consider a border patrol setting:
only a subset of targets is connected via easily traversable paths (e.g., roads), and in principle
moves between targets separated by unfavorable terrain are not impossible, just substantially more
costly. Depending on target value, patrol may at times wish to avail themselves of the more costly
alternative routes.

Without loss of generality, suppose that the network is completely connected and remove the
network constraint (Constraint 4.6.2d) from the optimization. Note that this is without loss of gen-
erality because for any edge with Ai j = 0 we can set the cost ci j = ∞. Since the game is no longer
zero-sum, the NLP formulations we have used cannot be easily extended to compute a Stackelberg
equilibrium in this setting, as we need to introduce integer variables that explicitly represent at-
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tacker decisions. As such, we first extend the MINLP formulation to compute Markov stationary
Stackelberg equilibria in general-sum APGs (Mathematical Program 4.6.1), and then note that we
can convert the resulting formulation into a MILP approximation as we had done earlier. First, note
that the objective function becomes minv0 +C0, where C0 computes total expected costs when the
defender starts in state 0. Next, recall that bi identifies whether the attacker attacks or waits in each
state i, and we use it to compute total discounted cost Ci starting at each state i:

Ci = (1−bi)

(
∑

j
πi jci j

)
+bi

(
∑

j
πi jci j +δ ∑

j
πi jC j

)
= ∑

j
πi jci j +δ ∑

j
biπi jC j.

In the MILP approximation, we would additionally replace the variables πi j with their discrete
counterparts, obtaining

Ci = ∑
j
∑

l
pldi jlci j +δ ∑

j
∑

l
plbidi jlC j,

and then linearlize the non-linear constraint bidi jlC j using McCormick inequalities, letting hi jl =
bidi jlC j, and ensuring that hi jl satisfies the following set of constraints:

−Zbi ≤ hi jl ≤ Zbi ∀ i, j, l (4.9.1a)
−Zdi jl ≤ hi jl ≤ Zdi jl ∀ i, j, l (4.9.1b)
C j−Z(2−di jl−bi)≤ hi jl ≤C j +Z(2−di jl−bi) ∀ i, j, l. (4.9.1c)

4.9.2 Experiments

In our experiments pertaining to the formulation that uses transition costs instead of a fixed graph,
we generate the cost for each edge (i, j) i.i.d. from a uniform distribution on an interval [0,c],
where c is a parameter that we vary (we call it cost upper bound). The single exception is that we
set the cost of staying at a given target to be 0, which seems natural in most realistic settings.

Figure 4.12 shows the attacker utility as well as total defender expenditures for 5 targets.5 As
expected, attacker value increases with defense costs, but rather gradually. Interestingly, the total
costs of defense start gradually falling after reaching a peak around c = 0.75, presumably as some
of the costs become so high so that the corresponding arcs are not worth taking no matter what
target the value is.

4.10 Conclusion

We defined general-sum discounted stochastic Stackelberg games (SSG), presented a model of
discounted adversarial patrolling on exogenous networks, and demonstrated how to formalize it
as a highly structured SSG. We show that in general SSGs do not have Markov stationary Strong

5We used a time limit of 300 seconds for CPLEX to solve these problems. Doubling the time limit does not
appreciably change the results.
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Figure 4.12. Attacker value v0 and defender total expenditures,
as a function of cost upper bound c in the “transition costs” model.
Solved using the MILP with 6 discrete probability levels, for 5
targets. All results are based on at least 60 samples.

Stackelberg equilibria, even when they are of the restricted adversarial patrolling variety. However,
we showed that team games do, indeed, have deterministic Markov stationary SSE. We then pre-
sented mathematical programming formulations for computing and approximating an SSE when
the leader is restricted to Markov stationary policies, and showed that our approximation approach
is convergent. We then adapted a known non-linear programming formulation to compute SSE in
zero-sum adversarial patrolling games in two ways: the first introduced integer variables to com-
pute the optimal attack utilities, following an approach commonly taken in the literature on Stack-
elberg games, while the second incorporated this decision directly into the NLP. Furthermore, we
offered an alternative, albeit approximate, MILP formulation for this problem. We also presented
two extensions of the baseline model and the corresponding NLP formulation: the first allows
multiple defender resources, while the second incorporates multi-step attacks. Subsequently, we
extended the baseline adversarial patrolling model to allow the defender to construct the graph
constraining patrolling moves, at some per-edge cost, and offered NLP and MILP formulations to
solve this problem. Finally, we presented a model in which the defender can move between an
arbitrary pair of targets, but incurs a cost for each move, and offered NLP and MILP formulations
to solve several variants of this problem.

Our experiments verify that solutions which we compute are significantly better than those ob-
tained using an alternative formulation applied to a special case of undiscounted zero-sum APGs.
Overall, both NLP and MILP formulations compute solutions much faster than mixed-integer non-
linear programs, while NLP is much faster than MILP, where applicable. On the other hand, we
found that MILP computed much better solutions than NLP in the network design problem. Addi-
tionally, the “transition costs” model in which the defender is concerned with realized (rather than
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worst-case) costs does not lend itself to an easy NLP adaptation. Instead, we extended the MILP
formulation which explicitly represents attacker target choices to compute approximate solutions
in this case.
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Chapter 5

Noncooperatively Optimized Tolerance:
Decentralized Strategic Optimization in
Complex Systems

5.1 Introduction

Highly optimized tolerance (HOT) and self-organized criticality (SOC) have received consider-
able attention as alternative explanations of emergent power-law cascade distributions [17, 26].
The SOC model [17, 37, 59] posits that systems can naturally arrive at criticality and power-law
cascades, independently of initial conditions, by following simple rule-based processes. Among
the important features of SOC are (a) self-similarity and homogeneity of the landscape, (b) fractal
structure of cascades, (c) a small power-law exponent (i.e., heavier tails), and (d) low density and
low yield (e.g., in the context of the forest fire model, described below). HOT [26, 27, 28, 85], in
contrast, models complex systems that emerge as a result of optimization in the face of persistent
threats. While SOC is motivated by largely mechanical processes, the motivation for HOT comes
from evolutionary processes and deliberately engineered systems, such as the electric power grid.
The key features of HOT are (a) a highly structured, self-dissimilar landscape, (b) a high power-law
exponent, and (c) high density and high yield [28].

HOT and SOC can be cleanly contrasted in the context of the forest fire model [26, 59], which
features a grid, usually two-dimensional, with each cell being a potential site for a tree. Intermit-
tently, lightning strikes one of the cells according to some probability distribution. If there is a tree
in the cell, it is set to burn. At that point, a cascade begins: fires spread recursively from cells that
are burning to neighboring cells that contain trees, engulfing the entire connected component in
which they begin (in our implementation, fires wrap around the grid walls, so there are effectively
no boundaries). In the classical forest fire model (SOC) a tree sprouts in every empty cell with
some fixed probability p. In contrast, the HOT model conceives of a global optimizer choosing
the configuration of each cell (i.e., whether a tree will grow or not); what emerges globally as a
consequence is a collection of large connected components of trees separated by “barriers” of no
trees. The HOT model is deliberately robust to lightning strikes with the specified distribution;
however, it is also extremely fragile to changes in the lightning distribution, whereas SOC does not
exhibit such fragility. The HOT landscape tends to have a highly non-uniform distribution of “fire
breaks”, or areas where no trees are planted, whereas the SOC landscape is homogeneous.
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A natural criticism of the HOT paradigm is that, in complex systems, it is difficult to conceive
of a single designer that manages to optimally design such a system. As a partial response, much
work demonstrates that HOT yields qualitatively similar results when heuristic optimization or
an evolutionary process is used [27, 114]. Still, most complex systems are not merely difficult
to design globally, but are actually decentralized, with many entities responsible for parts of the
whole system. Each entity is generally not motivated by global concerns, responding instead to
individual incentives. For example, the Internet is fundamentally a combination of autonomous
entities making their own decisions about network topology, protocols, and composition.

Our central contribution is to model complex systems as complex patterns of strategic inter-
actions among self-interested players making independent decisions. We conceive that out of
strategic interactions of such self-interested players emerges a system that is optimized jointly by
all players, rather than globally by a single “engineer”. Thus, we call our model noncooperatively
optimized tolerance (NOT). Formally, our model is game theoretic, and we seek to characterize
emergent properties of the system in a Nash equilibrium.

5.2 A Game Theoretic Forest Fire Model

Suppose that each player controls a portion of a complex system and is responsible for engineer-
ing his “domain of influence” against perceived threats. The interests of different players may be
opposed if, say, an action that is desirable for one has a negative impact on another. Such interde-
pendencies (commonly referred to as externalities) form a central aspect of our model. However,
HOT arises as a special case of our construction, when the game has a single player.

We begin by introducing some general game theoretic notions, and then instantiate them in the
context of a forest fire model. A game is described by a set of players I, numbering m = |I| in all,
where each player i ∈ I chooses actions from a strategy set Si so as to maximize his utility ui(·).
Notably, each player’s utility function depends on the actions of other players as well as his own,
and so we denote by ui(s) = ui(si,s−i) the utility to player i when he plays a strategy si and others
jointly play s−i ≡ (s1, . . . ,si−1,si+1, . . . ,sm), where these combine to form a joint strategy profile
s = (s1, . . . ,si, . . . ,sm).

We implement the game theoretic conception of complex system engineering in the familiar
two-dimensional forest fire model, thereby allowing direct contrast with the now mature literature
on HOT and SOC. In the NOT forest fire model, each player is allotted a portion of the square grid
over which he optimizes his yield less cost of planting trees. 1 Let Gi be the set of grid cells under
player i’s direct control, let si be player i’s strategy expressed as a vector si in which si,g = 1 if i
plants a tree in grid cell g and si,g = 0 otherwise, and let Pr{g = 1 | s,si,g = 1} be the probability
(with respect to the lightning distribution) that a tree planted in cell g survives a fire given the joint
strategy (planting) choices of all players. Denote by s the vector of all players’ choices. Since

1We note the resemblance of our grid division into subplots to the framework studied by Kauffman et al. [64],
which divides a lattice in a similar manner, but with the goal of studying joint optimization of a global objective, rather
than strategic interactions among players controlling different plots and having different goals.
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exactly one player controls each grid cell, we simplify notation and use sg = si,g where i is the
player controlling grid cell g. Let Ni = |Gi| be the number of grid cells under i’s control and ρi be
the density of trees planted by i,

ρi =
1
Ni

∑
g∈Gi

sg.

Let

Yi(s) = ∑
g∈Gi

Pr{g = 1 | s}sg

be the yield for player i (it is convenient to define the yield as an absolute number of trees). Let c
denote the cost of planting a tree. The utility of player i is then

ui(s) = ∑
g∈Gi

(Pr{g = 1 | s}− c)si,g = Yi(s)− cNiρi.

The result of joint decisions by all players is a grid that is partially filled by trees, with overall
density ρ(s) and overall yield Y (s) given by a sum ranging over the entire grid G, i.e., Y (s) =
∑g∈G Pr{g = 1 | s}sg. Let N be the number of cells in the entire grid. We then define global utility
(welfare) as

W (s) = ∑
i∈I

ui(s) = Y (s)− cNρ(s).

Note that when m = 1, W (s) coincides with the lone player’s utility. A part of our endeavor below
is to characterize W (s∗) and ρ(s∗) when s∗ is a Nash equilibrium, defined as a configuration of
joint decisions by all players such that no individual player can gain by choosing an alternative
strategy (planting configuration) s′i keeping the decisions of other players fixed.

We systematically vary several model parameters. The first is the number of players m, which
we vary from m = 1 to N, fixing the size of the grid at N = 128× 128.2. The former extreme
corresponds precisely to the HOT setting, while in the latter the players are entirely myopic in their
decision problems, each concerned with only a single cell of the grid. The negative externalities
of player decisions are clearly strongest in the latter case. The entire range of player variation is
m ∈ {1,22,42,82,162,322,642,1282}. The second parameter that we vary is the cost of planting
trees: c ∈ {0,0.25,0.5,0.75,0.9}. Finally, we vary the scale of the lightning distribution, which
is always a truncated Gaussian centered at the top left corner of the grid. We let the variance (of
the Gaussian before truncation) be N/v, and vary v ∈ {0.1,1,10,100}. For example, at v = 0.1
the distribution of lightning strikes is approximately uniform over the grid, while at v = 100 the
distribution is highly concentrated in the top left corner. We divide the grid among m players by
partitioning it into m identical square subgrids, ensuring throughout that m is a power of 4.

2This was the largest grid size on which we could approximate equilibria in reasonable time.
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5.3 Analysis of the NOT Forest Fire Model

5.3.1 Characterization of 1- and N-player Settings in the 1-D Case

We begin the analysis by considering the two extremes, m = 1 and m = N, in a simpler model
where the forest fire grid is one-dimensional (i.e., a line) and the lightning distribution is uniform.
This analysis will provide some initial findings and intuition that we then carry over into the more
complex two-dimensional case.

Without loss of generality, let k be the length of a sequence of planted cells (1’s) followed by l
unplanted cells (0’s) and suppose that 1� k� N.

First, consider the case with m = 1 and assume that c < 1− 1/N. Assume that k is identical
for all sequences of 1’s (when k� N, this is almost with no loss of generality, since 1’s can be
swapped, keeping the density constant, without changing the utility) and note that in an optimal
solution l = 1. The utility of the player (and global utility) is then

ui(k) =W (k) = ∑
g∈G

(Pr
f
{g = 1 | s}− c)sg = Nρ(k)

(
1− k

N
− c
)
,

where ρ(k) = k/(k+1). This function is concave in k. To see this rewrite ui as

ui(k) =
Nk(1− c)− k2

k+1
.

Taking the first derivative, we get

u′i =
N(1− c)− k2−2k

(k+1)2 .

Differentiating again we get

u′′i =−2(1+N(1− c))
(k+1)3 < 0,

and, hence, ui is concave in k.

Thus, treating k as a continuous variable, which is approximately correct when k� 1, the first-
order condition gives us the necessary and sufficient condition for the optimal k∗. This condition
is equivalent to

k2 +2k−N(1− c) = 0.

The solutions to this quadratic equation are

k =
−2±

√
4+4N(1− c)

2
.

Since k must be positive, we can discard one of the solutions, leaving us with

k∗ =
√

N(1− c)+1−1.
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Evaluating ρ and W at k∗, we get

ρ(k∗) =

√
N(1− c)+1−1√

N(1− c)+1

and
ui(k∗) =W (k∗) = ρ(k∗)(N(1− c)−

√
N(1− c)+1−1).

We can observe that ρ(k∗) tends to 1 as N grows, while W (k∗) tends to N(1− c).

Consider next the case with m = N. While there are many equilibria, we can precisely charac-
terize upper and lower bounds on k and l, and, consequently, the set of equilibria. First, we note
that l must be either 1 or 2; otherwise, by the assumption that c < 1− 1/N, the player governing
any grid cell that is not adjacent to a sequence of 1’s will prefer to plant a tree. Formally, we first
note that by definition, l > 0. Suppose l > 2 and, thus, there is a player not planting a tree who is
not adjacent to another with sg = 1. Then his utility from planting is 1−1/N− c, and he (weakly)
prefers not to plant as long as 1−1/N−c≤ 0 or c≥ 1−1/N, which is ruled out by our assumption
that c < 1−1/N.

Second, we can get an upper bound on k by considering the incentive of a player that is part
of the sequence of 1’s. This player will prefer to plant as long as 1− k/N − c ≥ 0, giving us
kE ≤ N(1− c). A well-known measure of the impact of equilibrium behavior on global utility
is the “price of anarchy”, the ratio of optimal global utility, here W (k∗), to global utility at the
worst-case equilibrium [71, 99, 86]. The upper bound on kE gives us the worst-case equilibrium
from the perspective of global utility, with W (kE) = 0 resulting in an infinite price of anarchy (that
is, global utility in the worst-case equilibrium is arbitrarily worse than optimal for a large enough
number of players and grid cells N).

Looking now at the lower bound on kE , we can distinguish two cases, l = 1 and l = 2. When
l = 2, either player not planting a tree prefers not to plant as long as 1− (k+ 1)/N− c ≤ 0, and,
therefore, kE ≥ N(1− c)− 1. For l = 1, suppose that the two sequences of 1’s on either side
of the non-planting player have lengths k and k′. The player will prefer not to plant as long as
1−(k+k′+1)/N−c≤ 0, where we are adding k and k′ since he will be joining the two sequences
together if he plants. This gives us k+k′≥N(1−c)−1. Since we are after a lower bound, suppose
without loss of generality that k ≤ k′. We then get kE ≥ [N(1− c)−1]/2. It is instructive to apply
now another measure of the impact of equilibrium behavior, the “price of stability”, defined as the
ratio of optimal global utility to global utility at the best-case equilibrium [86, 14]. The best-case
equilibrium in our case has l = 1 and kE = [N(1− c)−1]/2, and the asymptotic price of stability
is 2.

Now we compare the density at equilibrium and at the optimal configuration. We are looking
for the conditions under which the equilibrium density is strictly higher. Notice that it certainly
isn’t always the case. For example, if c > 1−1/N, no trees will be planted at all in equilibrium or
in an optimal configuration. Consequently, the density will be 0 in both cases. When N(1−c)� 1
and N is large, the density in the best-case equilibrium is

ρ(kE) =
N(1− c)−1
N(1− c)+1

.
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Thus, ρ(kE)> ρ(k∗) iff

N(1− c)−1
N(1− c)+1

>

√
N(1− c)+1−1√

N(1− c)+1

⇔ (N(1− c)−1)
√

N(1− c)+1 > (N(1− c)+1)(
√

N(1− c)+1−1)

⇔ 2
√

N(1− c)+1 < N(1− c)+1
⇔ 4(N(1− c)+1) < (N(1− c))2 +2N(1− c)+1
⇔ 2N(1− c)+3 < (N(1− c))2.

Solving the corresponding quadratic inequality gives us the condition that

N(1− c)> 3.

Since we assume N(1− c)� 1 throughout, we effectively have that ρ(kE) > ρ(k∗) under the
assumptions operational here.

5.3.2 Equilibria When c = 0 and m = N

Next, consider a special case in the 2-D forest fire model when c = 0 and m = N (i.e., when each
player controls a single grid cell). In this case, there are only two pure strategy Nash equilibria: one
with every player planting a tree, and another with a single player not planting. Indeed, planting
is a weakly dominant strategy for every player. To see this, suppose that the number of players
planting is z < N − 1, and consider a player who is not planting a tree. If he decides to plant,
the probability of his tree burning down is at most (N− 1)/N < 1, and so the player has a strict
incentive to plant. Furthermore, since there is no cost of planting, any player who is planting a tree
does not lose anything by doing so. Thus, every player strictly prefers to plant as long as z < N−1,
and weakly prefers to plant when z=N−1 (in which case expected utility is zero whether he plants
or not). Finally, every player planting is clearly an equilibrium, and the only other equilibrium has
a single player who does not plant (since he is indifferent, and every other player strictly prefers to
plant if that player does not).

5.3.3 Computational Analysis of the 2-D Forest Fire Model

Equilibrium Approximation

A full analysis of the two-dimensional model in all the relevant parameters is beyond mathematical
tractability. Furthermore, the problem of computing exact equilibria, or even exact optima for any
player, is intractable, as the size of the space of joint player strategies in our setting is 216384.
Nevertheless, it turns out that simple iterative algorithms for approximating equilibria as well as
optimal decisions by individual players are extremely effective. Specifically, we use a variant
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of best response dynamics for approximating Nash equilibria, which iteratively optimizes each
player’s strategy, keeping strategies of other players fixed [51]. (We found that both asynchronous
and partially synchronous versions of best response dynamics yield similar results; below we report
on the asynchronous implementation.) Within this procedure, we approximate optimal responses
of individual players using sampled fictitious play [104]. In sampled fictitious play, each grid cell
controlled by player i becomes a “player” in a cooperative subgame (where each cell has i’s utility
as its goal), and random subsets of cells are iteratively chosen to make simultaneous optimizing
decisions.

We now present the details of the algorithms we used to approximate equilibria. First, we show
the “outer loop” algorithm for best response dynamics as Algorithm 2. The parameter Tbr varies

sg← 0 ∀g ∈ G
for n = 1 to Tbr do

for i = 1 to m do
Fix s−i
if RAND ≤ pplayer then

ŝi← OPT(s−i)
else

ŝi← si
end if
si← ŝi

end for
end for

Algorithm 2: BestResponseDynamics(Tbr, pplayer)

depending on the number of players. For example, if there is just one player, Tbr = 1, whereas
Tbr = 50 when m = N. The variation is a consequence of extensive experimentation looking at
sensitivity of results to increasing the number of iterations. Our values are high enough that results
do not change appreciably when the number of iterations increases. We set pplayer = 0.9.

For each player selected by the random biased coin flip (“RAND” is a uniform random number
on the unit interval), the algorithm calls OPT() to approximate the best response of the player to a
fixed grid configuration chosen by the others. Our choice for this procedure is sampled fictitious
play, which is shown in pseudocode as Algorithm 3.

Here, RAND() when called with a list argument picks a uniformly random element of the list.
ui() is a call to an oracle (a simulator) to determine i’s utility in a particular grid configuration.
ui(sg = a,s′i,s−i) denotes utility when i plays according to s′i, except he sets sg = a. We set history
size h = 1 and exploration parameter α = 0. Thus, each grid cell at iteration t is always best-
responding to the grid configuration from iteration t− 1. We set pcell = max{0.05,1/Ni}. Thus,
on average, one player best-responds in each iteration. Our parameters for both the optimization
routine and the best response routine were chosen based on extensive experimentation. Specif-
ically, we sought to increase the number of iterations until the point at which results no longer
appreciably change. Similarly, the probability of choosing a player was increased until the results
were relatively insensitive to further change. This is demonstrated for two of the parameters, num-
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sg← 0 ∀g ∈ Gi
H← () // Initialize history of past choices H to an empty list
for n = 1 to Topt do

s′i← ChooseActions(i,α,H)
ŝi← si
for g ∈ Gi do

if RAND ≤ pcell OR |Gi|= 1 then
if ui(sg = 1,s′i,s−i)> ui(sg = 0,s′i,s−i) then

ŝg← 1
else

ŝg← 0
end if

end if
end for
append back(H, ŝi) // Add ŝi at the end of list H
if |H|> h then

remove front(H) // Remove the first element
end if
if ui(ŝi,s−i)> ui(si,s−i) then

si← ŝi
end if

end for
return si

Algorithm 3: OPT(s−i,Topt , pcell,α,h)
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ber of optimization iterations Topt and the probability of choosing a player pplayer in best response
dynamics in Figure 5.1 (left and right plots respectively). In both cases, our specific parameter
values of 200 and 0.9 respectively are conservative choices. The parameter α of the optimization
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Figure 5.1. Examples of sensitivity analysis. Left: impact of in-
creasing the number of optimization iterations when m = 1. Right:
impact of increasing the probability of choosing a player in the
best response dynamics routine when m = N2. We set c = 0 in
both.

routine was chosen to be 0 after it was observed that decreasing it always improved the result of
optimization.

Algorithm 3 uses the subroutine ChooseActions(), which is specified as Algorithm 4. In

for g ∈ Gi do
if RAND ≤ α OR H = () then

sg← RAND((0,1))
else

sg← RAND(H)g
end if

end for
return si

Algorithm 4: ChooseActions(i,α,H)

Table 5.1 we specify the number of iterations used for the outer loop (best response dynamics) and
inner loop (approximate optimization).

Global Utility

Our first question concerns the variation of global utility W (s∗) with the number of players m, the
cost c, and the parameter v governing variance of the lightning distribution. First, recall that W (s∗)
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# players Tbr Topt
1 1 200
4 5 120

16 20 80
64 20 80

256 20 80
1024 40 80
4096 20 35

16384 50 1

Table 5.1. Numbers of iterations of best response dynamics and
sampled fictitious play in the 2nd and 3rd column respectively.
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Figure 5.2. Global utility W (s∗) as a function of m for c ∈
{0,0.25,0.5,0.75,0.9}. Left: v = 0.1 (nearly uniform distribu-
tion). Right: v = 100 (highly concentrated distribution).
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will be no better than optimal for m > 1, and it seems intuitive that it is a non-increasing function
of m. Additionally, we showed above that when c = 0 and m = N, we have a global utility of 0,
since the only equilibria involve either all, or all but one, players planting trees. The question is:
what happens in the intermediate cases? Figure 5.2 provides some answers. When c = 0, the initial
drop in global utility is quite shallow for m < 256, particularly when the lightning distribution is
relatively diffuse (v < 100). However, once the number of players is relatively large, global utility
drops dramatically, and nearly reaches 0 already when m = 4096. For c > 0, the dropoff in global
utility with the number of players becomes less dramatic.

Density and Fire Break Distribution

Our next task is to consider how the density changes with our parameters of interest. Based on
the observation above, we expect the density to be 1, or nearly so, when c = 0 and m = N. The
density should be appreciably below 1 when m = 1. Furthermore, the density should decrease
with increasing cost c. In general, our intuition, based on all previous analysis, would suggest that
density should increase with the number of players: after all, each player’s decision to plant a tree
does not account for the negative impact it has on other players. Working from this intuition, the
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Figure 5.3. Density ρ as a function of m for c ∈
{0,0.25,0.5,0.75,0.9}. Left: v = 0.1 (nearly uniform distribu-
tion). Right: v = 100 (highly concentrated distribution).

simulation results in Figure 5.3 are highly counterintuitive: the overall density falls with increasing
number of players until m reaches 1024, and only when the number of players is very high (4096
and N) is it generally higher than the optimal density. This dip is especially apparent for a highly
concentrated lightning distribution (v = 100).

To understand this phenomenon we refer to Figure 5.4, showing actual (approximate) equilib-
rium grid configurations for varying numbers of players when c = 0 and v = 100. We can observe
that each player’s myopic self-interest induces him to construct fire breaks in his territory where
none exist in a globally superior single-player configuration. Thus, for example, contrast Figure 5.4
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4. Sample equilibrium grid configurations with c = 0,
v = 100, and the number of players varied between 1 and N =
16384. Blank cells are planted and marked cells are unplanted.
Player domains of influence are shaded in a checkerboard pattern.
(a) 1 player, equivalent to HOT; (b) 4 players; (c) 16 players; (d)
64 players; (e) 256 players; (f) 1024 players; (g) 4096 players; (h)
16384 players. To avoid clutter, we omit the checkerboard pattern
with N players, where each grid cell contains a tree. Note that
players adopt different strategies in similar conditions since best
response is only approximate and stochastic, and there are likely
many nearly optimal configurations.
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(a) and (b). In the former, most of the grid is filled with trees, and much of the action happens in the
upper left corner (the epicenter of the lightning distribution), which is filled with fire breaks that
confine fires to relatively small fractions of the grid. In the latter, the upper left corner is now under
the control of a single player, and other players find it beneficial to plant fire breaks of their own,
since the “wasted” land amounts to only a small fraction of their landmass, and offers some protec-
tion against fire spread to the protected areas from “poorly” protected neighboring territories. With
more players, we see coordination between neighbors emerge, as they jointly build mutually bene-
ficial fire breaks, but such cooperation is not global, and becomes increasingly diffuse with greater
number of players. Nevertheless, increasing the number of players results in a greater amount of
total territory devoted to fire breaks by individual players or small local neighborhoods, and, as a
result, an overall loss in planting density as observed.

Fragility

Since the density is decreasing for intermediate numbers of players, a natural hypothesis is that the
fire breaks are distributed suboptimally. We can observe this visually in Figure 5.4.

Specifically, the equilibrium grid configurations suggest that the location of fire breaks becomes
less related to the lightning distribution as the number of players grows. To measure this formally,
we compute

C =
∑g∈G pg(1− sg)

1−ρ
.

The numerator is the probability that lightning strikes an empty (no tree) cell, where pg is the
probability of lightning hitting cell g, and sg is the indicator that is 1 when g has a tree and 0
otherwise. The denominator is the fraction of the grid that is empty. The intuition behind this
measure is that when fire breaks (i.e., empty cells) lie largely in regions with a high probability
of lightning, C will be much larger than 1, whereas if empty cells are distributed uniformly on
the grid, E[C] = 1 (these are formally shown in the next section) Figure 5.5 (left) confirms our
hypothesis: initially, C is quite high, but as the number of players increases, C approaches 1.
Interestingly, when the number of players is very large (m = 4096) this result reverses, with C
jumping abruptly. To understand this phenomenon, note that when m = 4096, each player controls
only a 2× 2 subgrid, which is simply too small for a local fire break to be worthwhile unless the
fire risk is very high. Thus, the only players with any incentive to build fire breaks are those close
to the epicenter of lightning.

Considering the spatial distribution of empty grid cells apart from lightning strikes, we see in
Figure 5.5 (right) that the centroid of the empty cells begins near the (0,0) point, but approaches the
center of the grid with increasing number of players.3 Interestingly, even for a moderate number of
players (m = 16), the distribution of fire breaks is nearly homogeneous and almost unrelated to the
lightning distribution. This suggests that global utility would remain relatively robust to changes in
the lightning distribution compared to the HOT model. To verify this, we show in Figure 5.6 aver-

3Here again we see that the center shifts back to near the (0,0) point when m = N/4, for the same reasons we just
outlined.
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Figure 5.5. Left: a measure of correlation (C, defined in the
text) between the lightning distribution and the fire breaks (empty
cells) across subgrids for c = 0 and c = 0.9. As C approaches 1,
the locations of empty cells become essentially unrelated to the
distribution of lightning strikes. Right: centroid coordinates of the
empty grid cells when c = 0 (the results are similar when c = 0.9).

age global utility of equilibrium configuration after the lightning distribution is randomly changed.
Whether the cost of planting trees is high or low, the figure shows significantly reduced fragility for
an intermediate number of players (between 16 and 1024). Indeed, when cost is high, the system
remains less fragile than HOT even in the limiting case of m = N. Because global utility remains
relatively close to optimal across a wide range of settings when m is below 256, our results suggest
that the regime of intermediate numbers of players retains the robustness of HOT, while developing
some features of SOC that make it less fragile to changes in the environment. Perhaps the most
important reason for this phenomenon is the impact that negative externalities have on behavior
of agents most susceptible to them: players closest to the epicenter of the lightning distribution
tend to overplant, and others respond by building firebreaks around parts of their territory, partially
protecting themselves from negative effects of neighbors’ decisions. A direct consequence of these
decisions is that the overall configuration remains quite robust to lightning strikes. A surprising
consequence is that the resulting fire breaks form effective barriers preventing excessive spread of
fire if the lightning distribution changes. When the number of players (m) is very small, however,
player decisions correspond very closely to the actual lightning distribution, increasing fragility,
while a very large m fragments decisions too much, and player decisions are highly myopic, with
resulting configurations often not robust and highly fragile.

Distribution of Burnout Cascades

One of the central results of both SOC and HOT models is a power-law distribution of burnout
cascades. Since our model generalizes HOT, we should certainly expect to find an approximately
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Figure 5.6. Fragility of NOT configurations for v = 100. Given
the (approximate) equilibrium configurations generated for a light-
ning distribution centered at the upper left corner of the grid, we
changed the lightning distribution by generating the center of the
Gaussian uniformly randomly from all grid locations. We then
evaluated expected global utility given the altered lightning distri-
bution. The graph plots averages of repeating this process 30–80
times, as compared to global utility for the original environment.
Left: c = 0. Right: c = 0.9.

power-law distribution in the corresponding special case of m = 1. We now study how the burnout
distribution behaves with respect to the parameters of interest.

Figure 5.7 shows fire cascade distributions on the usual log-log plot for v = 10. When m = 1
(red points), the results suggest an approximate power-law distribution across a range of scales.
Additionally, even when m is greater than 1 but relatively small (green points), the distribution
remains approximately linear across a range of scales, suggesting that the power law is likely
not unique to the HOT setting. Once the number of players is large, however, the distribution
of cascades less resembles a power law, and begins to feature considerable curvature even at the
intermediate scales. In that sense, the NOT setting with many players is unlike both HOT and
SOC. The most important aspect of the cascade distributions is that the tails are systematically
increasing with the number of players in all observed settings (this remains the case for Gaussians
with greater and smaller variance, not shown here).

5.4 Discussion

The results described in the previous section show features of both HOT and SOC. When the num-
ber of players is small, the NOT setting closely resembles HOT, and, indeed, HOT is a special case
when there is a single player. Perhaps surprisingly, features of HOT persist even when the number
of players becomes larger, but as the number of players increases, we also begin to observe many
features identified with SOC. The system retains its robustness to the lightning strikes—a key
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Figure 5.7. Distribution of tree burnout cascades, shown on a
log-log plot with Pr{X ≥ x} on the vertical axis and x on the hor-
izontal axis, where X is the random variable representing cascade
size. The plots feature (bottom to top) m= 1 (red), m= 16 (green),
m = 256 (blue), and m = 4096 (purple), with the left plot cor-
responding to c = 0 and the right plot corresponding to c = 0.9.
Both plots correspond to v = 10.

feature of HOT—even when the number of players is relatively large. It achieves this robustness
in part due to the emergence of cooperation between neighboring players, who jointly build fire
breaks spanning several players’ territories. The cooperation required to retain near-optimal per-
formance becomes increasingly difficult, however, as the system becomes highly fractured among
small domains of influence.

As cooperation becomes less effective, players fall back on protecting their own domain of in-
fluence by surrounding it (or parts of it) with deforested land, so long as the fraction of land covered
by trees is large enough to make this endeavor worthwhile. This gives rise to the counterintuitive
result that the density of trees initially falls as the number of players increases.

Since even a moderately fractured landscape requires each player to focus on protecting his or
her own domain, we observe decreasing correlation between locations of frequent lightning strikes
and locations of fire breaks. With increasing number of players, this correlation systematically
decreases, and the spatial distribution of empty cells becomes increasingly homogeneous—striking
features of SOC that emerge even when the number of players is not very large and the global
performance is still highly robust to lightning strikes. Thus, the intermediate range of players
appears to exhibit both the robustness of HOT and the lack of fragility to changes in the lightning
distribution associated with SOC.

Another feature of SOC in contrast to HOT is a heavier-tailed distribution of burnout cascades.
We in fact observe that the tail of the burnout distribution becomes heavier with increasing number
of players, superficially appearing to shift to an SOC regime. However, these distributions begin
to substantially deviate from a power law even visually, and the setting is therefore in that respect
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entirely unlike the criticality observed in SOC.
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Chapter 6

Decision and Game Theoretic Foundations
of Risk and Trust

While much discussion has gone into evaluating risk and trust for a given system, more often than
not these are not defined in terms of sound decision theoretic foundations. In this chapter, we
attempt to provide some such foundations, and draw the connection to the common definitions
actually used.

We begin by providing high-level, intuitive definitions for risk and trust, and then proceed
to build a formal framework to think about these. We define trust in a given system to be the
property that, roughly, very bad things are unlikely to happen. This informal definition has two
crucial components upon which a framework can be based: very bad things, alluding to what is
commonly know as consequences, and unlikely to happen, alluding to the probability that said
things can happen to the system. We define risk of a system as the expected losses incurred, where
the expectation is taken with respect to the events that result in such losses. In what follows, we
unpack both these concepts in formal notation.

6.1 Trust

Consider a collection of undesirable events, {Ei}n
i=1. We can think of each event Ei as a partic-

ular “bad thing” that we would really wish not happen. We can define trust, T , formally as the
probability that no such even occurs.

Tr = 1−Pr{∪iEi}. (6.1.1)

In practice, we typically talk about having trust in a particular system. A natural way to interpret
that is to define such trust in terms of confidence levels that bad things don’t happen. We capture
this formally in the following definition.

Definition 6.1.1. We say that we have (1−δ )-trust in a system if

Tr ≥ 1−δ ,

or, equivalently, if
Pr{∪iEi} ≤ δ .
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It is likely to be rather difficult to reason in terms of probabilities over a union of events. To
simplify this, we can apply the union bound to obtain a lower bound on trust:

Tr ≥ 1−∑
i

Pr{Ei}.

Similarly, if
∑

i
Pr{Ei} ≤ δ ,

we have (at least) (1− δ )-trust in the system. Moreover, if we ensure that Pr{Ei} ≤ δ for each
event i, then we have (1−nδ )-trust in the system, and can focus on establishing the corresponding
confidence level δ for each negative event Ei in isolation.

6.2 Risk

The convenience of the definition of trust we used above is that we need not concern ourselves
with determining precisely what the consequences of bad events are; instead, we can just specify
the collection of things we wish to avoid, and simply focus on avoiding them. While that is at
times advantageous, proper decision theoretic analysis does warrant a specification of losses, or
disutilities, associated with different negative outcomes.

Let O be the outcome space, and let us partition it into two parts, Og and Ob, corresponding
to “good” and “bad” outcomes respectively. Assume that only bad outcomes correspond to actual
losses, and let C(o) be a loss if the outcome is o∈Ob. We can then define risk as the expected loss,

R = ∑
o∈Ob

C(o)P(o),

where P(o) is the probability that outcome is o.

6.3 Connection to Commonly Used Risk Models

There are two models for risk that are commonly used. The first defines risk as

R1 = L×C,

where L is likelihood of a bad event and C is consequence. The second defines risk as

R2 = T ×V ×C,

where T is threat, V is vulnerabilities, and C is consequence.

Now, recall our expression for risk, R. Let C be the worst-case loss we can incur. Then

R≤C ∑
o∈Ob

P(o) = Pr{Ob}×C.
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Defining L = Pr{Ob}, we obtain R1 as the upper bound on risk.

The second definition of risk, R2, merely unpacks the likelihood Pr{Ob} as

Pr{Ob}= Pr{Ob|threat}×Pr{threat},

with T above being the shorthand for probability of threat (e.g., attack), Pr{threat}, and V the
shorthand for the probability of a negative outcome given that there is a threat (attack), Pr{Ob|threat}.1
Thus, R2 and R1 are equivalent expressions for the same quantity, both providing an upper bound
on risk R.

6.4 Decision-Theoretic Foundations of Trust and Risk

A crucial simplification that is at the root of a decision-theoretic treatment of trust and risk is
the assumption that threats do not react to mitigation strategies. This is the case when threats
are natural disasters or unintentional human errors. However, when threats are malicious, this
assumption is rather more heroic, although it can still be justified somewhat in settings where it is
difficult for an attacker to observe or determine what mitigation strategies are undertaken or their
consequences from attacker’s perspective. Below we shall return to this issue.

In the meantime, we let M represent a decision variable that captures whatever one could do to
mitigate against risk and thereby enhance trust in the system. We can expand the definition of risk
to capture the result of mitigation as follows:

R(M) = ∑
o∈Ob

C(o)P(o|threat,M)P(threat).

Thus, risk is a function of mitigation, and the mitigator aims to solve the following optimization
problem:

min
M

R(M),

that is, the mitigator wishes, naturally, to minimize risk exposure.

Considering risk alone may be problematic, since mitigation strategies may well reduce func-
tionality of the system. For example, we can considerably mitigate risk of cyber attacks by dis-
abling internet access, but it’s unlikely that such a policy is acceptable. One way to consider such
costs is to explicitly invoke a cost function, c(M) which captures consequences of mitigation that
we also wish to minimize. Then, we would rewrite the optimization problem as

min
M

R(M)+ c(M).

Arguably the most principled way to arrive at the cost function c(M) is by considering positive
aspects of the system, as a function of mitigation. Let V (o) be the value of the system when the

1We thank Alison Kubota for elucidating this interpretation.
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outcome is o ∈ Og. Then the expected utility of the system, as a function of mitigation strategies,
is the total gains less total losses:

U(M) = ∑
o∈Og

V (o)P(o|threat,M)P(threat)− ∑
o∈Ob

C(o)P(o|threat,M)P(threat). (6.4.1)

This, incidentally, captures the fact that threats may not simply cause a disaster, but may also de-
grade system functionality, which is a loss relative to ideally functional system, but not necessarily
a net loss. Our goal is thus to maximize expected utility:

max
M

U(M).

There is an alternative decision-theoretic perspective on this which may be more natural in
certain settings. Let outcome space O represent “baseline” states of the world. Assign to every
outcome o ∈O a utility V (o) if there is no successful threat and let C(o) be the cost of a successful
threat in state o. We can then write the expected utility as

U(M) = ∑
o∈O

V (o)−C(o)P(success|threat,o,M)P(threat|o).

In the context of (1−δ )-trust, our goal is somewhat simpler: we wish to find M such that

P(Ei|threat,M)P(threat)≤ δ ∀ i = 1, . . . ,n.

(Recall that Ei are events we wish to avoid). From a decision theoretic perspective, we may wish
to optimize expected utility subject to a constraint on trust. For example:

max
M

U(M) (6.4.2a)

s.t. :
P(Ei|threat,M)P(threat)≤ δ ∀ i = 1, . . . ,n. (6.4.2b)

Alternatively, we can minimize costs of mitigations, subject to a trust constraint:

min
M

c(M) (6.4.3a)

s.t. :
P(Ei|threat,M)P(threat)≤ δ ∀ i = 1, . . . ,n. (6.4.3b)

6.5 Game-Theoretic Foundations of Trust and Risk

Game theory takes fundamental issue with the assumption we made above that threats do not react
to mitigation strategies. Realistically, there are two types of threats:

1. Unintended threats (e.g., natural disasters, accidents)
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2. Malicious threats (attackers)

Game theoretic approach to trust and risk is a generalization of the decision-theoretic approach
described above which explicitly accounts for malicious threats who in all likelihood will react to
mitigation, for example, by circumventing the defenses. Fundamentally, we will explicitly distin-
guish the two types of threats, with Tn referring to unintended threats (“nature”) and Ta referring
to attackers. Let P(Tn) be the probability of facing the former type of threat and P(Ta) the proba-
bility of facing the latter. For simplicitly, we shall assume that at most one of these threats actually
materializes. Then we can define

P(threat|M) = P(Tn)+P(Ta|M).

Note that P(Tn) corresponds to P(threat) that we used in the previous section and does not depend
on mitigation strategies. However, P(Ta|M) captures the fact that we may deter an attacker if we
use mitigations properly.

This is only a small part of the story, however. The key to a game theoretic approach to trust and
risk is to unpack the probabilities P(o|Ta,M). In a sense this expression is completely general: the
notation already captures the possibility that the attacker responds to mitigations. The problem is
that it is difficult to obtain data to estimate such an attacker response function effectively. Thus, this
expression is unlikely to be of practical use in capturing attackers’ reasoning process. Game theory
offers a principled approach to resolving this issue which posits that the attacker will respond by
selecting a strategy that is optimal for him, given mitigations. Suppose that an attacker can choose
from among a set of attacks A. Additionally, suppose that the attacker has a utility function over
outcomes o, Ua(o). If we fix M, the attacker will choose a∗(M) such that

a∗(M) = argmax
a∈A

Ua(o)P(o|M,a).

Note that every M corresponds to an optimal attacker decision a∗(M) (or a set of these, in which
case we can use one of a number of tie-breaking approaches, or posit, in general, a probability
distribution over attacker’s responses; for simplicity, we punt on these technical complications
here, as we are after the conceptual points). The defender’s utility function in Equation 6.4.1 from
the previous section then

U(M,a∗(M)) = ∑
o∈Og

V (o)[P(Tn)P(o|Tn,M)+P(Ta|M)P(o|Ta,M,a∗(M))]

− ∑
o∈Ob

C(o)[P(Tn)P(o|Tn,M)+P(Ta|M)P(o|Ta,M,a∗(M))].

We can make the same modification to the other optimization formulations in the previous sec-
tion, capturing explicitly the attacker’s response. As another example, consider a game theoretic
generalization of the optimization problem 6.4.2:

max
M

U(M,a∗(M)) (6.5.1a)

s.t. :
P(Ei|Tn,M)P(Tn)+P(Ei|Ta,M,a∗(M))P(Ta|M)≤ δ ∀ i = 1, . . . ,n (6.5.1b)
a∗(M) = argmax

a∈A
Ua(o)P(o|M,a). (6.5.1c)
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6.6 Discussion

There are a few high-level points to take away from this chapter. The first is that the way risk and
trust is usually framed is extremely limited in expressiveness, as it is usually reduced to only very
basic concepts, such as difficulty, likelihood, and consequence. The fact is, however, that likeli-
hood is endogenous, in the sense that defense decisions (mitigations) will change it both directly
(by addressing known problems) and indirectly (by deterring attacks), difficulty (to an adversary)
captures too many aspects of the adversary’s problem, which could include capability require-
ments, access requirements, resource availability, or costs, each of which can have a dramatically
different impact on the attacker’s decision problem and, consequently, on our exposure to risk.
Finally, it is crucial to reason about the endogenous response of attackers to mitigations. Modeling
an attacker explicitly allows one to appreciate the importance of understanding attacker’s motiva-
tions. Attackers vary in motivation, depending on who the attacker is, and many threats, such as
“nature”, have no motivation.

Indeed, risk analysis methods do often make an explicit distinction between attacker’s goals
(which are a source of attack scenarios), and (defender) consequences. The distinction between
goals and consequences is, however, artificial: both of these are a function of outcomes, i.e., what
actually happens once both attacker and defender make their respective moves, with attacker’s
goals reflecting his own motivations (utility), while what we usually term consequences can be
equivalently viewed as defender’s motivations, or, perhaps, things that the defender wishes to
avoid (e.g., goals with a negative value). Once this distinction is explicated in terms of different
valuations over outcomes for the defender and attacker, and once we appreciate that the interactions
between the defender and the attacker determine the relatively likelihood of the various outcomes,
we can lay principled mathematical foundations for risk analysis and trust, using decision theory
and game theory.
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[65] D. Kempe, J. M. Kleinberg, and Éva Tardos. Maximizing the spread of influence in a social
network. In Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 137–146, 2003.

[66] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe. Computing optimal
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